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Genuine versus naïve symmetric monoidal G -categories

Tobias Lenz

Abstract. We prove that through the eyes of equivariant weak equivalences the genuine symmetric
monoidalG-categories of Guillou and May [Algebr. Geom. Topol. 17 (2017), no. 6, 3259–3339] are
equivalent to just ordinary symmetric monoidal categories with G-action. Along the way, we give
an operadic model of global infinite loop spaces and provide an equivalence between the equivariant
category theory of genuine symmetric monoidal G-categories and the G-parsummable categories
studied by Schwede [J. Topol. 15 (2022), no. 3, 1325–1454] and the author [New York J. Math.
29 (2023), 635–686].
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1. Introduction

Commutative monoids up to coherent homotopy play an important role in algebraic topol-
ogy, not least because of their close connection to stable homotopy theory: every coher-
ently commutative monoid can be delooped to a connective spectrum, and this construc-
tion is an important tool to obtain stable homotopy types from data of a more algebraic
nature, in particular featuring prominently in the modern construction of the algebraic
K-theory of rings [29]. Over the years, several equivalent approaches to the subject have
been studied, in particular May’s operadic approach in terms ofE1-algebras [28], Segal’s
theory of special �-spaces [40], and various “ultra-commutative” models [35].
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Equivariantly, i.e. with respect to the action of a finite group G, the theory becomes
more subtle: namely, if one wants such G-equivariantly coherently commutative monoids
to deloop to genuine G-spectra in the sense of equivariant stable homotopy theory, one
has to encode additional algebraic structure in the form of additive norms, intuitively cor-
responding to certain “twisted” sums. In the operadic approach, this leads to the notion
of genuine G-E1-operads and their algebras, the genuine G-E1-algebras. However, in
many practical contexts the latter are much harder to construct than their non-equivariant
counterparts: in particular, if we equip an ordinary E1-algebra with a G-action, even a
trivial one, this does not yield a genuine G-E1-algebra in any natural way, but only a
so-called naïve one. Similarly, when one wants to consider equivariant generalizations of
algebraic K-theory, one faces the obstacle that typically the inputs one wants to consider
only come to us as naïve symmetric monoidal G-categories, which are (pseudo)algebras
over a certain E1-operad E†� with trivial G-action, as opposed to the desired genuine
symmetric monoidal G-categories.

To circumvent this issue, Guillou and May [14] introduced a general procedure (fol-
lowing Shimakawa) that builds a genuine symmetric monoidal G-category from a naïve
one via some sort of Borel construction. However, as remarked in [14] and reiterated
in [31], these are actually the only examples they were able to construct, which natu-
rally leads to the question whether other genuine symmetric monoidal G-categories exist.
While Guillou and May originally expected this to be the case, we prove the following
comparison in this paper.

Theorem A (See Theorem 8.4). The Guillou–May–Shimakawa construction induces an
equivalence between the quasi-category of naïve symmetric monoidal G-categories (with
respect to a certain explicit notion of weak equivalence) and the quasi-category of genuine
symmetric monoidal G-categories (with respect to the G-equivariant weak equivalences,
i.e. functors inducing weak homotopy equivalences on nerves of fixed points).

In fact, Guillou and May more generally work with (genuine and naïve) symmetric
monoidal G-categories internal to the category of topological spaces, and we also prove
the analogue of Theorem A in this context, see Theorem 9.17. Note however that both of
these crucially rely on using the G-equivariant weak equivalences—for the G-equivariant
equivalences (functors inducing equivalences of categories on fixed points) there are both
trivial and non-trivial examples of genuine symmetric monoidal G-categories not arising
via their construction, see Remarks 8.13 and 8.14. However, at least for applications to
equivariant algebraic K-theory the G-weak equivalences are fine enough; in particular,
Theorem A allows us to derive a version of the main result of [20] for genuine symmetric
monoidalG-categories, which generalizes a non-equivariant result due to Thomason [43].

Theorem B (See Theorem 8.15). The Guillou–May construction of equivariant algebraic
K-theory exhibits the quasi-category of connective genuineG-spectra as a quasi-localiza-
tion of the category of genuine symmetric monoidal G-categories.
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We also prove a “non-group completed” version of this in the spirit of Mandell’s non-
equivariant result [26], see Theorem 7.2.

Global and G -global E1-algebras

Our proof of Theorem A uses the language of G-global homotopy theory in the sense
of [20]. Intuitively speaking, 1-global (typically referred to simply as global) homotopy
theory [38] studies equivariant phenomena that exist universally across all suitable groups,
while G-global homotopy theory generalizes this to the presence of an additional twist in
the form of a group action and can be viewed as a synthesis of ordinary global and G-
equivariant homotopy theory.

The main portion of the present paper is then devoted to developing aG-global version
of the theory of E1-algebras and connecting this to the �-space- and ultra-commutative
approaches studied in [20], which we hope to be interesting in its own right, and which
already gives new results in the global case G D 1. In particular, we introduce G-global
E1-operads and we prove the following comparison, refining an equivariant result due to
May, Merling, and Osorno [30].

Theorem C (See Theorem 5.28). There exists an equivalence between the quasi-category
of specialG-global �-spaces [20] and the quasi-category of O-algebras for anyG-global
E1-operad O.

