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Quasi-classical ground states. I. Linearly coupled
Pauli–Fierz Hamiltonians

Sébastien Breteaux, Jérémy Faupin, and Jimmy Payet

Abstract. We consider a spinless, non-relativistic particle bound by an external potential and lin-
early coupled to a quantized radiation field. The energy E.u; f / of product states of the form
u ˝ ‰f , where u is a normalized state for the particle and ‰f is a coherent state in Fock space
for the field, gives the energy of a Klein–Gordon–Schrödinger system. We minimize the functional
E.u; f / on its natural energy space. We prove the existence and uniqueness of a ground state under
general conditions on the coupling function. In particular, neither an ultraviolet cutoff nor an infrared
cutoff is imposed. Our results establish the convergence in the ultraviolet limit of both the ground
state and ground state energy of the Klein–Gordon–Schrödinger energy functional, and provide the
second-order asymptotic expansion of the ground state energy at small coupling.

1. Introduction

We consider in this paper a non-relativistic, spinless quantum particle – say, an electron
– in an external potential and coupled to a quantized, scalar radiation field. The Hilbert
space for the total system is given by

H WD Hel ˝Hf;

where Hel D L2.R3/ is the Hilbert space for the electron and Hf is the Hilbert space
for the field, given as the symmetric Fock space over the one-particle Hilbert space h D

L2.R3/. The full Hamiltonian is a self-adjoint operator acting on H , of the form

H WD HV ˝ If C Iel ˝Hf CHint;

where HV D ��C V is the Hamiltonian for the non-relativistic particle in the external
potential V , Hf is the Hamiltonian for the free field, I] stands for the identity on H] and
Hint is the interaction Hamiltonian, acting on H . Such operators are usually called Pauli–
Fierz Hamiltonians [55] in the literature. Their spectral theory has been thoroughly studied
since the end of the nineties (see e.g. [58, 59] and references therein). In particular, con-
cerning the existence of a ground state – namely the proof that the bottom of the spectrum
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of H is an eigenvalue – we refer, among others, to [21] for massive Pauli–Fierz Hamil-
tonians (i.e. Pauli–Fierz Hamiltonians with a massive field dispersion relation), [7, 8] for
massless Pauli–Fierz Hamiltonians at small coupling and [29, 35] in the massless case
without any restriction on the coupling strength. Expansions of the ground state energy
of H for small coupling constants have also been obtained in [7, 8, 34, 39] using “spec-
tral renormalization”, [10, 38] by an iterative variational procedure and [6] by iterative
multiscale analysis.

We focus in this paper on the case of an electron linearly coupled to a scalar field. We
consider an abstract class of linearly coupled Pauli–Fierz Hamiltonian that includes the
Nelson model [53] and the Fröhlich polaron model [27]. For the Nelson model, in order
for H to identify a semi-bounded self-adjoint operator on H , an ultraviolet cutoff must be
imposed to the interaction Hamiltonian. The polaron model defines a self-adjoint operator
even without an ultraviolet cutoff [36,47]. The precise definition of the model we consider
will be given in Section 1.1.

We aim at studying the energy of product states

E.u; f / WD
˝
.u˝‰f /;H.u˝‰f /

˛
; kukHel D 1; k‰f kHf D 1; (1.1)

assuming that the state of the quantized field, ‰f , is a coherent state parametrized by
f 2 h. The functional E.u; f / is sometimes called quasi-classical energy. Assuming
indeed that the field degrees of freedom are “almost classical”, in the sense that the
creation and annihilation operator a�, a in Hf are rescaled as a�" D

p
"a�, a" D

p
"a,

see [4], one shows, under suitable assumptions, that the ground state energy of the rescaled
Pauli–Fierz Hamiltonian H" converges, as "! 0, to the ground state energy of the quasi-
classical energy functional (1.1), [16–18,31]. In the case of the translation invariant Fröh-
lich polaron model (no external potential), a proper rescaling shows that the quasi-classical
limit corresponds to the strong coupling limit of the original Hamiltonian H, see e.g. [57].

As we recall below, the quasi-classical energy (1.1) coincides with the energy of a
coupled Klein–Gordon–Schrödinger system. The variational and dynamical aspects of
Klein–Gordon–Schrödinger systems in the quasi-classical limit have been studied in the
recent mathematical literature (see [1–3, 16–18, 25]), as quasi-classical limits of Pauli–
Fierz models. The strong coupling limit of the polaron model has also been studied in
several contexts, especially in the case of translation invariant systems allowing one to
study the effective mass of polarons, see [23,47] for seminal results and [12,24,46,52,57]
for more recent references; see also [45] for another definition of the effective mass of the
polaron in a slowly varying external potential and [26] for a polaron confined to a finite
volume. In all these references, the existence of a ground state associated to the non-linear
energy functional defined as in (1.1) constitute an essential ingredient of the analysis.

Our main concern in this paper is to prove the existence and study the properties of
ground states of the quasi-classical Klein–Gordon–Schrödinger energy functional E.u;f /,
on its natural energy space and under general conditions on the external potential and the
interaction term. We will recall that minimizing E.u; f / reduces to minimizing a Hartree
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(or Choquard–Pekar) energy functional. Existence, uniqueness and properties of ground
states for these functionals have been studied by many authors. We refer to the seminal
works [43] for the translation invariant model with a convolution potential given by the
Coulomb potential, and [48, 49] in a more general setting, applying the concentration
compactness method. See also [51] for a more recent extensive survey of the vast literature
concerning Choquard type equations.

Our first main result in this paper provides the existence of a ground state for the quasi-
classical energy functional E.u; f /. We consider a wide class of external potentials and
do not need to impose neither an infrared nor an ultraviolet cutoff into the interaction
term of E.u; f /.

Next, for small coupling, we verify that the ground state of E.u; f / is unique. In
general, the field parameter fgs of the ground state .ugs;fgs/ does not necessarily belong to
the original one-particle Hilbert space h. For massless fields, we will see that fgs belongs
to h if and only if an infrared regularization is imposed. On the other hand, no ultraviolet
cutoff is needed: Denoting by ƒ the ultraviolet parameter associated to the ultraviolet
cutoff introduced into the interaction Hamiltonian, our results show that both the ground
states and ground state energies associated to (1.1) converge as ƒ!1.

We also study the difference between the ground state energy for the microscopic
model and its quasi-classical counterpart,

inf �.H/ � inf
.u;f /

E.u; f /; (1.2)

where �.H/ stands for the spectrum of the Pauli–Fierz Hamiltonian H. The expansion up
to second order in the coupling constant of this expression reveals that the ground state
energy inf�.H/ can be divided into two terms: a “coherent term”, given by inf.u;f /E.u;f /,
and a second term due to the contribution from the excited states of the electronic Hamil-
tonian.

As in previously cited references, our argument to prove the existence of a ground state
relies on usual strategies from the calculus of variations. The main novelty comes from
the possible absence of infrared and ultraviolet cutoffs in the interaction. This produces
singular terms with a critical behavior in the energy functional that we handle using, in
particular, suitable estimates in Lorentz spaces. The use of weak versions of Hölder and
Young’s inequalities in Lorentz spaces seems to be new in the present context. It consti-
tutes one of the main technical tools in our argument.

The ultraviolet convergence of the ground state and the asymptotic expansion of (1.2)
at small coupling also seem to be new. In order to establish them (as well as the uniqueness
of the ground state), we project a non-linear eigenvalue equation associated to the min-
imization problem onto the vector space associated to the ground state of the electronic
Hamiltonian and its orthogonal complement.

In a companion paper [15], we will study the Pauli–Fierz Hamiltonian of a non-
relativistic particle with spin 1

2
coupled to the quantized radiation field in the standard

model of non-relativistic QED. In this case, the quasi-classical energy coincides with the
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energy of a coupled Maxwell–Pauli system. For the standard model of non-relativistic
QED with a spinless electron in the translation invariant case, we mention the works [9,44]
about the Lieb–Loss model, related to ours, where the infimum of the energy functional

E.u;‰/ WD
˝
.u˝‰/;H.u˝‰/

˛
; kukHel D 1; k‰kHf D 1;

is considered. Here the expectation is taken over general product states, i.e. the field is
not supposed to be in a coherent state as in our case. It is then proven that inf E.u; ‰/

diverges as ƒ12=7 in the ultraviolet limit, where ƒ stands for the ultraviolet parameter.
On the contrary, our results show that, if the field is restricted to coherent states, then the
ground state energy converges in the ultraviolet limitƒ!1, a ground state exists for all
0 � ƒ � 1 and an asymptotic expansion of the ground state energy at second order in
the coupling constant can be computed uniformly in ƒ. Our results hold both for linearly
coupling models (this is the content of the present paper) and for the standard model of
non-relativistic QED (up to a trivial renormalization in ƒ, see the companion paper [15]).

In the remainder of this section, we begin by introducing in Section 1.1 the abstract
class of Hamiltonians we consider and our main hypotheses. Next, in Section 1.2, we state
our main results.

Notations. We recall that for 1�p<1, the Lorentz spaces (or weakLp spaces)Lp;1.R3/
are defined as the set of (equivalence classes of) measurable functions f W R3 ! C such
that

kf kLp;1 WD sup
t>0

�
�®
jf j > t

¯� 1
p t (1.3)

is finite, where � denotes Lebesgue’s measure.
The usual Fourier transform acting on tempered distribution is denoted by F with

inverse .2�/�3 xF . (We use the normalization F .f /.x/ D
R

R3 e
�ix��f .�/ d� for f in

L1.R3/, and hence xF .f /.x/ D
R

R3 e
ix��f .�/ d�. This normalization is not the standard

one but it is convenient in our context.) Throughout the paper, we use the following con-
vention. Let f; g be functions associated to tempered distributions. Assume that F .g/

identifies with a function such that f F .g/ can be associated to a tempered distribution.
We write

F .f / � g WD .2�/�3F
�
f xF .g/

�
: (1.4)

This convention extends the well-known equality which holds e.g. if f and g are in L1 or
f is in L2 and g in L1.

In several places, we will use localization functions in C10 .R
3/ denoted by � and such

that 0 � � � 1, �.x/ D 1 if jxj � 1 and �.x/ D 0 if jxj � 2. We define the non-negative
function z� by

�2 C z�2 D 1;

and for all R > 0, we set

�R.x/ WD �.x=R/ and z�R.x/ WD z�.x=R/: (1.5)
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If H1, H2 are two Hilbert spaces, L.H1;H2/ stands for the set of bounded linear
operators from H1 to H2. Given a linear operator A on a Hilbert space H , we denote by
D.A/ its domain and Q.A/ its form domain.

1.1. Model and assumptions

Before defining the abstract class of linearly coupled Pauli–Fierz Hamiltonians we con-
sider, we introduce our conditions on the electronic Hamiltonian HV .

1.1.1. The electronic Hamiltonian. We suppose that the non-relativistic particle is spin-
less and bound by an external potential. The Hilbert space and Hamiltonian for the particle
are given by

Hel WD L
2.R3/; HV D ��C V.x/;

where V W R3 ! R is a real potential. We display the dependence on V since one of
our main hypotheses (see Hypothesis 1) assumes the existence of a decomposition V D
V1 C V2 such that V1 � 0, V2 vanishes at1 and there is a gap between the ground state
energies of HV and HV1 .

The main examples we have in mind are confining potentials, V.x/!1 as jxj !1,
and Coulomb-type potentials, V.x/D�cjxj�1 with c > 0. We introduce general hypothe-
ses on V that are fulfilled by a large class of potentials, including the two preceding
examples. As we will see below, some of our main results have interesting consequences
in special cases, especially when V is confining.

We set
�V WD inf �.HV /;

and likewise if V is replaced by another potential. For U W R3 ! R, we denote by

UC WD max.U; 0/; U� WD max.�U; 0/;

the positive and negative parts of U , respectively, so that U D UC � U�.
We make the following hypothesis.

Hypothesis 1 (Conditions on V ). There exist 0 � a < 1 and b in R such that the negative
part of V satisfies

V� � �a�C b;

in the sense of quadratic forms on H 1.R3/. Moreover, V decomposes as V D V1 C V2
with

(i) V1 2 L
1
loc.R

3IRC/,

(ii) V2 2 L
3=2
loc .R

3IR/ and limjxj!1 V2.x/ D 0,

(iii) �V < �V1 .

