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Seshadri constants of parabolic vector bundles

Indranil Biswas, Krishna Hanumanthu, Snehajit Misra, and Nabanita Ray

Abstract. LetX be a complex projective variety, and letE� be a parabolic vector bundle onX with
parabolic structure on a divisor. We introduce the notion of parabolic Seshadri constants of E�. It
is shown that these constants are analogous to the classical Seshadri constants of vector bundles, in
particular they have parallel definitions and properties. We prove a Seshadri criterion for parabolic
ampleness of E� in terms of the parabolic Seshadri constants of it. We also compute parabolic
Seshadri constants for symmetric powers and tensor products of parabolic vector bundles.

1. Introduction
Let X be a complex projective variety, and let L be a nef line bundle on X . For a point
x 2 X , the Seshadri constant of L at x, denoted by ".X;L; x/, is defined to be

".X;L; x/ WD inf
x2C

L � C

multx C
;

where the infimum is taken over all irreducible and reduced curvesC �X passing through
x; here L � C denotes the intersection number (equivalently, the degree of L restricted
to C ), while multx C denotes the multiplicity of the curve C at x.

Alternatively, we can define Seshadri constants as follows. Let � W zX!X be the blow
up of X at x, and let A denote the corresponding exceptional divisor. Then

".X;L; x/ D sup
®
� � 0 j ��.L/ � �A is nef

¯
:

This constant was first introduced by Demailly in [12] while he was studying prob-
lems related to generation by jets and Fujita’s Conjecture. The name originated from an
ampleness criterion of Seshadri [17, Theorem I.7.1]. Seshadri constant of line bundles
blossomed into a very active area of research, especially in connection with the posit-
ivity properties of the line bundle L. Seshadri constants for vector bundles of arbitrary
rank have also been studied. They were defined in [15] and studied in depth in [14].
See [6, 11, 19, 27] for some results on Seshadri constants of vector bundles.

A parabolic vector bundle on a curve is a vector bundle E with some additional
structures given by filtrations of certain fibers of E along with weights attached to these
filtrations (see Definition 2.1). We recall that parabolic vector bundles were introduced
by Seshadri (see [28]) while studying certain representations of the fundamental groups
of punctured Riemann surfaces; they were further studied by Mehta and Seshadri in [25].
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The notion of parabolic vector bundle was generalized to higher dimensions by Maruyama
and Yokogawa in [24].

There has been a lot of research on parabolic vector bundles, starting with a descrip-
tion of their moduli spaces in [24, 25]. In [4], certain orbifold bundles were associated to
parabolic bundles (see also [9, 10]). The notion of a ramified principal GLn.C/-bundle,
which generalizes the notion of principal GLn.C/-bundles, was introduced in [1]. It was
shown there that parabolic vector bundles can be viewed as ramified GLn.C/-bundles.
Using this identification, [7] constructed a projectivization of a parabolic vector bundle as
well as the tautological line bundle on the projectivization.

Many positivity properties, such as ampleness of line bundles, have been generalized
to vector bundles. Some of these notions have also been generalized to the context of
parabolic vector bundles. For example, the notion of ample parabolic bundles was defined
in [3]. The ampleness of a parabolic vector bundle is characterized by the ampleness of the
tautological bundle on the projectivization associated to that parabolic bundle (see [7]).

Proceeding further in this direction, it is natural to ask whether other positivity notions
can also be generalized to the set-up of parabolic vector bundles. As remarked earlier,
Seshadri constant is an important invariant in the study of positivity. In this paper, we gen-
eralize the notion of Seshadri constants to parabolic vector bundles on projective varieties.
Crucial ingredients in our construction are orbifold bundles associated to the parabolic
bundles and projectivization of parabolic bundles. Many of our results and proofs are
motivated by analogous results of Fulger and Murayama in [14].

In Section 2, we recall the definition and basic properties of parabolic vector bundles
that we use. They are included for the sake of completeness and also for the convenience
of the reader.

Let X be an irreducible projective variety and let E� be a parabolic vector bundle
on X . In Section 3, we give the definition of the parabolic Seshadri constant "�.E�; x/ of
E� at any point x 2 X ; see Definition 3.1. This definition makes use of the notion of pro-
jectivization of a parabolic bundle; see Section 2.4 for a description of this construction.
Alternately, one can also use the notion of orbifold bundles (described in Section 2.3) to
define parabolic Seshadri constants.

Different alternative characterizations of parabolic Seshadri constants are given in
Theorems 3.3 and 3.5.

We also prove an analogue of the Seshadri criterion for ampleness for parabolic bun-
dles (see Theorem 3.6). We state this criterion here for the convenience of the reader. See
Section 3 for the notation.

Theorem (Theorem 3.6). Let E� be a parabolic vector bundle on a smooth irreducible
projective variety X such that the numerical class � 0 � OP.E 0/.N.E�// is � -ample. Then
E� is parabolic ample if and only if

inf
x2X

"�.E�; x/ > 0;

where the infimum is taken over all points of X .
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An upper bound for parabolic Seshadri constants is given in Theorem 3.7.
In Section 4, we prove several properties of parabolic Seshadri constants. We define

the notion of multi-point Seshadri constants for the usual vector bundles and relate it to
the parabolic Seshadri constants.

One of the results proved in this section describes how parabolic Seshadri constants
can be computed using restriction to curves.

Theorem (Theorem 4.3). LetE� be a parabolic nef vector bundle on a smooth irreducible
complex projective variety X , and let E 0 ! Y be the corresponding orbifold bundle over
Y (see Section 2.3). Then

"�.E�; x/ D N.E�/ � inf
C�Y

²
�min.�

�E 0/P
y2�1.x/ multy C

³
;

where the infimum is taken over all irreducible curves C � Y such that C \ �1.x/ ¤ ;,
and � W xC ! C is the normalization map.

We also compute parabolic Seshadri constants of symmetric powers of parabolic vec-
tor bundles (see Theorem 4.5) as well as tensor products of parabolic vector bundles (see
Theorem 4.6). These results are stated below.

Theorem (Theorem 4.5). LetE� be a parabolic nef vector bundle on a smooth irreducible
complex projective variety X . Then for any positive integer m

"�
�
Sm.E�/; x

�
D m"�.E�; x/

for every point x 2 X .

Theorem (Theorem 4.6). LetE� and F� be two parabolic nef vector bundles on a smooth
irreducible complex projective variety X having a common parabolic divisor D � X .
Then for every point x 2 X ,

"�.E� ˝ F�; x/ � N.E� ˝ F�/ �

²
"�.E�; x/

N.E�/
C
"�.F�; x/

N.F�/

³
:

Some examples and questions are mentioned in Section 4.1.
We work throughout over the field C of complex numbers. The field of real numbers

is denoted by R.

2. Preliminaries

In this section, we briefly recall the definitions, properties and constructions associated to
parabolic vector bundles; more details can be found in [1–4, 7, 8].

2.1. Parabolic sheaves

We start by defining the parabolic vector bundles.
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Definition 2.1. Let X be a connected smooth complex projective variety of dimension d ,
and let D � X be an effective divisor on X .

(1) Let E be a torsion-free coherent OX -module. A quasi-parabolic structure on E
with respect to D is a filtration by OX -coherent subsheaves

E D F1.E/ � F2.E/ � � � � � Fl .E/ � FlC1.E/ D E.�D/;

where E.�D/ WD E ˝OX OX .�D/. The above integer l is called the length of
the filtration.