In fact, we develop the whole theory both for algebras in simplicial sets as well as
algebras in categories. As an upshot, this then allows us to give a new model for the cat-
egory theory of genuine symmetric monoidal G-categories—which unlike the respective
homotopy theories differs from the one for naïve symmetric monoidal G-categories—in
terms of theG-parsummable categories studied in [23,39]. These represent a rather differ-
ent approach to “coherent commutativity,” similar to the “ultra-commutative” philosophy
of [35, 38]; somewhat loosely speaking, we can think of them as G-categories equipped
with a strictly equivariant, unital, associative, and commutative, but only partially defined
operation.

Theorem D (See Theorem 5.29). There exists an equivalence between the quasi-category
of genuine symmetric monoidal G-categories and the quasi-category of G-parsummable
categories, both formed with respect to the G-equivariant equivalences of categories.

On the pointset level, G-parsummable categories actually possess more structure than
just genuine symmetric monoidalG-categories in that unlike the latter they already model
the corresponding G-global theory, see Theorem 5.27. Nevertheless, they are arguably
easier to construct, as we illustrate by an example related to the algebraic K-theory of
groups rings (see Section 6).

Related work

Recently, Barrero [1] studied a notion of global E1-algebras in Schwede’s orthogonal
space model of global homotopy theory [38]. Our approach presented here differs from
his treatment in basically two ways.
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Firstly, we work in a different model based on the “universal finite group.” While this
requires us to restrict to finite groups (as opposed to all compact Lie groups), this model
is necessary to develop the corresponding theory for categories, and moreover this is what
allows us to construct genuineG-globalE1-algebras of a more combinatorial or algebraic
nature.

Secondly, and more importantly, we consider all operads and algebras with respect
to the Cartesian product as opposed to the so-called box product used by Barrero. While
this comes at the cost of various “†-freeness” conditions on the operads in question, this
is more in line with the usual (non-)equivariant approach, and it is moreover in some
sense one step further removed from the ultra-commutative model of global coherent
commutativity originally studied by Schwede in [38]: for example, the analogous non-
equivariant comparison between E1-algebras in the usual sense and a certain notion of
ultra-commutative monoids due to Sagave and Schlichtkrull [35] proceeds through E1-
algebras with respect to the box product.

Both of these changes actually facilitate the comparison with the equivariant theory
developed by Guillou and May and in particular are important for the proofs of Theo-
rems A and B.

Strategy and outline

While it seems natural to approach Theorems A and B via model categorical techniques,
one soon faces the issue that the Thomason style model structure on G -Cat from [8] is
not well behaved monoidally; in fact, already for G D 1 it is not known to me whether
it transfers to categories of operadic algebras, or whether these even carry any model
structure at all whose weak equivalences are the G-weak equivalences.

On the other hand, as we will see below the G-equivariant equivalences interact as
nicely with the Cartesian product as one could wish, which in particular allows us to
construct transferred model structures for operadic algebras—sadly, however, Theorem A
is simply no longer true with respect to this finer notion of equivalence.

We will solve this dilemma by pushing the comparison with respect to theG-equivari-
ant equivalences of categories as far as we can (exploiting all the model categorical
techniques available in this setting) and only switching to the G-equivariant weak equiva-
lences in the very end. As a consequence of this approach, the present paper can be roughly
divided into two parts (separated by a short interlude in the form of Section 6): the first
part is mostly model categorical in nature and establishes the general theory of operadic
algebras with respect to the G-equivariant equivalences of categories, as well as the cor-
responding simplicial theory; here we in particular prove Theorems C and D. The second
part is then devoted to the proofs of Theorems A and B, where we have to work with bare
categories with weak equivalences as well as the quasi-categories they represent. In more
detail:

In Section 2 we give a brief reminder on unstable G-global homotopy theory, before
developing the basic theory of G-global operads and their algebras. Section 3 is then
devoted to the analogous theory in the world of categories.
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In Section 4 we compare the G-global and G-equivariant approaches. Afterwards, we
relate the operadic models to the models we studied in [20] in Section 5, in particular
proving Theorems C and D. As an application of these results, we construct a genuine
symmetric monoidalG-category whose equivariant algebraicK-theory captures the usual
algebraic K-theory of group rings in Section 6.

Section 7 explains the relation between the categorical and simplicial models. After-
wards, we prove Theorems A and B in Section 8 building on the model categorical
comparisons established in earlier sections as well as our work in [20, 23]. Finally, Sec-
tion 9 generalizes our main results to categories internal to spaces.

2. G -global homotopy theory

2.1. A reminder on G -global spaces

In this section we will set up the theory of G-global operads and the corresponding alge-
bras. We begin by giving a very brief reminder on (unstable) G-global homotopy theory
in the sense of [20, Chapter 1]. The approach we will take for this is based on a certain
simplicial monoid EM that we call the universal finite group.

Definition 2.1. We set ! WD ¹0; 1; : : :º, and we write M D Inj.!; !/ for the monoid of
self-injections of ! (with monoid structure given by composition).

Using the indiscrete category functorEWSet!Cat (i.e. the right adjoint to the functor
ObWCat! Set) we get a categoryEM, and asE preserves products, this inherits a monoid
structure. We will also write EM for the simplicial monoid N.EM/.

Definition 2.2. A finite subgroupH �M D .EM/0 is universal if the inducedH -action
on ! makes the latter into a complete H -set universe, i.e. every countable H -set embeds
equivariantly into !.

One can show that any finite groupH admits an injective homomorphismH!M with
universal image, and that any two such homomorphisms are conjugate [20, Lemma 1.2.8],
i.e. any abstract finite group is isomorphic to a universal subgroup ofEM in an essentially
unique way.