We have the following accompanying remarks (we refer to Section 2.1 for justifica-
tions). Since VC � 0,HVC D��CVC identifies with a non-negative self-adjoint operator



S. Breteaux, J. Faupin, and J. Payet 1196

on L2.R3/ with form domain

Q.HVC/ D Q.��/ \Q.VC/ D

²
u 2 H 1.R3/

ˇ̌̌ Z
R3

VC.x/
ˇ̌
u.x/

ˇ̌2 dx < C1
³
:

Moreover, it follows from our hypotheses that HV identifies with a semi-bounded self-
adjoint operator with form domain

QV WD Q.HV / D Q.HVC/ D Q.HV1/;

and that QV is a Hilbert space for the norm

kuk2QV
WD kuk2

H1 C
.VC/ 12u2L2 : (1.6)

In particular, �V and �V1 are well-defined. We will most of the time consider a state u in

U WD
®
u 2 QV j kukL2 D 1

¯
:

In order to obtain uniqueness of minimizers, we require that the Schrödinger Hamil-
tonian HV has a unique ground state. By Perron–Frobenius arguments, it is well-known
that, under suitable conditions on V , if �V is an eigenvalue of HV then it is simple and
there exists a corresponding strictly positive eigenstate (see e.g. [56, Theorems XIII.46
and XIII.48]). We make the following related hypothesis.

Hypothesis 2 (Ground state of HV ). The ground state energy �V of the particle Hamil-
tonianHV is a simple isolated eigenvalue associated to a unique positive ground state uV
in L2.R3IRC/, such that kuV kL2 D 1.

The orthogonal projection onto the vector space spanned by uV is denoted by…V . We
also set …?V WD I �…V .

1.1.2. Linearly coupled Pauli–Fierz Hamiltonians. We suppose that the radiation field
is a scalar, bosonic field with Hilbert space given by the symmetric Fock space

Hf WD Fs

�
L2.R3/

�
D

1M
nD0

n_
L2.R3/: (1.7)

In the momentum representation, the free field Hamiltonian is the second quantization of
the multiplication operator by !.k/,

Hf WD d�
�
!.k/

�
;

where ! W R3 ! RC is a non-negative measurable function. See Appendix A for the
precise definition of second quantized operators. The coupling between the electron and
the field is linear in the creation and annihilation operators, given by

Hint WD g
p
2ˆ.hx/;
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where g in R is a coupling constant,ˆ.h/, for h inL2.R3/, denotes the field operator (see
Appendix A for the definitions of the field, creation and annihilation operators), and

hx.k/ WD v.k/e
�ikx ;

for all x in R3, where v W R3 ! R is a coupling function.
This framework covers several models of interest:

• The Nelson model [53], with the relativistic dispersion relation !.k/ WD
p
k2 Cm2

corresponding to a field of massm� 0, and the coupling function v.k/D!.k/�
1
2�.k/

with v in L2.R3/. Here, in particular, � incorporates an ultraviolet cutoff. Moreover,
without infrared regularization, � D 1 near k D 0, while if an infrared regularization
is imposed, one assumes that �.0/ D 0.

• The Fröhlich polaron model [27], with !.k/ D 1 and v.k/ D jkj�1.

• The phonon Hamiltonian of solid state physic (see e.g. [40]), with a bounded disper-
sion relation ! W R3 ! R such that !.k/ � cjkj near k D 0 in the case of acoustic
phonons, or 0 < c1 � !.k/ � c2 in the case of optical phonons. Here c; c1; c2 are
positive constants. Moreover, v.k/ D jkj

1
2�.k/, with v in L2.R3/ and � D 1 near

k D 0.

Assuming that V satisfies Hypothesis 1 and thatZ
R3

v2

!
<1; (1.8)

it is not difficult to verify that, for all values of the coupling constant g, the total Hamilto-
nian

H D HV ˝ If C Iel ˝Hf C g
p
2ˆ.hx/; (1.9)

is a semi-bounded self-adjoint operator with form domain

Q.H/ D Q.Hfree/; Hfree WD HV ˝ If C Iel ˝Hf: (1.10)

See Appendix A for details. The domains of H and Hfree in fact also coincide in this case.
Note that the condition (1.8) is satisfied in the case of the Nelson model and the phonon
model, but not for the polaron model. In the latter case, one can still prove that H identifies
with a self-adjoint operator with form domain Q.H/ D Q.Hfree/, see [36].

1.1.3. Klein–Gordon–Schrödinger energy. For f in L2.R3/, the coherent state of pa-
rameter f is denoted by

‰f WD e
iˆ.

p
2
i f /� 2 Hf; (1.11)

where � stands for the Fock vacuum. Let u in U and let f in L2.R3/ be such that
!1=2f belongs to L2.R3/. A simple computation shows that the energy of the product
state u˝‰f is given by ˝

.u˝‰f /;H.u˝‰f /
˛
H
D E.u; f / (1.12)
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(see Appendix A) where

E.u; f / WD

Z
R3

ˇ̌
Eru.x/

ˇ̌2 dx C
Z

R3

V.x/
ˇ̌
u.x/

ˇ̌2 dx C
Z

R3

!.k/
ˇ̌
f .k/

ˇ̌2 dk

C 2gRe

Z
R6

eikxv.k/f .k/
ˇ̌
u.x/

ˇ̌2 dx dk: (1.13)

Hence we obtain the energy of a coupled Klein–Gordon–Schrödinger system, the coupling
being given by the last term in (1.13).

We aim at proving the existence and uniqueness of a minimizer for the energy func-
tional E , under suitable assumptions on ! and v. The natural energy space for E.u; f / is
U �Z! where

Z! WD
®
f W R3 ! C measurable j !1=2f 2 L2.R3; dk/

¯
:

We make the following hypothesis on v which, combined with Hypothesis 1, ensures
that E is well-defined on U � Z! (see Proposition 3.1 and Lemma B.1 below). Recall
also that v is real-valued and ! is supposed to be a non-negative measurable function.

Hypothesis 3 (Condition on v). The mapW WD g2!�1v2 decomposes asW DW1CW2
with

(i) W1 2 L
1.R3/,

(ii) W2 2 L
3;1.R3/.

It should be noted that this hypothesis covers all the examples previously mentioned
(the Nelson, polaron and phonons Hamiltonians). Indeed, Hypothesis 3 is satisfied if one
assumes that !�1v2 belongs to L1loc.R

3/ and thatˇ̌
!�1.k/v2.k/

ˇ̌
� C1jkj

�3C"1jkj�1 C C2jkj
�11jkj�1; " > 0;

for some positive constants C1, C2. This follows from the facts that jkj�3C"1jkj�1 is
inL1.R3/while jkj�11jkj�1 is inL3;1.R3/. We emphasize in particular that, for the Nel-
son model, no infrared regularization is required and the ultraviolet cutoff can be removed,
taking v.k/ D jkj�1=2 and !.k/ D

p
k2 Cm2, m � 0.

1.2. Main results

We are now ready to state our main results. For clarity we decompose the presentation
into a few subsections.

1.2.1. Infrared problem for Klein–Gordon–Schrödinger. We begin with a relatively
simple property, which we refer to as the “infrared problem”, keeping the usual terminol-
ogy from QED. Since, in general, Z! is not contained in L2.R3/, the field component fgs

of a minimizer .ugs; fgs/ of the Klein–Gordon–Schrödinger energy functional over U �

Z! may not belong to the original one-particle Hilbert space h D L2.R3/. This formally
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corresponds to the fact that the coherent state ‰fgs does not belong to Fock space. On the
other hand, if fgs belongs to L2.R3/, then, using in addition that ugs belongs to QV and
fgs to Z! , one easily verifies that ugs ˝ ‰fgs belongs to Q.H/, so that the Pauli–Fierz
energy (1.12) in the state ugs ˝‰fgs is well-defined.

The next proposition provides both a necessary and a sufficient condition ensuring
that fgs belongs to L2.R3/.

Proposition 1.1. Suppose that V satisfies Hypothesis 1 and W satisfies Hypothesis 3. If
.ugs; fgs/ is a minimizer of the Klein–Gordon–Schrödinger energy functional over U �

Z! , then

v

!
1jkj�1 C

v

jkj!
1jkj�1 2 L

2.R3/ H) fgs 2 L
2.R3/ H)

v

!
1jkj�1 2 L

2.R3/:

Considering the massless Nelson model where !.k/ D jkj and v.k/ D jkj�1=2�.k/,
the previous conditions reduce to

k 7! jkj�5=2�.k/1jkj�1 2 L
2.R3/;

k 7! jkj�3=2�.k/1jkj�1 2 L
2.R3/:

Thus, in order to have that fgs belongs to L2.R3/, it is necessary to impose an infrared
regularization, but no ultraviolet regularization is needed. Note that the presence of an
infrared regularization is also necessary to have the existence of a ground state for the
massless Nelson Hamiltonian [22, 30, 50], while it is well known that the Nelson Hamil-
tonian is renormalizable in the ultraviolet limit [53].

For the Fröhlich polaron model, we have ! D 1, hence Z! DL
2.R3/ and the previous

proposition is trivial.

1.2.2. Existence of a ground state. One of our main results is the following theorem
which provides the existence of a ground state for the Klein–Gordon–Schrödinger energy
functional under our general assumptions on V and W .

Theorem 1.2 (Existence of a ground state). Suppose that V satisfies Hypothesis 1 andW
satisfies Hypothesis 3. There exists CV > 0 such that, if the decompositions V D V1 C V2
and W D W1 CW2 as in Hypotheses 1 and 3, respectively, can be chosen such that

kW1kL1 C CV kW2kL3;1 � ı.�V1 � �V / (1.14)

and
CkW2kL3;1 �

1

2
.1 � a/; (1.15)

for some universal constants C; ı > 0 and where a is given by Hypothesis 1, then the
Klein–Gordon–Schrödinger energy functional (1.13) has a minimizer over U �Z! .

We have the following accompanying remarks concerning the smallness conditions
(1.14) and (1.15).
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Remark 1.3. The smallness condition (1.15) only concerns the term W2 in L3;1 of W ,
not the term W1 in L1. Moreover, in the case of a confining potential, V.x/ ! 1 as
jxj ! 1, the condition (1.14) is automatically satisfied provided one suitably chooses
the potential V1, see Lemma 2.2. This implies that if V is confining and W2 D 0, then
a minimizer exists for any g in R. In fact, for the special case of a confining potential,
one can prove the existence of a minimizer by simpler arguments than those we use in the
proof of Theorem 1.2, since in this case the relative compactness of minimizing sequences
can easily be deduced from the confining assumption.

Remark 1.4. Our assumptions cover the critical case xF .W /.x/D g2jxj�2 of the Hartree
equation (1.16) (taking W.k/ D cg2jkj�1 in L3;1.R3/), which has been studied e.g.
in [20, 37]. In particular, with xF .W /.x/ D g2jxj�2, it has been proven in [20, 37] that
the Hartree energy has no minimizer for g larger than some critical value g�. Hence the
smallness condition (1.15) in Theorem 1.2 cannot be removed.

The proof of Theorem 1.2 follows from observing that .u; f / is a minimizer for the
Klein–Gordon–Schrödinger energy functional (1.13) if and only if it is of the form .u;fu/

where the field parameter satisfies

fu D �g!
�1vF

�
juj2

�
and where u minimizes the Hartree energy

J.u/ D hu;HV uiL2x �

Z
R3

�
xF .W / � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx; u 2 U: (1.16)

Our strategy then rests on usual arguments from the calculus of variations [48, 49]. As
mentioned in the introduction, the existence of minimizers for the Hartree (or Choquard–
Pekar) energy has been studied by many authors in different contexts (see in particular [3,
5, 20, 28, 33, 37, 42, 43, 48, 49], see also [51] for a detailed survey of results). We are not
aware, however, of a result giving the existence of a minimizer under our general con-
ditions on V and W . The main difficulties come from the fact that we consider external
potentials with possibly both a confining and a negative part, the latter vanishing at infin-
ity, and, more importantly, that our assumptions on the convolution term in the Hartree
energy (1.16) concerns the Fourier transform of the usual pair potential, with possibly a
critical behavior corresponding to the term W2 in L3;1. Such critical terms are due to the
fact that we do not impose an ultraviolet cutoff into the interaction. To handle them, we
have to rely on suitable estimates in Lorentz spaces whose use, to our knowledge, seems to
be new in the context of minimizing the Hartree energy functional. For completeness, we
provide a complete proof of the existence of a minimizer for (1.16) under our conditions
in Appendix B.

