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Abstract. In this paper, we study the Nisnevich sheafification
H1

ét(G) of the presheaf associating to a smooth scheme the set of
isomorphism classes of G-torsors, for a reductive group G. We show
that if G-torsors on affine lines are extended, then H1

ét(G) is homo-
topy invariant and show that the sheaf is unramified if and only if
Nisnevich-local purity holds for G-torsors. We also identify the sheaf
H1

ét(G) with the sheaf of A1-connected components of the classifying
space BétG. This establishes the homotopy invariance of the sheaves of
components as conjectured by Morel. It moreover provides a compu-
tation of the sheaf of A1-connected components in terms of unramified
G-torsors over function fields whenever Nisnevich-local purity holds
for G-torsors.
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1 Introduction

1.1 The Asok–Fasel program

One of the most compelling recent successes in applying methods from homo-
topy theory to algebraic geometry is the Asok–Fasel program which attempts
to classify vector bundles on smooth affine varieties by means of the Postnikov
tower in Morel–Voevodsky’s A1-homotopy theory [AF14a,AF14b,AF15]. Their
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methodology is based on the affine representability results of Morel [Mor12] and
Asok, Hoyois and the third author [AHW17] which establish results to the ef-
fect that vector bundles on various smooth affine schemes are computed as
maps in the A1-homotopy category, thus accessible via the Postnikov tower
[MV99,AE17] and therefore understood in cohomological terms. A morphism

X → Y

in the A1-homotopy category can be understood as the limit of a sequence of
maps

X → τ≤jY j ≥ 0,

such that the obstruction to the extension problem:

τ≤j+1Y

X τ≤jY,

(1)

and their possible solutions lie in a (twisted) Nisnevich cohomology group.
These “affine representability” results, in turn, rely on the resolution of the
Bass–Quillen conjecture in various cases, due to work of Lindel [Lin82] and
Popescu [Pop89]. More specifically, let us write Vr(R) to be the set of isomor-
phism classes of projective modules of rank r on a ring R (equivalently, rank r
vector bundles on SpecR). It is proved in [AHW17, Theorem 5.2.1] that when-
ever A is a ring such that for any maximal ideal m, Am is ind-smooth over a
Dedekind ring with perfect residue fields, the map

Vr(A) → Vr(A[t1, · · · , tj ]),

is an isomorphism for any j, r ≥ 0. Thus, in particular, A1-invariance holds for
vector bundles on smooth affines schemes over perfect fields.
Since Vr(A) is isomorphic to the set of GLr-torsors on SpecA, it is natural
to ask if the Asok–Fasel program can be used to study torsors under other
reductive groups. For us, G-torsors are required to have local triviality with
respect to the étale topology and hence isomorphism classes of G-torsors over
a scheme X are in (pointed) bijection with the (pointed) étale cohomology set
H1

ét(X ;G) (pointed at the isomorphism class of the constant torsorG×X → X).
The analogous picture for H1

Nis(X ;G) (where we require that torsors exhibit
Nisnevich-local triviality) has been discussed in [AHW18] where affine rep-
resentability was proved for isotropic reductive groups. In particular, when-
ever the Nisnevich and étale cohomological sets coincide (for example, when
G = SLn,GLn, Sp2n), we can run the Asok–Fasel program to classify torsors
under these groups. However, this coincidence between étale and Nisnevich tor-
sors is not the “generic situation”, and étale-locally trivial torsors are certainly
more abundant in algebraic geometry — for example Nisnevich-locally trivial
torsors over fields are all constant, a fact which is wildly false for étale-locally
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trivial torsors, e.g. for groups like O(n) (related to quadratic forms) or PGLn

(related to central simple algebras).
On first glance, it seems that the Asok–Fasel program will not have much to say
about étale–locally trivial torsors (although frequently “stably trivial” torsors
happen to be Nisnevich-locally trivial). Indeed, we have known for a long
time that on a fixed affine scheme X , isomorphism classes of torsors under an
arbitrary reductive group over X are not generally A1-invariant, i.e., the map
of pointed sets

H1
ét(X,G) → H1

ét(X × A1, G), (2)

need not be an isomorphism. Since pullback along the zero section provides
a section of the map (2) what is at stake is the surjectivity of this map, i.e.,
whether or not a G-torsor on X ×A1 is extended from X . In other words, the
analog of the Bass–Quillen conjecture fails and there is no hope to represent
torsors under G as maps in the A1-homotopy category.
Our first result states that, in fact, the failure of A1-invariance disappears after
Nisnevich sheafification. To formulate it, we fix a field k and let us writeH1

ét(G)
for the Nisnevich sheafification of the presheaf on Smk given by

U 7→ H1
ét(U ;G).

Theorem 1.1 (Propositions 3.7, 3.9, 3.10). Let k be a field and G be a k-group
scheme which is either:

1. a connected reductive group if k is of characteristic zero, or

2. O(n) if k is characteristic not two, or

3. PGLn if the characteristic of k is coprime to n.

Then, H1
ét(G) is A1-invariant.

In the meantime, the result has been extended by Balwe, Hogadi and Sawant
to include all semisimple, simply connected groups over fields of arbitrary char-
acteristic, cf. [BHS22].
To put our result in context, we note the following

Example 1.2 (Parimala). In the remarkable paper [Par78] constructed infinitely
many, explicit rank 4 inner product spaces on R[x, y] which are not extended
from R. Translating this problem to torsors, she showed that the map

H1
ét(R; O(4)) → H1

ét(R[x, y]; O(4))

is not an isomorphism. Furthermore, by the last paragraph of [Par78, page 923]
and the exceptional isomorphism PGL2 = SO(3), we can further conclude that
the map

H1
ét(R; PGL2) → H1

ét(R[x, y]; PGL2)

is not an isomorphism. The reader is invited to consult [Lam06, Chapter VII]
for further discussions.
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In fact, Parimala proved more. She showed that her torsors are constant, and
actually extended from R, away from a principal open A2

R
, see [Lam06, Lemma

VII.4.14]. Additionally, restricting her torsor to a local ring around each point
of A2

R
gives rise to a torsor which is extended from R [Par78, Theorem 2.1(ii)].

These addenda to her results encouraged us to look for a result of the form
given in Theorem 1.1. �

Theorem 1.1 implies that, in particular, any counterexample to the surjec-
tivity of (2) must vanish on a Nisnevich cover of X . Theorem 1.1 is proved
by the following principle: the validity of the Grothendieck–Serre conjecture
for G plus A1-invariance over fields implies Nisnevich-local A1-invariance; see
Proposition 3.5 for a precise statement.

1.2 Towards motivic G-torsors and a conjecture of Morel’s

To connect with the Asok–Fasel program, Theorem 1.1 serves as an input to
the next result which belongs to A1-homotopy theory. To state it, let us recall
some notation. Denote by BétG the classifying stack for the group G, so that
evaluating this stack on a scheme X , the pointed set of connected component of
the groupoid BétG(X) is canonically isomorphic to H1

ét(X ;G) (as pointed sets).
Restricting BétG to the category of smooth schemes over a fixed field k we can
take its motivic localization LmotBétG so that if X is a smooth k-scheme, then
the set of homotopy classes of maps from X into LmotBétG computes maps in
the A1-homotopy category:

π0(LmotBétG(X)) ∼= [X,BétG]A1 .

We have a canonical map

H1
ét(X,G) → [X,BétG]A1 = πA

1

0 (BétG)(X).

which induces a canonical map of Nisnevich sheaves

H1
ét(G) → aNisπ

A
1

0 (BétG). (3)

In general, if X is a presheaf of spaces on Smk, the Nisnevich sheaf aNisπ
A

1

0 (X )
is the sheaf of A1-connected components of X . A conjecture of Morel posits
that aNisπ

A
1

0 (X ) is an A1-invariant sheaf. The next theorem furnishes new
examples for the validity of this conjecture.

Theorem 1.3. Let k be a field and G be a group satisfying the hypotheses of
Theorem 1.1. Then:

1. the canonical map H1
ét(G) → aNisπ

A
1

0 (BétG) is an isomorphism of Nis-
nevich sheaves of pointed sets;

2. the sheaf aNisπ
A

1

0 (BétG) is A1-invariant and is unramified in the sense of
[Mor12, Definition 2.1].
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We make several remarks concerning Theorem 1.3.

Remark 1.4. A motivic G-torsor is a map X → BétG, i.e., an element of
[X,BétG]A1 . Theorem 1.3 provides the first step towards the classification of
motivic G-torsors via Postnikov tower methods and gives an algebro-geometric
meaning to such a classification. Indeed, in contrast to the situation for vec-
tor bundles where the sheaf of A1-connected components is trivial (which is
basically a consequence of “Hilbert theorem 90”), we see that BétG is not A1-
connected. Hence, the first stage of the lifting problem of (1) requires that we

choose a map X → aNisπ
A

1

0 (BétG) which, after Theorem 1.3 is a Nisnevich-
local G-torsor. In many cases, we can say more explicitly what this means. For
example, by Proposition 6.1, when G = O(n) this is the data of an unramified
element of the Grothendieck-Witt group of X with a rank n-representative.