Moreover, the universal subgroups are closed under subgroups and conjugation [20,
Corollary 1.2.7], i.e. they form a so-called family of subgroups.

Theorem 2.3. There is a unique model structure on the category EM-G -SSet of sim-
plicial sets with .EM � G/-action in which a map is a weak equivalence or fibration if
and only if f ' is a weak homotopy equivalence or Kan fibration, respectively, for every
universal subgroupH �M and every homomorphism 'WH ! G; here we write .–/' for
the fixed points with respect to the graph subgroup �H;' WD ¹.h; '.h// W h 2 H º.

We call this the G-global model structure and its weak equivalences the G-global
weak equivalences. This model structure is proper, simplicial, and combinatorial with
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generating cofibrations®
.EM �' G/ � .@�

n ,! �n/ W H �M universal, 'WH ! G, n � 0
¯

and generating acyclic cofibrations®
.EM �' G/ � .ƒ

n
k ,! �n/ W H �M universal, 'WH ! G, 0 � k � n

¯
;

where EM �' G WD .EM � G/=�H;' . Moreover, filtered colimits and finite products in
it are homotopical.

Proof. See [20, Corollary 1.2.33 and Lemma 1.1.3].

Remark 2.4. Schwede originally studied unstable global homotopy theory using a model
in terms of orthogonal spaces [38, Chapter 1]. While his approach contains equivariant
information for all compact Lie groups, the more combinatorial models we employ here
(and in particular the use of categories later) force us to restrict to finite groups. Other than
that, 1-global homotopy theory in our sense recovers usual global homotopy theory: for
G D 1 the above is equivalent to Schwede’s orthogonal spaces localized with respect to a
certain natural notion of “Fin-global weak equivalences,” see [20, Section 1.5].

In fact, the above is an instance of a more general construction of model structures for
actions of simplicial monoids, i.e. (strict) monoids in the category SSet or, equivalently,
simplicial objects in the category of monoids.

Theorem 2.5. LetM be a simplicial monoid and let F be a collection of finite subgroups
of the ordinary monoid M0. Then there exists a unique model structure on the category
M -SSet of simplicial sets with M -action in which a map f is a weak equivalence or
fibration if and only if f H is a weak homotopy equivalence or Kan fibration, respectively,
for every H 2 F . We call this the F -model structure and its weak equivalences the F -
weak equivalences. It is simplicial, proper, and combinatorial with generating cofibrations®

M=H � .@�n ,! �n/ W H 2 F ; n � 0
¯

and generating acyclic cofibrations®
M=H � .ƒnk ,! �n/ W H 2 F ; 0 � k � n

¯
:

Moreover, filtered colimits and finite products in this model structure are homotopical.

Proof. See [20, Proposition 1.1.2 and Lemma 1.1.3].

Remark 2.6. The G-global weak equivalences and fibrations in fact only depend on
the action of the discrete group core.M/ � G (where core denotes the maximal sub-
group), i.e. theG-global model structure is transferred from an analogously defined model
structure on core.M/-G -SSet. This model structure will become relevant again later in
Section 4 and we will refer to it as the G-universal model structure and its weak equiv-
alences as the G-universal weak equivalences. Beware however that this does not model
G-global homotopy theory.
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Warning 2.7. If M D G is a discrete group and F is a family of subgroups, then one
easily checks that the above is a monoidal model category with respect to the Cartesian
product, i.e. the cofibrations and acyclic cofibrations satisfy the pushout product axiom
and for any cofibrant replacement Q ! � of the terminal object and any (cofibrant) X
the projection Q � X ! X is a weak equivalence. However, for general (simplicial)
monoidsM , M -SSet will typically not be monoidal, even in the non-equivariant (or “pro-
jective”) case where F only consists of the trivial group: namely, the M -simplicial set
M �M is usually not cofibrant.

As a concrete example, let M D ¹0; 1º with monoid operation a � b WD max¹a; bº.
All maps in the above set I of generating cofibrations except ¿! M are isomorphisms
in degree 0, so any I -cell complex X splits in degree 0 as X0 Š

`
k2KM . By Quillen’s

retract argument it then in particular follows that for any cofibrant X 0 the set X 00 of 0-
simplices admits an equivariant embedding into a set of the form

`
k2K0 M . However,

every .x1; x2/ 2M �M satisfies

1:.x1; x2/ D
�
max¹1; x1º;max¹1; x2º

�
D .1; 1/;

so any equivariant map M �M !
`
k2K0M has to factor through one of the coproduct

summands and hence cannot be injective for cardinality reasons.

Let us now turn to the cofibrations of the above model structures. In the case that
M D G is a discrete group, there is a classical characterization of the cofibrations of the
F -model structure, see e.g. [42, Proposition 2.16].

Lemma 2.8. Let G be a discrete group and let F be a family of (finite) subgroups of G.
Then a map f is a cofibration in the F -model structure on G -SSet if and only if f is
an injective cofibration (i.e. a cofibration of underlying simplicial sets) and moreover any
simplex not in the image of f has isotropy contained in F .

In particular, if G is finite and F D A`` is the collection of all subgroups, then the
cofibrations are precisely the injective cofibrations, while for general F (and in partic-
ular for general simplicial monoids) there are far fewer cofibrations. However, we can
still combine the injective cofibrations and the F -weak equivalences into an injective (or
“mixed”) model structure that will be useful at several points below.

