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1 Introduction

Let (S,H) be a polarized K3 surface of genus two, that is a double covering
π : S → P2 ramified over a smooth sextic curve and H = OS(1) = π∗OP2(1).
Moreover, assume that Pic(S) = Z ·H .
We consider the moduli space M = MH(0, n,−1) of H-Gieseker stable co-
herent sheaves on S with Mukai vector v = (0, n,−1). This is an irreducible
holomorphic symplectic variety of dimension 2(n2+1). A point inMH(0, n,−1)
corresponds to a stable sheaf E on S such that E is pure of dimension one with
support in the linear system |nH | and χ(E) = −1. Taking the (Fitting) support
defines a Lagrangian fibration

f : MH(0, n,−1) −→ |nH | ∼= P
n2+1, E 7→ Supp(E)

known as the Mukai system of genus two [5], [26]. Over a point of |nH | which
corresponds to a smooth curve D ⊂ S, the fibers of f are abelian varieties
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isomorphic to Picn
2−1(D). So, MH(0, n,−1) can be viewed as a compactified

relative Jacobian of the universal curve C → |nH |.

Due to its rich and beautiful geometry the Mukai system serves as an in-
teresting example in Hyperkähler geometry. An instance of this shall be
demonstrated in this article, where we determine all birational models in the
case n = 2.

It is easy to see that M := MH(0, n,−1) is birational to the Hilbert scheme

of points on a K3 surface, S[n2+1]. Namely, let ξ ∈ S[n2+1] such that Supp(ξ)
consists of n2 + 1 points in general position. Then there is a unique smooth
curve D ∈ |nH | such that ξ ⊂ D and this allows to define a rational map

T : S[n2+1]
99KMH(0, n,−1), ξ 7→ OD(−ξ)⊗OS(n)|D.

Conversely, a general point in M is given by L ∈ Picn
2−1(D), for a smooth

curve D ∈ |nH | and thus generically dimH0(S,L∨ ⊗ OS(n)|D) = 1. Hence,
T is birational. The morphism T can be defined more conceptually via the
spherical twist TOS(−n) : D

b(S) → Db(S) [19, §8.1]. Let Iξ ∈MH(1, 0,−n2) be

the ideal sheaf of a point ξ ∈ S[n2+1], which is contained in the open subset,
where h0(Iξ(n)) = 1. By definition, TOS(−n)(Iξ) fits into a short exact sequence

0 → OS(−n) → Iξ → TOS(−n)(Iξ) → 0.

We conclude T (Iξ) = TOS(−n)(Iξ)(n). In other words, T is the composition

S[n2+1] =MH(1, 0,−n2)
TOS(−n)−−−−−→Mσ(0, n,−2n2 − 1)

−⊗OS(n)−−−−−−→Mσ(0, n,−1) 99KMH(0, n,−1),

where the first two arrows are isomorphisms and σ is a suitable stability condi-
tion. The last arrow is the birational transformation coming from wall-crossing
along a path from σ into the Gieseker chamber.
If n = 1, then all curves in |H | are irreducible and therefore TOS(−1)(Iξ) is a
stable sheaf provided that h0(Iξ(1)) = 1. The indeterminancy of T is exactly
the closed subset of ξ ∈ S[2] through which passes a pencil of curves in |H |,
which is identified with

P
2 ⊂ S[2], x 7→ π−1(x).

A resolution of T is the original example of a Mukai flop [26]:

BlP2 S[2] ∼= Hilb2(C/|H |)
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S[2] //❴❴❴❴❴❴❴❴❴❴❴ MH(0, 1,−1), ξ OC(−ξ)⊗OS(1)|C .

For n = 2, we show
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Proposition 1.1 (Prop 3.1). The spherical twist at OS(−2) induces an iso-
morphism

T : S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

Here, ∆ ⊂ |2H | is the locus of non-reduced curves and M0
∆ ⊂ M is the irre-

ducible component of f−1(∆) that consists of vector bundles of rank two and
degree one on the underlying reduced curve.

From the birational geometer’s point of view, MH(0, n,−1) and S[n2+1] are
extremal in the following sense. If one considers the decomposition of the
movable cone

Mov(S[n2+1]) ⊂ NS(S[n2+1])R ∼= R
2

into chambers corresponding to birational models, S[n2+1] is at the one end,
for it admits a divisorial contraction given by the Hilbert–Chow morphism and
MH(0, n,−1) with the Lagrangian fibration is at the other end. For n = 1, the
Mukai system MH(0, 1,−1) is the only other smooth birational model of S[2].
If n > 1, the presence of reducible and non-reduced curves in the linear system
|nH | make the situation more complicated. The paper in hand deals with the
case n = 2. We prove the following result.

Theorem 1.2 (Thm 5.2). Let (S,H) be a polarized K3 surface with Pic(S) =
Z · H and H2 = 2. There are five (smooth) birational models of S[5] or
M := MH(0, 2,−1), respectively. They are connected by a chain of flopping
contractions

BlW2 S
[5]

  
❆❆

❆❆
❆

}}④④
④④

BlW̃3
X1

��
❅❅

❅❅

��⑦⑦
⑦⑦

BlZ̃3
X3

��
❄❄

❄❄

��⑧⑧
⑧⑧

BlZ1 M

��
❂❂

❂❂

����
��

S[5] g1
//❴❴❴❴❴ X1

g2
//❴❴❴❴❴ X2 X3

g3
oo❴ ❴ ❴ ❴ ❴ M

g4
oo❴ ❴ ❴ ❴

for some subvarieties W2 ⊂W3 ⊂ S[5] such that

• W2 is a P3-bundle over MH(0, 1,−6),

• W3 \W2 is a P2-bundle over an open subset of MH(0, 1,−5)× S.

and subvarieties Z1 ⊂ Z3 ⊂M such that

• Z1 is a P4-bundle over S,

• Z3 \ Z1 is a P2-bundle over an open subset of S[3].

Here, W̃3 (resp. Z̃3) is the strict transform of W3 (resp. Z3) under g1 (resp. g4).

We prove Theorem 1.2 using the methods of Bayer–Macr̀ı [4]. Their techniques
give a procedure to compute the walls in the movable cone and to identify the
curves, which are contracted at every step. The exceptional loci are components
of the Brill–Noether loci

BNi(S[5]) := {ξ ∈ S[5] | h0(Iξ(2)) ≥ i+ 1} ⊂ S[5], i = 1, 2
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and
BNi(M) := {E ∈M | h0(E) ≥ i+ 1} ⊂M, i = 0, 1.

More precisely, we have the following description.

Proposition 1.3. (i) We have

W2 = {ξ ∈ S[5] | there is C ∈ |H | such that ξ ⊂ C} ⊂ BN2(S[5]), and

W3 = {ξ ∈ S[5] | there is x ∈ ξ and C ∈ |H | such that ξ \ {x} ⊂ C}
⊂ BN1(S[5]).

(ii) Z1 (resp. Z3) is the component of BN1(M) (resp. BN0(M)) that domi-
nates the locus of smooth curves in |2H |.

Outline

The core of this paper is Section 5, which is entirely an application of the re-
sults of [4] to the Mukai system of rank two and genus two. In particular, we
compute the walls in Mov(S[5]) and at each wall, we get a numerical character-
ization of the projective bundles that get contracted. The preceeding sections
can be seen as the foundation for the geometrical interpretation of these com-
putations. Precisely, in Section 2, we collect the necessary information on the
Mukai system. In Section 3, we prove Proposition 1.1 by explicit considerations
and likewise explicitly we study components of the appearing Brill–Noether loci
leading to Proposition 1.3 in Section 4. These components will later be identi-
fied with the exceptional loci of the transformations in Theorem 1.2.
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2 The Mukai system of rank two and genus two

We collect some results on the Mukai system of rank two and genus two. Let
(S,H) be a polarized K3 surface of genus 2 such that Pic(S) = Z · H . We
assume that the linear system |H | contains a smooth, irreducible curve, so S
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is a double covering π : S → P2 ramified over a smooth sextic curve. We
consider the moduli space M = MH(0, 2, k) of H-Gieseker stable coherent
sheaves on S with Mukai vector v = (0, 2, k), where k ≡ 1 mod 2. This
is an irreducible holomorphic symplectic variety of dimension 10. A point in
MH(0, 2, k) corresponds to a stable sheaf E on S such that E is pure of dimension
one with support in the linear system |2H | and χ(E) = k. Taking the (Fitting)
support defines a Lagrangian fibration

f : MH(0, 2, k) −→ B := |2H | ∼= P
5

known as the Mukai system of rank two and genus two [5], [26].