(2) A parabolic structure on E with respect to D is a quasi-parabolic structure as
above together with a system of weights ¹˛1; ˛2; : : : ; ˛lº, where each ˛i is a real
number such that 0 � ˛1 < ˛2 < � � � < ˛l�1 < ˛l < 1. The numbers ¹˛iºliD1 are
called parabolic weights and we say that ˛i is attached to Fi .E/.

(3) A parabolic sheaf is a torsion-free coherent OX -module E with a parabolic struc-
ture.
We denote a parabolic sheaf by the triple .E;F�; ˛�/, where F� denotes the above
filtration and ˛� denotes the system of parabolic weights. When F� and ˛� are
clear from the context, we denote .E;F�; ˛�/ by E�.

(4) If E is a vector bundle on X , then E� is called a parabolic vector bundle with
parabolic divisor D. The rank of a parabolic vector bundle is simply the rank of
the underlying vector bundle E.

For any parabolic sheaf E� defined as above, and for any t 2 R, define the following
filtration ¹Etºt2R of coherent sheaves parametrized by R:

Et D Fi .E/
�
� Œt �D

�
;

where Œt � is the integral part of t and ˛i�1 < t � Œt � � ˛i with ˛0 D ˛l � 1 and ˛lC1 D 1.
The filtration ¹Etºt2R evidently determines the parabolic structure .E;F�; ˛�/ uniquely.
Note that any coherent subsheaf M � E has an induced parabolic structure such that the
corresponding filtration ¹Mtºt2R is defined by Mt WD .Et�Œt� \M/.Œt �D/.

Consider the decomposition

D D

nX
jD1

bjDj ;

where every Dj is a reduced irreducible divisor, and bj � 1. Let

fj W bjDj ! X

denote the inclusion map of the subscheme bjDj . For each 1 � j � n, choose a filtration

0 D F
j

ljC1
� F

j

lj
� F

j

lj�1
� � � � � F

j
1 D f

�
j E: (2.1)
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Fix real numbers ˛j
k

, 1 � k � lj C 1, such that

1 D ˛
j

ljC1
> ˛

j

lj
> ˛

j

lj�1
> � � � > ˛

j
2 > ˛

j
1 � 0:

For every 1 � j � n and 1 � k � lj C 1, define the coherent subsheaf xF ij � E using the
following short exact sequences:

0! xF
j

k
! E ! .f �j E/=F

j

k
! 0:

For 1 � j � n and 0 � t � 1, let ljt be the smallest number in the set of integers®
k 2 ¹1; 2; : : : ; lj C 1º j ˛

j

k
� t

¯
:

Finally, set

Et WD

n\
jD1

xF
j

lt
� E: (2.2)

The filtration ¹Etºt2R in (2.2) defines a parabolic structure on E. It is straightforward to
check that all parabolic structures on E, with D as the parabolic divisor, arise this way.

Let
� W X nD ! X (2.3)

denote the inclusion map of the complement of D. Let E� and W� be two parabolic
sheaves on X , with D as the parabolic divisor, such that E0jXnD and W0jXnD are locally
free. For any c 2 R, define Mc to be the subsheaf of ����.E ˝ W / generated by all
Es ˝Wt with s C t � c, where � is the map in (2.3). The parabolic sheaf given by the
filtration ¹Mcºc2R is called the parabolic tensor product of E� and W�, and it is denoted
by E� ˝W�. The parabolic m-fold symmetric product Sm.E�/ is the invariant subsheaf
of the m-fold parabolic tensor product of E� for the natural action of the permutation
group for the factors of the tensor product. The underlying sheaf of the parabolic sheaf
Sm.E�/ will be denoted by Sm.E�/0.

Definition 2.2 ([3, Definition 2.3]). A parabolic bundle E� is called parabolic ample if
for any coherent sheaf F on X there is an integerm0 such that for anym �m0, the tensor
product F ˝ Sm.E�/0 is globally generated.

Definition 2.3 ([8, Definition 3.2]). A parabolic vector bundle E� is called parabolic nef
if there is an ample line bundle L over X such that Sm.E�/˝ L is parabolic ample for
every positive integer m.

2.2. Semistability of parabolic bundles

We fix an ample line bundle L on X . For any coherent OX -module E, the degree of E
with respect to L is defined to be

deg.E/ WD
�
c1.E/ [ c1.L/

d�1
�
\ ŒX� 2 Z (2.4)
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(see [24]). The parabolic degree of E� with respect to L, denoted by par_deg.E�/, is
defined as follows:

par_deg.E�/ WD
Z 0

�1

deg.Et / dt 2 R:

The parabolic slope of E�, denoted by par_�.E�/, is the quotient par_deg.E�/
rank.E/ 2 R.

Definition 2.4. A parabolic sheaf E� is called parabolic semistable (respectively, para-
bolic stable) if for every subsheafM ofE such that 0< rank.M/< rank.E/, the following
inequality is satisfied:

par_�.M�/ � par_�.E�/
�
respectively, par_�.M�/ < par_�.E�/

�
:

Assumption 2.5. Henceforth we will always impose the following four conditions on the
parabolic bundles E�, with parabolic divisor D, that we will consider:

(a) The parabolic divisorDD
Pn
iD1 biDi is a normal crossing divisor, i.e., all bi D 1

and Di are smooth divisors and they intersect transversally.

(b) All F ij on Di in sequence (2.1) are subbundles of f �i E for every i .

(c) All the weights ˛ij are rational numbers; so ˛ij D m
i
j =N , where N is some fixed

integer and mij 2 ¹0; 1; : : : ; N � 1º.

(d) Every point x of D has a neighborhood Ux � X , and a decomposition of EjUx
into a direct sum of line bundles, such that the filtration of allEjUx\Di , 1� i � n,
are constructed using the decomposition. To explain this condition in detail, let
Di1 ; : : : ; Dix be the irreducible components of D D

Pn
iD1Di that contain the

point x. For every k 2 i1; : : : ; ix , consider the filtration ¹F kj º
lk
jD1 of f �

k
E DEjDk

in sequence (2.1) (recall that bk D 1 by (a)). The condition says that there is a
holomorphic decomposition into a direct sum of line bundles

E
ˇ̌
Ux
D

rEM
ˇD1

Lˇ ;

where rE D rank.E/, such that every F kj jUx\Dk considered above is of the form

F kj
ˇ̌
Ux\Dk

D

rk;jM
˛D1

Ld˛
ˇ̌
Ux\Dk

;

where rk;j D rank.F kj / and 1 � d1 < d2 < � � � < drk;j � rE .

2.3. Orbifold bundles

Let Y be a smooth complex projective variety; its group of algebraic automorphisms will
be denoted by Aut.Y /. Let � be a finite group and  W � ! Aut.Y / a homomorphism
giving an action of � on Y .
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Definition 2.6. An orbifold bundle on Y , with � as the orbifold group, is a vector bundle
V on Y together with a lift of the action of � on Y to V , i.e., � acts on the total space of
V such that the action of any g 2 � gives a vector bundle isomorphism between V and
 .g�1/�V . A subsheaf F of an orbifold bundle V is called an orbifold subsheaf if the
action of � on V preserves F . A homomorphism V ! V 0 between orbifold bundles is a
homomorphism V ! V 0 between the vector bundles that commutes with the actions of �
on V and V 0.