Theorem 2.9. Let M be a simplicial monoid and let F be any collection of finite sub-
groups ofM0. Then there exists a unique model structure on M -SSet whose weak equiva-
lences are the F -weak equivalences and whose cofibrations are the injective cofibrations.
We call this the injective F -model structure. It is combinatorial, simplicial, and proper.

In particular, EM-G -SSet admits a proper, simplicial, and combinatorial model
structure whose weak equivalences are the G-global weak equivalences and whose cofi-
brations are the underlying cofibrations of simplicial sets. We call this the injective G-
global model structure.

Proof. See [20, Proposition 1.1.15].
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2.2. Functoriality

In the study of operadic actions below, we will at several places need to know how the
above model structures relate to each other as the monoid varies. In order to formulate
these results, we first have to recall the following notion.

Definition 2.10. LetM;N be simplicial monoids. We write GM;N for the collection of all
graph subgroups of M0 �N0, i.e. all subgroups of the form

�H;' D
®�
h; '.h/

�
W h 2 H

¯
with H �M0 and 'WH ! N0. More generally, if F is a collection of subgroups of M0,
then we write GF ;N for the collection of all graph subgroups �H;' with H 2 F .

Throughout letM be a simplicial monoid and let F be a family of finite subgroups of
M0. All of the following results are well known at least for groups.

Lemma 2.11. Let ˛WH ! G be any group homomorphism. Then

˛ŠW .M �H /-SSetGF ;H
� .M �G/-SSetGF ;G

W ˛� D .M � ˛/�

is a Quillen adjunction with homotopical right adjoint.

Proof. See [20, Lemma 1.1.16 and Example 1.1.21].

In particular, specializing to M D EM and F the family of universal subgroups, we
get a Quillen adjunction

˛ŠWEM-H -SSetH -global � EM-G -SSetG-global W ˛
�:

Lemma 2.12. LetG be any discrete group and assume f WX ! Y is a GF ;G-weak equiv-
alence in .M � G/-SSet such that G acts freely on both X and Y . Then f=GWX=G !
Y=G is an F -weak equivalence.

Proof. See [20, Proposition 1.1.22].

Lemma 2.13. Let ˛WH ! G be an injective homomorphism of discrete groups. Then

˛�W .M �G/-SSetGF ;G
� .M �H /-SSetGF ;H

W ˛�

is a Quillen adjunction; moreover, if im.˛/ has finite index in G, then ˛� is fully homo-
topical.

Proof. See [20, Proposition 1.1.19 and Example 1.1.21].

Corollary 2.14. LetG be any discrete group, let n� 0, and let f WX!Y be a GF ;G-weak
equivalence in .M �G/-SSet. Then f �nWX�n ! Y �n is a GF ;G�†n -weak equivalence
in .M �G �†n/-SSet with respect to the †n-action permuting the factors.
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Proof. This is a formal consequence of the previous results, also cf. [20, proof of Corol-
lary 1.4.71].

Replacing M by M �G and F by GF ;G , it suffices to prove the corresponding state-
ment for M -SSet (i.e. where G D 1). This is trivial for n D 0; if n � 1, we denote by
†1n � †n the subgroup of permutations fixing 1, and we write i W†1n ,! †n for the inclu-
sion and pW†1n ! 1 for the unique homomorphism. It is then straight-forward to check
that .–/�nWM -SSet! .M �†n/-SSet factors up to isomorphism as the composite

M -SSet
p�

�! .M �†1
n/-SSet

i�
�! .M �†n/-SSet;

so that the claim follows from Lemmas 2.11 and 2.13.

2.3. Equivariant simplicial operads

Next, we will study operads in M -SSet with respect to the Cartesian symmetric monoidal
structures (i.e. operads with an M -action) as well as their algebras. While the general
theory we develop here works for all simplicial monoids, we will be particularly interested
in the cases whereM DEM �G orM DG for a (finite) groupG, where we will refer to
the corresponding operads as G-global operads or G-equivariant operads, respectively.

I actually expect the results in this subsection to be known to experts, at least for
discrete groups; however, as I am not aware of a place where these results appear in the
literature, I have decided to give full proofs. This will at the same time allow us to already
see several of the arguments we will employ in the categorical setting later without some
of the technical baggage necessary there.

Construction 2.15. Let O be an operad in M -SSet. The category AlgO.M -SSet/ of O-
algebras in M -SSet comes with a forgetful functor forgetWAlgO.M -SSet/!M -SSet and
it is naturally enriched, tensored, and cotensored over SSet so that this forgetful functor
strictly preserves cotensors.

The forgetful functor has a left adjoint, which we denote by P; explicitly, this is given
by PX D

`
n�0 O.n/ �†n X

�n with the evident functoriality in X and with O-algebra
structure induced by operad structure maps of O. The unit of the adjunction is given by
the composition X ! O.1/ � X ,! forget PX where the first map is induced by the
inclusion of the identity element of O.1/, while the second one is the inclusion of the
summand indexed by 1.

By [34, Proposition 3.7.10] there is then a unique way to make P into a simpli-
cially enriched functor such that P a forget is a simplicially enriched adjunction, and
with respect to this enrichment P preserves tensors.

Theorem 2.16. Let O be any operad in M -SSet. Then AlgO.M -SSet/ carries a unique
model structure in which a map is a weak equivalence or fibration if and only if its image
under the forgetful functor forgetWAlgO.M -SSet/!M -SSet is a weak equivalence or
fibration, respectively, in the F -model structure.
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We call this model structure the F -model structure again. It is combinatorial, simpli-
cial, and right proper. Moreover, filtered colimits in it are homotopical.