Since tensoring with OS(1) induces an isomorphism

τH : MH(0, 2, k)
∼−→ MH(0, 2, k + 4),

it is immediate that the isomorphism class of MH(0, 2, k) depends only on k
modulo 4. The following Lemma shows that actually the isomorphism class is
the same for all odd k. Alternatively,MH(0, 2, k) for odd k can be characterized
as the unique birational model of S[5] admitting a Lagrangian fibration (cf.
Section 5.1).

Lemma 2.1. There is an isomorphism

MH(0, 2, 1) −→MH(0, 2,−1), E 7→ E∨ := Ext1OS
(E ,OS).

In particular, all the moduli spaces MH(0, 2, k) for odd k are isomorphic.

Proof. Every E ∈ MH(0, 2, 1) is pure of dimension one. Therefore,
Ext iOS

(E ,OS) = 0 for i 6= 1 and the natural map

E ∼−−→ E∨∨ = Ext1OS
(Ext1OS

(E ,OS),OS)

is an isomorphism, [18, Prop 1.1.10]. One easily sees that E∨ is again H-
Gieseker stable.

In the following, we usually choose k = −1 and set

M :=MH(0, 2,−1).

With this choice of k, a stable vector bundle of rank two and degree one on a
smooth curve C ∈ |H | defines a point in M .

2.1 The linear systems |H | and |2H |
The geometry of the Mukai system is closely related to the structure of the
curves in the linear systems |H | and |2H |. We have

H0(S,OS(k)) ∼= H0(P2,OP2(k)) ⊕H0(P2,OP2(k − 3)),
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and so in particular H0(S,OS(k)) ∼= H0(P2,OP2(k)) if k = 1, 2. We con-
clude that all curves in |H | and |2H | are double covers of lines and conics
in P2, respectively. A curve in |H | (resp. |2H |) has arithmetic genus 2 (resp. 5).

We use the Segre map m : |H | × |H | → |2H | to define the subloci

∆ := m(∆|H|) ⊂ Σ := im(m) ⊂ |2H |.

Then Σ ∼= Sym2 |H | is the locus of non-integral curves, it is four-dimensional
and its generic member is reduced and has two smooth irreducible components
in the linear system |H | meeting transversally in two points (we use ρ(S) = 1).
The subset ∆ ∼= |H | ∼= P2 is the locus of non-reduced curves.

2.2 Fibers of the Mukai morphism and structure of M

The moduli space M contains a dense open subset consisting of sheaves that
are line bundles on their support. The restriction of the Mukai morphism to
this locus is smooth [23, Prop 2.8] and the image of the restricted morphism
is B \ ∆ [9, Lem 3.5.3]. In particular, MΣ := f−1(Σ) contains a dense open
subset that parametrizes the pushforwards of line bundles, but M∆ := f−1(∆)
does not.

Following [9, Proposition 3.7.1], the fibers of the Mukai morphism f : M → B
show the following characteristics:

f−1(x) =











is reduced and irreducible if x ∈ B \ Σ
is reduced and has two irreducible components if x ∈ Σ \∆
has two irreducible components with multiplicities if x ∈ ∆.

(2.1)
Let us make this more precise for generic points:

• In the first case, let x ∈ B \ Σ correspond to a smooth curve D, then
f−1(x) ∼= Pic3(D).

• In the second case, let x ∈ Σ \∆ correspond to the union D = D1 ∪D2

of two smooth curves meeting transversally in two points. Then f−1(x)
contains a dense open subset parameterizing line bundles on D. The two
irreducible components of f−1(x) correspond to line bundles of partial
degree (2, 1) and (1, 2).

• In the third case, let x ∈ ∆ correspond to a non-reduced curve with
smooth underlying curve C ∈ |H |. Then f−1(x) has two non-reduced
irreducible components, which we denote as follows

M2C := f−1(x)red =M0
2C ∪M1

2C . (2.2)
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The first component M0
2C consists of those sheaves, that are pushed for-

ward from the reduced curve C. With its reduced structure it is isomor-
phic to the moduli space of stable vector bundles of rank two and degree
one on C. The other component M1

2C is the closure of those sheaves that
can not be endowed with an OC-module structure. All these sheaves fit
into a short exact sequence

0 → i∗(L(p)⊗ ω−1
C ) → E → i∗L → 0, (2.3)

where i : C →֒ S is the inclusion, L ∈ Pic1(C) is the torsionfree part of
E|C and p ∈ C is the support of the torsion part of E|C . This extension
is intrinsically associated to E , for details see [16].

The decomposition (2.2) also exists globally

M∆ = f−1(∆)red =M0
∆ ∪M1

∆, (2.4)

with M0
∆ being a relative moduli space of stable vector bundles and M1

∆ the
closure of its complement [9, Prop 3.7.23].

3 The birational map T : S[5]
99KM

In this section, we study the birational map T : S[5]
99KM from the introduc-

tion, which is induced by the spherical twist at OS(−2). For the definition of
the spherical twist, we refer to [19, §8.1].

Proposition 3.1. The spherical twist at OS(−2) defines a birational map

T : S[5]
99KM, ξ 7→ TOS(−2)(Iξ)⊗OS(2)

which induces an isomorphism

S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

In particular, T is defined in ξ ∈ S[5] if there is a unique curve D ∈ |2H | such
that ξ ⊂ D. In this case,

T (ξ) ∼= ker(OS(2)|D → Oξ).

We want to point out that, due to ρ(S) = 1, there are actually no proper
birational automorphisms of S[5]. Precisely, we have

Aut(S[5]) = Bir(S[5]) = 〈id, ι[5]〉,

where ι[5] is the automorphism induced by the involution ι on S [7, Thm 1.1].
Hence, T is the only birational morphism S[5]

99K M , up to precomposition
with ι[5]. Also note that the subvariety BN1(S[5]) = {ξ ∈ S[5] | h0(Iξ(2)) ≥
2} ⊂ S[5] is left invariant under ι[5].
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Proof of Proposition 3.1. By definition of the spherical twist, there is an exact
triangle in Db(S)

RΓ(Iξ(2))⊗OS(−2) → Iξ → TOS(−2)(Iξ)
[1]−→ .

So, TOS(−2)(Iξ) is a complex in degrees −1 and 0, which is concentrated in
degree 0 if and only if h0(Iξ(2)) = 1, as χ(Iξ(2)) = 1. In this case, TOS(−2)(Iξ)
is as stated.
Let ξ ∈ S[5] and s ∈ H0(Iξ(2)). We claim that if

E := T (ξ) ∼= ker(OS(2)|D → Oξ)

is unstable, then h0(Iξ(2)) ≥ 2. Here, D is the curve defined by the composition
of s with the inclusion Iξ(2) →֒ OS(2).
First, assume D ∈ Σ \ Σ. Then E is a rank one sheaf on the integral curve Ds

and necessarily stable.
Next, if D ∈ Σ \∆ write D = D1 ∪D2. Then E is stable, if and only if

χ(E ⊗ OS(−1)|Di
) < χ(E)

2 = − 1
2 < χ(E|Di

) for i = 1, 2.

Otherwise, the inclusion E ⊗ OS(−1)|Di
→֒ E or the restriction E ։ E|Di

to
one component is destabilizing. Conversely, every destabilizing subbundle or
surjection factors through the above. We find

χ(E|Di
) = − lg(Oξ ⊗ODi

) + χ(OS(2)|Di
) + lg(T orOD

1 (Oξ,ODi
))

= lg(Oξ ⊗OD3−i
)− 2,

where we used lg(T orOD

1 (ODi
,Oξ)) = lg(Oξ ⊗OD1) + lg(Oξ ⊗OD2)− 5. Sim-

ilarly,

χ(E ⊗ OS(−1)|Di
) = lg(Oξ ⊗OD3−i

)− 4.