We mention that the minimization problem for E.u; f / has been studied in the recent
paper [3], in the particular case of the massive Nelson model with V confining, the disper-
sion relation !.k/ D

p
k2 Cm2 and v.k/ D !.k/�1=2�.k/ with � a smooth compactly

supported function. Our results cover this particular case.
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1.2.3. Uniqueness of the ground state and expansion of the ground state energy at
small coupling. Our next concern is the question of the uniqueness of the ground state for
the Klein–Gordon–Schrödinger energy functional. To establish it, we need to strengthen
our assumptions, assuming that the electronic Hamiltonian HV has a unique ground state
as stated in Hypothesis 2 and that the coupling is sufficiently small. Of course, uniqueness
of a minimizer for E.u; f / only holds up to a phase, since E.u; f / D E.ei�u; f / for any
� in R.

Theorem 1.5 (Uniqueness of the ground state). Suppose that V satisfies Hypotheses 1
and 2 and that W satisfies Hypothesis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then the Klein–Gordon–Schrödinger energy functional (1.13) has a unique minimizer
.ugs; fgs/ in U �Z! such that hugs; uV iL2 > 0.

Under the conditions of the previous theorem, recalling that W D g2!�1v2, we can
now compute the asymptotic expansion of the ground state energy as the coupling constant
g goes to 0.

Proposition 1.6 (Expansion of the ground state energy at small coupling). Under the
conditions of Theorem 1.5, we have

min
.u;f /2U�Z!

E.u; f /

D �V � g
2

Z
R3

�
xF .!�1v2/ � juV j

2
�
.x/
ˇ̌
uV .x/

ˇ̌2 dx CO.g4/; (1.17)

as g! 0.

To obtain uniqueness of the minimizer, as well as the expansion (1.17), we use that any
minimizer of (1.16) is a non-linear Hartree eigenstate and project the non-linear eigenvalue
equation to the vector space spanned by the electronic ground state uV and its orthogonal
complement.

As mentioned above, in the case where W2 D 0, i.e. W D g2!�1v2 is in L1.R3/, the
Hamiltonian H in (1.9) identifies with a semi-bounded self-adjoint operator. Hence we
can compare the ground state energy of H with its quasi-classical counterpart:

Proposition 1.7 (Comparison with the ground state energy of H). Under the conditions
of Theorem 1.5, with W in L1.R3/, we have

inf �.H/ � E.ugs; fgs/

D �g2
Z

R3

v.k/2
˝
uV ; e

ikx…?V
�
HV � �V C !.k/

��1
…?V e

�ikxuV
˛
L2x

dk C o.g2/;

as g! 0.
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The term of order g2 of the asymptotic expansion given by Proposition 1.7 can be
rewritten as

inf �.H/ � E.ugs; fgs/

D �g2
˝
uV ˝�; a.hx/.…

?
V ˝ If/.Hfree � �V /

�1.…?V ˝ If/a
�.hx/uV ˝�

˛
C o.g2/:

It should be compared with the term of order g2 in the asymptotic expansion (1.17) of the
quasi-classical ground state energy E.ugs; fgs/, which is given by

� g2
Z

R3

�
xF .!�1v2/ � juV j

2
�
.x/
ˇ̌
uV .x/

ˇ̌2 dx

D�g2
˝
uV ˝�; a.hx/.…V ˝…

?
�/.Hfree��V /

�1.…V ˝…
?
�/a
�.hx/uV ˝�

˛
; (1.18)

where…� is the projection onto the Fock vacuum and…?� WD I�…�. Hence we see that,
at second order in the coupling constant, the ground state energy of H can be divided into
two terms: a “coherent” term which is independent of the excited electronic eigenstates,
and a “non-coherent” term which sums the contributions from these excited states. In
particular, defining ıV WD dist.�V ; �.HV / n ¹�V º/ the distance between �V and the rest
of the spectrum of HV , we deduce from the previous expressions that if ıV is large, then
the non-coherent term is small and hence the coherent term becomes a good approximation
to the ground state energy of H.

Remark 1.8. Under the conditions of Proposition 1.7 and assuming in addition that the
function v

!
1jkj�1 C

v
jkj!

1jkj�1 belongs to L2.R3/ (so that fgs is in L2 by Proposition 1.1
and hence the coherent state in Fock space ‰fgs (see (1.11)) is well-defined), one can also
choose a ground state ‰gs of H such that

k‰gs � ugs ˝‰fgskHel˝Hf D O.g/: (1.19)

Note that the existence of a ground state for H under these conditions follows from [29].
The estimate (1.19) is then a direct consequence of our proofs of Theorem 1.5 and Propo-
sitions 1.6–1.7 together with [7], since [7] shows that

k‰gs � uV ˝�kHel˝Hf D O.g/;

for a suitably constructed ground state ‰gs, while our argument will show that

kugs � uV kHel D O.g2/; kfgskL2 D O.g/;

see Section 3.4.

1.2.4. Ultraviolet limit. We suppose here that the coupling function is cut-off in the ultra-
violet, i.e. that it is of the form vƒ D v1jkj�ƒ for some ultraviolet parameter 0 < ƒ <1.
We are interested in the ultraviolet limit ƒ!1. We write

Wƒ WD g
2!�1vƒ D W 1jkj�ƒ;
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and note that if W satisfies Hypothesis 3, then for all ƒ > 0, Wƒ is in L1 (this follows
from the weak Hölder inequality, see (2.12) below). The fact that Wƒ belongs to L1 in
turn ensures that the Pauli–Fierz Hamiltonian

Hƒ WD HV ˝ If C Iel ˝Hf C gˆ.hƒ;x/; hƒ;x.k/ WD vƒ.k/e
�ikx ;

identifies to a self-adjoint operator (see Appendix A).
Let Eƒ be the Klein–Gordon–Schrödinger energy functional with an ultraviolet cut-

off, i.e. Eƒ is given by (1.13) with vƒ instead of v. The next proposition establishes the
convergence of the ground state energies in the ultraviolet limit. Note that the assumptions
are rather weak. In particular they do not necessarily imply the existence of a ground state
for E and Eƒ.

Proposition 1.9 (Ultraviolet limit of the ground state energies). Suppose that V satisfies
Hypothesis 1 and that W satisfies Hypothesis 3. Then

inf
.u;f /2U�Z!

Eƒ.u; f / ����!
ƒ!1

inf
.u;f /2U�Z!

E.u; f /:

Under conditions ensuring that Eƒ and E have unique minimizers, we can also estab-
lish the convergence of the ground states of Eƒ to the ground state of E , as ƒ!1.

Proposition 1.10 (Ultraviolet limit of the ground states). Suppose that V satisfies Hy-
potheses 1 and 2 and that W satisfies Hypothesis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then for all ƒ > 0, Eƒ and E have unique minimizers .uƒ;gs; fƒ;gs/ and .ugs; fgs/ in
U �Z! , respectively, such that huƒ;gs; uV iL2 > 0 and hugs; uV iL2 > 0. They satisfy.uƒ;gs; fƒ;gs/ � .ugs; fgs/


QV �Z!

����!
ƒ!1

0:

The proofs of Propositions 1.9 and 1.10 are not straightforward. The main difficulty
comes from the fact that, in general, Wƒ does not converge to W in L1 C L3;1. To
circumvent this difficulty, we use a convergence property in a weaker sense, based on a
suitable application of Lebesgue’s dominated convergence theorem.

1.3. Organization of the paper

Our paper is essentially self-contained. It is organized as follows. Section 2 is a prelimi-
nary section containing several technical estimates that we subsequently use in Section 3
to establish our main results. In Appendix A, we recall the definitions of standard objects
related to second quantization as well as the self-adjointness of the Pauli–Fierz Hamil-
tonian H. Appendix B contains a proof of the existence of a minimizer for the Hartree
energy functional under our conditions.
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2. Preliminaries

In this preliminary section, we gather several technical estimates that are useful for our
concern. The first subsection mainly concerns the electronic HamiltonianHV . In a second
subsection, we prove some functional estimates in Lorentz spaces that are used in Sec-
tion 3 in a crucial way to control the interactions terms of the Klein–Gordon–Schrödinger
energy functional.

2.1. Estimates on the electronic part

Recall that our assumptions on the external potential V of the electronic Hamiltonian
HV D ��C V have been introduced in Section 1.1. We begin with a few remarks show-
ing that HV is well-defined and that its form domain satisfies Q.HV / D Q.HVC/ D

Q.HV1/, with V1 as in Hypothesis 1.
First, V� is form bounded with respect to �� with a relative bound less than 1, by

Hypothesis 1. Thus V� is also form bounded with respect to HVC with a relative bound
less than 1, and hence the KLMN Theorem (see e.g. [56, Theorem X.17]) implies that
HV identifies with a semi-bounded self-adjoint operator with form domain Q.HV / D

Q.HVC/.
Next, Hypothesis 1 (ii) implies that V2 is relatively form bounded with respect to ��

with relative bound 0. Indeed, for R large enough, we have V21jxj�R 2 L1.R3/ since
V2.x/! 0 as jxj ! 1, while V21jxj�R 2 L3=2.BR/ with BR WD ¹x 2 R3 j jxj � Rº,
since V2 2 L

3=2
loc .R

3/. Therefore V2 2 L3=2.R3/CL1.R3/ and hence we can apply [56,
Theorem X.19] to deduce that V2 is infinitesimally form-bounded with respect to ��. In
turn, since

VC � V1 D V2 C V�

is form bounded with respect to ��, it is not difficult to verify that

Q.HVC/ D Q.HV1/:

Recall the notation QV D Q.HV /. We begin with the following easy lemma.

Lemma 2.1. Suppose that V satisfies Hypothesis 1. Then, for all u in QV ,

kuk2
PH1
�

1

1 � a

�
hu;HV ui C bkuk

2
L2

�
: (2.1)

Proof. The positivity of VC and the bound on V� from Hypothesis 1 yield, for u in QV ,

hu;HV ui � kuk
2
PH1
� hu; V�ui � kuk

2
PH1
� ahu;��ui � bkuk2

L2

D .1 � a/kuk2
PH1
� bkuk2

L2
;

which proves the result.

The next lemma shows that, for confining potentials V , the gap �V1 ��V can be made
as large as we want, provided that the potential V1 is suitably chosen.
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Lemma 2.2. Suppose that V D VC � V� is such that

(i) VC 2 L
1
loc.R

3/,

(ii) V� 2 L
3=2
loc .R

3/,

(iii) V.x/!1 as jxj ! 1.

Then, for all C > 0, there exist a decomposition V D V1;C C V2;C as in Hypothesis 1
such that, moreover,

�V1;C � �V � C:

Proof. Recall that the localizations functions �R, z�R have been defined in (1.5). Let
C > 0. We set

V1;C D VC C 2C�
2
R; V2;C D �V� � 2C�

2
R:

Observe that V1;C C V2;C D VC � V� D V . Moreover, since V.x/!1 as jxj ! 1,
we have that V�.x/ D 0 for jxj large enough. Hence, since in addition �2R is smooth
and compactly supported, one sees that the decomposition V D V1;C C V2;C satisfies the
conditions of Hypothesis 1 for any R.

Now we verify that�V1;C ��V >C for suitably chosenR. Using the IMS localization
formula (see e.g. [19]), we write

�V1;C D inf
u2U

�˝
.�2R C z�

2
R/u; .��C VC/u

˛
C 2Ck�Ruk

2
L2

�
D inf
u2U

�˝
�Ru; .��C VC/�Ru

˛
C
˝
z�Ru; .��C VC/z�Ru

˛
Co.R0/C2Ck�Ruk

2
L2

�
;

since j Er�Rj2C j Erz�Rj2 D o.R0/, R!1. Next, using that �� � 0 and that supp.z�R/�
B.0;R/c , we estimate

�V1;C � inf
u2U

�
.�VC C 2C /k�Ruk

2
L2
C
�

inf
x2B.0;R/c

VC.x/
�
kz�Ruk

2
L2
C o.R0/

�
:

Since VC.x/!1 as jxj ! 1, there exists R0 > 0 such that for R � R0,

inf
x2B.0;R/c

VC.x/ � �VC C 2C:

Therefore, for R � R0, we obtain

�V1;C � inf
u2U

�
.�VC C 2C /

�
k�Ruk

2
L2
C kz�Ruk

2
L2

�
C o.R0/

�
D �VC C 2C C o.R

0/: (2.2)

On the other hand, since V� � 0, we have that

�VC � inf
u2U

˝
u; .��C VC � V�/u

˛
D �V : (2.3)

Combining (2.2) and (2.3) gives

�V1;C � �V C 2C C o.R
0/:

Fixing R large enough, we deduce that �V1;C � �V > C , which proves the lemma.
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To conclude this section, we give a lemma which is useful to prove the existence of
minimizers for the energy functional studied in Section 3.