Finally, we have a Quillen adjunction

PWM -SSet� AlgO.M -SSet/ W forget : (2.1)

For M D G a discrete group, the corresponding statement for algebras in orthogonal
G-spectra (and suitable operads O) can be found as [7, Proposition A.1].

Proof. While we cannot directly apply the results of [4] since M -SSet is typically not a
monoidal model category (see Warning 2.7), a similar strategy works in our case:

Namely, AlgO.M -SSet/ is locally presentable, so it will be enough by Quillen’s Path
Object Argument [4, Section 2.6] to show that AlgO.M -SSet/ admits a fibrant replace-
ment functor (i.e. an endofunctor P together with a natural transformation �W id) P such
that forgetPX is fibrant and forget �X is a weak equivalence for every X ) as well as func-
torial path objects for fibrant objects (i.e. for every fibrant X a factorization X ! XI !

X � X of the diagonal into a weak equivalence followed by a fibration that is functorial
in maps of fibrant objects).

For the first statement we fix a fibrant replacement functor id) P on SSet such that
P preserves finite limits, for example Kan’s Ex1-functor with the natural transformation
eW id) Ex1 [19] or the unit of the geometric realization-singular set adjunction SSet�
Top. As P preserves products, it lifts to a functor M -SSet! P.M/-SSet and then to
an endofunctor of M -SSet by restricting the action along M ! P.M/. As P preserves
finite limits (hence in particular fixed points for finite groups) this lift is then a fibrant
replacement functor for the F -model structure on M -SSet. Using again that P preserves
products, this then lifts to the desired fibrant replacement on AlgO.M -SSet/.

For the second statement, we simply observe that the standard path object in SSet

X
const
���! maps.�1; X/

.ev0;ev1/
�����! X �X

preserves all (finite) limits, so arguing precisely as before this lifts to provide functorial
path objects for fibrant objects in M -SSet and AlgO.M -SSet/.

This completes the proof that the F -model structure exists and is cofibrantly gener-
ated, hence combinatorial. The remaining statements follow easily from the corresponding
statements for M -SSet and the fact that (2.1) is a simplicial adjunction.

Example 2.17. LetG be a finite group. A naïveG-E1-operad is an operad O in G -SSet
such that

O.n/H '

´
� H � G � 1;

¿ otherwise

for all H � G �†n; here we have turned the right †n-action on O.n/ coming from the
operad structure into a left action as usual. In particular, any E1-operad in the usual non-
equivariant sense becomes a naïveG-E1-operad when equipped with the trivialG-action.
The corresponding algebras are called naïve G-E1-algebras.
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As the name suggests (and alluded to in the introduction), naïve G-E1-algebras
are usually not the objects one wants to study in equivariant homotopy theory (unless
G D 1). For example, from the point of view of equivariant infinite loop spaces [14],
the “group-like” naïve G-E1-algebras only come with deloopings against the ordinary
spheres S1; S2; : : : as opposed to deloopings against all representation spheres. Instead,
we are interested in genuine G-E1-algebras, which are algebras over so-called genuine
G-E1-operads. Here a genuine G-E1-operad is an operad P in G -SSet such that

P .n/H '

´
� if H 2 GG;†n

¿ otherwise

for all H � G �†n, also see [14, Definition 2.1].

If f WO ! P is any map of operads, then it is clear from the definitions that the
restriction f �W AlgP .M -SSet/ ! AlgO.M -SSet/ preserves weak equivalences, fibra-
tions, limits, and filtered colimits as these are all created in M -SSet. Appealing to the
Special Adjoint Functor Theorem, we therefore get a Quillen adjunction fŠ a f �. We are
now interested in the question when this Quillen adjunction is a Quillen equivalence, for
which we first have to talk about a suitable notion of weak equivalence of operads. As
Example 2.17 suggests, this will be finer than just the levelwise weak equivalences and
take the †n-actions into account.

Definition 2.18. A map f WO ! P of operads in M -SSet is called an F -weak equiva-
lence if O.n/! P .n/ is a GF ;†n -weak equivalence for every n � 0.

However, already non-equivariantly categories of algebras are typically not invariant
under weak equivalences between general operads, or, put differently, strict pointset level
algebras only turn out to be the correct thing to study for suitably nice operads. This leads
to the notion of †-cofibrancy [4, Remark 3.4], demanding that each O.n/ be cofibrant
in the projective model structure on †n-objects. However, the operads of interest in the
equivariant setting are typically not †-cofibrant—for example no genuine G-E1-operad
is. Instead we will use the following condition.

Definition 2.19. An operad O in M -SSet is called †-free if †n acts freely on O.n/ for
every n � 0.

Example 2.20. Let G be a finite group again. An operad O in G -SSet is a genuine G-
E1-operad in the sense of Example 2.17 if and only if it is †-free and the unique map
O ! � to the terminal operad is a G-weak equivalence (i.e. an F -weak equivalence for
F D A`` the collection of all subgroups of G).

We can now introduce one of the central notions of this paper.

Definition 2.21. A G-global operad O is called a G-global E1-operad if it is †-free
and the unique map O ! � is a G-global weak equivalence, i.e. for every n � 0 the map
O.n/! � is a .G �†n/-global weak equivalence.
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Below we will show that F -weak equivalences of †-free operads induce Quillen
equivalences between their model categories of algebras. A standard way to prove this
in purely model categorical language would proceed via a “cell induction” argument to
reduce the claim to free algebras. However, pushouts in categories of algebras are quite
complicated, and while the appendix of [5] provides an explicit description, proving the
comparison along these lines would become quite involved computationally. Instead, we
will use1-categorical language to recast this reduction argument into much simpler form
using monadicity.