Hence, E is unstable if and only if lg(Oξ ⊗ODi
) ≥ 4 for one i = 1, 2. Without

loss of generality assume that lg(Oξ ⊗OD1) ≥ 4. There are two cases. Either
there is a reduced point x ∈ ξ such that ξ\{x} ⊂ D1. Otherwise, ξred ⊂ D1 and
there is a point x ∈ ξ whose multiplicity drops by one, when restricting to D1.
In both cases, D2 can move in the pencil of curves in |H | passing through x
and thus h0(Iξ(2)) ≥ 2, cf. Lemma 3.2 below.
Finally, if D = 2C ∈ ∆, the above arguments remain valid with D1 = D2 = C.
This is, if E is unstable, then either lg(Oξ⊗OC) = 4 and Lemma 3.2 applies or ξ
is completely contained in C. But then ξ ⊂ C ∪C′ for every curve C′ ∈ |H |.
So far, we have proven that T is well-defined for all ξ ∈ S[5] that satisfy
h0(Iξ(2)) = 1. A birational morphism between projective irreducible holo-
morphic symplectic manifolds is an isomorphism on the regular locus [17, 2.2].
Therefore, it is left to see that

T (S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2}) =M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).
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We have an inclusion from left to right, since H0(T (ξ)) = 0, whenever T is
defined and over ∆, the sheaf T (ξ) always has rank one on the reduced curve.
More precisely, let ξ ∈ S[5] such that 2C is the only curve in |2H | containing ξ.
Then E := T (ξ) fits into an extension on 2C

0 → L(x) ⊗ ω−1
C → E → L → 0,

where x is the support of T orO2C
1 (OC ,Oξ) and L = ω⊗2

C (−ξ ∩ C) ∈ Pic1(C).
The converse inclusion is clear over B \ Σ. Let D = D1 ∪ D2 ∈ Σ \ ∆ and
E ∈ f−1(D) such that h0(E) = 0. We have to find s : E → OS(2)|D. Then
ξ := Supp(coker(s)) ∈ S[5] and E = T (ξ). Assume first that Li := E|Di

is
torsionfree and without loss of generality that χ(Li) = i−1, i.e. for smooth Di,
we have Li ∈ Pici(Di). Now, we consider the short exact sequence

0 → OS(1)|D1 → OS(2) → OS(2)|D2 → 0

and apply Hom(E , ), which produces the exact sequence

0 → Hom(L1,OS(1)|D1) → Hom(E ,OS(2)|D) → Hom(L2,OS(2)|D2)

→ Ext1(L1,OS(1)|D1) → . . . . (3.1)

First, if hom(L1,OS(1)|D1) = 1, then everything is clear. And second if
hom(L1,OS(1)|D1) = 0, then also ext1(L1,OS(1)|D1) = 0. Thus in this case
Hom(E ,O(2)|D) ∼= Hom(L2,O(2)|D2) 6= 0. Next, if E|Di

has torsion, then
E|Di

∼= Li ⊕ T , where Li is torsionfree with χ(Li) = 0 and T is supported on
the intersection D1 ∩ D2 with lg(T ) = 1. In particular, also in this case the
sequence (3.1) proves that Hom(E ,O(2)|D) 6= 0.
Over ∆ the argument is the same. Let D = 2C ∈ ∆ and assume that we are
given E ∈ M1

2C \M0
2C such that h0(E) = 0. Again, E = T (ξ) if and only if

Hom(E ,OS(2)|2C) 6= 0. This time, we have E|C = L⊕Ox for some L ∈ Pic1(C)
and x ∈ C and the sequence (3.1) with C = D1 = D2 and L = L1 = L2 proves
what we need.

We will see in Proposition 5.2, how the indeterminancy of T can be resolved
by a sequence of blow-ups and blow-downs.

Lemma 3.2. Let ξ ⊂ S be a zero-dimensional subscheme of length n supported
in a point p ∈ S. Assume there is an integral curve C1 ⊂ S that satisfies
lg(Oξ ⊗OC1) = n− 1. Then

ξ ⊂ C1 ∪ C2

for every curve C2 passing through p. In particular, ξ ⊂ 2C1.

Proof. We can assume that S = SpecA, where A is a local ring with maximal
ideal m. Moreover, ξ = V (I), and C1 = V (f) for some f ∈ A. By assumption,
lg(A/I) = n and lg(A/(I, f)) = n − 1, hence lg((I, f)/I) = 1. We we want
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to show that f · m ⊂ I or equivalently (I, f · m) = I. We have a short exact
sequence of C-vector spaces

0 → (I, f ·m)/I → (I, f)/I → (I, f)/(I, f ·m) → 0,

where the middle term is of dimension one. Hence, (f ·m, I) = I is true if and
only if the right outer term is non-zero. Assume (I, f) = (I, f ·m), then we can
write f = af + b for some a ∈ m and b ∈ I. This implies (1− a)f ∈ I and thus
f ∈ I, which is a contradiction to our assumption.

4 Brill–Noether loci in M and S[5]

In Proposition 3.1, we established the isomorphism

T : S[5] \ {ξ ∈ S[5] | h0(Iξ(2)) ≥ 2} ∼−→M \ ({E ∈M | h0(E) ≥ 1} ∪M0
∆).

In this section, we undertake a hands-on analysis of certain components of the
Brill–Noether loci appearing here. Namely,

BNi(S[5]) := {ξ ∈ S[5] | h0(Iξ(2)) ≥ i+ 1} ⊂ S[5]

and
BNi(M) := {E ∈M | h0(E) ≥ i+ 1} ⊂M

for i ≥ 0. The first is also an actual Brill–Noether locus after the identification

S[5] ∼=MH(1, 2, 0), Iξ 7→ Iξ(2).

All these Brill–Noether loci generically have the structure of a projective bun-
dle, which we explicitly state for certain components in Propositions 4.4 and 4.7.

4.1 Brill–Noether loci in MH(1, 2, 0) ∼= S[5]

We study the Brill–Noether locus in S[5] or rather MH(1, 2, 0) first. Our first
result shows that the only non-trivial cases are i = 1, 2. For ξ ∈ S[5], we
introduce the linear subspace

B(ξ) := P(H0(S, Iξ(2))) = {D ∈ |2H | | ξ ⊂ D} ⊂ |2H |.

Lemma 4.1. (i) We have the inequalities

0 ≤ h0(S, Iξ(1)) ≤ 1 ≤ h0(S, Iξ(2)) ≤ 3.

(ii) If h0(S, Iξ(1)) = 1, then h0(Iξ(2)) = 3 and

B(ξ) = m(C × |H |) ⊂ Σ ⊂ |2H |,

where C ∈ |H | is the unique curve containing ξ.
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Proof. From the short exact sequence

0 → Iξ(2) → OS(2) → Oξ → 0,

it follows that h0(S, Iξ(2)) ≥ 1 for all ξ ∈ S[5].
First, assume that B(ξ) ⊂ Σ then dimB(ξ) ≤ 2, as there is no three-
dimensional linear subspace of P5 that is contained in Σ = Sym2

P
2. So, in

order to show h0(S, Iξ(2)) ≤ 3, we can assume that B(ξ) ∩ B \ Σ 6= ∅. Hence
we can assume that there is an integral curve D ∈ |2H | such that ξ ⊂ D. Let
us first assume that D is smooth. We have compatible long exact sequences

0 // 0 = H0(Iξ)� _

��

// H0(Iξ(2))� _

��

� � //

α

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

H0(Iξ(2)|D)

��

// . . .

0 // H0(OS) // H0(OS(2)) // H0(ωD) // 0,

where we inserted OS(2)|D ∼= ωD. Moreover,

Iξ(2)|D ∼= ωD(−ξ)⊕Oξ.

ThusH0(Iξ(2)|D) = H0(Oξ)⊕H0(ωD(−ξ)) and the first summand is the kernel
of the third vertical map. Hence, dim im(α) ≤ h0(D,ωD(−ξ)). Together, this
gives

h0(Iξ(2)) ≤ dim im(α) + h0(OS) ≤ h0(D,ωD(−ξ)) + 1 = h0(D,OD(ξ)) ≤ 3,

where the last inequality uses Clifford’s theorem [14, IV Thm 5.4]. The case
when D is singular can be deduced from the same argument using an extension
of Clifford’s theorem [12].
Next, assume that ξ ⊂ C for a curve C ∈ |H |. Then the analogous considera-
tions yield

h0(Iξ(1)) ≤ dim ker(H0(OS(1)) → H0(OS(1)|C)) + h0(Iξ(1)|C)− 5

= 1 + 5− 5 = 1.

This finishes the proof of (i).

Next, we prove (ii). Any non-zero section s ∈ H0(Iξ(1)) induces a short exact
sequence

0 → OS(1)
s−→ Iξ(2) → ker(OS(2)|C → Oξ) → 0,

which gives the isomorphism H0(OS(1)) ∼= H0(Iξ(2)) that translates into the
statement for B(ξ).

Next, we have two strategies to find explicit components of BNi(S[5]). The first
relies on the observation that, given a curve D ∈ |2H | and x ∈ D, then also
ι(x) ∈ D, where ι : S → S is the covering involution of π : S → |H |∨ ∼= P2.
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Hence, the subvarieties in S[5] which parameterize subschemes that are partly
invariant under ι are candidates to provide a component of the Brill–Noether
locus. The second is based on Lemma 4.1(ii). Namely, we parameterize sub-
schemes that are already or almost contained in a curve of the primitive linear
system |H |.
Example 4.2. As mentioned in the introduction, we have an embedding

P
2 ⊂ S[2], x 7→ π−1(x).