Lemma 2.3. Suppose that V satisfies Hypothesis 1. Let .uj /j2N be a bounded sequence
in H 1.R3/ which converges weakly to u1 in H 1.R3/, and strongly in L2.R3/. Then˝

u1; .��C V /u1
˛
� lim inf

j!1

˝
uj ; .��C V /uj

˛
:

Proof. We consider each term of

hu;��ui C hu; V1ui C hu; V2ui (2.4)

separately.
The first one is handled using the lower semi-continuity of k � kL2 . Indeed, as uj ! u1

weakly in H 1.R3/, it follows that ruj ! ru1 weakly in L2.R3/ and hence

hu1;��u1i D kru1k
2
L2
� lim inf

j!1
kruj k

2
L2
D lim inf

j!1
huj ;��uj i: (2.5)

For the second term of (2.4), we use Fatou’s Lemma, which gives, since V1 � 0,

hu1; V1u1i � lim inf
j!1

huj ; V1uj i: (2.6)

As for the third term in (2.4), we claim that

hu1; V2u1i D lim
j!1
huj ; V2uj i; (2.7)

for some suitable subsequence that we keep denoting by .uj /j2N . Indeed, let " > 0. We
have that k1jxj>R0V2k1� " forR0 large enough, since V2.x/! 0 as jxj!1. Therefore,
for all j in N,

huj ;1jxj>R0V2uj i � "; hu1;1jxj>R0V2u1i � ": (2.8)

Next, we approximate 1jxj�R0V2 by a more regular function. More precisely, since the
function 1jxj�R0V2 lies in L3=2.R3/, one can find V2;" in C10 .R

3/ such that1jxj�R0V2 � V2;"L3=2 � ":
Hölder’s inequality together with Sobolev’s embedding H 1.R3/ � L6.R3/ then yieldˇ̌

huj ;1jxj�R0V2uj i � huj ;1jxj�R0V2;"uj i
ˇ̌
�
1jxj�R0V2 � V2;"L3=2kuj k2L6

. "kuj k
2
H1 . "; (2.9)

since we assumed that .uj /j2N is bounded in H 1.R3/. Likewise,ˇ̌
hu1;1jxj�R0V2u1i � hu1;1jxj�R0V2;"u1i

ˇ̌
. ": (2.10)

Now, since 1jxj�R0uj ! 1jxj�R0u1 strongly in L2.R3/, and since V2;" is bounded, we
deduce that

hu1;1jxj�R0V2;"u1i D lim
j!1
huj ;1jxj�R0V2;"uj i: (2.11)

Combining (2.8), (2.9), (2.10) and (2.11), we obtain (2.7).
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2.2. Some functional inequalities in Lorentz spaces

In the proof of our main results, we will use in a crucial way some functional inequalities
in Lorentz spaces that we present in this section. For 1 � p < 1, the Lorentz spaces
Lp;1 DLp;1.Rd / are defined as the set of (equivalence classes of) measurable functions
f W Rd ! C such that (1.3) holds.

More generally, for 1� p <1 and 1� q �1, the Lorentz spaces Lp;q D Lp;q.Rd /
are defined as the set of (equivalence classes of) measurable functions f W Rd ! C such
that the quasi-norm

kf kLp;q WD p
1=q
��®jf j > t¯�1=p t

Lq..0;1/;dt=t/

is finite.
For 1� p <1 and 1� q1 � q2 �1, the continuous embeddingLp;q1 �Lp;q2 holds.

Moreover Lp;p identifies with Lp . We will use the following generalizations of Hölder
and Young’s inequality in Lorentz spaces, see [13, 41, 54, 60] or [32, Exercise 1.4.19].

For 1 � p1; p2 <1, 1 � q1; q2 � 1, Hölder’s inequality states that

kf1f2kLp;q . kf1kLp1;q1 kf2kLp2;q2 ;
1

p
D

1

p1
C

1

p2
;

1

q
D

1

q1
C

1

q2
; (2.12)

whenever the right-hand side is finite.
Young’s inequality states that, for 1 < p, p1; p2 <1, 1 � q1, q2 � 1,

kf1 � f2kLp;q . kf1kLp1;q1 kf2kLp2;q2 ; 1C
1

p
D

1

p1
C
1

p2
;

1

q
D
1

q1
C
1

q2
; (2.13)

and for 1 < p <1, 1 � q � 1,

kf1 � f2kL1 . kf1kLp;qkf2kLp0;q0 ;
1

p
C
1

p0
D 1;

1

q
C
1

q0
D 1: (2.14)

We have the following estimates that are used several times in Section 3. The first
one is an obvious application of the usual Hölder and Young inequalities. The second and
third ones are close to the Hardy–Littlewood–Sobolev inequality but cannot be directly
deduced from it. Recall the convention (1.4) on the Fourier transform.

Lemma 2.4. The following inequalities hold:

(i) Let u1; u2 2 L2 and W 2 L1. Then, xF .W / � .u1u2/L1 . kW kL1ku1kL2ku2kL2 : (2.15)

(ii) Let u1; u2 2 PH 1 and W 2 L3;1. Then W F .u1u2/ 2 L
1 and xF .W / � .u1u2/L1 . kW kL3;1ku1k PH1ku2k PH1 : (2.16)

(iii) Let u1 2 L2, u2; u3 2 PH 1 and W 2 L3;1. Then W F .u1u2/ 2 L
3=2;1 and� xF .W / � .u1u2/�u3L2 . kW kL3;1ku1kL2ku2k PH1ku3k PH1 :
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Proof. To simplify formulas below, we write w D xF .W /.
(i) directly follows from the Hölder and Young inequalities:w � .u1u2/L1 . kwkL1ku1u2kL1 . kwkL1ku1kL2ku2kL2 ;

which yields (2.15) using kwkL1 . kW kL1 .
To prove (ii), we use first the Hölder inequality in Lorentz spaces (2.12),w � .u1u2/L1 .

W F .u1u2/

L1

. kW kL3;1
F .u1u2/


L3=2;1

;

and then both the Young (2.13) and Hölder (2.12) inequalities in Lorentz spacesF .u1u2/

L3=2;1

.
F .u1/ � F .u2/


L3=2;1

.
F .u1/


L6=5;2

F .u2/

L6=5;2

.
jkj�12

L3;1

jkjF .u1/L2;2jkjF .u2/L2;2 . ku1k PH1ku2k PH1 :

To prove (iii), we use first the Young inequality in Lorentz spaces (2.13),�w � .u1u2/�u3L2 .
�W F .u1u2/

�
� F .u3/


L2

.
W F .u1u2/


L3=2;1

F .u3/

L6=5;2

:

The term with u3 is controlled with the Hölder inequality in Lorentz spaces (2.12),F .u3/

L6=5;2

.
jkj�1

L3;1

jkjF .u3/L2;2 . ku3k PH1 :

The term with u1 and u2 is estimated using the Hölder inequality in Lorentz spaces (2.12)
first, followed by the Young inequality in Lorentz spaces (2.13),W F .u1u2/


L3=2;1

. kW kL3;1
F .u1/ � F .u2/


L3;1

. kW kL3;1
F .u1/


L2;1

F .u2/

L6=5;1

:

The term kF .u2/kL6=5;1 . kF .u2/kL6=5;2 is estimated in the same way as kF .u3/kL6=5;2 ,
while F .u1/


L2;1

.
F .u1/


L2;2

. ku1kL2 :

This proves the lemma.

3. Proof of the main results

In this section, we prove the results stated in Section 1.2. We begin with reducing the
problem of the minimization of the Klein–Gordon–Schrödinger energy functional to the
problem of the minimization of a well-chosen Hartree functional in Section 3.1. We prove
the existence and uniqueness of a minimizer in Sections 3.2 and 3.3, respectively. In Sec-
tion 3.4, we derive the asymptotic expansion of the ground state energy at small coupling.
Finally, in Section 3.5 we prove the convergence of the ground state and ground state
energy in the ultraviolet limit.

Throughout this section, CV stands for a positive constant depending on V which may
vary from line to line.
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3.1. The Hartree energy functional

Recall that the Klein–Gordon–Schrödinger energy functional E.u; f / has been defined
in (1.13). The next proposition shows that the minimization problem for E reduces to the
minimization problem for the Hartree energy.

Proposition 3.1. Suppose that V satisfies Hypothesis 1 and W satisfies Hypothesis 3. We
have

inf
u2U;f 2Z!

E.u; f / D inf
u2U

J.u/;

where

J.u/ WD hu;HV ui �
W 1

2F
�
juj2

�2
L2

D hu;HV ui �

Z
R3

�
xF .W / � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx D E.u; fu/; (3.1)

and
fu WD �g!

�1vF
�
juj2

�
: (3.2)

Moreover u 7! .u; fu/ is a bijection between the minimizers of J and those of E .

Proof. The Klein–Gordon–Schrödinger energy functional can be written under the form

E.u; f / D hu;HV ui C
˝
!
1
2 f; !

1
2 f
˛
C 2gRe

˝
!�

1
2 vF

�
juj2

�
; !

1
2 f
˛

D hu;HV ui C
! 1

2 f C g!�
1
2 vF

�
juj2

�2
L2
� g2

!� 12 vF
�
juj2

�2
L2
: (3.3)

Note that !1=2f belongs to L2 since f is in Z! . Moreover, !�
1
2 vF .juj2/ belongs to L2

since

g2
!� 12 vF

�
juj2

�2
L2
D
W ˇ̌

F
�
juj2

�ˇ̌2
L1

� kW1kL1
F

�
juj2

�2
L1
C
W2F �juj2�L1F

�
juj2

�
L1

. kW1kL1kuk4L2 C kW2kL3;1kuk
2
PH1
kuk2

L2
<1;

where we used Lemma 2.4 in the second inequality. Equation (3.3) then implies that

E.u; fu/ D hu;HV ui � g
2
!� 12 vF

�
juj2

�2
L2
D min
f 2Z!

E.u; f /;

and fu is the unique minimizer of E.u; f / at fixed u. By our convention (1.4) on the
Fourier transform, the energy E.u; fu/ can be rewritten as the Hartree energy (3.1), which
yields the result.

We now establish Proposition 1.1 which gives necessary conditions and sufficient
conditions so that fgs belongs to L2.R3/, where .ugs; fgs/ a minimizer of the Klein–
Gordon–Schrödinger energy functional E.u; f /.
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Proof of Proposition 1.1. It follows from Proposition 3.1 that any minimizer .ugs; fgs/ of
the Klein–Gordon–Schrödinger energy functional over U�Z! satisfies the relation (3.2):

8k 2 R3; fgs.k/ D �g!
�1.k/v.k/F

�
jugsj

2
�
.k/:

Since ugs is in H 1.R3/, we have, for all k in R3,ˇ̌
F
�
jugsj

2
�
.k/
ˇ̌

. min
�
1; jkj�1

�
:

Moreover, since F .jugsj
2/ is continuous at k D 0 and F .jugsj

2/.0/ D 1, we have

1

2
�
ˇ̌
F
�
jugsj

2
�
.k/
ˇ̌
�
3

2
;

in a neighborhood of k D 0. Hence we see that sufficient conditions ensuring that fgs

belongs to L2.R3/ are

k 7!
v.k/

jkj!.k/
1jkj�1 2 L

2.R3/ and k 7!
v.k/

!.k/
1jkj�1 2 L

2.R3/;

while a necessary condition is

k 7!
v.k/

!.k/
1jkj�1 2 L

2.R3/:

This establishes Proposition 1.1.