Remark 1.5. Theorem 1.3 also introduces the main challenge in attempting to
run the Asok–Fasel program to classify motivic G-torsors. Since the classify-
ing stack for GLr-torsors is A1-connected, we can point the higher homotopy
sheaves aNisπ

A
1

j (BZarGLr ≃ BétGLr) at the trivial torsor/vector bundle. The
lifting problems in (1) are then controlled by Nisnevich cohomology with coef-
ficients in these sheaves. By Theorem 1.3, we have a multitude of choices for
base points at which we form the higher homotopy sheaves of BétG. This adds
an additional complication that one has to deal with when trying to compute
these homotopy sheaves. For example, we can point aNisπ

A
1

j (BétPGLr) at var-
ious unramified Brauer classes (see Example 6.2) — at the trivial Brauer class
the homotopy sheaves agree with the homotopy sheaves of BNisSLr in a range
but this will not be the case at other base points.

Remark 1.6. We give a brief survey of the state-of-the-art for Morel’s conjec-
ture.

1. Morel made his conjecture in [Mor12, Conjecture 1.12]. This should
be contrasted with the main structural results from his book, [Mor12,
Theorem 1.9], which states that the higher homotopy sheaves are
strongly/strictly A1-invariant.

2. There are cases where Morel’s conjecture holds rather easily — A1-rigid
schemes as well as smooth curves over a field.

3. When G is a finite étale group scheme, the conjecture holds from [MV99,
Page 137, Corollary 3.2]. Morel has also claimed [Mor12, Remark 1.14]
that he has proved that (3) is a bijection on perfect fields when the group
of irreducible components of G is order prime to k and indicated the
possibility of a proof of his conjecture in this case, though no details were
given.

4. Work of Choudhury [Cho14] has established Morel’s conjecture for grou-
plike presheaves of H-spaces and for principal homogeneous spaces under
them. Our arguments in Section 3 are inspired by some of his arguments.
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5. In a different direction, work of Balwe–Hogadi–Sawant [BHS15] and
Balwe–Sawant [BS20] has verified Morel’s conjecture for smooth, pro-
jective surfaces in characteristic zero.

Remark 1.7. The key points in the proofs of Theorems 1.1 and 1.3 are the
Grothendieck–Serre conjecture for G-torsors as established in [FP15, Pan17]
and the A1-invariance for torsors over fields (established in the characteristic 0
case by [RR84]). The Grothendieck–Serre conjecture allows to reduce questions
over irreducible smooth schemes to function fields, where A1-invariance can be
used; this technique was used by Choudhury [Cho14] in his proof of Morel’s
conjecture for H-groups.

1.3 Unramified torsors after Colliot-Thélène and Sansuc

We now explain a consequence of Theorem 1.3 to the problem of understanding
G-torsors on smooth schemes over a field. Let G be a connected reductive
group over a field k and let X be an irreducible smooth k-scheme with function
field K. We say that purity is satisfied for G-torsors over X if the map

im
(

H1
ét(X,G) → H1

ét(SpecK,G)
)

→
⋂

x∈X(1)

im
(

H1
ét(SpecOX,x, G) → H1

ét(SpecK,G)
)

is surjective. An old question of Colliot-Thélène and Sansuc [CTS79, Ques-
tion 6.4] asks when purity holds. The state-of-the-art is reviewed in Remark 4.3.
On the one hand, purity is known for local X in a large number of cases.
We observe in Section 4 that purity for henselian local X is equivalent to the
unramifiedness of the sheaf H1

ét(G). This establishes the unramifiedness of

aNisπ
A

1

0 BétG in the situation of Theorem 1.3. On the other hand, the answer
for general X is expected to be negative. More precisely, we have the following
conjecture of Antieau and Williams [AW15]:

Conjecture 1.8 ([AW15, Conjecture 1.2]). Let G be a non-special, semisimple
k-group scheme. Then there exists a smooth, affine k-scheme X such that
purity fails for G-torsors over X.

Remark 1.9. The work of [AW15] proves Conjecture 1.8 in the setting of k = C
and G = PGLp by constructing examples of dimension 2p + 2. Since purity
does hold in dimension ≤ 2, we do not know whether or not purity holds in
dimension d = 3, 4, 5.

Using our results on the sheaves of A1-connected components of classifying
spaces, we can bring Conjecture 1.8 to the realm of A1-homotopy theory in a
large range of cases, cf. Proposition 6.5:

Corollary 1.10. Let G be a group over a field k satisfying the hypothe-
ses of Theorem 1.1 and further assume that G satisfies local purity. Then
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if purity holds for G-torsors over X, the sheafification map πA
1

0 BétG(X) →

aNisπ
A

1

0 BétG(X) is surjective. In particular, if X is a smooth k-scheme for

which the sheafification map πA
1

0 BétG(X) → aNisπ
A

1

0 BétG(X) is not surjec-
tive, then we have a counterexample to purity in this setting.

Proof. Since G satisfies local purity, by Lemma 4.7 H1
ét(G) is unramified. Now

it follows from Proposition 6.5 that the sheafification map πA
1

0 BétG(X) →

aNisπ
A

1

0 BétG(X) is surjective.

It would be interesting to adapt some obstruction-theory methods to identify
obstructions to surjectivity of πA

1

0 BétG(X) → aNisπ
A

1

0 BétG(X) and thus to
purity and better understand what properties of schemes X or groups G imply
failure of purity. We defer this to a sequel.

1.4 Structure of the paper

We first recall a couple of preliminaries in Section 2. Homotopy invariance
for Nisnevich sheafifications is discussed in Section 3 and unramifiedness for
these sheafifications as well as the relation to purity in Section 4. Then we
identify the Nisnevich sheaf of étale torsors with the A1-connected components
of the classifying spaces in Section 5 and discuss a couple of examples and
consequences in Section 6.
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2 Preliminaries and notation

In this paper, SmS denotes the category of smooth schemes over a base S. It is a
full subcategory of the category EssSmS of essentially smooth schemes. We will
use (very moderately) the language of ∞-categories which is, by now, standard
in the subject. The ∞-category of motivic spaces, as introduced by Morel–
Voevodsky [MV99] is denoted by Spc(S) and we refer to [AE17,BH18] for the
basics of this construction closer to the language of this paper; in particular,
a motivic space is an A1-invariant Nisnevich sheaf of spaces, often denoted
by X : Smop

S → S. We will denote by [X ,Y]A1 = π0MapsSpc(S)(X ,Y) the set
of homotopy classes of maps between two motivic spaces. The ∞-category
Spc(S) is obtained from the ∞-category of presheaves of spaces on S (written
as PreShv(S)) via a combination of two localization endofunctors

LNis, LA1 : PreShv(S) → PreShv(S). (4)
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Here, LNis is the usual Nisnevich localization functor, while LA1 can be modeled
by the Sing construction of Suslin, as explained by Morel and Voevodsky in
[MV99, Page 87]; see also [AE17, Definition 4.2]. In particular, if X is a presheaf
of spaces, then

π0(LA1X (T )) = π0(SingX (T )) = coeq
(

π0(X (T × A1)) ⇒ π0(X (T )
)

,

which is a formula we will need in this paper. In summary, Spc(S) is the
essential image of the localization endofunctor

Lmot : PreShv(S) → PreShv(S),

which is computed as a transfinite composite of the two functors (4).
One consequence of the above discussion is the so-called unstable A1-
connectivity theorem of Morel–Voevodsky ([MV99, Corollary 3.22], [AE17,

Corollary 4.30]). To formulate it, we write πA
1

0 (X ) (resp. π0(X )) for the

presheaf U 7→ [U,X ]A1 (resp. U 7→ [U,X ]) and we write aNisπ
A

1

0 (X ) (resp.
aNisπ0(X )) for the Nisnevich sheafification (as presheaves of sets). Then, for
any presheaf of spaces X , the map

aNisπ0(X ) → aNisπ
A

1

0 (X )

is an epimorphism of Nisnevich sheaf of sets.
Many arguments in this paper require passing to generic points or to stalks.

Notation 2.1. Let C be an ∞-category with colimits. We adopt the following
conventions: for a presheaf F : Smop

S → C we get a presheaf EssSmop
S → C by

left Kan extension which we abusively also call F . In particular any motivic
space canonically extends to a functor out of EssSmS.

Remark 2.2. We have a fully faithful immersion EssSmS →֒ Pro(SmS), where
the EssSmS is the subcategory of pro-objects with affine transition maps. Since
any presheaf on SmS extends uniquely to one on Pro(SmS) (via left Kan ex-
tension), it uniquely determines a presheaf on EssSmS by restriction.
Note that the notion of essentially smooth schemes used above is more general
than e.g. the one in Morel’s book [Mor12], where the schemes are required to be
noetherian and the transition maps are required to be étale. On the one hand,
this means that the extension of a presheaf via left Kan extension above will
in particular be defined for essentially smooth schemes in the stronger sense.
On the other hand, the essentially smooth schemes we’ll need for our purposes
are mostly just (henselian) localizations of smooth schemes, so that they will
indeed also be essentially smooth in the stronger sense.

2.1 Torsors

Let X be a scheme and G an X-group scheme. A G-torsor Y over a scheme X
is an X-scheme Y equipped with a G-action ρ : G ×X Y → Y such that the
following two conditions are satisfied, cf. [stacks, Tag 049A]:
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(T1) the map (ρ, pr2) : G ×X Y → Y ×X Y is an isomorphism of X-schemes,
and

(T2) the map Y → X has sections locally in the fpqc topology; alternatively,
the G-torsor Y is fpqc-locally over X isomorphic to the trivial G-torsor
G×X .