Proposition 2.22. Let O be an operad in M -SSet. Then the functor

forget1WAlgO.M -SSet/1F !M -SSet1F

induced by the forgetful functor on associated quasi-categories is conservative and pre-
serves�op-shaped homotopy colimits. In particular, the adjunction LP a forget1 induced
by the Quillen adjunction (2.1) is monadic.

The proof will rely on the following standard observation, also cf. [28, Theorem 12.2]
or [38, Proposition 2.1.7] for similar results.

Proposition 2.23. Let C be a cocomplete category with finite products that is in addition
enriched, tensored, and cotensored over SSet. Assume further that the geometric real-
ization functor Fun.�op; C/ ! C (given by the coend of the tensoring) preserves finite
products. Then the forgetful functor AlgO.C/! C preserves geometric realizations for
every operad O in C.

Proof. We write NWC! Fun.�op;C/ for the right adjoint of j–j given by .NX/n D X�
n

with the evident functoriality in each variable, and we write N for the right adjoint of
geometric realization in AlgO.C/ defined analogously. The claim then amounts to saying
that the canonical mate of the left-hand square in

Fun
�
�op;AlgO.C/

�
AlgO.C/

Fun.�op;C/ C

 !Fun.�op;forget/
id
)

 

!N

 ! forget

 

!

N

AlgO

�
Fun.�op;C/

�
AlgO.C/

Fun.�op;C/ C

 !forget
id
)

 

!AlgO.N/

 ! forget

 

!

N

is an isomorphism (here we used that the forgetful functor strictly preserves cotensors by
construction). Using the canonical isomorphism Fun.�op;AlgO.C//ŠAlgO.Fun.�op;C//

and the compatibility of mates with pasting, it is then enough to show this for the right-
hand square.

For this we then observe that j–j lifts to a functor AlgO.Fun.�op;C//! AlgO.C/ as
it preserves products, and so do the unit and counit of the adjunction j–j a N, inducing
an adjunction AlgO.j–j/ a AlgO.N/. However, with respect to these choices the canonical
mate of the right-hand square is even the identity (by the triangle identity for adjunctions),
which completes the proof of the proposition.
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Proof of Proposition 2.22. It suffices to prove the first statement; the second one will then
follow by the1-categorical Barr–Beck theorem [25, Theorem 4.7.3.5].

Conservativity is clear since weak equivalences in M -SSet and AlgO.M -SSet/ are
saturated and since forget creates weak equivalences. For the remaining part, we observe
that �op-shaped homotopy colimits on both sides can be computed as geometric real-
izations of a Reedy cofibrant replacement (of a chosen strictification) by [24, Corol-
lary A.2.9.30]. On the other hand, geometric realization in M -SSet is just given by taking
diagonals (see e.g. [9, Proposition B.1]), hence fully homotopical by [20, Lemma 1.2.57].
Thus, Proposition 2.23 shows that also geometric realization of O-algebras is fully homo-
topical, i.e. �op-shaped homotopy colimits can be computed by ordinary geometric real-
ization in either category. The claim then follows from another application of Proposi-
tion 2.23.

We can now finally prove the following theorem.

Theorem 2.24. Let f WO! P be an F -weak equivalence of†-free operads in M -SSet.
Then the Quillen adjunction

fŠWAlgO.M -SSet/F � AlgP .M -SSet/F W f � (2.2)

is a Quillen equivalence.

ForM DG a finite group, an alternative proof using the bar construction is mentioned
in [14, discussion after Remark 4.11]. The corresponding statement for (suitable) algebras
in genuine G-spectra also appears without proof as [7, Theorem A.3].

Proof. It is clear that (2.2) is a Quillen adjunction with homotopical right adjoint, so it
suffices that .f �/1 is an equivalence of quasi-categories. For this we consider the diagram

AlgP .M -SSet/1
F

AlgO.M -SSet/1
F

M -SSet1F M -SSet1F

 

!
.f �/1

 !forget1  ! forget1)

(

(

which commutes up to the natural isomorphism induced by the identity transformation
forget) forget ıf �. As both vertical functors are monadic (Proposition 2.22), it suffices
by [25, Corollary 4.7.3.16] that the canonical mate LPO ) .f �/1 ı LPP of the above
transformation is an equivalence. Unravelling definitions, this amounts to saying that for
each (cofibrant) X 2M -SSet the mapa

n�0

O.n/ �†n X
n
!

a
n�0

P .n/ �†n X
n

induced by f is an F -weak equivalence. As †n acts freely on both O.n/ and P .n/, this
is in turn immediate from Lemma 2.12.
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Remark 2.25. A standard trick, see e.g. [14, discussion after Remark 4.11], shows that
any two genuine G-E1-operads O;P are weakly equivalent through †-free operads:
namely, it suffices to consider the zig-zag O  O � P ! P given by the projections.
Thus, the previous theorem implies that the model categories of O- and P -algebras are
Quillen equivalent.

Similarly one shows that any two G-global E1-operads have Quillen equivalent cate-
gories of algebras. In Section 5 we will compare these further to the models of “G-globally
coherently commutative monoids” previously studied in [20, Chapter 2].