Let zL be an orbifold line bundle on Y which is also ample. Then we can define the
degree of any coherent sheaf on Y using zL as done in (2.4).

Definition 2.7. An orbifold bundle V on Y is called orbifold semistable (respectively,
orbifold stable) if for any orbifold subsheaf F of V with 0 < rank.F / < rank.E/ the
following inequality holds:

deg.F /
rank.F /

�
deg.V /
rank.V /

�
respectively,

deg.F /
rank.F /

<
deg.V /
rank.V /

�
:

Now letX be a smooth projective complex variety, and letD be an effective divisor on
X satisfying Assumption 2.5 (a). Fix an integer N � 2. From the Covering Lemma of Y.
Kawamata, [21, Theorem 17] and [22, Theorem 1.1.1], we know that there is a connected
smooth projective variety Y and a (ramified) Galois covering morphism

 W Y ! X; (2.5)

with Galois group � D Gal.K.Y /=K.X//, such that zD WD .�D/red is a normal crossing
divisor on Y , and

�Di D kiN.
�Di /red (2.6)

for all 1 � i � n, where ki are some positive integers.
LetE� be a parabolic bundle onX . Then using the Galois cover  W Y !X in (2.5) we

can construct an orbifold bundle V on Y such that the parabolic bundle E� is recovered
from it by taking �-invariants of the direct image of the twists of V using the irreducible
components of zD (see [4,9,10] for the explicit construction). Note that the same  is used
for all parabolic bundles E� with the same parabolic divisor D.

For the convenience of the reader we will briefly recall the construction of an orbifold
bundle on Y from a parabolic bundle on X with parabolic structure on D. First let L� be
a parabolic line bundle on X with parabolic structure on D. So L is a line bundle on X ,
and for each 1 � i � n we have 0 � ˛i D mi1

N
< 1 which is the parabolic weight over

the component Di of D; see Assumption 2.5 (c). Then the orbifold line bundle L0 on Y
corresponding to the parabolic line bundle L� is

L0 D .�L/˝

 
nO
iD1

OY
�
kim

i
1.
�Di /red

�!
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(see (2.6) for ki ); note that each .�Di /red is preserved by the action of � on Y and hence
the above line bundle

nO
iD1

OY
�
kim

i
1.
�Di /red

�
has a natural orbifold structure. The orbifold structure on L0 is given by the orbifold
structures on �L and

Nn
iD1 OY .kim

i
1.
�Di /red/. The action of � on L0 produces an

action of � on the direct image �L0. It is straightforward to check that

L D .�L
0/� � �L

0:

Note that this construction is local in the sense that we do not need X or Y to be a pro-
jective variety. Let S � D denote the singular locus of D, and let

� W Y n �1.S/ ,! Y (2.7)

be the inclusion map. For a parabolic bundle E� on X , consider the restriction of it to the
complement X n S . It can be locally expressed as direct sums of parabolic line bundles.
Therefore, using the above construction of an orbifold line bundle from a parabolic line
bundle, and patching locally defined orbifold bundles, we get an orbifold vector bundle
E on Y n �1.S/. For the patching to work compatibly, note that if V1 and V2 are two
orbifold bundles on �1.U / for two decompositions of the parabolic bundle E�jU into
direct sum of parabolic line bundles, then the natural isomorphism of orbifold bundles

�
�
E
ˇ̌
Un.U\D/

�
D V1

ˇ̌
�1.U /\.Y n�1.D//

�
�! V2

ˇ̌
�1.U /\.Y n�1.D//

D �
�
E
ˇ̌
Un.U\D/

�
extends to an isomorphism V1j�1.U /\.Y n�1.S//

�
�! V2j�1.U /\.Y n�1.S//. Since the codi-

mension of �1.S/ � Y is two (if �1.S/ is nonempty), it follows that the direct image
��E is a coherent sheaf on Y , where � is the map in (2.7). The conditions in Assumption 2.5
ensure that the coherent sheaf ��E is locally free. The action of � on E produces an action
of � on ��E . This orbifold bundle ��E is the one associated to the parabolic bundle E�.

Let L be an ample line bundle on X . Consider zL WD �L which is an orbifold line
bundle on Y . Since  is a finite morphism, and L is ample, the line bundle zL is also
ample. We will use L (respectively, zL) to define the degree of a coherent sheaf on X
(respectively, Y ).

The above mentioned correspondence between parabolic bundles and orbifold bundles
satisfies the following compatibility condition with semistability.

Proposition 2.8 ([4, Lemmas 2.7 and 3.16]). The above orbifold bundle V corresponding
to the parabolic bundle E� is orbifold semistable with respect to zL if and only if E� is
parabolic semistable with respect toL. Also, V is semistable with respect to zL in the usual
sense if and only if E� is parabolic semistable with respect to L.

Proposition 2.9 ([3, Lemma 4.6], [2, Lemma 2.18], [8, Proposition 3.2]). A parabolic
bundle E� is parabolic ample (respectively, nef) if and only if the corresponding orbifold
bundle V is ample (respectively, nef) as a vector bundle (in the usual sense of [16]).
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Parabolic Chern classes, denoted by ci .E�/, of a parabolic bundleE� have been intro-
duced in [2] (see also [20]). Let V be the associated orbifold bundle on Y corresponding
to a parabolic bundle E� (satisfying Assumption 2.5) for a suitable Galois covering map
 W Y ! X . Then

�ci .E�/ D ci .V /

for all i � 0 (see [2, Section 3]).

2.4. Parabolic bundles as ramified GL.n; C/-bundles

Let X be a smooth complex projective variety, and let D be a normal crossing divisor
on X . Let

� W EGL.n;C/ ! X

be a ramified principal GL.n;C/-bundle over X with ramification over D. This means
the total space EGL.n;C/ is a smooth complex quasiprojective variety equipped with an
algebraic right action of GL.n;C/

f W EGL.n;C/ � GL.n;C/! EGL.n;C/

satisfying the following five conditions:

(1) � ı f D � ı p1, where p1 is the natural projection of EGL.n;C/ � GL.n;C/ to
EGL.n;C/,

(2) for each point x 2 X , the action of GL.n;C/ on the reduced fiber ��1.x/red is
transitive,

(3) the restriction of � to ��1.X �D/ a principal GL.n;C/-bundle over X �D,

(4) for each irreducible componentDi �D, the reduced inverse image ��1.Di /red is
a smooth divisor and

yD WD

lX
iD1

��1.Di /red

is a normal crossing divisor on EGL.n;C/, and

(5) for any point x 2 D, and any point z 2 ��1.x/, the isotropy subgroup

Gz � GL.n;C/;

for the action of GL.n;C/ onEGL.n;C/, is a finite group, and if x is a smooth point
ofD, then the natural action of Gz on the quotient line TzEGL.n;C/=Tz�

�1.D/red

is faithful.

Note that the last condition implies that the isotropy subgroup Gz � GL.n;C/ is
actually a finite cyclic group.

There is a natural bijective correspondence between the complex vector bundles of
rank n on X and the principal GL.n;C/-bundles on X . This bijection sends a principal
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GL.n;C/-bundle F to the vector bundle F �GL.n;C/ Cn associated to F for the standard
action of GL.n;C/ on Cn. This correspondence extends to a bijective correspondence
between the ramified principal GL.n;C/-bundles with ramification over D and parabolic
vector bundles of rank n with D as the parabolic divisor (see [1, Theorem 1.1]).