We get generically injective rational maps

g3 : P
2 × S[3]

99K S[5] and g1 : P
2 × P2 × S 99K S[5]

and set
Pi := im(gi) ⊂ S[5] for i = 1, 3.

Clearly, P3 ⊂ BN1(S[5]) and P1 ⊂ BN2(S[5]). Moreover, we note codimPi =
5− i and the generic fiber of Pi 99K S

[i] is birational to P5−i.

Example 4.3. We define

W2 := {ξ ∈ S[5] | H0(Iξ(1)) 6= 0}
= {ξ ∈ S[5] | there is C ∈ |H | such that ξ ⊂ C}.

Then W2 is the closure of the image of the generically injective rational map

Sym5
C|H|/|H|(C|H|) 99K S

[5]

and therefore dimW2 = 7. Here, C|H| → |H | is the universal curve. We also
define

W3 := {ξ ∈ S[5] | there exists a subscheme ξ′ ⊂ ξ of length 4

and C ∈ |H | such that ξ′ ⊂ C},

i.e. W3 is the closure of the image of the generically injective rational map

Sym4
C|H|/|H|(C|H|)× S 99K S[5].

We conclude that dimW3 = 8.

Clearly, W2 ⊂ W3. By Lemma 4.1(i), W2 ⊂ BN2(S[5]). Similarly one sees the
inclusion W3 ⊂ BN1(S[5]). Namely, if ξ′ ⊂ C as in the definition of W3 and
x := Supp(ξ \ ξ′), then ξ ⊂ C ∪ C′ for every curve C′ ∈ |H | satisfying x ∈ C′.
Hence dimB(ξ) ≥ 1.

The subvarieties W2 and W3 also appear in [21, Thm 6.4] as examples of alge-
braically coisotropic subvarieties in S[5]. We can give the precise structure of
a projective bundle.
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Proposition 4.4. (i) The subvariety W2 is a P3-bundle over MH(0, 1,−6).
More precisely, let E−6

univ be the twisted universal bundle on MH(0, 1,−6)×
S and define the twisted sheaf

E2 := p1∗RHom(E−6
univ, p

∗
2OS(−1)).

on MH(0, 1,−6). Then E2 is a twisted vector bundle and

W2
∼= P(E2).

In particular, W2 is smooth.

(ii) The subvariety W3 \ W2 is a P2-bundle over an open subset of S ×
MH(0, 1,−5). More precisely, let E−5

univ be the universal sheaf on
MH(0, 1,−5) × S and I∆ the ideal sheaf of the diagonal ∆ ⊂ S × S
and define the sheaf

E3 := p12∗RHom (p∗23E−5
univ, p

∗
3OS(−1)⊗ p∗13I∆)

on S ×MH(0, 1,−5). Then E3 is a vector bundle on an open set U ⊂
S ×MH(0, 1,−5) and

W3 \W2
∼= P(E3|U ).

Remark 4.5. By [18][Cor 4.6.7] there exists a universal family on MH(0, 1, k)
when k is odd. If k is even, the existence of a universal is obstructed by a 2-
torsion gerbe β. However, there exists universal sheaves locally on MH(0, 1, k)
combining to a β-twisted universal bundle. Note that the projectivization of a
twisted bundle is a genuine projective bundle.

Proof. (i) For every E ∈MH(0, 1,−6) we have the base change map

E2(E) → H0(S,RHom(E ,OS(−1))) ∼= Ext1S(E ,OS(−1))

and ExtiS(E ,OS(−1)) = 0 for i 6= 1 because E is stable of rank 0. Hence
dimExt1(E ,OS(−1)) = 4 for all E ∈MH(0, 1,−6) and P(E2) →MH(0, 1,−6) is
indeed a P3-bundle parameterizing extensions of E ∈MH(0, 1,−6) by OS(−1).
Moreover, as Ext1S(E ,OS(−1)) is torsion free, any non-split extension

0 → OS(−1) → I → E → 0 (4.1)

does not admit a local splitting. Hence, the middle term I of such an extension
is torsion free [18, Prop 1.1.10] and must be the ideal sheaf of a zero-dimensional
subscheme [18, Expl 1.1.16]. In particular, I is H-Gieseker stable and the
universal extension on P(E2)× S defines a map

ψ2 : P(E2) −→MH(1, 0,−4) = S[5]

whose image isW2. It is left to show that ψ2 is an isomorphism onto its image.
For injectivity, assume that there is ξ ∈ S[5] such that Iξ fits into two different
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extensions of the form (4.1). But then h0(S, Iξ(1)) ≥ 2 which is absurd (cf.
Lemma 4.1). Finally, we have Hom(OS(−1), E) = 0, which signifies that the
extensions of the form (4.1) are rigid [13, Thm 6.4.5] and therefore ψ2 is really
an immersion of schemes.

(ii) In the case of W3, we find

E3(x, E) → H0(S,RHom(E , Ix(−1)))

and the right hand side is isomorphic to Ext1S(E , Ix(−1)) if x /∈ Supp(E)
and isomorphic to Ext1S(E , Ix(−1)) ⊕ C if x ∈ Supp(E). As above, we have
dimExt1(E , Ix(−1)) = 3 for all (x, E) ∈ S ×MH(0, 1,−5). Hence, E3 is a vec-
tor bundle on the open subset U ⊂ S ×M that is the inverse image of the
complement of the universal curve C|H| ⊂ S × |H | under the product of the
support morphism and the identity. Again, one checks that for (x, E) ∈ U the
middle term of every non-split extension

0 → Ix(−1) → I → E → 0, (4.2)

is a pure, H-Gieseker stable sheaf with Mukai vector (1, 0,−4) and so the
associated universal extension defines a map

ψ3 : P(E3|U ) → S[5]

whose image is clearly contained in W3. We claim, that ψ3 is an isomorphism
onto W3 \W2. Again, Hom(Ix(−1), E) = 0 and so ψ3 is a local isomorphism.
If Iξ can be written in two different extensions, say over (x, E) and (x′, E ′), it
follows that ξ \ {x, x′} ⊂ Supp(E) as well as ξ \ {x, x′} ⊂ Supp(E ′). However, a
scheme of length 3 is at most contained in one curve C ∈ |H |. Hence we have
Supp(E) = Supp(E ′), which implies x = x′ and also identifies the first arrow
up to a scalar. In other words, all the data match and ψ3 is injective. Finally,
ξ ∈ im(ψ3) if and only if there is x ∈ ξ such that ξ \ {x} is contained in a
unique curve C ∈ |H | but x /∈ C. Hence, im(ψ3) =W3 \W2.

In Proposition 5.2, we encounter the flop at W2 and W3, respectively.

4.2 Brill–Noether loci in M

In this section, we study the Brill–Noether loci inM . Recall that over a smooth
curve D ∈ |2H |, the fiber f−1(D) is isomorphic to Pic3(D) and therefore

BNi(M) ∩ f−1(D) =W i
3(D) ⊂ Pic3(D)

is the classical Brill–Noether locusW i
3(D) [2]. It is known, that a general curve

in a primitive linear system on a general K3 surface is Brill–Noether general
[22]. This implies in particular that W r

d (when non-empty) has the expected
dimension

dimW r
d = ρ(g, r, d) = g − (r + 1)(g − d+ r).
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However, for non-primitive linear systems unexpected things may happen, as
we encounter below.

First, we deal with the structure of BNi(M) over the locus of smooth curves
B◦ ⊂ B. Our construction uses the fact, that the moduli spacesMH(0, 2, k) for
odd k are all isomorphic (cf. Lemma 2.1). Let C◦ → B◦ be the corresponding
universal curve. For any k, we have an isomorphism

MH(0, 2, k − 4)◦ ∼= PickC◦/B◦ ,

where MH(0, 2, k − 4)◦ denotes the preimage of B◦ under the support map
MH(0, 2, k − 4) → B. We define

BNi
k(B

◦) := {L ∈MH(0, 2, k − 4)◦ | h0(S,L) ≥ i+ 1} ⊂MH(0, 2, k − 4)◦

and consider its closure in two particular cases

Z1 := BN0
1(B

◦) ⊂MH(0, 2,−3) and

Z3 := BN0
3(B

◦) ⊂M =MH(0, 2− 1).

We expect Z3 ⊂ BN0(M) to be a strict inclusion, as the latter might have a
component over Σ.
In the following, we will consider Z1 as a subvariety of M via the isomorphism

MH(0, 2,−3)
∼−→M, E 7→ Ext1(E ,OS)(−1).