3. G -global category theory

In this section we want to develop the analogue of the above theory for categories, and in
particular we will introduce G-global model structures on EM-G -Cat and on categories
of algebras over operads in it.

For this we first recall that the category Cat of small categories carries a canoni-
cal model structure [32] whose weak equivalences are the equivalences of categories,
whose cofibrations are those functors that are injective on objects, and whose fibrations
are the isofibrations, i.e. those functors with the right lifting property against the inclusion
�!E¹0;1º of either object. This model structure is proper, Cartesian, and combinatorial.
Moreover, the functor grpdfy ı hW SSet! Cat sending a simplicial set to its fundamen-
tal groupoid is left Quillen (with right adjoint given by taking the nerve of the maximal
subgroupoid) and it preserves finite products. Thus, any Cat-enriched model category
becomes a simplicial model category by transporting the enrichment, tensoring, and coten-
soring along this adjunction; in particular, Cat itself becomes a simplicial model category.

One of the key objects of study in this paper is the following equivariant generalization
of the canonical model structure.

Theorem 3.1. Let M be a categorical monoid (i.e. a strict monoidal category) and let
F be a collection of finite subgroups of Ob.M/. Then there is a unique model structure
on the category M -Cat of small categories with strict M -action in which a map f is
a weak equivalence or fibration if and only if f H is an equivalence of categories or
isofibration, respectively, for eachH 2F . We call this the F -model structure and its weak
equivalences the F -equivalences. It is right proper, Cat-enriched (hence simplicial), and
combinatorial with generating cofibrations

¹M=H � i W H 2 F ; i 2 ICatº

and generating acyclic cofibrations

¹M=H � j W H 2 F ; j 2 JCatº

for arbitrary choices of generating (acyclic) cofibrations ICat; JCat of Cat.
Finally, the F -equivalences are stable under filtered colimits and arbitrary products.
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Proof. Let us first show that the model structure exists, which we will do by transfer-
ring along the functor ..–/H /H2F WM -Cat!

Q
H2F Cat (with Cat-enriched left adjoint

given by sending .CH /H2F to
`
H2F M=H � CH ).

As M -Cat is locally presentable and every object in it is fibrant, it will be enough by
Quillen’s path object argument to construct functorial path objects. Just as in the simplicial
setting, these can be obtained from the usual path objects

C
const
���! Fun

�
E¹0; 1º; C

� .ev0;ev1/
�����! C � C

in Cat by pulling through the M -actions; here we used that the canonical model structure
is Cartesian. This completes the proof of the existence of the model structure and shows
that it is combinatorial with the above generating (acyclic) cofibrations.

The model structure is right proper and Cat-enriched because it is transferred from
a right proper Cat-enriched model structure along a Cat-enriched adjunction. Finally,
filtered colimits and small limits in Cat can be computed pointwise, so filtered colimits
commute with finite limits in Cat as they do so in Set. We conclude that filtered colimits
in the F -model structure on M -Cat are homotopical as they are so in Cat, and likewise
for products.

Specializing to M D EM �G for a discrete group G we get the following result.

Corollary 3.2. Let G be any discrete group. Then there is a unique model structure on
EM-G -Cat in which a map f is a weak equivalence or fibration if and only if f ' is an
equivalence of categories or isofibration, respectively, for every universal H � M and
every homomorphism 'WH ! G.

We call this the G-global model structure and its weak equivalences the G-global
equivalences. It is right proper, Cat-enriched (hence simplicial), and combinatorial with
generating cofibrations

¹EM �' G � i W H �M universal, 'WH ! G, i 2 ICatº

and generating acyclic cofibrations

¹EM �' G � j W H �M universal, 'WH ! G, j 2 JCatº

for any sets ICat; JCat of generating (acyclic) cofibrations of Cat. Moreover, the G-global
equivalences are stable under filtered colimits and arbitrary products.

Remark 3.3. Again, the above weak equivalences and fibrations on EM-G -Cat only de-
pend on the action of the discrete group core.M/�G, i.e. the G-global model structure is
transferred from an analogously definedG-universal model structure on core.M/-G -Cat
(which however does not model G-global category theory).

Remark 3.4. We can also look at EM-G -Cat through the eyes of the G-global weak
equivalences, i.e. those functors f such that N.f / is a G-global weak equivalence in the
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sense of Theorem 2.3, or equivalently such that f ' is a weak homotopy equivalence for
every 'WH ! G. As we prove in [22, Corollary 3.30], this then yields another model of
unstable G-global homotopy theory with the nerve descending to an equivalence of the
associated quasi-categories.

Next, we want to show that for suitable F the F -model structure on M -Cat is also
left proper, and that M -Cat moreover admits an injective F -model structure. For this, we
begin by giving an easy description of the above cofibrations in the case that M D G is
a discrete group, analogous to the usual characterization for cofibrations of G-simplicial
sets recalled in Lemma 2.8.

Lemma 3.5. Assume M D G is a discrete group and that 1 2 F . Then a map i is a cofi-
bration in the F -model structure if and only if it is an injective cofibration (i.e. injective
on objects) and every object not contained in the image of i has isotropy in F .

In particular, if G is finite and F D A``, then every object is cofibrant.

Proof. We first observe that all generating cofibrations are injective cofibrations and sat-
isfy the above isotropy condition. As the class of all such functors is closed under retracts,
pushouts, and transfinite compositions (using that Ob preserves colimits), we conclude
that every F -cofibration satisfies the above properties.