We next recall the construction of projectivization of a parabolic bundle. Let E� be a
parabolic vector bundle over X of rank n. Let

� W EGL.n;C/ ! X

be the corresponding ramified principal GL.n;C/-bundle with ramification divisor D.
Consider the standard action of GL.n;C/ on Cn; it induces an action of GL.n;C/ on the
projective space Pn�1. The projectivization of E�, denoted by P .E�/, is defined to be the
associated (ramified) fiber bundle

P .E�/ WD EGL.n;C/.P
n�1/ WD EGL.n;C/ �

GL.n;C/ Pn�1 ! X:

Take any point x 2 D and any z 2 ��1.x/. Let Gz � GL.n;C/ be the isotropy sub-
group for z for the action of GL.n;C/ on EGL.n;C/. We recall that Gz is a finite group (by
condition (5) above). Let nx be the order of Gz . Note that the order of the group Gz is
independent of the choice of z 2 ��1.x/ because GL.n;C/ acts transitively on ��1.x/.
The number of distinct integers nx as x varies over D is finite (see [7]). Let

N.E�/ D l.c.m.¹nx j x 2 Dº (2.8)

be the least common multiple of all these finitely many positive integers nx .
For any point y 2 Pn�1, let Hy � GL.n;C/ be the isotropy subgroup for the nat-

ural action of GL.n;C/ on Pn�1; so Hy is a maximal parabolic subgroup of GL.n;C/.
The group Hy then acts on the fiber of OPn�1.1/ ! Pn�1 over the point y. From the
definition of N.E�/ in (2.8) it follows immediately that for any z 2 ��1.D/ and any
y 2 Pn�1, the subgroupGz \Hy � GL.n;C/ acts trivially on the fiber of the line bundle
OPn�1.N.E�// WD OPn�1.1/

˝N.E�/ over the point y.
Consider the action of GL.n;C/ on the total space of OPn�1.N.E�// constructed using

the standard action of GL.n;C/ on Cn. Let

EGL.n;C/
�
OPn�1

�
N.E�/

��
WD EGL.n;C/ �

GL.n;C/ OPn�1
�
N.E�/

�
! X

be the associated fiber bundle. As the natural projection OPn�1.N.E�//! Pn�1 inter-
twines the actions of GL.n;C/ on OPn�1.N.E�// and Pn�1, it produces a projection

EGL.n;C/
�
OPn�1

�
N.E�/

��
! EGL.n;C/.P

n�1/ D P .E�/: (2.9)

Using the above observation that Gz \Hy acts trivially on the fibers of OPn�1.N.E�//

over y it follows easily that the projection in (2.9) makes EGL.n;C/.OPn�1.N.E�/// an
algebraic line bundle over the projectivization P .E�/. We denote this line bundle in (2.9)
by OP.E�/.1/.
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Let E 0 ! Y be the orbifold bundle over Y corresponding to the parabolic vector
bundle E�, where  W Y ! X is a covering as in (2.5) with Galois group � D Gal./.
Then the action of � on E 0 produces a left action of � on P .E 0/. Clearly, we have

P .E 0/=� D P .E�/:

The isotropy subgroups, for the action of � on P .E 0/, act trivially on the corresponding
fibers of OP.E 0/.N.E�//; this follows from condition (5) above in the definition of a rami-
fied principal GL.n;C/-bundle and (2.8). Hence the quotient space OP.E 0/.N.E�//=� is
actually a line bundle over P .E 0/=� D P .E�/. We have a natural isomorphism of line
bundles

OP.E 0/

�
N.E�/

�
=� D OP.E�/.1/:

Note that the pullback of OP.E�/.1/ to P .E 0/ under the finite quotient map

P .E 0/! P .E 0/=� D P .E�/

is OP.E 0/.N.E�//. The parabolic bundle E� is parabolic ample (respectively, parabolic
nef) if and only if the line bundle OP.E�/.1/ on P .E�/ is ample (respectively, nef) [7,
Proposition 3.3]. Also, the following three statements are equivalent:

• the parabolic vector bundle E� is nef,

• E 0 is nef, and

• OP.E 0/.N.E�// is nef

(see [8, Proposition 3.2]).

3. Definition of Seshadri constant of parabolic bundles

Let E� be a parabolic nef vector bundle of rank n on a smooth projective variety X . We
fix a point x 2 X , and let

 x W Blx.X/! X

be the blow up of X at x with exceptional divisor Ax D  �1x .x/. Consider the following
fiber product diagram:

Bl��1.x/
�
P .E�/

�
D P .E�/ �X Blx.X/ P .E�/

Blx.X/ X

f x
z� �

 x

(3.1)

The above morphism � is the projectivization of the parabolic bundle E� as constructed
in Section 2.4. Hence the map � is flat and the fiber of � is a Pn�1 (see [7]).

Let � be the numerical equivalence class of the line bundle OP.E�/.1/! P .E�/.
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Definition 3.1. Let E� be a parabolic nef vector bundle on a smooth projective varietyX .
The parabolic Seshadri constant of E� at a point x 2 X , denoted by "�.E�; x/, is defined
to be

"�.E�; x/ WD sup
®
� 2 R>0 j f x�.�/ � �z��Ax is nef

¯
(see (3.1)).

Remark 3.2. As mentioned before, there is a canonical bijection between the parabolic
vector bundles of rank n with parabolic divisor D and the ramified principal GL.n;C/-
bundles ramified over D. In particular, the constructions of the projectivization P .E�/
and the tautological bundle OP.E�/.1/ for a parabolic bundle E� are uniquely determined
by E�. So the parabolic Seshadri constant "�.E�; x/ is well-defined.

The next theorem shows that the parabolic Seshadri constant "�.E�; x/ can be com-
puted by examining the intersection of � with certain curves on P .E�/.

Theorem 3.3. Let E� be a parabolic nef vector bundle on a smooth complex projective
variety X , and let x 2 X be a point of X . Let C�;x be the set of all integral curves C �
P .E�/ that intersect the fiber ��1.x/ while not being contained in ��1.x/. Then

"�.E�; x/ D inf
C2C�;x

²
� � C

multx ��C

³
:

Proof. First note that C 2 C�;x if and only if multx ��C > 0. Let zC be the strict transform
of a curve C 2 C�;x under the map f x in (3.1). We have

z��Ax � zC D Ax � z�� zC D multx ��C:

Hence ®f x�.�/ � �z��Ax¯ � zC � 0
if and only if � � C � �multx ��C .

Let C 0 be an irreducible curve in Bl��1.x/.P .E�// which is contained in the excep-
tional locus z��1.Ax/ of f x . Then

z��Ax � C
0
D Ax � z��C

0 < 0:

Since E� is given to be parabolic nef, the line bundle � is nef. Therefore, we conclude
that ®f x�.�/ � �z��Ax¯ � C 0 D ®� �f x� zC 0 � �Ax � z��C 0¯ � 0
for all � � 0. Every irreducible curve on Bl��1.x/.P .E�// satisfies one of the following
conditions:

• It is the strict transform of a curve C 2 C�;x .

• It is contained in the exceptional locus z��1.Ax/ of f x .

• It does not intersect z��1.Ax/.