All of our group schemes in this paper are smooth (which we assume from now
on) so that all G-torsors are locally trivial in the étale topology: indeed Y
is a smooth X-scheme if G is smooth and thus admits sections locally in the
étale topology on Y . A torsor is called rationally trivial if there is an open
subset U of X such that Y ×X U is trivial. It follows from the Seshadri’s result
[Ses63] that all rationally trivial torsors over smooth schemes are locally trivial
in Nisnevich topology.

2.2 Nisnevich sheaves of sets

We now recall some notions related to the Nisnevich topology. An étale cover
U → X is Nisnevich if it is surjective on k-points for all fields k [Nis89]. The
following pullback diagram

U ×X V

��

// V

p

��

U
i

// X,

in S-schemes in SmS is called a Nisnevich distinguished square, if i is an open
immersion, p is étale and p−1(X/U) → (X/U) is an isomorphism of schemes,
where (X/U) has the reduced induced scheme structure. While the presheaves
of interest in this paper come as presheaves of spaces, we will be mostly inter-
ested in their homotopy sheaves, in particular their π0.
Nisnevich sheafification (mostly applied to presheaves of pointed sets) will
be denoted by aNis. We note that the Nisnevich sheafification of a presheaf
F : Smop

S → Set∗ can be defined as follows, cf. [stacks, Tag 00W1]. The start-
ing point is the zeroth Čech cohomology

H0(U ,F) =

{

(si)i∈I ∈
∏

i

F(Ui)
∣

∣

∣
si|Ui×XUj

= sj |Ui×XUj
∀i, j ∈ I

}

for a covering U = {Ui → X}i∈I , given by compatible families of sections over
the elements Ui of the covering. One can then define a presheaf F+, whose
sections F+(X) overX are obtained by taking the colimit colimU H0(U ,F) over
all coverings U of X . The sheafification is then be obtained as F++, iterating
the +-construction twice. All we need from this discussion is that a section
of the sheafification aNisF is given by a collection of sections of F over the
henselizations Oh

X,x of the local rings of points x ∈ X , subject to compatibility
conditions.
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Let F(−) = H1
ét(−, G) denote the presheaf associating to a smooth scheme

the set of isomorphism classes of G-torsors, pointed by the trivial torsor. The
Nisnevich sheafification of this presheaf is denoted by H1

ét(G).
The following is a list of properties of presheaves which we will use throughout
the paper.

Definition 2.3. Let F be a field and F : EssSmop
F → Set∗ be a presheaf of

pointed sets

1. The presheaf F is called finitary if it converts cofiltered limits to filtered
colimits, i.e., it is left Kan extended from SmF .

2. The presheaf F is called homotopy invariant if for any X ∈ EssSmF we

have an induced isomorphism F(X)
∼=
−→ F(X × A1).

3. The presheaf F has the (strong) Grothendieck–Serre property if for any
regular local F -algebra R with fraction field K, the map F(SpecR) →
F(SpecK) has trivial kernel (is injective).

4. The presheaf F is Nisnevich lexcisive if for a Nisnevich distinguished
square

W

��

// X

��

U // Y,

the map
F(Y ) → F(X)×F(W ) F(U)

is a surjective map of sets.

5. The presheaf F is Nisnevich lexcisive if it takes a Nisnevich distinguished
square as above to a pullback square of pointed sets.

Remark 2.4. The Nisnevich lexcisive condition above may not be familiar. As
the name suggests, it is a weaker form of excision which is satisfied for classifying
spaces and allows just enough gluing of sections over curves sufficient for the
homotopy invariance arguments in Section 3. It is also similar to a gluing
condition appearing in other homotopy invariance proofs for torsors, cf. the
formalism in [AHW20].

3 Homotopy invariance for Nisnevich sheafifications

In the following section we discuss the homotopy invariance of Nisnevich sheafi-
fications, with a particular view toward H1

ét(G). Essentially, any finitary
presheaf which satisfies a strong version of the Grothendieck–Serre conjec-
ture (i.e., that restricting sections from local rings to their function fields is
injective) and A1-invariance over fields has a homotopy invariant Nisnevich
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sheafification. A similar method has already been used by Choudhury [Cho14]

for proving that aNisπ
A

1

0 (X ) is homotopy invariant for H-groups and principal
homogeneous spaces under H-groups.
We first note that the strong Grothendieck–Serre property (which is about local
rings) actually implies that sections over smooth schemes are detected on the
function fields:

Proposition 3.1. Let F be a finitary presheaf on EssSmF which satisfies
the strong Grothendieck–Serre property. Then for every irreducible essentially
smooth F -scheme X with function field K the restriction map aNisF(X) →
aNisF(SpecK) ∼= F(SpecK) to the generic point is injective.

Proof. From the description of the sheafification, cf. Section 2, we have the
following commutative square in which the left vertical map is injective:

aNisF(X) //

� _

��

F(SpecK)

��
∏

x∈X F(SpecOh
X,x)

//
∏

x∈X F(Spec Frac(Oh
X,x))

It therefore suffices to check injectivity of the bottom map. But that follows
since F has the strong Grothendieck–Serre property.

Remark 3.2. Actually, the strong Grothendieck–Serre property implies the in-
jectivity already for the Zariski sheafification. For the Nisnevich result, a strong
Grothendieck–Serre property for henselian local rings would suffice.

In the following, we provide versions of [Cho14, Lemma 3.3, Theorem 3.1].
These say that sections of Nisnevich sheafifications of finitary presheaves satis-
fying Nisnevich descent are induced from presheaf sections defined at all codi-
mension 1 points. These results will be needed for reducing the general homo-
topy invariance for the Nisnevich sheafification to the invariance for A1 over
fields for the presheaf, as input in Proposition 3.5. They also play some role in
the discussion of unramifiedness and purity later.

Proposition 3.3. Let F be a finitary presheaf on EssSmF satisfying Nisnevich
lexcision and let R be an essentially smooth discrete valuation ring. Then the
sheafification map is surjective

F(R) ։ aNisF(R).

Proof. Denote by Rh the henselization of R at the maximal ideal, hence
aNisF(Rh) ∼= F(Rh). The henselization Rh is a filtered colimit of étale neigh-
bourhoods of the closed point of SpecR. From the corresponding filtered limit
of Nisnevich distinguished squares, we obtain

aNisF(R) = F(Rh)×F(Frac(Rh)) F(Frac(R)).

Now since F is lexcisive the map F(R) → F(Rh) ×F(Frac(Rh)) F(Frac(R)) is
surjective so the required surjectivity follows.
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Proposition 3.4. Let F be a finitary presheaf on EssSmF which satisfies Nis-
nevich lexcision. Then for any essentially smooth F -scheme X of dimension
≤ 1, the sheafification map F(X) → aNisF(X) is surjective.

Proof. The proof of [Cho14, Theorem 3.1] goes through almost verbatim. Con-
sider an essentially smooth scheme X ∈ EssSmF of dimension 1 with function
field K. We can reduce to the case that X is connected. Since F is finitary,
we can reduce to the case that X is noetherian.
Let σ ∈ aNisF(X). By the description of Nisnevich sheafification, cf. Section 2,
this means we are given σx ∈ aNisF(SpecOh

X,x) for any codimension 1 point x ∈
and a generic section ση ∈ aNisF(SpecK) = F(SpecK) and the restrictions of
σx to SpecK agree with ση. Take any cover of X , this cover can be refined
by a distinguished Nisnevich square. Now since F is lexcisive and the local
sections have to agree with ση we get the required section of F(X).

The following results is in some way already contained in [Cho14]. Choudhury’s
proof of Morel’s conjecture for H-groups is based on the fact that for sheaves of
groups the weak and strong Grothendieck–Serre property agree and the weak
version of the Grothendieck–Serre property follows since πA

1

0 (X ) is a finitary
homotopy-invariant presheaf satisfying Nisnevich excision.

Proposition 3.5. Let F be a finitary and Nisnevich lexcisive presheaf on
EssSmF which satisfies the following:

(a) F has the strong Grothendieck–Serre property.

(b) For any finitely generated field extension L/F the projection A1
L → SpecL

induces a bijection aNisF(SpecL)
∼=
−→ aNisF(A1

L).

Then aNisF is homotopy invariant.

Proof. We want to show that for any smooth schemeX the projection pr1 : X×
A1 → X induces a bijection

aNisF(X)
∼=
−→ aNisF(X × A1).

The map X
0
−→ X × A1 pr1−−→ X is the identity. Hence showing the surjectivity

of the above map is equivalent to injectivity of the map aNisF(X × A1) →
aNisF(X) induced by the zero section. Consider the following commutative
diagram

aNisF(X × A1)

��

// aNisF(A1
K(X))

��

aNisF(X) // F(K(X))

where the vertical maps are restriction along zero sections and the horizon-
tal maps are restrictions to open subschemes. The top and bottom maps
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are injective because F satisfies the strong Grothendieck–Serre property and
Proposition 3.1. The right vertical map is a bijection because from assumption

(b), the projection A1
K(X) → SpecK(X) induces a bijection aNisF(K(X))

∼=
−→

aNisF(A1
K(X)). Therefore, the left vertical map is also injective.