In the remainder of this section, we study the Hartree energy functional (3.1). By
Proposition 3.1, the results that we prove for the Hartree energy directly imply the corre-
sponding results for the Klein–Gordon–Schrödinger energy.

3.2. Existence of a minimizer

The next proposition gives the existence of a minimizer for the Hartree energy (3.1). It
implies Theorem 1.2 from the introduction.

Proposition 3.2. Suppose that V satisfies Hypothesis 1 and W satisfies Hypothesis 3.
There existsCV >0 such that, if the decompositions of V andW of the form V D V1C V2,
W D W1 CW2 in Hypotheses 1 and 3, respectively, can be chosen such that

kW1kL1 C CV kW2kL3;1 � ı.�V1 � �V / (3.4)

and
CkW2kL3;1 �

1

2
.1 � a/;

then the Hartree energy functional (3.1) has a minimizer. Here C and ı are universal
constants and a is given by Hypothesis 1.
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As mentioned in the introduction, the existence of a minimizer for the Hartree energy
has been proven under various conditions in different contexts, but we are not aware of a
reference giving the result under our assumptions. We detail the proof of Proposition 3.2
in Appendix B.

Remark 3.3. Writing the Hartree energy in its usual form

J.u/ D hu;HV ui �

Z
R3

�
w � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx;

we have in our context w D xF .W / (in the sense of distributions) and it is thus natural
to make an assumption on the Fourier transform of the convolution potential w. In other
contexts, however, it might be more natural to make hypotheses on w rather than on its
Fourier transform. It is straightforward to verify that our proof adapts to the conditions

w D w1 C w2 2 L
1.R3/C L3=2;1.R3/;

kw1kL1 C CV kw2kL3=2;1 � ı.�V1 � �V /; Ckw2kL3=2;1 �
1

2
.1 � a/:

It suffices to use, instead of (2.15)–(2.16), the inequalities�w � ju1j2�ju2j2L1 . kwkL1ku1k2L2ku2k
2
L2
;�w � ju1j2�ju2j2L1 . kwkL3=2;1ku1k2PH1

ku2k
2
L2
;

that can be proven using the weak Hölder and Young inequalities (2.12)–(2.14).

Remark 3.4. As in Remark 1.3, in the case of a confining external potential V , one can
always find a decomposition V D V1 C V2 such that (3.4) holds, by Lemma 2.2. Hence a
minimizer exists in this case without any restriction on the size of kW1kL1 .

3.3. Uniqueness of the minimizer

Now that we have the existence of a minimizer for the Hartree energy functional J , we
prove the uniqueness of the minimizer. The next proposition implies Theorem 1.5 from
the introduction.

Proposition 3.5. Suppose thatV satisfies Hypotheses 1 and 2 and thatW satisfies Hypoth-
esis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then J has a unique minimizer ugs in U such that hugs; uV iL2 > 0.

To prove Proposition 3.5 we use the following decomposition:

L2.R3/ D CuV ˚ .CuV /
?;
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where uV is the ground state of HV as in Hypothesis 2, and we write u D ˛uV C ',
with the normalization condition j˛j2 C k'k2

L2
D 1. The Hartree ground state energy is

denoted by
EV WD inf

u2U
J.u/:

We display the dependence on V since the existence of a gap, EV < EV1 , is an important
step in our proof of the existence of a minimizer in Appendix B.

Our proof of Proposition 3.5 relies on the following two lemmata. For � 2 R, we
set the resolvent R� WD .HV � �/

�1 (defined, a priori, as an unbounded operator on
Ran.1¹�º.HV //?). We also recall that …?V WD I � juV ihuV j.

Lemma 3.6. Suppose that V satisfies Hypotheses 1 and 2 and that W satisfies Hypothe-
sis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then for all global minimizer u in U of J such that u D ˛uV C ', with ˛ in C, ' in QV ,
and uV ? ' in L2, we have

' D 2R�V…
?
V

�
xF .W / � juj2

�
u; �V WD EV �

˝
u;
�
xF .W / � juj2

�
u
˛
: (3.5)

Proof. We first recall that if u is a minimizer of J , then u is a non-linear Hartree eigen-
state, �

HV � 2 xF .W / � juj
2
�
u D �V u in Q�V ; (3.6)

where Q�V is the topological dual of QV and �V is defined by (3.5). Here HV should be
understood as an operator in L.QV ;Q

�
V /. Equation (3.6) can be proven by using that, for

all t in C and all u? 2 U such that u ? u? in L2, we have

J
��
1C jt j2

�� 12 .uC tu?/� � EV :
Computing the term of order 1 in t in the asymptotic expansion of the previous expression
as t ! 0 shows that ˝

u?;
�
HV � 2 xF .W / � juj

2
�
u
˛
D 0;

for all u? 2 U such that u ? u? in L2. Hence (3.6) holds for some �V 2 C. Since
J.u/ D EV , we obtain that �V is given by (3.5).

Now, applying …?V to (3.6) gives

.HV � �V /…
?
V u D 2…

?
V

�
xF .W / � juj2

�
u: (3.7)

Let ıV WD dist.�V ; �.HV / n ¹�V º/ be the distance from �V to the rest of the spectrum
of HV . Recall that Hypothesis 2 implies that ıV > 0. Using perturbative arguments, it is
not difficult to verify that

EV � �V C
1

2
ıV ; (3.8)
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provided that kW kL1CL3;1 � "V , for some "V > 0 small enough (see (B.3) in Appendix B
for a precise justification). Moreover, since˝

u;
�
xF .W / � juj2

�
u
˛
D
W 1

2F
�
juj2

�2
L2
� 0;

we also have �V � EV , and hence

�V � �V C
1

2
ıV : (3.9)

Therefore the operator
.HV � �V /…

?
V 2 L.QV ;Q

�
V /

is bounded invertible with inverse R�V…
?
V 2 L.Q�V ;QV /. Since ' D …?V u, (3.7) then

implies (3.5).

In the following lemma, given u1, u2 two minimizers of J , we decompose as before,
for j D 1; 2, uj D j̨uV C 'j , with j̨ D huj ; uV i > 0, 'j 2 QV and uV ? 'j in L2.

Lemma 3.7. Suppose that V satisfies Hypotheses 1 and 2 and that W satisfies Hypothe-
sis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then for all global minimizers u1, u2 in U of J , we have

k'1 � '2kQV
� CV kW kL1CL3;1

�
ku1k

2
H1 C ku2k

2
H1

�2
ku1 � u2kL2 : (3.10)

Proof. Let �1, �2 be defined as in Lemma 3.6, namely �jDEV �huj ; . xF .W /� juj j2/uj i.
By Lemma 3.6 and the triangle inequality, we have

k'1 � '2kQV
� S1 C S2;

where

S1 WD 2
�R�1…?V �R�2…?V �� xF .W / � ju1j2�u1QV

;

S2 WD 2
R�2…?V �� xF .W / � ju1j2�u1 � � xF .W / � ju2j2�u2�QV

:

We first estimate the second term. From (3.9) we deduce that R�2…
?
V 2 L.Q�V ;QV /

and R�2…?V L.Q�V ;QV /
� 4ı�1V : (3.11)

Hence we can estimate

S2 � 8ı
�1
V

� xF .W / � ju1j2�u1 � � xF .W / � ju2j2�u2Q�V

� 8ı�1V
� xF .W / � ju1j2�u1 � � xF .W / � ju2j2�u2L2 ;
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since L2 � Q�V . We obtain from the triangle inequality that

S2 � 8ı
�1
V

� xF .W / � �. Nu1 � Nu2/u1��u1L2
C 8ı�1V

� xF .W / � � Nu2.u1 � u2/��u1L2
C 8ı�1V

� xF .W / � ju2j2�.u1 � u2/L2 ;
and hence Lemma 2.4 yields

S2 � CV kW kL1CL3;1
�
ku1k

2
H1 C ku2k

2
H1

�
ku1 � u2kL2 : (3.12)

Now we estimate S1. It follows from the resolvent equation that

S1 � 2j�1 � �2j
�R�1…?VR�2…?V �� xF .W / � ju1j2�u1QV

:

Using (3.11) twice, first for R�2 and next for R�1 (using also that QV � Q�V in the latter
case), and then applying Lemma 2.4, we obtain

S1 � CV kW kL1CL3;1ku1k
2
H1 j�1 � �2j: (3.13)

Since �j D EV � huj ; .F .W / � juj j2/uj i and kuj kL2 D 1, we can estimate, by the tri-
angle inequality,

j�1 � �2j � ku1 � u2kL2
� xF .W / � ju1j2�u1L2

C
� xF .W / � ju1j2�u1 � � xF .W / � ju2j2�u2L2 :

Using Lemma 2.4 to bound the first term, and the same argument we used to prove (3.12)
for the second one, we obtain

j�1 � �2j � CV kW kL1CL3;1
�
ku1k

2
H1 C ku2k

2
H1

�
ku1 � u2kL2 : (3.14)

Putting together (3.13) and (3.14) yields

S1 � CV kW k
2
L1CL3;1

ku1k
2
H1

�
ku1k

2
H1 C ku2k

2
H1

�
ku1 � u2kL2 : (3.15)

Using kW kL1CL3;1 � "V and combining (3.15) and (3.12), we obtain (3.10). Since the
role of '1 and '2 in the left-hand side of (3.10) is symmetric, this concludes the proof.

We are now ready to prove the uniqueness of a minimizer for the Hartree energy (3.1).

Proof of Proposition 3.5. By Proposition 3.2, we know that the Hartree functional energy
J has a minimizer for kW kL1CL3;1 � "V with "V small enough. Let u1, u2 be two mini-
mizers of J . We use the same notations as in the previous proof, decomposing

uj D j̨uV C 'j :

Since j̨ D huj ; uV i > 0, in order to verify that u1 D u2, it suffices to prove that '1 D '2.
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To this end, we first show that kuj k2PH1
is bounded by CV and next apply Lemma 3.7.

We can write

kuj k
2
PH1
� huj ;HVCuj i D J.uj /C huj ; V�uj i �

˝
uj ;

�
xF .W / � juj j

2
�
uj
˛
:

We have J.uj /D EV since uj is a minimizer, huj ; V�uj i � akuj k2PH1
C b with a < 1 by

Hypothesis 1 and jhuj ; . xF .W / � juj j2/uj ij � CkW kL1CL3;1kuj k2H1 for some universal
constant C by Lemma 2.4. Therefore

kuj k
2
H1 � 1C

1

1 � a � CkW kL1CL3;1

�
EV C b C CkW kL1CL3;1

�
:

Hence, since in addition, by (3.8),EV � �V C 1
2
ıV for kW kL1CL3;1 � "V with "V small

enough, we deduce that kuj k2H1 � CV . Lemma 3.7 then implies that

k'1 � '2kQV
� CV kW kL1CL3;1ku1 � u2kL2 : (3.16)

Now we have

ku1 � u2k
2
L2
D j˛1 � ˛2j

2
C k'1 � '2k

2
L2
: (3.17)

To conclude the proof, we show that j˛1 � ˛2j can be controlled by k'1 � '2k2L2 . Lemma
3.6 and the arguments used in the proof of Lemma 3.7 ensure that k'j kL2 �

1
2

. Indeed,

k'j kL2 � k'j kQV
D 2

R�j…?V � xF .W / � juj j2�ujQV

� CV
� xF .W / � juj j2�ujQ�V

� CV
� xF .W / � juj j2�ujL2

� CV kW kL1CL3;1kuj k
2
H1

� CV kW kL1CL3;1 ;

where in the last inequality we used in addition that kuj k2PH1
� CV . Therefore k'j kL2 �

1
2

for kW kL1CL3;1 � "V with "V small enough and we can thus estimate

j˛1 � ˛2j D
ˇ̌�
1 � k'1k

2
L2

�1=2
�
�
1 � k'2k

2
L2

�1=2 ˇ̌
D

ˇ̌̌̌
k'2kL2 C k'1kL2�

1 � k'1k
2
L2

�1=2
C
�
1 � k'2k

2
L2

�1=2 ˇ̌̌̌ˇ̌k'2kL2 � k'1kL2 ˇ̌
� Ck'1 � '2kL2 : (3.18)

Inserting this into (3.16)–(3.17) and using that k'1 � '2k2L2 � k'1 � '2k
2
QV

, we finally
conclude that

k'1 � '2kQV
� CV kW kL1CL3;1k'1 � '2kQV

:

For kW kL1CL3;1 � "V with "V small enough, this implies that '1 D '2, which concludes
the proof of the proposition.
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3.4. Expansion of the ground state energy for small coupling constants

Assuming that V satisfies Hypotheses 1 and 2 and that W D g2!�1v2 satisfies Hypoth-
esis 3, it follows from Proposition 3.5 that J has a unique ground state in U, denoted by
ugs, such that hugs; uV iL2 > 0. The next proposition provides the asymptotic expansion of
the Hartree ground state energy (or equivalently the Klein–Gordon–Schrödinger ground
state energy) stated in Proposition 1.6.