Now using the nefness of f x�.�/, we obtain the result.



Seshadri constants of parabolic vector bundles 1175

Remark 3.4. Let � W P .E�/! X be the natural projection map, and let � D OP.E�/.1/,
which is constructed in Section 2.4. For any point x 2 X , the fiber ��1.x/ is isomorphic
to the projective space Pn�1, and �j��1.x/ D OPn�1.N.E�//.

Let y 2 P .E�/. We can relate the classical Seshadri constant ".�; y/ of � and the
parabolic Seshadri constant "�.E�; �.y// of E� at �.y/ as follows:

".�; y/ D inf
y2C�P.E�/

²
� � C

multy C

³
D min

²
inf

C 6���1.�.y//�P.E�/

²
� � C

multy C

³
; inf
C���1.�.y//�P.E�/

²
� � C

multy C

³³
:

Hence we have

".�; y/ � min
²

inf
C 6���1.�.y//�P.E�/

²
� � C

multy C

³
; N.E�/

³
� min

®
"�
�
E�; �.y/

�
; N.E�/

¯
:

Now we give another alternative characterization of parabolic Seshadri constants. This
characterization uses the Galois covering  W Y ! X and the orbifold bundle E 0 over Y
associated to E�; see Section 2.3.

Theorem 3.5. Let E� be a parabolic nef vector bundle on a smooth irreducible complex
projective varietyX , and let E 0! Y be the corresponding orbifold bundle over Y , where
 W Y ! X is a covering as in (2.5) with Galois group � D Gal./. Let

�x W Bl�1.x/ Y ! Y

be the blow up of Y along �1.x/. Consider the following fiber product diagram:

P .��xE
0/ D P .E 0/ �Y Bl�1.x/ Y P .E 0/

Bl�1.x/ Y Y

f�x
z� �

�x

Denote the numerical equivalence class of the line bundle OP.E 0/.1/ by � 0. Let A�1.x/ be
the exceptional divisor of the map �x . Then

"�.E�; x/ D N.E�/ � sup
®
� 2 R>0 jf�x�.� 0/ � �z��.A�1.x// is nef

¯
D N.E�/ � inf

C2C�;�1.x/

²
� 0 � CP

y2�1.x/ multy ��C

³
;

where C�;�1.x/ is the set of all irreducible curves C in P .E 0/ such that

C ª ��1
�
�1.x/

�
and

P
y2�1.x/ multy ��C > 0, while N.E�/ is defined as in (2.8).
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Proof. Note that P .E 0/ �Y Bl�1.x/ Y D Bl��1.�1.x// P .E 0/. Consider the following
commutative diagram:

Bl�1.x/ Y Blx X

Y X

z

�x  x



such that z�.Ax/ D A�1.x/. Also, we have the following commutative diagram:

P .E 0/ �Y Bl�1.x/ Y P .E 0/ P .E�/ D P .E 0/=�

Bl�1.x/ Y Y X D Y=�:

f�x
z�

 0

� �

�x 

The universal property of a fiber product furnishes the following commutative diagram:

P .E 0/ �Y Bl�1.x/ Y

P .E�/ �X Blx X P .E�/

Blx X X

 0ıf�x

zız�

�

z x

z� �

 x

Recall that  0�.�/ D N.E�/� 0. Hence for any � > 0, the following three statements are
equivalent:

• the line bundle f x�.�/ � �z��Ax is nef,

• ��.f x�.�/ � �z��Ax/ is nef, and

• N.E�/f�x�.� 0/ � �z��.A�1.x// is nef.

Therefore, we conclude that

"�.E�; x/ D N.E�/ � sup
®
� 2 R>0 jf�x�.� 0/ � �z��.A�1.x// is nef

¯
:

Next we claim that

sup
®
� 2 R>0 jf�x�.� 0/ � �z��.A�1.x// is nef

¯
D inf
C2C�;�1.x/

²
� 0 � CP

y2�1.x/ multy ��C

³
: (3.2)

To prove (3.2), let zC be the strict transform of a curve C 2 C�;�1.x/ under the blow
up map f�x W Bl��1.�1.x// P .E 0/! P .E 0/:
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Note that
z��A�1.x/ � zC D A�1.x/ � z�� zC D

X
y2�1.x/

multy ��C:

Hence ®f�x�.� 0/ � �z��A�1.x/¯ � zC � 0
if and only if

� 0 � C � �
X

y2�1.x/

multy ��C:

If C 0 is an irreducible curve in Bl��1.�1.x// P .E 0/, and it is contained in the exceptional
locus z��1.A�1.x// of f�x , then®f�x�.� 0/ � �z��A�1.x/¯ � zC D ®� 0 �f�x� zC � �A�1.x/ � z��C 0¯ � 0
for all � � 0.

Any irreducible curve on Bl��1.�1.x// P .E 0/ satisfies one of the following three con-
ditions:

• It is the strict transform of a curve C 2 C�;�1.x/.

• It is contained in the exceptional locus z��1.A�1.x// of f�x .

• It does not intersect z��1.A�1.x//.

Now using the nefness of f�x�.� 0/ we conclude that (3.2) holds. This also completes the
proof of the theorem.

We use the notation of Theorem 3.5 in what follows.

Theorem 3.6 (Seshadri criterion for parabolic ampleness). Let E� be a parabolic vector
bundle on a smooth irreducible projective variety X such that the numerical class

� 0 � OP.E 0/

�
N.E�/

�
is � -ample. Then E� is parabolic ample if and only if

inf
x2X

"�.E�; x/ > 0;

where the infimum is taken over all points of X .

Proof. Suppose that E� is parabolic ample. Then the numerical equivalence class of the
tautological line bundle � D ŒOP.E�/.1/� is ample on P .E�/. Let h be an ample divisor
class onX such that � � ı��h is ample for a sufficiently small ı > 0. Now for allC 2C�;x ,
we have

.� � ı��h/ � C > 0:

Then

� � C

multx ��C
D
.� � ı��h/ � C

multx ��C
C

ı��h � C

multx ��C
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�
ı��h � C

multx ��C

� ı
h � ��C

multx ��C

� ı".h; x/

> 0:

The last inequality follows using the usual Seshadri criterion for ample divisors, because
h is ample; see [23, Theorem 1.4.13]. Hence

inf
C2C�;x

²
� � C

multx ��C

³
� ı".h; x/ > 0:

Consequently, from Theorem 3.3 it is deduced that

"�.E�; x/ � ı".h; x/ > 0

for every point x 2 X . Thus we have

inf
x2X

"�.E�; x/ � ı inf
x2X

".h; x/ > 0:

The last inequality again follows from the usual Seshadri criterion applied to the ample
divisor h.