Note that since we can glue torsors in the Nisnevich topology, the presheaf
H1

ét(−, G) satisfies Nisnevich lexcision. Now we now want to apply this result
to prove homotopy invariance for the Nisnevich sheaf H1

ét(G). To do that,
we recall some results on A1-invariance of étale torsors over fields. The most
general result we know of is the following, from [RR84].

Theorem 3.6. Let F be a field with separable closure F sep and let G be a
connected reductive group. Then any G-torsor over A1

F which becomes trivial
over A1

F sep is extended from F , i.e., pullback induces a bijection

H1
ét(SpecF,G) → ker

(

H1
ét(A

1
F , G) → H1

ét(A
1
F sep , G)

)

.

In particular, for a field F of characteristic 0, étale torsors satisfy A1-
invariance over all extension fields L/F in the sense that the pullback map
H1

ét(SpecL,G) → H1
ét(A

1
L, G) is a bijection. In this case, we get homotopy

invariance for H1
ét(G) for any connected reductive group G:

Proposition 3.7. Let F be a field of characteristic 0 and G be a connected
reductive group over F . Then the sheaf H1

ét(G) is homotopy invariant.

Proof. We use Proposition 3.5 with the presheaf U 7→ H1
ét(U,G). The strong

Grothendieck–Serre property follows from [FP15]. For the A1-invariance over
extension fields L/F , we note that by Proposition 3.4 the map H1

ét(A
1
L, G) →

H1
ét(G)(A1

L) is surjective, i.e., any section of H1
ét(G) is actually induced from a

G-torsor over A1
L. After base change to the separable closure Lsep, the resulting

G-torsor over A1
Lsep becomes trivial, by a theorem of Steinberg [Ste65, Theo-

rem 1.9]. Thus we can apply Theorem 3.6 to see that the G-torsor over A1
L

must be constant, finishing the proof.

Remark 3.8. This generalizes the observation that for Parimala’s non-extended
quadratic form over A2

R
, there is an open subset of A2

R
where the torsor is

constant and extended from the anisotropic form over R, cf. [Lam06, Lemma
VII.4.14 resp. Lemma VII.4.16].

We note two other cases of interest over fields of positive characteristic where
we get homotopy invariance for H1

ét(G).

Proposition 3.9. Let F be a field of characteristic 6= 2. Then the sheaf
H1

ét(O(n)) is homotopy invariant.

Proof. As in the proof of Proposition 3.7, we apply Proposition 3.5 to the
presheaf U 7→ H1

ét(U,G) using the strong Grothendieck–Serre property from
[FP15] (for infinite fields) and [Pan17] (for finite fields). The A1-invariance for
O(n)-torsors over fields of characteristic 6= 2 is Harder’s theorem, cf. [Kne70,
Theorem 13.4.3] resp. [Lam06, Theorem VII.3.13].
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Proposition 3.10. Let F be a field of characteristic p. If p ∤ n, then the sheaf
H1

ét(PGLn) is homotopy invariant.

Proof. As before, we need only deal with the A1-invariance over fields. By
Theorem 3.6, it suffices to show that for L a separably closed extension field
of F all PGLn-torsors over A1

L are trivial. Consider the exact sequence (of
pointed sets)

H1
ét(A

1
L,GLn) → H1

ét(A
1
L,PGLn) → H2

ét(A
1
L,Gm)

associated to the extension Gm → GLn → PGLn. Here H2
ét(A

1
L,Gm) is the

cohomological Brauer group which in turn is identified with the Brauer group
Br(A1

L), cf. [Gro68, Corollary 2.2]. Exactness for the sequence of pointed sets
then means that any PGLn-torsor whose Brauer class is trivial comes from a
vector bundle (and therefore has to be trivial). By the Auslander–Goldman
theorem (together with our assumption that L is separably closed), Br(A1

L) is
a p-torsion group. Since the boundary map factors as

H1
ét(A

1
L,PGLn) → H2

ét(A
1
L, µn) → H2

ét(A
1
L,Gm)

and H2
ét(A

1
L, µn) is an n-torsion group, our assumption p ∤ n implies that PGLn-

torsors over A1
L have trivial Brauer classes. The exact cohomology sequence

now implies that every PGLn-torsor over A
1
L is trivial, as required.

Remark 3.11. In [KOS76], there are examples of PGLn-torsors over the affine
line A1

L for separably closed but non-algebraically closed fields L which are not
extended. These are related to non-trivial p-coverings of A1

L, where p = char(L)
(in particular these torsors are not rationally trivial). This means that the
divisibility condition in Proposition 3.10 is necessary and homotopy invariance
generally fails for PGLn-torsors if the characteristic of the base field divides n.

There are two results for exceptional groups, we observe the following homotopy
invariance results which does not require our axiomatics.

Proposition 3.12. 1. If F is a field of characteristic 6= 2, then the presheaf
H1

ét(G2) is homotopy invariant;

2. if F is a field of characteristic 6= 2, 3, then the presheaf H1
ét(F4) is homo-

topy invariant.

Proof. As in Proposition 3.10, we can reduce to the case of F separably closed
(with the above assumptions on characteristics). For the groups we consider,
a G-torsor P over A1

L has trivial restriction to the function field L(T ) if and
only if the relevant cohomological invariants are trivial, cf. [Ser95]. For G =
G2, the classifying cohomological invariant is the class of the norm form in
H3

ét(−, µ2), and for G = F4, the cohomological invariants are Pfister forms
f3 ∈ H3

ét(−, µ2) and f5 ∈ H5
ét(−, µ2) and the Rost invariant g3 ∈ H3

ét(−, µ3).
Since L is separably closed, all these étale cohomology groups vanish for L(T )
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which has étale cohomological dimension 1. Therefore, the restriction of the G-
torsor P to the generic point of A1

L is trivial because it has trivial cohomological
invariants. Since rationally trivial torsors satisfy homotopy invariance, P has
to be trivial.

Remark 3.13. This argument via rationally trivial torsors could also be helpful
to establish homotopy invariance of H1

ét(G) for other cases of connected reduc-
tive groups G in positive characteristic. Extensions of these arguments were
used in [BHS22, Theorem 3.8] to show A1-invariance of H1

ét(G) for semisimple,
simply connected groups over fields in arbitrary characteristic.
The most general result one could expect here is that A1-invariance (and thus
homotopy invariance generally) holds for a reductive group G over a field F of
characteristic p if both the group π0(G) of connected components of G and the
Chevalley fundamental group Π1(G) of G have orders prime to the character-
istic of the base field, and p is not a torsion prime for any of the almost simple
components of G. However, results in this generality seem not known at this
point.

4 Purity for torsors

In this section we show that unramifiedness of the sheaf H1
ét(G) is equivalent

to Nisnevich-local purity for G-torsors. In situations where local purity results
are known, this allows to compute H1

ét(G) and to reinterpret purity for torsors
as surjectivity of the sheafification map H1

ét(X,G) → H1
ét(G)(X) for smooth

schemes X . It will also provide a relation between global purity questions and
motivic homotopy, cf. Section 6.

Definition 4.1. Let G be a connected reductive group over a field F and let X
be an irreducible smooth F -scheme with function field K. We say that purity
is satisfied for G-torsors over X if the map

im
(

H1
ét(X,G) → H1

ét(SpecK,G)
)

→
⋂

x∈X(1)

im
(

H1
ét(SpecOX,x, G) → H1

ét(SpecK,G)
)

is surjective.

Remark 4.2. If G is a special group in the sense of Serre, i.e., G-torsors over
reduced F -varieties are Zariski-locally trivial then H1

ét(SpecK,G) = {∗} so
that Definition 4.1 is trivially satisfied.

Remark 4.3. The question of purity for torsors was formulated by Colliot-
Thélène and Sansuc in [CTS79, Question 6.4]. They also proved a purity
theorem for the case of integral regular schemes X of dimension 2 and reductive
groups G, cf. [CTS79, Theorem 6.13 resp. Corollary 6.14]. Local purity, i.e.,
purity for regular local rings, is known in many cases of connected reductive
groups over characteristic 0 fields, e.g. most of the classical groups [Pan10].
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Local purity for PGLn-torsors whose Brauer class has invertible exponent has
been proved in [AW15, Theorem 3.10]. Local purity for the orthogonal groups
in characteristic 6= 2 has been proved in [PP10]. Local purity for G2-torsors
over fields of characteristic 6= 2 has been proved in [CP07] (in combination with
[PP10, Remark 3.2]). Local purity for F4 torsors with trivial g3 invariant in
characteristic 6= 2 has been proved in [CP13].

However, it seems at this point that local purity hasn’t been proved in gen-
eral (and uniformly, not based on case-by-case analysis), not even for henselian
regular local rings. Most of the proofs seem to work via stabilization in infi-
nite series (for the classical groups) combined with the additional benefits of
a group structure for the stable groups, relations to quadratic forms or via
cohomological invariants (for G2 and F4).

For the sake of completeness, let us recall the following notion from [Mor12,
Definition 2.1].

Definition 4.4. Let F be a field. A finitary presheaf G : EssSmop
F → Sets is

said to be unramified if the following hold:

1. if X ∈ SmF is a union of irreducible components Xα then G(X) →
∏

α G(Xα) is a bijection,

2. for any X ∈ SmF and any dense open U ⊂ X , the map G(X) → G(U) is
injective and,

3. if X ∈ SmF is furthermore irreducible and F (X) is its function field, then
the injection (of subsets of G(F (X))

G(X) → ∩x∈X(1)G(OX,x)

is a bijection.