Proposition 3.8. Suppose that V satisfies Hypotheses 1 and 2 and that W D g2!�1v2

satisfies Hypothesis 3. Then, as g! 0,

EV D J.ugs/ D �V � g
2

Z �
xF .!�1v2/ � juV j

2
�
.x/
ˇ̌
uV .x/

ˇ̌2 dx CO.g4/:

Proof. As in Lemma 3.6, we decompose the Hartree ground state ugs D ˛gsuV C 'gs,
with ˛gs in C, 'gs in QV and uV ? 'gs in L2. By Lemma 3.6, we have

k'gskQV
D 2g2

R�V…?V � xF .!�1v2/ � jugsj
2
�
ugs


QV

� CV g
2
� xF .!�1v2/ � jugsj

2
�
ugs


Q�V

� CV g
2
� xF .!�1v2/ � jugsj

2
�
ugs

L2
D O.g2/;

the last equality being a consequence of Lemma 2.4. Similarly, using that

R�V D .HV � �V /
�1;

we can estimateˇ̌
h'gs;HV 'gsi

ˇ̌
� j�V jk'gsk

2
L2
C g4

ˇ̌˝
…?V

�
xF .!�1v2/ � jugsj

2
�
ugs; R�V…

?
V

�
xF .!�1v2/ � jugsj

2
�
ugs
˛ˇ̌

D O.g4/: (3.19)

Here we used (3.9) which shows that j�V j is bounded by CV and that

R�V…
?
V 2 L.Q�V ;QV /:

Besides, since j˛gsj
2 D 1 � k'gsk

2
L2

, we have

j˛gsj D 1CO.g4/: (3.20)

We can then compute

J.ugs/ D
˝
˛gsuV C 'gs;HV .˛gsuV C 'gs/

˛
L2

� g2
Z
xF .!�1v2/ � j˛gsuV C 'gsj

2.x/
ˇ̌
˛gsuV .x/C 'gs.x/

ˇ̌2 dx

D j˛gsj
2�V C h'gs;HV 'gsiL2

� g2j˛gsj
4

Z
xF .!�1v2/ � juV j

2.x/
ˇ̌
uV .x/

ˇ̌2 dx CO.g4/;
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where in the second equality we used that HV uV D �V uV , uV ? 'gs in L2, and Lemma
2.4 in order to obtain the expansion of the convolution term. Inserting (3.19) and (3.20)
into the last equality concludes the proof of the proposition.

We conclude this section with the proof of Proposition 1.7 which provides the dif-
ference, at second order in the coupling constant, between the ground state energy of the
Pauli–Fierz Hamiltonian H and the ground state energy of the Klein–Gordon–Schrödinger
energy functional.

Proof of Proposition 1.7. Under the conditions of Proposition 1.7, using perturbative
methods developed in the literature to study ground states of Pauli–Fierz Hamiltonians
(see e.g. [6, 8, 34, 38, 39, 58]), it is not difficult to verify that the second-order asymptotic
expansion of inf �.H/ is given by

inf �.H/ D �V � g2
˝
uV ˝�; a.hx/.…V ˝…�/

?.Hfree � �V /
�1

� .…V ˝…�/
?a�.hx/uV ˝�

˛
C o.g2/;

where we recall that …V stands for the orthogonal projection onto the ground state uV of
HV , …� stands for the orthogonal projection onto the Fock vacuum �, and

.…V ˝…�/
?
D I �…�:

Moreover, Hfree D HV ˝ If C Iel ˝Hf. Decomposing

.…V ˝…�/
?
D …V ˝…

?
� C…

?
V ˝ If

and using (1.18), we obtain

inf �.H/ D �V � g2
Z

R3

�
xF .!�1v2/ � juV j

2
�
.x/
ˇ̌
uV .x/

ˇ̌2 dx

� g2
˝
uV ˝�; a.hx/.…

?
V ˝ If/

�
Hfree � �V

��1
.…?V ˝ If/a

�.hx/uV ˝�
˛
C o.g2/:

A direct computation gives˝
uV ˝�; a.hx/.…

?
V ˝ If/

�
Hfree � �V

��1
.…?V ˝ If/a

�.hx/uV ˝�
˛

D

Z
R3

v.k/2
˝
uV ; e

ikx…?V
�
HV � �V C !.k/

��1
…?V e

�ikxuV
˛
L2x

dk;

which, together with Proposition 1.6, proves Proposition 1.7.

3.5. Ultraviolet limit

We suppose in this section that the coupling function is of the form vƒ D v1jkj�ƒ for
some ultraviolet parameter ƒ > 0 and we write

Wƒ WD g
2!�1vƒ D W 1jkj�ƒ;

where we recall that! stands for the dispersion relation for the bosons andW D g2!�1v2.
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Our first concern is to show that the ground state energies EV;ƒ defined by

EV;ƒ WD inf
u2U

Jƒ.u/; Jƒ.u/ WD hu;HV ui �

Z
R3

�
xF .Wƒ/ � juj

2
�
.x/
ˇ̌
u.x/

ˇ̌2 dx;

converge to EV as ƒ!1. As mentioned in the introduction, the main difficulty comes
from the fact that, in general, Wƒ does not converge to W in L1 C L3;1. Nevertheless,
we can rely on the following easy lemma.

Lemma 3.9. Suppose that W satisfies Hypothesis 3. Let u in QV . ThenZ
R3

�
xF .Wƒ/ � juj

2
�
.x/
ˇ̌
u.x/

ˇ̌2 dx ����!
ƒ!1

Z
R3

�
xF .W / � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx; (3.21)

and � xF .W �Wƒ/ � juj2�uL2 ����!ƒ!1
0: (3.22)

Proof. To prove (3.21), we computeZ
R3

�
xF .W / � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx �
Z

R3

�
xF .Wƒ/ � juj

2
�
.x/
ˇ̌
u.x/

ˇ̌2 dx

D

Z
R3

�
W.k/ �Wƒ.k/

�ˇ̌
F
�
juj2

�ˇ̌2
.k/ dk

D

Z
R3

W.k/1jkj�ƒ
ˇ̌
F
�
juj2

�ˇ̌2
.k/ dk:

Clearly, for all k in R3, W.k/1jkj�ƒjF .juj2/j2.k/ ! 0 as ƒ ! 1. Moreover, since
W is in L1 C L3;1 and u in QV , the proof of Lemma 2.4 shows that W F .juj2/ is in L1

and henceW jF .juj2/j2 belongs to L1. Lebesgue’s dominated convergence Theorem then
proves (3.21).

The proof of (3.22) is similar, using Lemma 2.4 (iii) together with Lebesgue’s domi-
nated convergence in L2.

Now we can prove the convergence of the ground state energies in the ultraviolet limit.
The next proposition implies Proposition 1.9 from the introduction.

Proposition 3.10 (Ultraviolet limit of the ground state energies). Suppose that V satisfies
Hypothesis 1 and that W satisfies Hypothesis 3. Then

EV;ƒ ����!
ƒ!1

EV :

Proof. First, we observe that for 0 < ƒ � ƒ0,Z
R3

�
xF .Wƒ/ � juj

2
�
.x/
ˇ̌
u.x/

ˇ̌2 dx D
Z

R3

Wƒ.k/
ˇ̌
F
�
juj2

�ˇ̌2
.k/ dk

�

Z
R3

Wƒ0.k/
ˇ̌
F
�
juj2

�ˇ̌2
.k/ dk;
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and therefore Jƒ � Jƒ0 . Hence ƒ 7! EV;ƒ is non-increasing on .0;1/ and bounded
below by EV . We set

EV;1 WD lim
ƒ!1

EV;ƒ � EV :

Now we show thatEV;1 �EV . Let " > 0 and let u" 2U be such that J.u"/�EV C ".
We have

EV;ƒ � Jƒ.u"/ D J.u"/ �

Z
R3

�
Wƒ.k/ �W.k/

�ˇ̌
F
�
ju"j

2
�ˇ̌2
.k/ dk

� EV C " �

Z
R3

�
Wƒ.k/ �W.k/

�ˇ̌
F
�
ju"j

2
�ˇ̌2
.k/ dk:

Applying Lemma 3.9, this yields

EV;1 D lim
ƒ!1

EV;ƒ � EV C ":

Since " > 0 is arbitrary, this concludes the proof of the proposition.

Next, we establish the convergence of the ground states of Jƒ to the ground state of J ,
asƒ!1. Combined with Proposition 3.1, the next result implies Proposition 1.10 from
the introduction. Some arguments of the proof below are similar to those used in the proof
of the uniqueness of the minimizer of J in Section 3.3. We do not give all the details.

Proposition 3.11 (Ultraviolet limit of the ground states). Suppose that V satisfies Hy-
potheses 1 and 2 and that W satisfies Hypothesis 3. There exists "V > 0 such that, if

kW kL1CL3;1 � "V ;

then for all ƒ > 0, Jƒ and J have unique minimizers uƒ;gs and ugs in U, respectively,
such that huƒ;gs; uV iL2 > 0 and hugs; uV iL2 > 0. They satisfyuƒ;gs � ugs


QV
����!
ƒ!1

0:

Proof. Existence of a unique minimizer for J follows from Proposition 3.5. The same
holds for Jƒ since, for any ƒ > 0,

kWƒkL1CL3;1 � kW kL1CL3;1 : (3.23)

We write u D ugs and uƒ D uƒ;gs to simplify expressions below. We decompose u D
˛uV C ', with a coefficient ˛ D hu; uV i > 0, ' in QV and uV ? ' in L2, and likewise
uƒ D ˛ƒuV C 'ƒ, with a coefficient ˛ƒ D huƒ; uV i> 0, 'ƒ in QV and uV ? 'ƒ in L2.

In the same way as in the proof of Proposition 3.5, using also (3.23) and the fact that
EV;ƒ is uniformly bounded inƒ (since EV;ƒ converges asƒ!1, by Proposition 3.10),
we have

k'kL2 � CV kW kL1CL3;1 ; k'ƒkL2 � CV kW kL1CL3;1 :
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This yields

ku � uƒkQV
� CV j˛ � ˛ƒj C k' � 'ƒkQV

: (3.24)

The difference j˛ � ˛ƒj can be controlled by k' � 'ƒk2L2 . Indeed, we have the upper
bound k']kL2 � CV kW kL1CL3;1 �

1
2

for kW kL1CL3;1 � "V with "V small enough,
where '] stands for ' or 'ƒ. We can thus estimate in the same way as in (3.18),

j˛ � ˛ƒj D

ˇ̌̌̌
k'ƒkL2 C k'kL2�

1 � k'k2
L2

�1=2
C
�
1 � k'ƒk

2
L2

�1=2 ˇ̌̌̌ˇ̌k'ƒkL2 � k'kL2 ˇ̌ � Ck' � 'ƒkL2 :
Since k' � 'ƒkL2 � k' � 'ƒkQV

, inserting the previous inequality into (3.24) gives

ku � uƒkQV
� CV k' � 'ƒkQV

: (3.25)

Now we estimate k' � 'ƒkQV
. To this end, we use Lemma 3.6, which gives

' D 2R�V…
?
V

�
xF .W / � juj2

�
u; �V WD EV �

˝
u;
�
xF .W / � juj2

�
u
˛
;

'ƒ D 2R�V;ƒ…
?
V

�
xF .Wƒ/ � juƒj

2
�
uƒ; �V;ƒ WD EV;ƒ �

˝
uƒ;

�
xF .Wƒ/ � juƒj

2
�
uƒ
˛
:

By the triangle inequality,

k' � 'ƒkQV
� T1 C T2 C T3; (3.26)

where

T1 WD 2
�R�V…?V �R�V;ƒ…?V �� xF .W / � juj2�uQV

;