In particular, over a smooth curve D ∈ |2H |, we have

Pic1(D) → Pic3(D), L 7→ L∨ ⊗OS(1)|D
and

Z1 ∩ f−1(D) = {L ∈ Pic3(D) | h0(L ⊗OS(1)|D) ≥ 4}
= {L ∈ Pic3(D) | h1(L ⊗OS(1)|D) 6= 0}.

Lemma 4.6. We have
Z1 ⊂ BN1(M).

In particular, there is an inclusion

Z1 ⊂ Z3.

In Corollary 5.4, we prove that actually Z3 ∩ BN1(M) = Z1.

Proof. It suffices to show the result over a smooth curve D ∈ |2H |. Consider
a line bundle L ∈ Pic1(D) such that H0(D,L) 6= 0. We want to show that
h0(D,L∨ ⊗OS(1)|D) ≥ 2. Write L = OD(x) for a point x ∈ D. On S, we have
a short exact sequence

0 → OS(−1) → Ix(1) → OD(−x)⊗OS(1)|D → 0

and the resulting long exact cohomology sequence proves the lemma.
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Proposition 4.7. (i) There is an embedding

C � � //

��
❄❄

❄❄
❄❄

❄❄
M

f

��

B,

whose image is Z1. In particular, dimZ1 = 6 and Z1 is a P4-bundle over
S.

(ii) Z3 is generically isomorphic to a P
2-bundle over S[3]. In particular,

dimZ3 = 8.

Proof. The proof of (i) and (ii) works analogously. The idea is that, over
D ∈ B◦ we want to parameterize the line bundles OD(−ξi), i = 1, 3 for a point
ξ1 ∈ D and a divisor ξ3 ⊂ D of degree 3, respectively. These are the ideal
schemes of ξi ⊂ D and can be realized as the quotient of the respective ideal
sheaves in S

0 → ID/S = OS(−2) → Iξi/S → Iξi/D = OD(−ξi) → 0.

Hence, our task is to parameterize ξi ⊂ D for ξi ∈ S[i] and D ∈ B, define
the above sequence universally and show that the cokernel defines a map to
MH(0, 2,−i− 4) for i = 1, 3.
The first step is straightforward. For i = 1, 3 define

Xi := P(p2∗(IZi
⊗ p∗1OS(2))) → S[i],

where Zi ⊂ S×S[i] is the universal subscheme and pi are the projections from
S × S[i] for i = 1, 2. The inclusion

p2∗(IZi
⊗ p∗1OS(2)) →֒ p2∗(OS×S[i] ⊗ p∗1OS(2)) ∼= H0(S,OS(2))⊗OS[i]

defines an embedding Xi ⊂ S[i] ×B. We could also think of Xi as Hilb
i(C/B),

i.e.

X1 = C = {p ∈ D} ⊂ S ×B and X3 = {ξ ⊂ D} ⊂ S[3] ×B.

Note that X1 is a P4-bundle over S and X3 is generically a P2-bundle over S[3].
On S ×Xi, we have the sequence

0 → (id×pB)∗OS×B(−C) → (pS × id)∗IZi
→ Qi → 0.

Here, Qi is defined to be the cokernel, which is flat over Xi and the restriction to
a fiber over p ∈ Xi has Mukai vector v(Qi|S×{p}) = (0, 2,−i−4). Consequently,
Qi gives a map

Xi

��
❄❄

❄❄
❄❄

❄❄

ϕi
//❴❴❴❴❴❴❴ MH(0, 2, i− 4),

xxqq
qq
qq
qq
qq
q

p 7→ (Qi|S×{p})
∨

B
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which is defined in p ∈ Xi, whenever (Qi|S×{p})
∨ is stable. By definition, we

have im(ϕi) ⊂ Zi.
For simplicity, we restrict to the case i = 1 in the rest of the proof. Actually,
the more powerful methods from Proposition 5.2 allow us to conclude without
explicit computation, that Z3 \ Z1 is a projective bundle (Here, we identify
Z1 ⊂M as above).
We claim that ϕ1 is everywhere defined and immersive. Clearly, ϕ1 is defined
and injective over B \Σ and with the same arguments as in the proof of Propo-
sition 3.1 this also holds true over Σ. So im(ϕ1) = Z1 and it is left to show
that ϕ1 is an immersion. We show that the induced map on tangent spaces is

injective. To this end, let S[ε] := S ×C C[ε]
p−→ S and assume we are given a

C[ε]-valued point of C that maps to a trivial deformation of E ∈MH(0, 2,−5),
i.e. this point corresponds to a sequence

p∗OS(−2) → S → p∗E → 0 (4.3)

on S[ε]. Here, we use that the line bundle OS(−2) is rigid. We want to see that
S = p∗Ix, where E , as before, sits in the sequence 0 → OS(−2) → Ix → E → 0.
By definition, (4.3) embeds into a diagram

p∗OS(−2) // S //

��

p∗E //

��

0

p∗OS(−2) // OS[ε]

��

// OD̃

��

// 0

Ox̃

��

Ox̃

��

0 0,

where x̃ ⊂ D̃ ⊂ S[ε] are deformations of x and D. As Supp(p∗E) = D[ε], we
must have p∗E = OD[ε](−x[ε]) and we can conclude that all deformations are
trivial. Hence, S = p∗Ix.

Note that the smooth curves in |2H | are hyperelliptic and so there is a unique
line bundle g12(D) ∈ Pic2(D) such that h0(g12) = 2.

Corollary 4.8. Let D ∈ |2H | be a smooth curve and L ∈ f−1(D). Then

L ∈ Z1 ∩ f−1(D) ⇐⇒ L ∼= OD(x) ⊗ g12 for some x ∈ D.

Proof. By dimension reasons, it suffices to show one implication. Assume that
L ∼= OD(x) ⊗ g12 for some x ∈ D. We know that OS(1)|D ∼= (g12)

⊗2 [14,
Prop 5.3]. Thus

h1(L ⊗OS(1)|D) = h1(OD(x) ⊗ (g12)
⊗3) = h0(OD(−x)⊗ g12) 6= 0,
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which proves the claim.

Remark 4.9. Another consequence of Proposition 4.7 is that W 0
3 (D) has the

expected dimension
dimW 0

3 (D) = ρ(5, 0, 3) = 3

and that
dimW 1

3 (D) ≥ 1

forD ∈ |2H | general, even though one computes that the Brill–Noether number
ρ(5, 1, 3) = 5− 2(5 − 3 + 1) is negative. The latter also follows, since we have
g12(D)⊗OD(x) ∈W 1

3 (D) for all x ∈ D. In Corollary 5.4, we will see that every
line bundle in W 1

3 (D) is of this form, i.e. dimW 1
3 (D) = 1. Finally, we know

W 2
3 (D) = ∅

from Clifford’s theorem [14, IV Thm 5.4].

5 Computation of the birational models

In this final section, we leave our ad-hoc methods behind and apply the tech-
niques of Bayer and Macr̀ı to get a full picture of the birational models of S[5]

and the associated birational wall-crossing transformations. We find that there
are five birational models of M (including M and S[5]) and moreover match
the exceptional loci of the flopping contractions with the subvarieties from the
previous section. By a birational model of M , we mean a smooth projective
variety with trivial canonical bundle that is birational to M .

5.1 Numerical characterization of the walls in Mov(M)

We will compute the wall and chamber decomposition of the movable cone of
S[5] (resp. M), whose chambers correspond to the birational models of S[5]

(resp. M) using Bayer and Macr̀ı’s results [4]. We start by recalling the basic
definitions and relevant statements in this context.

Let X be an irreducible holomorphic symplectic manifold. Recall that the
positive cone Pos(X) ⊂ NS(X)R is defined to be the connected component
of {x ∈ NS(X)R | (x, x) > 0} containing a Kähler class. The movable cone
Mov(X) ⊂ NS(X)R is the open cone generated by the classes of divisors D
such that |D| has no divisorial base locus. We have the inclusions

Amp(X) = Nef(X) ⊂ Mov(X) ⊂ Pos(X) ⊂ NS(X)R.

The movable cone admits a locally polyhedral chamber decomposition, whose
chambers correspond to smooth birational models of X . More precisely,

Mov(X) =
⋃

g

g∗ Nef(X ′),
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where the union is taken over all birational maps g : X 99K X ′ from X to
another irreducible holomorphic symplectic manifold X ′ [15, Thm 7, Cor 19].

Assume that X = Mσ(v) is a smooth projective moduli space of σ-stable
objects in Db(S) with v2 > 0. In this case, the Mukai morphism [4, Thm 3.6]
gives the identification

λX : v⊥
∼−→ NS(X).