We note that any unramified presheaf is, in fact, a Zariski sheaf [Mor12, Re-
mark 2.2].

Lemma 4.5. Let G be a finitary presheaf on EssSmF which is furthermore a
Nisnevich sheaf and satisfies (1) and (2) of Definition 4.4. Then G is unramified
if and only if it satisfies:

(3’) for every X ∈ SmF and any x ∈ X, writing Y = SpecOh
X,x, the injection

(of subsets of G(Frac(Oh
X,x))):

G(Y ) →
⋂

y∈Y (1)

G(OY,y)

is a bijection.
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Proof. If G is unramified, then (3′) is clearly satisfied. We now assume (3′).
Let X ∈ SmF be irreducible and consider the injective map:

G(X) →
⋂

x∈X(1)

G(OX,x),

appearing in condition (3) of Definition 4.4. We need to prove that this map is
surjective. Noting that G is a Nisnevich sheaf it suffices to produce compatible
sections of G(Oh

X,y) as y ranges across all points of y ∈ X .

To this end, fix y ∈ X and let Y = SpecOh
X,y. An element α of

⋂

x∈X(1) G(OX,x) is a section of G over the function field K of X which ex-

tends over all codimension 1 points of X . Now, for every p ∈ (SpecOh
X,y)

(1),

there exists a q ∈ (SpecOX,y)
(1) such that the following diagram of local rings

and local homomorphisms commutes:

OX,y
//

��

Oh
X,y

��

(OX,y)q // (Oh
X,y)p.

Since codimension one points of SpecOX,x are just codimension one points ofX
in the closure of x, we obtain a section of G((Oh

Y,y)p) from α. By construction,

the restriction of this section to Frac(Oh
Y,y) agrees with the restriction of α

along the inclusion K →֒ Frac(Oh
Y,y). Varying p ∈ Y , this defines a section

of
⋂

p∈Y (1) G(OY,p) and thus a section of G(Y ) by (3’) whose restriction to

Frac(Oh
X,y) agrees with the restriction of α along the inclusionK →֒ Frac(Oh

Y,y).
For the compatibility of the local sections constructed this way, note that by
the assumptions (1) and (2), the sections are uniquely determined by their
values on generic points. Since all the local sections agree with the restriction
of α along the respective inclusions K →֒ Frac(Oh

Y,y), they all agree generically,
hence they are compatible. This concludes the proof.

The resolution of the Grothendieck–Serre conjecture, due to Fedorov and Panin
[FP15], lets us reformulate local henselian purity in terms of unramifiedness.

Lemma 4.6. Let F be a field, and let G be a reductive group over F .

1. For a discrete valuation ring R over F with fraction field K, there is an
equality of subsets of H1

ét(SpecK,G):

im
(

H1
ét(SpecR,G) → H1

ét(SpecK,G)
)

= H1
ét(G)(SpecR).

2. For a smooth irreducible F -scheme X with function field K, there is an
equality of subsets of H1

ét(SpecK,G):
⋂

x∈X(1)

im
(

H1
ét(SpecOX,x, G) → H1

ét(SpecK,G)
)

=
⋂

x∈X(1)

H1
ét(G)(OX,x)
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Proof. We first note that for a discrete valuation ring R with fraction field K
the sheafification map induces a bijection

im
(

H1
ét(SpecR,G) → H1

ét(SpecK,G)
) ∼=
−→ H1

ét(G)(SpecR).

The injectivity follows from the strong Grothendieck–Serre property [FP15,
Corollary 1] and the surjectivity follows from Proposition 3.3. Combined with
the natural inclusion H1

ét(G)(SpecR) →֒ H1
ét(SpecK,G), we actually get the

identification of subsets of H1
ét(SpecK,G) claimed in (1). The identification in

(2) follows from (1), noting that the indexing sets for both intersections are the
same.

Lemma 4.7. Let F be a field, and let G be a reductive group over F . Purity
for henselizations R = Oh

X,x of local rings of smooth F -schemes is equivalent

to unramifiedness of H1
ét(G).

Proof. Let R = Oh
X,x be the henselization of an irreducible smooth F -schemeX

at a point x ∈ X . Denote Y = SpecR and K = Frac(R) and consider the
diagram

H1
ét(Y,G) //

��

⋂

y∈Y (1) im
(

H1
ét(SpecOY,y, G) → H1

ét(SpecK,G)
)

��

H1
ét(G)(Y ) //

⋂

y∈Y (1) H1
ét(G)(OY,y)

The diagram is commutative since the vertical sheafification maps commute
with the horizontal restrictions to H1

ét(SpecK,G) ∼= H1
ét(G)(SpecK). The

right vertical arrow is a bijection by Lemma 4.6, and the left vertical arrow is
a bijection by the assumptions on R. Therefore, the upper horizontal map is
a bijection if and only if the lower horizontal map is. But (by definition) the
upper horizontal arrow is a surjection if and only if purity holds.
Now, Proposition 3.1 ensures that H1

ét(G)(X) → H1
ét(G)(K) is injective.

Lemma 4.5 implies that H1
ét(G) is unramified if and only if the lower hori-

zontal map is an isomorphism.

Remark 4.8. Purity for local rings OX,x of smooth F -schemes would follow
from the above if the Zariski sheafification of the presheaf U 7→ H1

ét(U,G)
agrees with the Nisnevich sheafification H1

ét(G).
Conversely, if purity holds for local rings, then the Zariski sheafification agrees
with H1

ét(G) (and is unramified). This follows with an argument similar to the
proof of Lemmas 4.6 and 4.7, with purity providing the local sections which by
Grothendieck–Serre are determined by the value on the generic point and thus
compatible. Therefore, the subsets aZarH

1
ét(X,G), aNisH

1
ét(X,G) = H1

ét(G)(X)
and

⋂

x∈X(1) im
(

H1
ét(SpecOX,x, G) → H1

ét(SpecK,G)
)

of H1
ét(SpecK,G)

agree.

Documenta Mathematica 27 (2022) 2657–2689



Classifying Spaces and Purity 2675

Now at this point, we cannot prove that H1
ét(G) is unramified in general. How-

ever, we would like to point out a few facts that strongly suggest Nisnevich local
purity should be true: there is a morphism H1

ét(G) → T to an unramified and
homotopy invariant Nisnevich sheaf T which induces bijections over essentially
smooth F -schemes of dimension ≤ 1. In the presence of group structures on the
sheaves, this would be enough to imply that the morphism is an isomorphism,
but since we only have sheaves of pointed sets, we don’t know how to prove
the surjectivity.
For the construction of the unramified sheaf T , it is clear that the sections over
a smooth F -scheme have to be the unramified sections of H1

ét(G):

T (X) :=
⋂

x∈X(1)

H1
ét(G)(SpecOX,x) ⊆ H1

ét(G)(SpecK).

For the presheaf structure, i.e., the existence of suitable restriction maps, we
have to take a little detour.

Remark 4.9. Applying the above definition to an arbitrary presheaf F via

Fnr(X) :=
⋂

x∈X(1)

F(OX,x) ⊆ F(K).

doesn’t generally produce a presheaf. The immediate problem is with the defi-
nition of restriction maps for non-smooth morphisms of smooth schemes. Con-
ditions for the functoriality of the unramified sections were already discussed
in [CTS79, Section 6]. We will discuss another approach to the functoriality of
unramified sections which makes use of purity in codimension 2 and the theory
of unramified sheaves of [Mor12, Section 2].

Proposition 4.10. Let F be a field and let H be a finitary Nisnevich sheaf on
SmF having the strong Grothendieck–Serre property. Assume that H satisfies
purity in dimension 2, i.e., for any irreducible essentially smooth F -scheme X
of dimension 2 with function field K, we have an identification

H(X) =
⋂

x∈X(1)

H(SpecOX,x)

of subsets in H(SpecK).
Then the following defines an unramified FF -datum in the sense of [Mor12,
Definition 2.9].

(D1) We define a continuous contravariant functor S on the category FF of
separable field extensions of F by S(L/F ) := H(L/F ).

(D2) For any separable field extension L/F and any discrete valuation v on L
with valuation ring Ov, we define S(Ov) := H(SpecOv) ⊆ H(SpecL) =
S(L/F ).
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(D3) For any separable field extension L/F and any discrete valuation v on L
with valuation ring Ov and residue field κ(v), we define the specializa-
tion map s : S(Ov) → S(κ(v)) to be the restriction map H(SpecOv) →
H(Specκ(v)).