To prove the converse, assume that infx2X "�.E�; x/ > 0 for all x 2 X . Therefore,
using Theorem 3.5 we have

inf
x2X

inf
C2C�;�1.x/

²
� 0 � CP

y2�1.x/ multy ��C

³
> 0: (3.3)

Assume that E� is not parabolic ample, i.e., � 0 � OP.E 0/.N.E�// is not ample. Note that
as � 0 is � -ample, we have � 0 is nef, i.e., E� is parabolic nef. Then by the Seshadri criterion
for ample divisors, one has

inf
z2P.E 0/

".� 0; z/ D 0:

So for each m 2 N, there exist points zm 2 P .E 0/ and irreducible curves Cm � P .E 0/
through zm such that

� 0 � Cm <
1

m
multzm Cm:

We claim that the curve Cm is not contracted by � for infinitely many m:
If the claim is not true, Cm are contracted by � for all m� 0. Then for all m� 0

inf
y2Y

inf
z2��1.y/

"
�
� 0j��1.y/; z

�
�

� 0 � Cm

multzm Cm
<
1

m
;

so that
inf
y2Y

inf
z2��1.y/

"
�
� 0j��1.y/; z

�
D 0: (3.4)
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Choose an ample divisor h on Y so that � 0 C ��h is ample. Hence by the Seshadri
ampleness criterion for ample divisors, we conclude that

inf
y2Y

inf
z2��1.y/

"
�
.� 0 C ��h/j��1.y/; z

�
D inf
y2Y

inf
z2��1.y/

"
�
� 0j��1.y/; z

�
> 0;

which in fact contradicts (3.4). This proves our claim.
Therefore � jCmk W Cmk ! Y is finite for an infinite sequence ¹mkº1kD1 of distinct

positive integers. Let ymk D �.zmk /. Then by [13, Lemma 2.3], we have

multymk ��Cmk � multzmk Cmk :

This contradicts (3.3). Thus E� is parabolic ample.

The next theorem gives an upper bound for the parabolic Seshadri constants.

Theorem 3.7. Let E� be a parabolic nef vector bundle on X , and x 2 X a point. Then

"�.E�; x/ �

�
N.E�/

dim �.W /� 0 dimW � ŒW �� dimW
dim �.W /

�
� j�j

�
�
0 dimW�1.x/ ŒW�1.x/�

�� 1
dim �.W /

;

as W ranges through the subvarieties of P .E 0/ that meet ��1.�1.x// without being
contained in ��1.�1.x//, where � and  are as in Theorem 3.5. In the above inequality,
W�1.x/ WD �

�1.�1.x// \W .

Proof. Consider the following commutative diagram

P .��xE
0/ D P .E 0/ �Y Bl�1.x/ Y P .E 0/

Bl�1.x/ Y Y

f�x
z� �

�x

where � is the projectivization of the orbifold bundle E 0 over Y , and �x is the blow up of
Y at �1.x/. Recall from Theorem 3.5 that

"�.E�; x/ D N.E�/ � sup
®
� 2 R>0 jf�x�.� 0/ � �z��.A�1.x// is nef

¯
:

Let W � P .E 0/ be a subvariety that meets ��1.�1.x// without being contained in
��1.�1.x//. Let W 0 � P .��xE

0/ be the strict transform of W by the blow up morph-
ism z�x . Then by the above observation we have�

N.E�/z�
�
x .�
0/ � "�.E�; x/z�

�.A�1.x//
�dimW 0

�W 0 � 0:

We now specialize to the situation where

W 0 D P .��xE
0/:
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Let dimY D n and dim P .E 0/ D nC e. Thus�
N.E�/f�x�.� 0/ � "�.E�; x/z��.A�1.x//�nCe � 0:

Note that the self-intersection number Ak
�1.x/

D 0 for k > n. Expanding binomially we
thus get

nX
kD0

�
nC e

k

��
� "�.E�; x/z�

�A�1.x/
�k
N.E�/

nCe�kf�x�.� 0nCe�k/ � 0:
Note that z�x�.�.�z�

�A�1.x//
k/ are pseudoeffective since the restriction�A�1.x/jA�1.x/

is ample. Hence using the projection formula we conclude that

N.E�/
nCe� 0nCe C

�
nC e

n

�
N.E�/

e
�
� "�.E�; x/z�

�A�1.x/
�nf�x�.� 0e/ � 0: (3.5)

Now we have the following equalities:�
� "�.E�; x/z�

�A�1.x/
�nf�x�.� 0e/ D "n�.E�; x/z�x��.�z��A�1.x//n�� 0e

D "n�.E�; x/�
�
��
�x�.�A�1.x//

�n�
� 0e

D "n�.E�; x/�
�
�
� �1.x/

�
� 0e

D �"n�.E�; x/j�j
�
� 0e � ŒW�1.x/�

�
;

where W�1.x/ D ��1.�1.x// \W .
From (3.5) it follows that

N.E�/
n
� � 0nCe �

�
nC e

n

�
"n�.E�; x/j�j

�
� 0e � ŒW�1.x/�

�
� 0:

Rearranging the terms we obtain the required bound on "�.E�; x/.

For a parabolic vector bundle E�, we define �parmin .E�/ to be the parabolic slope of
the minimal parabolic semistable subquotient of E�, or in other words, �parmin .E�/ is the
parabolic slope of the final piece of the graded object for the Harder–Narasimhan filtration
of E�. Note that if E 0 is the orbifold bundle on Y corresponding to E� for the Galois
morphism  W Y ! X as in (2.5), then we have

�min.E
0/ D

ˇ̌
Gal./

ˇ̌
� �

par
min .E�/:

Theorem 3.8. Let E� be a parabolic ample vector bundle over a smooth irreducible
projective curve C with parabolic divisor D. Then for any point x 2 C , the parabolic
Seshadri constant satisfies the following:

"�.E�; x/ D N.E�/ � �
par
min .E�/ when x … D

and
"�.E�; x/ � N.E�/ � �

par
min .E�/ when x 2 D:

In particular, "�.E�; x/ �
N.E�/
rank.E/ for every point x 2 C .
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Proof. As in (2.5), let  W C 0 ! C be a ramified Galois covering with Galois group
Gal./ D � . Then the cardinality of each fiber isˇ̌

�1.x/
ˇ̌
D j�j

if x … D, and it is j�1.x/j � j�j if x 2 D.
Since C is a curve, the blow up map �x in Theorem 3.5 is the identity morphism, and

hence f�x is also the identity morphism. Consequently,

"�.E�; x/ D N.E�/ sup
®
� 2 R>0 j �

0
� ���1

�
�1.x/

�
is nef

¯
:

Denote the numerical class of fiber of � by f . Then

"�.E�; x/ D N.E�/ � sup
®
� 2 R>0 j �

0
� �

ˇ̌
�1.x/

ˇ̌
f is nef

¯
:

Therefore,

"�.E�; x/ D N.E�/
1ˇ̌

�1.x/
ˇ̌".E 0; y/;

where y 2 C 0. From [15, Theorem 3.1], it follows that ".E 0; y/ D �min.E
0/: Using [2,

equation (2.15)], we also have �min.E
0/ D j�j�

par
min.E�/. Hence the theorem follows.

Remark 3.9. If E� is a parabolic nef bundle but it is not ample, then the corresponding
orbifold bundle E 0 is also nef but not ample. In this case

".E 0; y/ D �min.E
0/ D 0:

Hence "�.E�; x/ D 0.

4. Properties of parabolic Seshadri constants

In this section we define the notion of multipoint Seshadri constants for nef vector bundles
on irreducible projective varieties, generalizing the case of a single point. We will then
give a description of the parabolic Seshadri constants using restriction to curves.