Here, v⊥ ⊂ H∗
alg(S,Z). By [4, Thm 12.1], the nef cone of X is one of the

chambers of the decomposition of the positive cone Pos(X) whose walls are the
orthogonal complement to linear subspaces

λX(H⊥),

where H ⊂ H∗
alg(S,Z) is a primitive sublattice of signature (1, 1) that contains

v. If H = 〈v, a〉, then a ∈ H∗
alg(S,Z) can be chosen such that a2 ≥ −2 and

0 ≤ (v, a) ≤ v2

2 . There is a parallel statement for the movable cone of X
[4, Thm 12.3]. Here, a ∈ H∗

alg(S,Z) can be chosen such that (a2 = −2 and

(v, a) = 0) or (a2 = 0 and (a, v) ∈ {1, 2})).
Following [4, Thm 5.7], the lattice H governs the geometry of the birational
transformation at the respective wall. One can distinguish the following cases:

(a) The latticeH is isomorphic to one of the following:
(−2 0

0 v2

)

,
(

0 1
1 v2

)

,
(

0 2
2 v2

)

.
This case corresponds to a divisorial contraction.

(b) The lattice H is none of the above and there is either s ∈ H such that s2 =

−2 and 0 < (s, v) ≤ v2

2 or v is the sum v = a1 + a2 of two positive classes
ai ∈ H (i.e. a2i ≥ 0 and (ai, v) > 0 for i = 1, 2). This case corresponds to a
flopping contraction.

(c) In all other cases, the birational transformation is actually an isomorphism.

The rough idea here is, that a wall of the ample cone is induced by a wall-
crossing in the space of stability conditions and the associated contraction
contracts precisely the curves of objects that are S-equivalent with respect to
the stability condition on the wall [3, Thm 1.4(a)]. To a wall W (with respect
to v) of the stability manifold, Bayer and Macr̀ı associate a rank two sublattice
[4, Prop 5.1]

H := {w ∈ H∗
alg(S,Z) | φ0(w) = φ0(v) for all σ0 ∈ W} ⊂ H∗

alg(S,Z).

Here, φ0 is the phase associated to σ0 = (Z0,A0). Then H has the property
that if E is a σ-stable object and Ai is a factor in its Harder–Narasimhan
filtration with respect to a stability condition σ−, which lies sufficiently close
on the other side of the wall, then v(Ai) ∈ H [4, Prop 5.1]. Now, assume that E1
and E2 ∈Mσ(v) have the same Harder–Narasimhan factors with respect to σ−.
As one can always find a Jordan–Hölder filtration that is a refinement of the
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Harder-Narasimhan filtration, this implies that E1 and E2 are S-equivalent with
respect to σ− and therefore contracted under the transformation induced from
the wall-crossing. Consequently, in order to understand this transformation,
one has to parameterize possible Harder–Narasimhan filtrations whose factors
have Mukai vectors in H. Unfortunately, it may also happen that the open
subset M st

σ0
(v) ⊂ Mσ0(v) of stable objects is empty. In this case, the behavior

at the wall is harder to control and we call W a totally semistable wall. By [4,
Thm 5.7], W is totally semistable if and only if

(a’) there is w ∈ H such that w2 = 0 and (v, w) = 1 or

(b’) there is s ∈ H such that s2 = −2,Mσ0(s) 6= ∅ and (s, v) < 0.

The content of Bayer and Macr̀ı’s article [4] is a detailed study of the pos-
sible lattices and the associated modifications of the moduli space, which in
particular, yields the above lists.
For our computations, we fix the following notation: We set

v = (0, 2,−1) and v′ = (1, 0,−4).

The respective Mukai morphisms fit in the commutative diagram

H∗
alg(S,Z)

T∗∼=
��

v⊥

∼=
��

? _oo
λM // NS(M)

T∗∼=
��

H∗
alg(S,Z) v′⊥? _oo

λ
S[5]

// NS(S[5]),

where, by abuse of notation, we also write T ∗ : H∗
alg(S,Z) → H∗

alg(S,Z) for
the isomorphism that makes the left square commute. It is defined as the
composition

H∗
alg(S,Z)

· ch(OS(−2))−−−−−−−−→ H∗
alg(S,Z)

ρv(OS (−2))−−−−−−−→ H∗
alg(S,Z),

where ρv(OS(−2)) is the reflection at the hyperplane orthogonal to the Mukai
vector v(OS(−2)) = (1,−2, 5). In our usual basis, T ∗ is given by the matrix





−4 −4 −1
10 9 2
−25 −20 −4



 ◦





1 0 0
−2 1 0
4 −4 1



 =





0 0 −1
0 1 2
−1 −4 −4



 . (5.1)

We have the following basis of NS(S[5])

δ := λS[5](−1, 0,−4) and H := λS[5](0,−1, 0).

For the Hilbert scheme S[n], computing the walls in Pos(S[n]) reduces to solving
Pell’s equation, cf. [4, Prop. 13.1] and also [10, Lem 2.5]. In our case, we get
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the following list of walls with respective intersection properties:

ia′i ∈ H∗
alg(S,Z)(a

′
i, a

′
i)(a

′
i, v

′)Di ∈ H2(S[5],Z)(Di, Di)Ri ∈ H2(S
[5],Z)(Ri, Ri)

0 (0, 0,−1) 0 1 −δ −8 −δ∨ − 1
8

1 (1,−1, 2) −2 2 4H − 3δ −40 H − 6δ∨ − 5
2

2 (1,−1, 1) 0 3 8H − 5δ −72 H − 5δ∨ − 9
8

3 (−1, 2,−5) −2 1 −16H + 9δ −136 −2H + 9δ∨ − 17
8

4 (2,−3, 5) −2 3 24H − 13δ −200 3H − 13δ∨ − 25
8

5 (−1, 2,−4) 0 0 −2H + δ 0 −H + 4δ∨ 0.

Here, ±Di ∈ NS(S[5]) is the integral class defining the same wall as a′i, i.e.

D⊥
i = λS[5](a′

⊥
i ∩ v′⊥)

or, in other words, Di is a rational multiple of the orthogonal projection of a′i
to (v′⊥)Q. The sign here is chosen such that this multiple is positive, but it
does not matter. In [25], the classes ±Di are called wall divisors. Moreover,
let Ri ∈ H2(S

[5],Z) be the curve class corresponding to Di ∈ H2(S[5],Z),
i.e. Di is the smallest positive multiple of Ri contained in H2(S[5],Z) under
the embedding H2(S[5],Z) ⊂ H2(S

[5],Z) coming from the intersection form.
Below, we also give the list of walls in coordinates of M .

Corollary 5.1. For a K3 surface S with Pic(S) = Z ·H and H2 = 2, there
are five smooth birational models of S[5] (including S[5] itself).

5.2 Geometrical characterization of the walls in Mov(M)

So far, we know that the movable cone ofM or S[5], respectively, is divided into
five chambers. The outer ones correspond to M , with the Lagrangian fibration
and to S[5] with the Hilbert–Chow morphism. Next, we want to understand
exceptional loci (and their strict transforms in M and S[5], respectively) of the
birational transformations between two models in adjacent chambers.

The geometry of the occuring contractions is studied in-depth in [4, §9], to
which we refer for the precise results. As mentioned above, the rough idea
is to parameterize objects with prescribed Harder-Narasimhan filtration with
respect to a stability condition on the other side of the wall. This translates
into finding decompositions v = a1 + . . . + am into effective classes ai ∈ H,
where H ⊂ H∗

alg(S,Z) is the sublattice such that λMσ(v)(H⊥) cuts out the wall
of the ample cone. Here, a class a ∈ H is called effective if Mσ0(a) 6= ∅ [4,
Prop 5.5], and a class a ∈ H∗

alg(S,Z) is called positive, if a2 ≥ 0 and (a, v) > 0.
All positive classes are effective.

Let H define a flopping wall for Mσ(v). By [4, Prop 9.1] there are two cases:
Either
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(i) there is a decomposition v = a+b into two positive classes and H = 〈v, a〉.
Or

(ii) there is a spherical class s ∈ H such that 0 < (s, v) ≤ v2

2 .

In case (i), assume moreover that the wall is not totally semistable with respect
to a or b (e.g. if H does not contain any spherical or isotropic classes), and that
φσ(a) < φσ(b), where φσ is the phase of the stability condition σ. By [4, §9], the
decomposition v = a+ b defines an irreducible component E of the exceptional
locus of the contraction morphism associated to the wall defined by H, such
that a generic point E ∈ E is an extension

A → E → B [1]−→,

where A and B are σ-stable objects of Mukai vector a and b, respectively. By
assumption on the wall, A and B are generically also σ0-stable, where σ0 is
a generic stability condition on the wall. And by definition of H, we have
φσ0 (a) = φσ0 (b). Hence, Hom(B,A) = 0 = Hom(A,B). Finally, E defines a
class in P(Ext1Db(S)(B,A)) and we find

r := dimP(Ext1Db(S)(B,A)) = (v − a, a)− 1.