Proof. We prove that S is an unramified FF -datum, i.e., we need to check the
axioms (A1)-(A4) from [Mor12, Definition 2.6, 2.9]. We first note that the
continuity of the functor S follows from the assumption that H is finitary.
Axiom (A1) is essentially a Nisnevich descent statement for extensions of dvrs,
and it holds for S since H is a Nisnevich sheaf. In particular, the required map
S(Ow) → S(Ov) is the restriction map for H, and the sheaf property implies
that the relevant square is cartesian.
Axiom (A2) follows from the assumption that H is finitary. If X is an ir-
reducible smooth F -scheme with function field K, any section σ ∈ S(K) is
already defined over some open U ⊆ X . Therefore, there are only finitely
many x ∈ X(1) (the ones in the complement of U) such that σ 6∈ S(OX,x).
Both parts of Axiom (A3) follow from the fact that H is a presheaf on the cat-
egory of smooth schemes: S is defined in such a way that the commutativity of
the diagram in part (i) resp. the claim about the induced maps in part (ii) fol-
low from the identification of S in terms of H and then applying the presheafH
to an appropriate commutative diagram in the category of essentially smooth
F -schemes.
The non-trivial input is now in the proof of Axiom (A4). Let X be any es-
sentially smooth local F -scheme of dimension 2 with closed point z and func-
tion field K. For part (i), assume that y0 ∈ X(1) is a codimension one point
with essentially smooth closure. We need to show that the specialization map
S(Oy0) → S(κ(y0)) maps

⋂

y∈X(1) S(Oy) into S(Oy0,z). By construction, the
specialization map is identified with the restriction map H(Oy0) → H(κ(y0)),
and

⋂

y∈X(1)

S(Oy) =
⋂

y∈X(1)

H(Oy) ⊂ H(K).

By the assumption on H, this set is identified with H(X). In particular, the
specialization map will send the set H(X) ⊆ H(Oy0) into H(Oy0,z) which
proves part (i) of (A4). For part (ii), we note that the composition

⋂

y∈X(1)

H(SpecOy) → H(SpecOy0,z) → H(Specκ(z))

is (by what we said for part (i)) simply the restriction H(X) → H(Spec κ(z))
and therefore independent of the choice of y0.

Proposition 4.11. In the situation of Proposition 4.10, we have an unrami-
fied Nisnevich sheaf Hnr corresponding to S. The restriction of sections from
irreducible schemes to their function fields defines an injective morphism of
sheaves H → Hnr which induces bijections on essentially smooth F -schemes
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of dimension ≤ 1. The sheaf Hnr has the strong Grothendieck–Serre property.
If H is homotopy invariant then so is Hnr.

Proof. From Proposition 4.10 we see that S is an unramified FF -datum, and
by [Mor12, Theorem 2.11] there exists an unramified sheaf Hnr associated to it.
More precisely, the restriction of Hnr (given exactly the same way we defined S
from H in the first place) is isomorphic to S. In particular, this means that for
any irreducible essentially smooth F -scheme X with function field K we have

Hnr(X) =
⋂

x∈X(1)

S(OX,x) ⊆ S(K/F ).

We define the morphism H → Hnr as follows: for an irreducible essentially
smooth F -scheme with function field K, any section σ ∈ H(X) ⊆ H(SpecK)
already lies in

⋂

x∈X(1)

H(SpecOX,x) ⊆ H(SpecK),

and we send σ ∈ H(X) to its image under the identification

⋂

x∈X(1)

H(SpecOX,x) =
⋂

x∈X(1)

S(OX,x) = Hnr(X)

This defines maps H(X) → Hnr(X) for any essentially smooth F -scheme X ,
and these maps are clearly injective sinceH(X) ⊆ H(SpecK). By construction,

this produces bijections H(Y )
∼=
−→ Hnr(Y ) for field extensions of F and dvrs

containing F . In fact, we get such bijections for any irreducible essentially
smooth F -scheme Y of dimension ≤ 1. By our assumptions, H(Y ) ⊆ Hnr(Y )
as subsets of H(SpecK) = Hnr(SpecK) for K the function field of Y . Then
a section of Hnr(Y ) consists of local sections which by the Grothendieck–Serre
property are determined on SpecK and therefore compatible. Since H(Y ) is
a Nisnevich sheaf, these sections glue, hence the inclusion H(Y ) ⊆ Hnr(Y ) is
already an equality.
It therefore remains to show that these maps are compatible with the restriction
maps for H resp. Hnr. The restriction maps of the sheaf Hnr are constructed
in the proofs of Proposition 2.8 (for smooth morphisms) and Theorem 2.11 (for
closed immersions) of [Mor12]. The restriction maps for smooth morphisms
X → Y of essentially smooth F -schemes are induced by the function field exten-
sions and therefore compatible with the restriction maps on H since H and Hnr

agree on schemes of dimension ≤ 1. The definition of the restriction maps for
closed immersions reduces to the codimension 1 case by factoring a closed im-
mersion into a sequence of codimension 1 immersions in [Mor12, Lemma 2.13].
In particular, the uniqueness part of Lemma 2.13 implies that the restriction
maps of H and Hnr are compatible for closed immersion if they are compatible
for codimension 1 closed immersions. But the restriction maps of Hnr for codi-
mension 1 closed immersions are defined in terms of the specialization maps
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for S, hence are compatible with the restriction maps for H. This concludes
the proof.
The strong Grothendieck–Serre property for Hnr is then built in by construc-
tion. Unramified sheaves are also finitary (since the associated FF -datum
satisfies the axiom (A2), cf. the discussion before [Mor12, Proposition 2.8]).
Assume that H satisfies homotopy invariance. Since H and Hnr agree over
one-dimensional schemes, Hnr will then satisfy the A1-invariance over fields.
Homotopy invariance for Hnr follows from Proposition 3.5.

Remark 4.12. The result applies to H1
ét(G) for a reductive group G which is a

finitary Nisnevich sheaf by construction and satisfies 2-dimensional purity by
[CTS79, Theorem 6.13, Corollary 6.14]. It seems very likely that the morphism
H1

ét(G) → T should be an isomorphism whenever the group G satisfies A1-
invariance over fields, but at this point we’re unable to prove this.

Example 4.13. There exist finitary homotopy-invariant Nisnevich sheaves of
pointed sets which have the strong Grothendieck–Serre property but fail to
be unramified (caused by a failure of unramifiedness in codimension 2). Con-
sider for example the variety X = (C1 × C2) \ {p} for C1 and C2 smooth
projective curves of genus > 0 and p a closed point of the product C1 × C2.
This variety is A1-rigid. The presheaf X represented by X is then a finitary
homotopy-invariant Nisnevich sheaf. The strong Grothendieck–Serre property
is also satisfied. For a regular local ring R, the images of any two morphisms
SpecR → X lie in a common open affine SpecA = U ⊆ X , and two ring homo-
morphisms A → R agree if their compositions with R ⊆ Frac(R) agree. If the
sheaf X were unramified, then for any regular local ring R with fraction field K
a map SpecK → X extends to R if it extends to all codimension 1 points of
SpecR. However, by definition this fails for the regular local ring OC1×C2,P

and the map Spec Frac(OC1×C2,P ) → X induced from the obvious inclusion
SpecOC1×C2,P →֒ C1 ×C2. Similar arguments apply generally to open subsets
of A1-rigid smooth projective varieties whose complement has codimension ≥ 2.

�

5 Connected components of classifying spaces

We now want to relate the sheaf H1
ét(G) to the sheaf aNisπ

A
1

0 BétG of A1-
connected components of the classifying space BétG for a reductive group G.
More precisely, we will show that the natural morphism of sheaves in the fol-
lowing construction is an isomorphism.

Construction 5.1. We construct a transformation of Nisnevich sheaves of
pointed sets

canG : H1
ét(G) → aNisπ

A
1

0 (BétG).

To begin with, consider the stack BétG classifying G-torsors. We have a mor-
phism of presheaves BétG|SmF

→ Lmot(BétG|SmF
), which induces a map by
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taking π0:

H1
ét(−, G) → πA

1

0 (BétG).

This is a transformation of presheaves of pointed sets, which then Nisnevich-
sheafifies to the map canG as above.

Remark 5.2. For X ∈ SmF , the map H1
ét(X,G) → πA

1

0 (BétG)(X) can be
interpreted as follows: a G-torsor P → X is classified by a map X → BétG|SmF

(here X is abusively identified with its Yoneda image) which is sent to the
motivic localization

(LmotX → LmotBétG|SmF
) ∈ πA

1

0 (BétG)(X) = [X,BétG]A1 .

In [MV99, Section 4.2], the motivic localization of the presheaf BétG|SmF
ad-

mits a geometric model (as an ind-scheme) which goes back to the work of
Morel–Voevodsky and Totaro. Roughly there exists an ind-scheme U∞ with a
G-action such that the quotient (U∞/G) exists as an ind-scheme and we have
an equivalence of presheaves:

LmotBétG|SmF
≃ Lmot(U∞/G)

We refer to [Hoy20, Theorem 2.7] for a statement in this form, though we will
not need it in the sequel.

We now want to show that the map canG : H1
ét(G) → aNisπ

A
1

0 (BétG) is an
isomorphism of pointed sheaves of sets on SmF . We prove a statement of
somewhat greater generality: if a space X has A1-invariant aNisπ0X , then this
already agrees with the Nisnevich sheaf of A1-connected components. The key
point here is that the A1-invariance of the simplicial connected components

already ensures that the LA1 = SingA
1

• construction doesn’t change the sheaf
of connected components. This is close to results around Morel’s conjecture in
the work of Balwe, Hogadi and Sawant in [BHS15], but as far as we’re aware,
it doesn’t seem to immediately follow from results in loc.cit.