Definition 4.1. Let E be a vector bundle on an irreducible complex projective variety Y ,
and let Z D ¹z1; : : : ; znº be a set of distinct points of Y . Let �z W BlZ Y ! Y be the
blow-up of Y along Z. Consider the following commutative diagram:

P .��E/ P .E/

BlZ Y Y

f�z
z� �

�z

Let � and � 0 be the tautological bundles on P .E/ and P .��E/ respectively, and let

A0zi D
e�z�1.��1/.zi /
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for each 1 � i � n. Then the multipoint Seshadri constant of E atZ, denoted by ".E;Z/,
is defined as follows:

".E;Z/ WD sup

´
� > 0 j � 0 � �

nX
iD1

A0zi is nef

µ
:

It is straight-forward to verify the following equivalent formulation:

".E;Z/ D inf
C�;Z

²
� � CPn

iD1 multzi ��C

³
;

where C�;Z is the set of all irreducible curves C � P .E/ such that

• C \ ��1.Z/ ¤ ;, i.e.,
Pn
iD1 multzi ��C > 0, and

• C ª ��1.Z/.

Note that when Z is a singleton, the above definition recovers the usual single point
Seshadri constant of a vector bundle.

The single point Seshadri constants of vector bundles over smooth curves have a par-
ticularly nice description. For a nef vector bundle E over a smooth curve Y , for any point
y 2 Y , we have

".E; y/ D inf
C2C�;y

²
� � C

multy ��C

³
D �min.E/;

where C�;y is the set of curves C � P .E/ such that C intersects the fiber ��1.y/ but it is
not contained in ��1.y/.

Remark 4.2. Let C be an integral curve and Z D ¹z1; : : : ; znº � C a finite subset. Then

multzi C � 1 for each 1 � i � n:

Set � W zC ! C to be the normalization. For a vector bundle E over C , consider the
following fiber product diagram

Bl��1.Z/ P .E/ D P .��E/ P .E/

zC C

z�

z� �

�

where P .E/ is the projective bundle over C associated to E and � is the natural map. Let
� and � 0 denote the numerical classes of OP.��E/.1/ and OP.E/.1/ respectively. Then

z��.�/ D � 0:

Let B 0 � P .��E/ (respectively, B � P .E/) be a curve which is not in any fiber of z�
(respectively, �). Suppose that B 0 is the strict transform of B under the blow up map z�.
Then

B 0 � � 0 D B � �:
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Hence for any point y 2 zC , we have

".E;Z/ D inf
B2C�;Z

²
� � BPn

iD1 multzi ��B

³
D

1Pn
iD1 multzi C

²
inf

y2��1.Z/
inf

B 02Cz�;y

²
� 0 � B 0

multy z��B 0

³³
D

1Pn
iD1 multzi C

®
inf

y2��1.Z/
".��E; y/

¯
D

1Pn
iD1 multzi C

®
inf

y2��1.Z/
�min.�

�E/
¯

D
�min.�

�E/Pn
iD1 multzi C

:

The next result describes how parabolic Seshadri constants can be computed using
restriction to curves.

Theorem 4.3. Let E� be a parabolic nef vector bundle on a smooth irreducible complex
projective variety X , and let E 0 ! Y be the corresponding orbifold bundle over Y (see
Section 2.3). Then

"�.E�; x/ D N.E�/ � inf
C�Y

²
�min.�

�E 0/P
y2�1.x/ multy C

³
;

where the infimum is taken over all irreducible curves C � Y such that C \ �1.x/ ¤ ;,
and � W xC ! C is the normalization map.

Proof. Let C � Y be an irreducible curve such that C \ �1.x/ ¤ ;. Consider the fol-
lowing diagram:

P .E 0jC / P .E 0/

C Y

�c �

Recall that C�;�1.x/ is the set of all irreducible curves W in P .E 0/ such that

W ª ��1
�
�1.x/

�
; and

X
y2�1.x/

multy ��W > 0:

Similarly, we denote by C�c ;�1.x/ the set of all irreducible curves B � P .E 0jC / such
that

B ª ��1c
�
C \ �1.x/

�
and

P
y2�1.x/ multy �c�B > 0. Note that

C�;�1.x/ D
[
C�Y

C�c ;�1.x/; (4.1)
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where the union is taken over all irreducible curves C in Y such that C \ �1.x/ ¤ ;.
From Theorem 3.5 we have

"�.E�; x/ D N.E�/ � inf
C2C�;�1.x/

²
� 0 � CP

y2�1.x/ multy ��C

³
:

Using (4.1) we have

"�.E�; x/ D N.E�/ � inf
C�Y

inf
B2C�c ;�1.x/

²
� 0 � BP

y2�1.x/ multy �c�B

³
;

where the infimum is taken over all irreducible curves C in Y such that C \ �1.x/ ¤ ;.
Now observe that for an irreducible curveC � Y withC \ �1.x/¤;, using Remark

4.2 it follows that

inf
B2C�c ;�1.x/

²
� 0 � BP

y2�1.x/ multy �c�B

³
D

�min.�
�E 0/P

y2�1.x/ multy C
:

This completes the proof.

For a parabolic vector bundle E� of rank r we define its parabolic discriminant,
denoted by4par .E�/, as follows:

4par .E�/ WD 2rc2.E�/ � .r � 1/c
2
1.E�/: (4.2)

Remark 4.4. Let E� be a parabolic nef vector bundle on X . Then, by Theorem 4.3, for
any point x 2 X

"�.E�; x/ D N.E�/ � inf
C�Y

²
�min.�

�E 0/P
y2�1.x/ multy C

³
;

where the infimum is taken over all irreducible curves C � Y such that C \ �1.x/ ¤ ;,
and � W xC ! C is the normalization map. Note that

�min.�
�E 0/ � �.��E 0/ D

�
det.E 0/ � C

�
= rank.E 0/:

Thus

"�.E�; x/ �
N.E�/

rank.E�/
inf
C�Y

²
det.E 0/ � CP

y2�1.x/ multy C

³
D

N.E�/

rank.E�/
"
�
det.E 0/; �1.x/

�
:

Here ".det.E 0/; �1.x// denotes the multipoint Seshadri constants of E 0 at �1.x/ � Y .
Note that the rank of the parabolic vector bundle E� is simply the rank of the underlying
vector bundle E.

Moreover, if E� is a semistable parabolic ample vector bundle with 4par .E�/ D 0

(see (4.2)), then E 0 is also semistable ample bundle on Y with vanishing discriminant.
Hence in this case

�min.�
�E 0/ D �.��E 0/
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(see [5, Theorem 1.2]). Therefore, in this case we get the following equality:

"�.E�; x/ D
N.E�/

rank.E�/
"
�
det.E 0/; �1.x/

�
for every point x 2 X .

We now describe the parabolic Seshadri constants of symmetric powers and tensor
products of parabolic vector bundles.

Theorem 4.5. Let E� be a parabolic nef vector bundle on a smooth irreducible complex
projective variety X . Then for any positive integer m

"�
�
Sm.E�/; x

�
D m"�.E�; x/

for every point x 2 X .

Proof. Let E 0 ! Y be the corresponding orbifold bundle over Y as in Section 2.3. For
any positive integerm, the parabolic bundle corresponding to the orbifold bundle Sm.E 0/
is the parabolic symmetric product Sm.E�/ (see [3]). Therefore, from Proposition 2.9 it
follows that Sm.E�/ is nef if E� is nef. Thus by Theorem 4.3,

"�
�
Sm.E�/; x

�
D N.E�/ � inf

C�Y

²
�min

�
��.SmE 0/

�P
y2�1.x/ multy C

³
;

where the infimum is taken over all irreducible curves C � Y such that C \ �1.x/ ¤ ;,
and � W xC ! C is the normalization map.