Thus, E has generically the structure of a Pr-bundle over Mσ(a)×Mσ(b). By
assumption, Mσ(a) and Mσ(b) are both non-empty and

codimE = (v, v) + 2− dimMσ(a)− dimMσ(b)− dimP
1(Ext1Db(S)(B,A))

= (v, v) + 2− ((a, a) + 2)− ((v − a, v − a) + 2)− ((v − a, a)− 1)

= (v − a, a)− 1 = r.

It may happen that case (ii) is a special case of (i). Otherwise H = 〈v, s〉 and
the above results also hold for the decomposition v = s+(v− s) if s is effective
and need extra care, if s is not effective [4, Proof of Prop 9.1].

The relevant data for our example is listed in the following table:

i a′i ∈ H∗
alg(S,Z) ai ∈ H∗

alg(S,Z) (ai, ai) (ai, v) ri
0 (0, 0,−1) (1, 0, 0) 0 1
1 (1,−1, 2) (−2, 1,−1) −2 2 3
2 (1,−1, 1) (−1, 1,−1) 0 3 2
3 (−1, 2,−5) (1, 0, 1) −2 1 2
4 (2,−3, 5) (−1, 1,−2) −2 3 4
5 (−1, 2,−4) (0, 0, 1) 0 0.

Here, T ∗ai = a′i (cf. (5.1)), so that

λM (a⊥i ∩ v⊥) = λS[5](a′i
⊥ ∩ v′⊥)
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cuts out the walls in Pos(M) ∼= Pos(S[5]).
When following the birational transformations from S[5] to M , not all ex-
ceptional loci can naively be identified in S[5] as their codimension ri =
(v − ai, ai) − 1 is not strictly decreasing. However, if we approach from ei-
ther side, we get a beautiful description.

Theorem 5.2. The birational models of S[5] are connected by the following
chain of flopping contractions

BlW2 S
[5]

  
❆❆

❆❆
❆

}}④④
④④

BlW̃3
X1

��
❅❅

❅❅

��⑦⑦
⑦⑦

BlZ̃3
X3

��
❄❄

❄❄

��⑧⑧
⑧⑧

BlZ1 M

��
❃❃

❃❃

����
��

S[5] g1
//❴❴❴❴❴ X1

g2
//❴❴❴❴❴ X2 X3

g3
oo❴ ❴ ❴ ❴ ❴ M.

g4
oo❴ ❴ ❴ ❴

Here, W̃3 (resp. Z̃3) is the strict transform of W3 (resp. Z3) under g1 (resp. g4).

Remark 5.3. In the primitive case, the birational transformation

S[g]
99KMH(0, 1, 1), where H2 = 2g − 2

can be resolved in one step as follows (e.g. [1, §3])

Hilbg(C/|H |)

yyss
ss
ss
ss
ss

''P
PPP

PPP
PPP

PP
(ξ,D)❁

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤ ✠

$$■
■■

■■
■■

■■

S[g] //❴❴❴❴❴❴❴❴❴❴❴❴ MH(0, 1, 1), ξ OD(ξ),

where
Hilbg(C/|H |) = {(ξ,D) | ξ ⊂ D} ⊂ S[g] × |H |.

If g = 2, the birational map S[2]
99K MH(0, 1, 1) is the original example of a

Mukai flop [26, Expl 0.6].
More generally, the geometry of the birational map S[g]

99KMH(0, 1, 1), where
H2 = 2g − 2 is studied in [24].

Proof of Theorem 5.2. We verify wall by wall that the contracted locus is as
claimed in the Proposition. This means first of all, that we have to find de-
compositions v = a + b inside Hi = 〈v, ai〉 for i = 1, . . . , 4 corresponding to
a flopping contraction. We assume that (a, v) ≤ (b, v) and set a = xai + yv.
Then solving for a positive decomposition, reduces to solve

{

a2ix
2 + 2(ai, v)xy + 8y2 ≥ 0
0 < (ai, v)x+ 8y ≤ 4

for integer solutions (x, y) and similar for decompositions, where a is a spher-
ical class. Due to the small dimension of our example, we find by explicit
computation that at every wall v = ai + (v − ai) is the only suitable decom-
position. We also compute that none of the walls is totally semistable with
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respect to v. Moreover, for all i = 1, . . . , 4, the parallelogram inside Hi ⊗ R

with vertices 0, ai, v − ai, v does not contain any other lattice points and so
the decomposition does not admit a refinement. This is reflected by the fact
that the exceptional locus in each step is irreducible and actually a projective
bundle.

We attack the first two walls starting from S[5]. These two wall crossings can
be realized by the following path in the stability manifold

σ′
t := σtH,−2H = (ZtH,−2H ,Coh

−2(S)), t ∈ (1,+∞).

For the definitions we refer to [8, Prop 7.1] or the summary in [3, §6]. Note
that σ′

t is acutally a stability condition by [3, Expl 9.7]. Explicitly, the walls
arise when ZtH,−2H(v) and ZtH,−2H(ai) are R-linearly dependent. For i = 1, 2
we find

+∞ > t1 := 2 > t2 :=
√
2 > 1

such that

Mσ′
t
(v′) ∼=







S[5] for t > t1
X1 for t1 > t > t2
X2 for t2 > t > 1.

At the first wall, we have the sublattice H1 = 〈a′1, v′〉 ∼= (Z2,
(−2 2

2 8

)

). This
lattice admits no decomposition of v′ into positive classes. But we have

v′ = a′1 + b′1 with a′1 = (1,−1, 2) = v(OS(−1)) and b′1 = (0, 1,−6)

and a′1 is the only spherical class s with 0 < (s, v) ≤ 4 in H1. Hence an ideal
sheaf Iξ ∈ S[5] is in the exceptional locus of g1 : S

[5]
99K X1 if and only if it fits

into a short exact sequence

0 → OS(−1) → Iξ → Q → 0

with Q ∈ MH(0, 1,−6). By Proposition 4.4, this is equivalent to ξ ∈ W2.
Hence g1 is the flop at the projective bundle W2 (see also [3, Expl 10.2]).
The second wall corresponds to the lattice H2 = 〈a′2, v′〉 ∼= (Z2, ( 0 3

3 8 )), which
contains no suitable spherical classes and admits exactly one decomposition
into positive classes. Namely,

v′ = a′2 + b′2 with a′2 = (1,−1, 1) and b′2 = (0, 1,−5).

Choose t2 < r < t1 such that X1 =Mσ′
r
(v′). Let ξ ∈ S[5] \W2. Then Iξ is not

destabilized at the first wall and hence Iξ ∈ X1. Now, Iξ is in the exceptional
locus of g2 : X1 99K X2 if and only if there is an exact triangle

A → Iξ → B [1]−→,

where A ∈ Mσ′
r
(a′2) and B ∈ Mσ′

r
(b′2) are stable objects. We claim that

Mσ′
r
(a′2) is isomorphic to the original K3 surface S, via S ∋ x 7→ Ix(−1),
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where Ix ⊂ OS is the ideal sheaf of the point x ∈ S. Indeed, Ix(−1) ∈
Coh−2(S) for all x ∈ S. Moreover, Mσ′

r
(b′2) ∼= MH(0, 1,−5), as there is only

one wall for b′2, which is defined by v(OS(−2)) = (1,−2, 5) and not hit by our
path (cf. Remark 5.3). Consequently, Iξ is contracted if and only if there is
x ∈ S,Q ∈MH(0, 1,−5) and an extension

0 → Ix(−1) → Iξ → Q → 0.

In other words, ξ ∈ W3, see Proposition 4.4.
The remaining walls, we detect starting from M along the path σt := σtH,0 for
t ∈ (1,+∞). Then

Mσt
(v) ∼=

{

M for t >
√
6
2

X3 for
√
6
2 > t > 1,

i.e. this path only hits the first wall for t =
√
6
2 but it serves our purpose, in the

sense that it provides us with a classical moduli description of the exceptional
loci.
The contraction g4 : M 99K X3 arises from the decomposition

v = a4 + b4 with a4 = (−1, 1,−2) = −v(OS(−1)) and b4 = (1, 1, 1),

which is the only suitable decomposition in H4 = 〈a4, v〉 ∼= (Z2,
(−2 3

3 8

)

).