Proposition 5.3. Let X : Smop
F → Spc be a space such that aNisπ0X is A1-

invariant. Then the induced map aNisπ0X → aNisπ
A

1

0 X is an isomorphism of
sheaves of pointed sets on SmF .

Proof. By definition,

aNisπ
A

1

0 X = aNisπ0LmotX = aNisπ0

(

colimn

(

LNis ◦ Sing
A

1

•

)n

X
)

and the map aNisπ0X → aNisπ
A

1

0 X we want to show is an isomorphism is
induced by the natural map X → LmotX . From the description of Lmot as

a filtered colimit of the functors LNis and LA1 = SingA
1

• (see, for example,
[AE17]), it suffices to prove that the morphism

aNisπ0X → aNisπ0

((

LNis ◦ Sing
A

1

•

)n

X
)

Documenta Mathematica 27 (2022) 2657–2689



2680 E. Elmanto, G. Kulkarni, M. Wendt

is an isomorphism of sheaves for all natural numbers n. The claim of the propo-
sition then follows from the fact that the filtered colimit commutes with π0 and
sheafification, and the filtered colimit of isomorphisms will be an isomorphism.
Next, we note that for any space X the Nisnevich-local replacement map
X → LNisX is a Nisnevich-local weak equivalence and therefore induces an
isomorphism aNisπ0X → aNisπ0LNisX (by checking on stalks). It therefore suf-
fices to show that for a space X with A1-invariant aNisX the induced morphism

aNisπ0X → aNisπ0 Sing
A

1

• (X ) is an isomorphism. The claim then follows by an
induction on n.
By construction, for a smooth scheme T

π0 Sing
A

1

• (X )(T ) = coeq
(

π0(X (T × A1)) ⇒ π0(X (T ))
)

.

In particular, the morphism aNisπ0X → aNisπ0 Sing
A

1

• (X ) is surjective. To show
injectivity, we need to show that A1-equivalent sections of π0(X (T )) already
agree in aNisπ0(X )(T ). Let f, g ∈ π0X (T ) be two A1-equivalent sections. With-
out loss of generality, we can assume that there is a section H ∈ π0X (T ×A1)
whose restriction along 0 and 1 are f and g, respectively. From the commuta-
tive diagram

π0X (T × A1) //

i∗

��

aNisπ0X (T × A1)

i∗

��

π0X (T ) // aNisπ0X (T )

we see that the restrictions of the image of H in aNisπ0X (T × A1) along 0
and 1 are the images of f and g in aNisπ0X (T ), respectively. But now aNisπ0X
is A1-invariant by assumption, therefore f = g in aNisπ0X (T ). This shows that

aNisπ0X → aNisπ0 Sing
A

1

• (X ) is an isomorphism, concluding the proof.

Theorem 5.4. Let F be a field and let G be a reductive group such that H1
ét(G)

is A1-invariant. Then the natural map H1
ét(G) → aNisπ

A
1

0 (BétG) is an iso-

morphism of sheaves. In particular, aNisπ
A

1

0 (BétG) is a homotopy invariant
Nisnevich sheaf.

Proof. This follows directly from Proposition 5.3 because π0(BétG)(T ) ∼=
H1

ét(T,G) for any smooth F -scheme T , hence aNisπ0BétG ∼= H1
ét(G).

Remark 5.5. From the results in Section 3, it follows that the conditions of the
theorem are satisfied for reductive groups satisfying A1-invariance for all finitely
generated extension fields L/F . Therefore, the above result establishes Morel’s
conjecture for classifying spaces of such reductive groups G. If in addition local
purity holds for G, the sheaf aNisπ

A
1

0 BétG is also unramified, as a consequence
of Theorem 5.4 and Lemma 4.7. However, it may be worth pointing out that
while homotopy invariance is obviously expected for the sheaves aNisπ

A
1

0 (X )
of A1-connected components for arbitrary motivic spaces X , these sheaves are
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not expected to be unramified in general. Example 4.13 shows that the sheaves
of A1-connected components of non-proper A1-rigid varieties usually fail to be
unramified. In some sense, being unramified is a weak properness statement.

6 Applications

In this final section, we will discuss some consequences of our results on H1
ét(G)

and aNisπ
A

1

0 BétG and how these relate to torsor classification and purity ques-
tions. For the rest of the section we will always only talk about groups G where
H1

ét(G) is A1-invariant and unramified, i.e., the conditions for Theorem 5.4 are
satisfied.

6.1 Computation of the sheaves of A1-connected components

IfH1
ét(G) is unramified, then the identification H1

ét(G) ∼= aNisπ
A

1

0 BétG allows to
compute the sheaf of A1-connected components of the classifying space BétG.
For an irreducible smooth scheme X with function field K, the sections of
aNisπ

A
1

0 BétG over X are given by G-torsors over SpecK which extend over
all the codimension 1 points of X . This classification question is significantly
easier than the isomorphism classification of G-torsors over X itself and can
be made rather explicit in specific cases. It turns out that these sheaves are
non-trivial in many cases, in contrast to the case of special groups.
Our first examples are orthogonal groups.

Proposition 6.1. Let F be a field of characteristic 6= 2. Then for any irre-
ducible smooth F -scheme with function field K, we have

(

aNisπ
A

1

0 BétO(n)
)

(X) = GWnr(X) ∩ H1
ét(K,O(n))

where the intersection is taken inside GW(K). This means that the sheaf

aNisπ
A

1

0 BétO(n) of A1-connected components of the classifying space of O(n)
is the subsheaf of the sheaf of unramified Grothendieck–Witt groups consisting
of classes of quadratic forms over SpecK which have a rank n representative.

Proof. By Theorem 5.4 it suffices to compute

H1
ét(O(n))(X) =

⋂

x∈X(1)

H1
ét(O(n))(OX,x) =

⋂

x∈X(1)

H1
ét(OX,x,O(n))

inside H1
ét(K,O(n)). The first equality here is the unramifiedness of H1

ét(O(n))
from Lemma 4.7 and the purity result of Panin [Pan10] resp. its extension in
[PP10], and the second equality follows from Lemma 4.6. We note that the
natural map

H1
ét(K,O(n)) → GW(K)

taking an isometry class of a rank n quadratic form over K to its class in
the Grothendieck–Witt ring is injective by Witt cancellation. Now a rank n
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quadratic form extends over a dvr OX,x ⊆ K if its class in the Witt ring
of K is unramified by [Sch85, Theorem 2.2, Chapter 6].1 This implies
that H1

ét(O(n))(X) is the intersection of H1
ét(K,O(n)) and the unramified

Grothendieck–Witt group GWnr(X) inside GW(K). This proves the claim.

Example 6.2. As another example for a description of the sheaf of A1-connected
components of a classifying space, a similar result is true for PGLn over a field F
of characteristic 0. For any irreducible smooth F -scheme with function field K,
we have

(

aNisπ
A

1

0 BétPGLn

)

(X) = Br(X) ∩ H1
ét(K,PGLn)

with the intersection taken inside Br(K) = H1
ét(K,PGL∞) (here the colimit is

taken along the divisibility poset). This uses that the Brauer group is unram-
ified and that a PGLn-torsor over K extends over a dvr OX,x ⊆ K if and only
if the local invariant is trivial. �

Example 6.3. We can also describe the sheaf of A1-connected components for
the classifying space of the exceptional group G2 over a field of characteris-
tic 6= 2, using the local purity result of Chernousov and Panin [CP07] resp.
its extension in [PP10]. Over a field K of characteristic 6= 2, we have

H1
ét(K,G2) ∼= H3

ét(K,µ2)dec,

i.e., G2-torsors over K are classified by 3-fold Pfister forms over K, cf.
[Ser95, Théorème 9]. Actually, there is a bijection between G2-torsors and
3-fold Pfister forms over local rings in which 2 is invertible, cf. [CP07, Re-
mark 10]. In particular, a G2-torsor over a discretely valued field K extends
over the valuation ring R ⊆ K if and only if the norm form extends to a 3-
fold Pfister form over R. Consequently, the sections of aNisπ

A
1

0 BétG2 over an
irreducible smooth scheme X with function field K can be identified with the
isomorphism classes of unramified 3-fold Pfister forms over K. �

Remark 6.4. The above examples should convince the reader that the identi-
fication of aNisπ

A
1

0 BétG allows to determine the sheaves of A1-connected com-
ponents of classifying spaces BétG fairly explicitly in a number of interesting
cases. All that is required is knowledge about the torsor classification over
fields and dvrs.

6.2 Purity for torsors

Next, we want to discuss the relation between our results and purity questions
for torsors. If Nisnevich-local purity holds for G-torsors, i.e., H1

ét(G) is unram-
ified, we can identify it as the target of the map in the definition of purity, cf.
Definition 4.1. This way, we can reformulate purity as the surjectivity of the
sheafification map for étale torsors:

1Note that the boundary of a class in GW(K) being zero means in the notation of loc.cit.
that we can choose a lattice L with L#/L = 0. Then L with its induced form is the required
form over the dvr.
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Proposition 6.5. Let F be a field and G be a reductive group over F such that
H1

ét(G) is unramified. Then purity for G-torsors over a smooth F -scheme X is
equivalent to the surjectivity of the sheafification map H1

ét(X,G) → H1
ét(G)(X).

If purity holds for G-torsors over X, then the sheafification map πA
1

0 BétG(X) →

aNisπ
A

1

0 BétG(X) is surjective.

Proof. The target of the purity map in Definition 4.1 is identified with

H1
ét(G)(X) =

⋂

x∈X(1)

H1
ét(G)(OX,x).

We also have an identification

H1
ét(G)(OX,x) ∼= im

(

H1
ét(OX,x, G) → H1

ét(K,G)
)

from Lemma 4.6. With this identification, purity for G-torsors on X is equiv-
alent to the surjectivity of the sheafification map

H1
ét(X,G) → H1

ét(G)(X).