As taking symmetric powers commutes with the operation of pullback, and

�min.S
mV / D m�min.V /

for a vector bundle V on a smooth complex projective curve xC , we have

"�
�
Sm.E�/; x

�
D N.E�/ � inf

C�Y

²
m�min

�
��E 0

�P
y2�1.x/ multy C

³
D m"�.E�; x/:

This completes the proof.

Theorem 4.6. LetE� and F� be two parabolic nef vector bundles on a smooth irreducible
complex projective variety X having a common parabolic divisor D � X . Then for every
point x 2 X ,

"�.E� ˝ F�; x/ � N.E� ˝ F�/ �

²
"�.E�; x/

N.E�/
C
"�.F�; x/

N.F�/

³
:

Proof. The correspondence between parabolic vector bundles and orbifold bundles takes
tensor product of two orbifold bundles to the tensor product of the corresponding parabolic
vector bundles (see [3]). Let E 0 and F 0 be the orbifold bundles on Y corresponding to E�



I. Biswas, K. Hanumanthu, S. Misra, and N. Ray 1186

and F� respectively, where Y is the Galois cover of X as in Section 2.3. Then E 0 ˝ F 0

corresponds to the parabolic bundle E� ˝ F�. By Theorem 4.3, for any point x 2 X , we
have

"�.E� ˝ F�; x/ D N.E� ˝ F�/ � inf
C�Y

²
�min

�
��.E 0 ˝ F 0/

�P
y2�1.x/ multy C

³
;

where the infimum is taken over all irreducible curves C � Y such that C \ �1.x/ ¤ ;,
and � W xC ! C is the normalization map (see Theorem 4.3). For the smooth curve xC , we
also have

�min
�
��.E 0 ˝ F 0/

�
D �min.�

�E 0/C �min.�
�F 0/:

Therefore,

"�.E� ˝ F�; x/ D N.E� ˝ F�/ � inf
C�Y

²
�min.�

�E 0/P
y2�1.x/ multy C

C
�min.�

�F 0/P
y2�1.x/ multy C

³
� N.E� ˝ F�/ �

²
"�.E�; x/

N.E�/
C
"�.F�; x/

N.F�/

³
:

This completes the proof.

4.1. Examples and further questions

Let X be a smooth complex projective variety. Let E� be a parabolic vector bundle on X
with E as the underlying vector bundle. If X has dimension one, and E is ample, then
it follows that E� is parabolic ample; see [3, Theorem 3.1]. But in general this is not the
case. We will give two examples to show that the parabolic ampleness of E� does not
imply the ampleness of E and vice versa.

Let D be an effective divisor on X and suppose that D D
Pn
iD1Di is the decom-

position of D into irreducible components. A parabolic line bundle on X with parabolic
divisor D is a pair L� D .L; ¹˛1; : : : ; ˛nº/, where L is a line bundle on X and the para-
bolic weight 0 � ˛i < 1 corresponds to the divisorDi . Assume that ˛i 2Q for all i . Then
L� is parabolic ample if and only if

c1.L�/ WD c1.L/C

nX
iD1

˛i ŒDi � 2 H
1;1.X/ \H 2.X;Q/

lies in the ample cone of X .

Example 4.7. Let � W PC .W /! C be a ruled surface over an elliptic curve C defined
by the normalized rank 2 bundle W which sits in the following exact sequence:

0! OC ! W ! OC .p/! 0

for some point p 2 C . Therefore the associated invariant e D � deg.W / is �1 (see [18,
Proposition 2.8]). We consider the simple normal crossing divisor � C f , where � denotes
the normalized section of � such that OP.W /.�/' OP.W /.1/ and f denotes a fiber of the
map � .
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Let L be a line bundle on PC .W / which is numerically equivalent to 1
2
� � 1

2
f . Then

L is not ample by [18, Proposition 2.21]. Next consider the parabolic bundle

L� D
�
L; ¹˛1; ˛2º

�
on PC .W / with parabolic weights ˛1 D 1

2
and ˛2 D 1

2
. Note that

c1.L�/ D c1.L/C ˛1� C ˛2f D �

which is inside the ample cone of PC .W /. ThusL� is parabolic ample, butL is not ample.

Example 4.8. Let � W PC .W /! C be a ruled surface over P1C defined by the normalized
rank 2 bundle W D OP1C

˚ OP1C
.�1/. Then the associated invariant e is equal to 1. As

done above, we consider the simple normal crossing divisor � C f , where � denotes the
normalized section of � such that OP.W /.�/ ' OP.W /.1/ and f denotes a fiber of the
map � .

Let L � 1
2
� C f be a line bundle on PC .W /. Then L is ample by [18, Proposition

2.20]. Next consider the parabolic bundle

L� D
�
L; ¹˛1; ˛2º

�
with parabolic weights ˛1 D 7

8
and ˛2 D 1

4
. Note that

c1.L�/ D c1.L/C ˛1� C ˛2f D
11

8
� C

10

8
f

which does not lie in the ample cone of PC .W /. Thus L� is not parabolic ample, but L is
ample.

In view of Examples 4.7 and 4.8, using the Seshadri criterion for parabolic ample-
ness (see Theorem 3.6) we see that there can not be an inequality between "�.L�; x/ and
".L; x/, in general. It is still interesting to ask the following question.

Question 4.9. Suppose E� is an ample parabolic bundle on a projective variety X such
that the underlying vector bundle E is also ample. Then can we compare "�.E�; x/ and
".E; x/?

Example 4.10. Let Z be a smooth complex projective variety, and let W be a vector
bundle on Z. Let

� W X WD P .W /! Z

be the associated projective bundle on Z. Take D � Z to be a normal crossing divisor on
Z, and let F� be a semistable parabolic bundle of rank r on Z with parabolic divisor D.
Then ��F� is a parabolic semistable bundle onX with parabolic divisorD0 D ��.D/. Let
D0 D

Pn
iD1D

0
i be the decomposition of D0 into irreducible components.

Let L� be a parabolic line bundle with parabolic divisorD0 on X . So L� is given by a
pair .L; ¹˛1; : : : ; ˛nº/, where L is a line bundle on X and 0 � ˛i < 1 corresponds to the
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divisor D0i . Assume that ˛i 2 Q for all i . Then

E� D �
�.F�/˝ L�

is parabolic semistable with4par .E�/ D 0. Note that

c1.L�/ WD c1.L/C

nX
iD1

˛i ŒDi �:

We may choose L� in such a way that

c1.E�/ D c1.�
�F�/C rc1.L�/

lies in the ample cone of X . This way we can produce parabolic ample bundles on X with
4par .E�/ D 0 (see [26, Example 22]). Using Remark 4.4 we can compute the parabolic
Seshadri constants for such parabolic bundles.

In this situation, there is the following result on the relationship between the parabolic
ampleness of E� and the ampleness of its first parabolic Chern class.

Theorem 4.11 ([26, Theorem 19]). Let E� be a semistable parabolic vector bundle of
rank r on a smooth complex projective variety X such that 4par .E�/ D 0. Then E� is
parabolic ample if and only if its parabolic first Chern class c1.E�/ is in the ample cone
of X .

So one can ask the following question.

Question 4.12. Can we compare "�.E�; x/ and ".c1.E�/; x/ in the above situation?
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