Let t >
√
6
2 . We note that Mσt

(a4) consists of the single point OS(−1)[1]
and S ∼= Mσt

(b4) via the assignment x 7→ Ix(1). Moreover, φt(a4) > φt(b4).
Hence the exceptional locus of g4 consists of those sheaves E ∈M that arise as
quotients

0 → OS(−1) → Ix(1) → E → 0

for some x ∈ S. This is the projective bundle Z1, as defined in Proposition 4.7.
Finally, there is the wall defined by H3 = 〈a3, v〉 ∼= (Z2,

(−2 1
1 8

)

), which only
admits the decomposition

v = a3 + b3 with a3 = (1, 0, 1) and b3 = (−1, 2,−2).

Let E ∈ M \ Z1. Then E is not destabilized at the first wall and thus E ∈ X3.
Now, E is in the exceptional locus of g3 : X3 99K X2 if and only if there is an
exact triangle

A → E → B [1]−→,

where A ∈ Mσt
(a3) and B ∈ Mσt

(b3) are stable objects for 1 < t <
√
6
2 . The

space Mσt
(a3) consists of the point OS and S[3] ∼=Mσt

(b3), via the assignment
Iξ 7→ RHom(Iξ,OS)(−2)[1]. Indeed, there are no walls for S[3] [7, Prop 5.6]
and RHom(Iξ,OS)(−2)[1] ∈ Coh0(S). Consequently, E is contracted if and
only if there is ξ ∈ S[3] and an exact triangle

OS → E → RHom(Iξ,OS)(−2)[1]
[1]−→
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or equivalently an exact sequence

0 → OS(−2) → Iξ → Ext1(E(2),OS) → 0.

Here, Ext1(E(2),OS) ∈ MH(0, 2,−7). By the proof of Proposition 4.7 we
conclude that the exceptional locus of g3 is Z̃3.

Corollary 5.4. We have that Z3 \ Z1 is isomorphic to a P
2-bundle over an

open subset of S[3]. Moreover,

Z3 ∩ BN1(M) = Z1.

Proof. The proof of Theorem 5.2 implies that ϕ3 : X3 99K MH(0, 2,−7) ∼= M
from Proposition 4.7 identifies the open subset of X3, where ϕ3 is defined and
injective with Z3 \Z1. Let D ∈ |2H | be a smooth curve and L ∈ Pic3(D) such
that h0(L) ≥ 2. Then ϕ3 is defined but not injective in L∨. Consequently, we
must have L ∈ Z1.

We can also determine (g3)
−1 : X2 99K X3.

Proposition 5.5. We have

BlP̃3
X2

∼= BlZ̃3
X3,

i.e. P̃3 ⊂ X2 is the dual projective bundle of Z̃3 ⊂ X3.

Proof. We let t1 > r > 1 and X2 = Mσ′
r
(v′). We want to see that P̃3 is the

projective bundle parameterizing extensions of the form

A → I → B [1]−→,

where A ∈Mσ′
r
(2,−2, 1) and B ∈Mσ′

r
(−1, 2,−5). Necessarily, B = OS(−2)[1]

and
S[3] ∼=Mσ′

r
(2,−2, 1), Iξ 7→ Iξ(−1)⊕OS(−1).

Again, as S[3] has no birational models and it suffices to verify that the sheaf
E := (Iξ(−1)⊕OS(−1)) ∈ Coh−2(S). By the definition of Coh−2(S), this is the
case if every proper subbundle has negative slope with respect to µ−2. Assume
that F ⊂ E is a subbundle. Then either rkF = 2 and c1(F) = c1(E) = −2H .
Or rkF = 1 and F embeds into Iξ(−1) or into OS(−1), which implies the

inequality c1(F).H ≤ −2. In both cases, we have µ−2(F) = H.c1(F)
rkF + 2 ≤ 0

and hence E ∈ Coh−2(S).
Let Iξ be the ideal sheaf of a generic point in P3 ⊂ S[5]. Then ξ = ζ ∪ ξ′ for a
subscheme ζ ∈ S[2] such that Supp(ζ) = {x, ι(x)} and ξ′ ∈ S[3] is disjoint from
ζ (cf. Example 4.2). The assumption on ζ is equivalent to Iζ(1) being globally
generated with h0(Iζ(1)) = 2. This gives a short exact sequence

0 → OS(−2) → OS(−1)⊕2 → Iζ → 0. (5.2)
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Therefore, Iξ = Iζ · Iξ′ fits into a diagram

0 // Iξ′(−2)

��

// Iξ′(−1)⊕2

��

// Iξ // 0

0 // OS(−2) // OS(−1)⊕ Iξ′(−1) // Iξ // 0.

Here, the first line is (5.2) tensored with Iξ′ and the second line is the pushout
along the left vertical arrow. This finishes the proof.

Interestingly, the dual projective bundle of W̃3 ⊂ X1 does not yield a compo-
nent of the Brill–Noether locus in M .

Proposition 5.6. Let W̃∨
3 ⊂ X2 be the exceptional locus of (g2)

−1 : X2 99K X1

and B3 ⊂M its strict transform then

B3 ⊂MΣ.

More precicesly, let D = D1 ∪D2 ∈ Σ \∆. Then

B3 ∩ f−1(D1 ∪D2) = {E ∈ f−1(D1 ∪D2) | h0(E|Di
) 6= 0 for both i = 1, 2}.

In particular, B3 is not contained in BN0(M) and T−1 is generically defined
in B3.

Remark 5.7. Another formulation of the last line in Proposition 5.6 is that
W̃∨

3 is ‘unflopped’ when going from X2 to M .

Proof. As above, we let X2 = Mσ′
r
(v′) with t2 > r > 1. We know that W̃∨

3

parameterizes extensions

A → F → B [1]−→,

where A ∈ Mσ′
r
(1, 0,−5) and B ∈ Mσ′

r
(1,−1, 1). If F ∈ W̃∨

3 is a generic
point, then we saw in the proof of Theorem 5.2, that we can take A = Q ∈
MH(0, 1,−5) and B = Ix(−1) for a point x ∈ S. This gives

Q → F → Ix(−1)
[1]−→ .

To find the strict transform in M , we apply the spherical twist T = TOS(−2)

and tensor with OS(2). We find an exact triangle in Db(S)

T (Q) → T (F) → T (Ix(−1))
[1]−→, (5.3)

where T (Q) is concentrated in degree zero and fits into the sequence

0 → Q → T (Q) → OS(−2) → 0. (5.4)
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Moreover, we compute that

OS(−2)⊕2 → Ix(−1) → T (Ix(−1))
[1]−→

and thus H−1(T (Ix(−1))) = OS(−3) and H0(T (Ix(−1))) = Oι(x). Then the
long exact cohomology sequence of (5.3) reads

0 → H−1(T (F)) → OS(−3) → T (Q) → H0(T (F)) → Oι(x) → 0. (5.5)

Generically, T (F) is a Gieseker stable sheaf and in this case T (F)(2) is a generic
point in B3. Combining (5.4) and (5.5), we see that if T (F) is a sheaf, then
Supp(T (F)) = D1∪D2, where D1 = Supp(Q) and D2 ∈ |H | such that x ∈ D2.
Hence B3 ⊂MΣ.
Now, if we assume that x /∈ D1, then E := T (F)(2) is an extension

0 → Q⊗OS(2)|D1 → E → OD2(ι(x)) → 0. (5.6)

As T or
OD1∪D2
1 (OD1 ,OD2(ι(x))) = 0, this implies E|D1 ∈ Pic2(D1), which is

trivially effective. Moreover, restricting (5.6) to D2 gives

0 → T or
OD1∪D2

1 (OD2 ,OD2(ι(x)))
∼−→ OD1∩D2

0−→ E|D2

∼−→ OD2(ι(x)) → 0.

In particular, E|D2 is an effective line bundle of degree one. Conversely,

dim{E ∈ f−1(D1 ∪D2) | h0(E|Di
) 6= 0 for both i = 1, 2} = 4.

Hence, by dimension reasons, for every D = D1 ∪D2 ∈ Σ \∆ the intersection
B3 ∩ f−1(D1 ∪D2) is as claimed.
It is left to show, that for a generic sheaf E ∈ B3, we have h0(E) = 0. To see

this, we can assume E ∈ Pic(1,2)(D1∪D2) and that h0(E|Di
) = 1 for i = 1, 2. If

h0(E) 6= 0, necessarily h0(E) = 1 and the restriction to each component induces
an isomorphism on global sections. However, this determines E completely.
Indeed, we have E|D1 = OD1(x) and E|D2 = OD2(y+ z), for unique points x, y
and z. Then any non-zero section OD1∪D2 → E is necessarily injective with
cokernel supported on ξ = {x, y, z}. In other words, E has a section if and only
if E∨ = ker(OD → Oξ). Finally, we saw in Proposition 3.1, that T−1 is defined
for all E ∈MΣ\∆ such that h0(E) = 0.
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