T2 WD 2
R�V;ƒ…?V � xF .W �Wƒ/ � juj2�uQV

;

T3 WD 2
R�V;ƒ…?V �� xF .Wƒ/ � juj2�u � � xF .Wƒ/ � juƒj2�uƒ�QV

:

We first estimate the term T3. As in (3.9), we have that �V;ƒ � �V C 1
2
ıV , with the

distance to the lower eigenvalue ıV D dist.�V ; �.HV / n ¹�V º/. Hence R�V;ƒ…
?
V is in

L.Q�V ;QV / and R�V;ƒ…?V L.Q�V ;QV /
� 2ı�1V : (3.27)

This yields

T3 � 4ı
�1
V

� xF .W / � juj2�u � � xF .W / � juƒj2�uƒQ�V

� 4ı�1V
� xF .W / � juj2�u � � xF .W / � juƒj2�uƒL2 ;

since L2 � Q�V . We obtain from the triangle inequality that

T3 � 4ı
�1
V

� xF .W / � �. Nu � Nuƒ/u��uL2
C 4ı�1V

� xF .W / � � Nuƒ.u � uƒ/��uL2
C 4ı�1V

� xF .W / � juƒj2�.u � uƒ/L2 ;
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and hence Lemma 2.4 yields

T3 � CV kW kL1CL3;1
�
kuk2

H1 C kuƒk
2
H1

�
ku � uƒkL2 :

Since in addition we have kuƒk2PH1
� CV (in the same way as in the proof of Proposi-

tion 3.5) uniformly in ƒ, this gives

T3 � CV kW kL1CL3;1ku � uƒkQV
: (3.28)

Next we estimate T1. It follows from the resolvent equation that

T1 � 2j�V � �V;ƒj
�R�V…?VR�V;ƒ…?V �� xF .W / � juj2�uQV

:

Using (3.27), the fact that, likewise,R�V…?V L.Q�V ;Q
�
V /
� 2ı�1V

and then Lemma 2.4, we obtain

T1 � CV kW kL1CL3;1kuk
2
H1 j�V � �V;ƒj � CV kW kL1CL3;1 j�V � �V;ƒj: (3.29)

The expressions of �, �V imply

j�V � �V;ƒj � jEV �EV;ƒj C
ˇ̌˝
u;
�
xF .W / � juj2

�
u
˛
�
˝
uƒ;

�
xF .Wƒ/ � juƒj

2
�
uƒ
˛ˇ̌

� jEV �EV;ƒj C
ˇ̌˝
u;
�
xF .W �Wƒ/ � juj

2
�
u
˛ˇ̌

C
ˇ̌˝
u;
�
xF .Wƒ/ � juj

2
�
u
˛
�
˝
uƒ;

�
xF .Wƒ/ � juƒj

2
�
uƒ
˛ˇ̌
:

The last term can be estimated by the same argument we used to bound T3. This gives

j�V � �V;ƒj � jEV �EV;ƒj C CV kW kL1CL3;1ku � uƒkQV

C
ˇ̌˝
u;
�
xF .W �Wƒ/ � juj

2
�
u
˛ˇ̌
: (3.30)

To estimate the term T2, we write

T2 � CV
� xF .W �Wƒ/ � juj2�uQ�V

;

� CV
� xF .W �Wƒ/ � juj2�uL2 ; (3.31)

since L2 � Q�V .
Putting together (3.25), (3.26), (3.28), (3.29), (3.30) and (3.31), we deduce that�

1 � CV kW kL1CL3;1
�
ku � uƒkQV

� CV
�
jEV �EV;ƒj C

ˇ̌˝
u;
�
xF .W �Wƒ/ � juj

2
�
u
˛ˇ̌
C
� xF .W �Wƒ/ � juj2�uL2�:

For kW kL1CL3;1 � "V with "V small enough, Lemma 3.9 together with Proposition 3.10
then imply that ku � uƒkQV

! 0 as ƒ!1.
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A. Operators in Fock space, self-adjointness

A.1. Operators in Fock space

We recall in this section a few well-known properties of basic operators in Fock space.
We do not specify their domains. For more details the reader may consult e.g. [11,14,56].
Recall that the symmetric Fock space Fs.h/ over the one-particle space h D L2.R3/ has
been defined in (1.7). For h in h, the creation and annihilation operators a�.h/ and a.h/
are defined as follows:

a�.h/j
Wn h D

p
.nC 1/ jhi

_
IWn h; n � 0;

a.h/j
Wn h D

p
n hhj ˝ IWn�1 h; n > 0; a.h/jC D 0:

Formally, we also have

a.h/ D

Z
R3

h.k/a.k/ dk; a�.h/ D

Z
R3

h.k/a�.k/ dk;

where a.k/ and a�.k/ are operator-valued distributions which satisfy the well-known
canonical commutations relations�

a.k/; a.k0/
�
D
�
a�.k/; a�.k0/

�
D 0;

�
a.k/; a�.k0/

�
D ı.k � k0/:

The field operator ˆ.h/ is defined by

ˆ.h/ D
�
a.h/C a�.h/

�
=
p
2:

Let ! be a self-adjoint operator on h. The second quantization of ! is defined by

d�.!/jWn h D

nX
kD1

IWk�1 h
˝ ! ˝ IWn�k h

:

Note that this operator can be expressed in terms of creation and annihilation operators :

d�.!/ D
Z

R3

!.k/a�.k/a.k/ dk:

The coherent state of parameter f in h is the vector in Fock space defined as

‰f WD e
iˆ.

p
2
i f /� D e�

kf k2
h

2

1X
nD0

f ˝n
p
nŠ
;

where � stands for the Fock vacuum. Coherent states are eigenvectors of the annihilation
operator in the sense that, for all f , h in h, we have

a.h/‰f D hh; f ih‰f :

This identity implies the following relations:˝
‰f ; ˆ.h/‰f

˛
Fs.h/

D 2Rehh; f ih;
˝
‰f ; d�.!/‰f

˛
Fs.h/

D hf; !f ih:

These equalities were used to compute the expressions (1.12)–(1.13) of the Pauli–Fierz
energy of product stated of the form u˝‰f .
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A.2. Self-adjointness of the Pauli–Fierz Hamiltonian

In the next proposition, we recall the self-adjointness property of the Pauli–Fierz Hamil-
tonian H defined in (1.9). Recall also that the free Hamiltonian Hfree has been defined
in (1.10).

Proposition A.1. Suppose V satisfies Hypothesis 1 and thatW D g2!�1v2 is inL1.R3/.
Then H is a self-adjoint, semi-bounded operator with form domain Q.H/ D Q.Hfree/ for
all g in R.

Proof. Using the well-knownN� -estimates for the creation and annihilation operators, we
have a.hx/ Fs.h/

� k!�1=2hxkh
d�.!/1=2 


Fs.h/

;a�.hx/ Fs.h/
� k!�1=2hxkh

d�.!/1=2 


Fs.h/
C khxkhk kFs.h/:

Note that the quantity k!�1=2hxkh is well-defined sinceW is inL1. Now, by the Cauchy–
Schwarz inequality, we haved�.!/1=2 

2
Fs.h/

D
˝
 ; d�.!/ 

˛
Fs.h/

� k kFs.h/

d�.!/ 


Fs.h/

�
1

2"2
k k2Fs.h/

C
"2

2

d�.!/ 
2

Fs.h/
:

Taking " > 0 small enough allows us to conclude that there exists a < 1 and b in R such
that, for all  in Fs.h/, the following inequality holdsgˆ.hx/ Fs.h/

� akHfree kFs.h/ C bk kFs.h/

Therefore gˆ.hx/ is relatively bounded (and hence also relatively form bounded) with
respect to Hfree with relative bound less than 1. Applying the KLMN theorem (see e.g. [56,
Theorem X.17]) then yields the result.

As mentioned in the introduction, the conditionW 2 L1 is not satisfied by the polaron
model. It is nevertheless proven in [36], by other means, that the polaron Hamiltonian H
also identifies with a semi-bounded self-adjoint operator with form domain

Q.H/ D Q.Hfree/:

B. Existence of a minimizer for the Hartree equation

In this section, we prove the existence of a minimizer for the Hartree energy functional as
stated in Proposition 3.2. We write w D xF .W / D g2 xF .!�1v2/ (where, recall, ! is the
field dispersion relation, v is the coupling function and g is the coupling parameter) and
display the dependence of the Hartree energy functional (3.1) on the external potential V .
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In other words, we study in this section the energy functional

JV .u/ WD hu;HV ui �

Z
R3

�
w � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx; u 2 U;

where V;w W R3 ! R are real potentials, HV D ��C V , and

U D
®
u 2 QV j kukL2 D 1

¯
;

with QV � L
2.R3/ the form domain of HV .

We begin with a lemma showing that JV is well-defined and semi-bounded from below
under our assumptions.

Lemma B.1. Assume that V satisfies Hypothesis 1 and that W satisfies Hypothesis 3.
Then JV .u/ is well-defined for all u in U. Moreover, if the decompositionW DW1 CW2
in Hypothesis 3 can be chosen such that

kW2kL3;1 < C.1 � a/

for some universal constant C , where a is as in Hypothesis 1, then

EV WD inf
u2U

JV .u/ > �1: (B.1)

Proof. Combining (2.15)–(2.16) from Lemma 2.4 and (2.1) from Lemma 2.1, we deduce
that, for u in U,

JV .u/ �

�
1C

CkW2kL3;1

1 � a

�
hu;HV ui C

�
kW1kL1 C

bCkW2kL3;1

1 � a

�
; (B.2)

for some universal constant C , and

JV .u/ �

�
1 �

CkW2kL3;1

1 � a

�
hu;HV ui �

�
kW1kL1 C

bCkW2kL3;1

1 � a

�
:

Therefore, assuming CkW2kL3;1 < 1 � a, we deduce that (B.1) holds.

Next we prove Proposition 3.2. Recall that �V D inf �.HV /. Below, if zV is another
potential, we denote by J zV ,E zV ,� zV the quantities obtained from JV ,EV ,�V by replacing
V by zV .

Proof of Proposition 3.2. Let .uj /j2N � U be a minimizing sequence for JV , i.e.

JV .uj / �����!
j!C1

EV :

The strategy consists in showing that .uj /j2N converges strongly in L2.R3/, along some
subsequence, to a state u1 in QV which is then a minimizer for HV . We divide the proof
into several steps.
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Step 1. We prove that
EV < EV1 :

Let " > 0. Let u" in U be such that hu";HV u"i � �V C ". Applying (B.2), we obtain that

EV � JV .u"/ �

�
1C

CkW2kL3;1

1 � a

�
.�V C "/C kW1kL1 C

bCkW2kL3;1

1 � a
:

Letting "! 0, this yields

EV �

�
1C

CkW2kL3;1

1 � a

�
�V C kW1kL1 C

bCkW2kL3;1

1 � a
: (B.3)

On the other hand, for all u in U, we can write, using (2.15), (2.16) and the fact that
V1 � 0,

JV1.u/ � hu;HV1ui � kW1kL1 � CkW2kL3;1kuk
2
PH1

�
�
1 � CkW2kL3;1

�
�V1 � kW1kL1 ;

and hence
EV1 �

�
1 � CkW2kL3;1

�
�V1 � kW1kL1 : (B.4)

Combining (B.3) and (B.4) gives

EV1�EV �
�
1�CkW2kL3;1

�
�V1�

�
1C

CkW2kL3;1

1 � a

�
�V �2kW1kL1�

bCkW2kL3;1

1 � a

D
�
1 � CkW2kL3;1

�
.�V1 � �V / � 2kW1kL1 � CV kW2kL3;1 ; (B.5)

where we have set

CV WD C
.2 � a/�V C b

1 � a
:

The right-hand side of (B.5) is strictly positive since we assumed

CkW2kL3;1 �
1

2
.1 � a/ �

1

2

and provided that

2kW1kL1 C CV kW2kL3;1 <
1

4
.�V1 � �V /:

Step 2. We prove that for all u in U,

JV .u/ � EV C
�
EV1 �EV � 4kW1kL1 � CkW2kL3;1kuk

2
H1

�
kz�Ruk

2
L2

C o.R0/; (B.6)

as R!1, for some universal constant C > 0.
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Recall that the localizations functions �R, z�R have been defined in (1.5). Writing the
decomposition uD �2RuC z�

2
Ru and commuting �R, z�R through ��, we have by the IMS

localization formula (see e.g. [19])

hu;HV ui D h�Ru;HV �Rui C hz�Ru;HV z�Rui

�
1

2

˝
u;
�
jr�Rj

2
C jrz�Rj

2
�
u
˛
: (B.7)

The definitions of �R, z�R yield kjr�Rj2kL1 D O.R�2/, kjrz�Rj2kL1 D O.R�2/. More-
over, since V2.x/! 0 as jxj ! 1,

hz�Ru;HV z�Rui D hz�Ru;HV1z�Rui C o.R
0/kz�Ruk

2:

Inserting this into (B.7), we get

hu;HV ui D h�Ru;HV �Rui C hz�Ru;HV1z�Rui C o.R
0/: (B.8)

Next we consider the convolution term in JV .u/. We can writeZ
R3

�
w � juj2

�
.x/
ˇ̌
u.x/

ˇ̌2 dx D
Z

R3

�
w � j�Ruj

2
�
.x/
ˇ̌
.�Ru/.x/

ˇ̌2 dx

C

Z
R3

�
w � jz�Ruj

2
�
.x/
ˇ̌
.z�Ru/.x/

ˇ̌2 dx

C

Z
R3

�
w � j�Ruj

2
�
.x/
ˇ̌
.z�Ru/.x/

ˇ̌2 dx

C

Z
R3

�
w � jz�Ruj

2
�
.x/
ˇ̌
.�Ru/.x/

ˇ̌2 dx: (B.9)

We estimate the last two terms in the right-hand side of the previous equation. Since W1
is in L1.R3/, using (2.15) yieldsˇ̌̌̌ Z

R3

�
xF .W1/ � j�Ruj

2
�
.x/
ˇ̌
.z�Ru/.x/

ˇ̌2 dxC
Z

R3

�
xF .W1/ � jz�Ruj

2
�
.x/
ˇ̌
.�Ru/.x/

ˇ̌2 dx
ˇ̌̌̌

� 2kW1kL1k�Ruk
2
L2
kz�Ruk

2
L2
� 2kW1kL1kz�Ruk

2
L2
: (B.10)

Note that in the last inequality we used that k�RukL2 � kukL2 D 1. Next, since W2 is
in L3;1.R3/, using (2.16) yieldsˇ̌̌̌ Z

R3

�
xF .W2/ � j�Ruj

2
�
.x/
ˇ̌
.z�Ru/.x/

ˇ̌2 dxC
Z

R3

�
xF .W2/ � jz�Ruj

2
�
.x/
ˇ̌
.�Ru/.x/

ˇ̌2 dx
ˇ̌̌̌

� CkW2kL3;1k�Ruk
2
H1
kz�Ruk

2
L2
� CkW2kL3;1kuk

2
H1kz�Ruk

2
L2
C o.R0/; (B.11)

where in the last inequality we used in addition that k�RukH1 � kukH1 C o.R0/. Putting
together (B.8), (B.9), (B.10) and (B.11), we arrive at

JV .u/ � JV .�Ru/C JV1.z�Ru/

�
�
2kW1kL1 C CkW2kL3;1kuk

2
H1

�
kz�Ruk

2
L2
C o.R0/: (B.12)
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Now, suppose that k�RukL2 ¤ 0. Then we can write

JV .�Ru/ D

�
�Ru

k�RukL2
;HV

�Ru

k�RukL2

�
k�Ruk

2
L2

�

Z
R3

�
w �

ˇ̌̌̌
�Ru

k�RukL2

ˇ̌̌̌2�
.x/

ˇ̌̌̌
�Ru

k�RukL2
.x/

ˇ̌̌̌2
dx k�Ruk4L2

D JV

�
�Ru

k�RukL2

�
k�Ruk

2
L2

C

Z
R3

�
w �

ˇ̌̌̌
�Ru

k�RukL2

ˇ̌̌̌2�
.x/

ˇ̌̌̌
�Ru

k�RukL2
.x/

ˇ̌̌̌2
dxk�Ruk2L2kz�Ruk

2
L2
:

By definition of EV , we have that JV .�Ru=k�RukL2/ � EV . Estimating the integrated
term as above, using (2.15), (2.16) and k�RukH1 � kukH1 C o.R0/, we then deduce that

JV .�Ru/ � EV k�Ruk
2
L2
�
�
kW1kL1 C CkW2kL3;1kuk

2
H1

�
kz�Ruk

2
L2
C o.R0/: (B.13)

Similar arguments show that, if kz�Ruk ¤ 0, then

JV1.x�Ru/ � EV1kx�Ruk
2
L2
�
�
kW1kL1 C CkW2kL3;1kuk

2
H1

�
kz�Ruk

2
L2
C o.R0/

D
�
EV1 �EV � kW1kL1 � CkW2kL3;1kuk

2
H1

�
kz�Ruk

2
L2

CEV kz�Ruk
2
L2
C o.R0/: (B.14)

We claim that (B.12), (B.13) and (B.14) imply (B.6). Indeed, if kz�RukL2 D 0, then
k�RukL2 D 1 and (B.6) follows from (B.12) and (B.13). If k�RukL2 D 0, then kz�RukL2 D
1 and (B.6) follows from (B.12) and (B.14). Finally if both k�RukL2¤0 and kz�RukL2¤0,
then combining (B.12), (B.13) and (B.14) gives (B.6), since k�Ruk2L2 C kz�Ruk

2
L2
D 1.

Step 3. We prove that .uj/j2N is bounded in QV (equipped with the norm defined in (1.6)),
uniformly in W2 such that CkW2kL3;1 �

1
2
.1 � a/, for some universal constant C .

It suffices to show that .huj ;��uj iC huj ;VCuj i/j2N D .huj ;HVCuj i/j2N is bound-
ed. We proceed as in the proof of Lemma B.1. We write

huj ;HVCuj i D JV .uj /C huj ; V�uj i C

Z
R3

�
w � juj j

2
�
.x/
ˇ̌
uj .x/

ˇ̌2 dx: (B.15)

For the second term in the right-hand side of the previous equation, we use Hypothesis 1,
which implies that

huj ; V�uj i � ahuj ;HVCuj i C bkuj k
2
L2
: (B.16)

The third term of the right-hand side of (B.15) can be estimated using (2.15) and (2.16),
namelyˇ̌̌̌ Z

R3

�
w � juj j

2
�
.x/
ˇ̌
uj .x/

ˇ̌2 dx
ˇ̌̌̌
� kW1kL1kuj k

4
L2
C CkW2kL3;1kuj k

2
PH1
kuj k

2
L2

� kW1kL1 C CkW2kL3;1huj ;HVCuj i; (B.17)
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since kuj kL2 D 1. Inserting (B.16)–(B.17) into (B.15), assuming thatCkW2kL3;1 <1� a,
we obtain

huj ;HVCuj i �
1

1 � a � CkW2kL3;1

�
JV .uj /C b C kW1kL1

�
:

Since .JV .uj //j2N converges, it is bounded. This proves that .uj /j2N is bounded in QV .
In turn, since we can assume without loss of generality that JV .uj /�EV C1 for all j , one
easily concludes form the previous equation together with (B.3) that .uj /j2N is bounded
in QV uniformly in W2 such that CkW2kL3;1 �

1
2
.1 � a/.

Step 4. By Step 3, we know that .uj /j2N is bounded in QV . Hence there exists a subse-
quence, still denoted .uj /j2N , which converges weakly in QV . Let u1 2 QV be its limit.
In particular uj ! u1 weakly in H 1.R3/. We prove that .uj /j2N converges strongly
(along some subsequence) to u1 in L2.R3/.

As in Step 2, we write, for R > 0,

kuj � u1k
2
L2
D
�R.uj � u1/2L2 C z�R.uj � u1/2L2 : (B.18)

Consider first the term kz�R.uj � u1/k2L2 . Let " > 0. It follows from Step 2 that there
exists R0 > 0 such that, for R � R0,

kz�Ruj k
2
L2
�

JV .uj / �EV

EV1 �EV � 4kW1kL1 � CkW2kL3;1kuj k
2
H1

C ": (B.19)

Here it should be noted that the term EV1 � EV � 4kW1kL1 � CkW2kL3;1kuj k
2
H1 is

strictly positive. Indeed, we know from Step 3 that .kuj kH1/j2N is bounded uniformly in
W2 such that CkW2kL3;1 �

1
2
.1 � a/. Together with (B.5), this shows that

EV1 �EV � 4kW1kL1 � CkW2kL3;1kuj k
2
H1

�
1

2
.�V1 � �V / � 6kW1kL1 � .C C CV /kW2kL3;1 ;

By the assumption (1.14), the right-hand side of the previous equation is strictly positive.
Returning now to (B.19), using in addition that JV .uj / ! EV , we deduce that there
exists j0 in N such that, for all j � j0 (and R � R0),

kz�Ruj k
2
L2
� 2": (B.20)

Using the lower semi-continuity of k � kL2 , we also obtain that, for R � R0,

kz�Ru1k
2
L2
� lim inf

j!1
kz�Ruj k

2
L2
� 2": (B.21)

Now fixR0 > 0 such that (B.20)–(B.21) hold and consider the term k�R0.uj�u1/k
2
L2

from (B.18). Clearly, since .uj /j2N converges weakly to u1 in H 1.R3/, it follows that
.�R0uj /j2N converges weakly to �R0u1 in H 1.B2R0/, where

B2R0 D
®
x 2 R3 j jxj � 2R0

¯
:
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The Rellich–Kondrachov Theorem then gives the existence of a subsequence, still denoted
by .�R0uj /j2N , which converges strongly to �R0u1 in L2.B2R0/. We can then conclude
that there exists an integer j1 � j0, such that, for all j � j1,

kuj � u1k
2
L2
D
�R0.uj � u1/2L2 C z�R0.uj � u1/2L2 � "C 8":

Hence .uj /j2N converges strongly to u1 in L2.R3/.

Step 5. We prove that u1 is a minimizer for JV .
Obviously, since uj ! u1 strongly in L2.R3/, we have that ku1kL2 D 1. Moreover,

we clearly have
EV � JV .u1/:

Hence it remains to show that JV .u1/ � EV .
Recall that

JV .u1/ D
˝
u1; .��C V /u1

˛
�

Z
R3

�
w � ju1j

2
�
.x/
ˇ̌
u1.x/

ˇ̌2 dx: (B.22)

By Step 3, .uj / is bounded in H 1.R3/ and by Step 4, .uj / converges strongly to u1 in
L2.R3/. Hence Lemma 2.3 yields˝

u1; .��C V /u1
˛
� lim inf

j!1

˝
uj ; .��C V /uj

˛
:

It remains to consider the quartic term in (B.22). As in (2.15)–(2.16), we haveˇ̌̌̌ Z
R3

�
w � juj j

2
�
.x/juj .x/j

2 dx �
Z

R3

�
w � ju1j

2
�
.x/ju1.x/j

2 dx
ˇ̌̌̌

D

ˇ̌̌̌ Z
R3

�
w �

�
juj j

2
� ju1j

2
��
.x/
ˇ̌
uj .x/

ˇ̌2 dx

C

Z
R3

�
w � ju1j

2
�
.x/
�
juj .x/j

2
� ju1.x/j

2
�

dx
ˇ̌̌̌

.
�
kW1kL1 C kW2kL3;1

��
kuj k

2
H1 C ku1k

2
H1

�juj j2 � ju1j2L1
.
�
kW1kL1 C kW2kL3;1

��
kuj k

2
H1 C ku1k

2
H1

�
kuj C u1kL2kuj � u1kL2

.
�
kW1kL1 C kW2kL3;1

�
kuj � u1kL2 ;

where we used in the last inequality that kuj kL2 D 1 and that .uj /j2N is bounded in
H 1.R3/. Since uj ! u1 strongly in L2.R3/, this yieldsZ

R3

�
w � ju1j

2
�
.x/
ˇ̌
u1.x/

ˇ̌2 dx D lim
j!1

Z
R3

�
w � juj j

2
�
.x/
ˇ̌
uj .x/

ˇ̌2 dx: (B.23)

Inserting (2.5), (2.6), (2.7) and (B.23) into (B.22), we finally obtain that

JV .u1/ � lim inf
j!1

JV .uj / D EV :

This concludes the proof of the proposition.
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