Now consider the following commutative diagram

H1
ét(X,G) //

��

πA
1

0 BétG(X)

��

H1
ét(G)(X)

∼=
// aNisπ

A
1

0 BétG(X)

The lower horizontal map is an isomorphism by Theorem 5.4. As noted above,
purity for torsors is equivalent to the surjectivity of the left vertical morphism.
Consequently, if purity is satisfied for G-torsors over a scheme X , the sheafifi-
cation map πA

1

0 BétG(X) → aNisπ
A

1

0 BétG(X) is surjective.

Example 6.6. Examples of the failure of global purity for torsors under PGLp

have been given in [AW15]. By the above discussion, these provide, for any
prime p, examples of smooth affine complex varieties X of dimension 2p + 2
such that the sheafification map

H1
ét(X,PGLp) → H1

ét(PGLp)(X) ∼=
(

aNisπ
A

1

0 BétPGLp

)

(X)

fails to be surjective. In particular, we also have examples of sections of the
sheaf of A1-connected components of BétPGLp which fail to be represented by
actual torsors. In fact, they also fail to be represented by motivic torsors as
the next theorem explains. �

Theorem 6.7. Let k be a field of characteristic zero. Then for any prime p,
there exists a smooth affine k-scheme of dimension 2p+ 2 such that the map

πA
1

0 BétPGLp(X) → H1
ét(PGLp)(X) ∼=

(

aNisπ
A

1

0 BétPGLp

)

(X)

fails to be surjective.
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Proof. Let p > 0 be fixed. Let X be as in [AW15, Theorem 3.6]; we note that
while X is over the complex numbers here, the construction works over any
characteristic zero field. This is a smooth affine scheme of dimension 2p + 2
equipped with a Brauer class α ∈ Br(X) such that α|k(X) is exact degree p;
this is classified by a map of presheaves

X
α
−→ B2

étGm. (5)

By the identification in Example 6.2, α determines an element αmot|K ∈
(

aNisπ
A

1

0 BétPGLp

)

(X). If this element does lift to an element αmot ∈

πA
1

0 BétPGLp(X), then we have constructed a nontrivial factorization of (5)
in the A1-homotopy category:

LmotX → LmotBétPGLp → B2
étGm.

This then Betti realizes to a factorization of the Betti realization of (5) which
cannot exist as explained in [AW15, Theorem 3.6], see also [AW15, Theo-
rem 3.11].

Remark 6.8. The failure of surjectivity for the sheafification map on
πA

1

0 BétPGLp is based on the fact that in the topological realization the dif-
ference between actual torsors and motivic torsors vanishes: the realization
of BétPGLp is a classifying space for PGLp(C) and thus counterexamples to
topological purity also imply counterexamples to purity for motivic G-torsors.
It is likely that similar constructions can be made in characteristic 6= p using
étale realization.

Remark 6.9. We also consider G = PGLn where n is not necessarily a prime.
Over a field of characteristic zero, we can find examples of motivic spaces X
where the sheafification map is not surjective πA

1

0 BétG(X) → aNisπ
A

1

0 BétG(X).
Unfortunately, these examples are motivic spaces associated to ind-schemes
(they are approximations of BétG in the sense of Totaro and Morel-Voeovodsky
[MV99]) and thus do not lead to new counterexamples to purity in this situa-
tion. These examples also come from the work Antieau-Williams [AW15].

Proposition 6.10. Let k be a field of characteristic zero, then there exists an
ind-scheme X such that

πA
1

0 BétG(X) → aNisπ
A

1

0 BétG(X)

is not surjective.

Proof. Let m > 1 be an integer dividing n and let H be the algebraic group
SLm/µn. Let X be an algebraic approximation to BétH as in [MV99, Proposi-
tion 4.2.6]. In particular X comes equipped with a canonical “Brauer class” α;
more precisely it is a map of presheaves α : X → B2

étµn induced by the exact
sequence of étale sheaves of groups 1 → µn → SLm → H → 1. By the identifi-
cation in Example 6.2, extended by filtered colimits to ind-schemes, the class α
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determines an element of aNisπ
A

1

0 BétG(X). If α does lift to πA
1

0 BétG(X), then
we would obtain a factorization in the A1-homotopy category of the map α as

X → BétPGLn → B2
étµn.

But this contradicts [AW15, Theorem 3.11] which states that no factorization
can exist after taking Betti realizations.

Example 6.11. Similarly, we can ask for the failure of global purity for O(n)-
torsors. From the description ofH1

ét(O(n)) in Proposition 6.1, one source for the
failure of purity for O(n) torsors is the failure of purity for the Grothendieck–
Witt group. For an irreducible smooth scheme X with function field K, any
class in Wnr(X) ∩ H1

ét(K,O(n)) which is not in the image of the natural map
W(X) → Wnr(X) provides a counterexample to purity for O(n)-torsors. The
failure of surjectivity of the morphism W(X) → Wnr(X) can be studied using
the Gersten–Witt spectral sequence [BW02]. By the weak purity theorem
of loc.cit., such phenomena cannot occur in dimensions ≤ 4, and the unique
obstruction to purity of Witt groups for smooth schemes of dimension ≤ 8 is a
differential Wnr(X) → H5(X,W) in the Gersten–Witt spectral sequence. Not
much seems to be known about examples where this differential is non-trivial.

�

More generally, the formulation in Proposition 6.5 now opens up the possibility
to use motivic homotopy methods for investigation of counterexamples to the
global purity question for G-torsors. By a conjecture of Antieau and Williams,
cf. [AW15, Conjecture 1.2], purity should fail for G-torsors over some smooth
affine variety if G is a non-special semisimple group. By Proposition 6.5, to get
counterexamples to purity for such a group G, it would suffice to find examples
of smooth affine schemes X over a field F such that the sheafification map

πA
1

0 BétG(X) → aNisπ
A

1

0 BétG(X)

fails to be surjective.

6.3 Towards the classification of (motivic) G-torsors

Finally, we can once more have a look at the diagram employed in the proof
of Proposition 6.5 to discuss the relations between torsor classification and the
homotopy theory of the classifying spaces:

H1
ét(X,G) //

��

πA
1

0 BétG(X)

��

H1
ét(G)(X)

∼=
// aNisπ

A
1

0 BétG(X)

The upper left corner is about the isomorphism classification of G-torsors on
a smooth scheme X , the upper right corner is about the (motivic) homotopy
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classification of maps into the geometric classifying spaces BétG. The lower part
of the diagram is about the sheafified problems which we now have identified
as the classification of unramified torsors over the function field.

The left-hand vertical map relates the isomorphism classification of torsors
over X with the classification of unramified torsors over the function field. As
noted in Proposition 6.5, surjectivity of that map is the question of purity
for G-torsors over X , and that is expected to fail in general (though at this
point we only have examples for PGLp). The sheafification map H1

ét(X,G) →
H1

ét(G)(X) is also not going to be injective in general: all the rationally trivial
torsors overX (which need not be globally trivial) map to the trivial unramified
torsor in H1

ét(G)(X). It would certainly be interesting to classify G-torsors
over X mapping to a given class in H1

ét(G)(X), but at this point there does
not seem to be methods around to approach this question.

The right-hand vertical map relates the presheaf of A1-connected components
of BétG with its sheafification. By Theorem 6.7 and Proposition 6.10, the
sheafification map

πA
1

0 BétG(X) → aNisπ
A

1

0 BétG(X)

also fails to be surjective in general. The sheafification map is generally not in-
jective, since the representability results from [AHW20] imply that the preim-

age of the basepoint in aNisπ
A

1

0 BétG(X) is given by isomorphism classes of
rationally trivial torsors. Again, it would be interesting to understand the
fibers of the sheafification map as well as conditions for realizability of classes
in aNisπ

A
1

0 BétG(X) in terms of maps X → BétG. Possibly, some version of
obstruction theory for non-connected spaces (more precisely non-connected ob-
jects in an ∞-topos) could help here.

At last, the top horizontal map in the diagram relates the isomorphism clas-
sification of G-torsors to the A1-homotopy classification of maps X → BétG.
This is essentially the question what the classifying space BétG actually clas-
sifies. Unfortunately, this map will not generally be a bijection. It fails to
be injective because πA

1

0 BétG is homotopy invariant whereas for non-special
groups H1

ét(−, G) is not generally homotopy invariant and therefore the map

H1
ét(X,G) → πA

1

0 BétG(X) forgets about the counterexamples to homotopy in-
variance for étale torsors. At this point, it seems nothing is known regarding the
surjectivity of the natural map H1

ét(X,G) → πA
1

0 BétG(X). For instance, we do
not know if there exists a smooth affine scheme X and a motivic PGLn-torsor
over X which isn’t represented by an actual PGLn-torsor over X .
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Universitätsstr. 1
40225 Düsseldorf
Germany
girishk100@gmail.com

Matthias Wendt
Fachgruppe Mathematik und
Informatik
Bergische Universität Wuppertal
Gaußstr. 20
42119 Wuppertal
Germany
m.wendt.c@gmail.com

Documenta Mathematica 27 (2022) 2657–2689

elmanto@math.harvard.edu
girishk100@gmail.com
m.wendt.c@gmail.com


2690

Documenta Mathematica 27 (2022)