To complete the proof it therefore suffices to show that any functor i WA! B that is
injective on objects and satisfies the above isotropy condition has the left lifting property
against each F -acyclic fibration pWC ! D. For this we consider any lifting problem

A C

B D:

 

!
˛

 !i  

�

p�

 

!
ˇ

 !
�

We may assume without loss of generality that Ob.A/ is a subset of Ob.B/ and that i is
given on objects by the inclusion. To define � on objects, we first pick orbit representatives
.bi /i2I for the G-action on Ob.B/. We now set

�.g:bi / D ˛.g:bi /

whenever bi 2 A; otherwise, we write H for the stabilizer of bi and observe that H 2 F

by assumption, so that pH WCH ! DH is an acyclic fibration in Cat, hence in partic-
ular surjective on objects. Thus, we can pick ci 2 CH with p.ci / D ˇ.bi /, and we set
�.g:bi / D g:ci for all g 2 G. We omit the straightforward verification that this is well
defined and G-equivariant, that it extends ˛ on objects, and that p�.b/ D ˇ.b/ for all
b 2 B .

Next, we define � on morphisms as follows: given any f W b ! b0 in B , we have
p�.b/D ˇ.b/ and p�.b0/D ˇ.b0/ by the above, so there is a unique map gW�.b/! �.b0/

with p.g/ D ˇ.f / as p is fully faithful. We then set �.f / WD g. We omit the straight-
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forward verification that this is well defined and G-equivariant. By construction, p�D ˇ,
and moreover �i D ˛ on objects. To prove that �i and ˛ also agree on morphisms, it is
enough by full faithfulness to prove this after postcomposition with p, in which case this
follows from the equalities p�i D ˇi D p˛.

Corollary 3.6. For M D G a finite discrete group and F D A``, the F -equivalences
are precisely the equivalences in the 2-category of G-categories, G-equivariant functors,
and G-equivariant natural transformations.

We will refer to these simply as “G-equivalences” below.

Proof. By the previous lemma, all objects of G -Cat are cofibrant-fibrant, so the abstract
Whitehead theorem shows that a map is an A``-equivalence if and only if it is a homotopy
equivalence. Picking the cylinder objects

C q C
.incl0;incl1/
�������! C �E¹0; 1º

pr
�! C

coming from the Cat-enrichment, the claim follows immediately.

With the above characterization of the cofibrations at hand we can now prove the
following proposition.

Proposition 3.7. Let M be any categorical monoid and let F be a family of finite sub-
groups of Ob.M/. Then the F -equivalences are stable under pushout along injective
cofibrations. In particular the F -model structure is left proper.

Proof. As F is closed under passing to subgroups, a map in M -Cat is an F -equivalence
if and only if it is an H -equivalence for each H 2 F . As moreover pushouts in M -Cat
and H -Cat are both created in Cat, we are therefore reduced to the case that M D H is
a finite discrete group and F D A`` is the family of all subgroups.

But in this situation the cofibrations of the F -model structure are precisely the injec-
tive cofibrations. In particular, every object is cofibrant and hence H -Cat is left proper,
which immediately implies the claim.

Theorem 3.8. LetM be any categorical monoid and let F be a family of finite subgroups
of Ob.M/. Then there exists a unique model structure on M -Cat whose weak equiva-
lences are the F -equivalences and whose cofibrations are the injective cofibrations. We
call this the injective F -model structure. It is combinatorial, proper, Cat-enriched (hence
simplicial), and Cartesian.

Proof. To prove that the model structure exists and that it is combinatorial and proper,
it suffices by [20, Corollary A.2.18] and the existence of the non-equivariant injective
model structure on M -Cat that pushouts of F -equivalences along injective cofibrations
are F -equivalences, which is precisely the content of the previous proposition.
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Next, let us show that the model structure is Cartesian. It is clear that the unit is cofi-
brant, so that it only remains to verify the pushout product axiom. For cofibrations this
follows directly from the fact that Cat is Cartesian, so it only remains to show the induced
map in

A � C B � C

A �D P

B �D
 !A�j

 

!
i�C

 ! k

 

!

B�j

 

!

 

!i�D

 

!

p

is an F -equivalence for any cofibration i WA! B and any acyclic cofibration j WC ! D.
For this we observe that A� j and B � j are acyclic cofibrations, and so is k as a pushout
of an acyclic cofibration. The claim now follows by 2-out-of-3.

The proof that this model structure is Cat-enriched is analogous.

Corollary 3.9. Let G be any finite group. Then there exists a unique model structure
on EM-G -Cat with cofibrations the injective cofibrations and weak equivalences the
G-global equivalences. We call this the injective G-global model structure. It is proper,
combinatorial, Cartesian, and Cat-enriched (hence simplicial).

Warning 3.10. In the simplicial world, Elmendorf’s theorem [11] provides an alterna-
tive description of the equivariant homotopy theory of G-simplicial sets in terms of fixed
point systems. More precisely, we define for any discrete group G and any collection F

of subgroups of G the orbit category OF as the full subcategory of G -Set spanned by the
transitive G-sets of the form G=H with H 2 F . We then obtain a functor ˆWG -SSet!
Fun.Oop

F
;SSet/ given by ˆ.X/.G=H/ D mapsG.G=H;X/ Š XH with the evident func-

toriality in both variables, and Elmendorf’s theorem says that this is an equivalence of
homotopy theories with respect to the F -weak equivalences on the source and the level-
wise weak equivalences on the target. This result was refined by Bergner (for F D A``)
who constructed a model structure on G -SSet with weak equivalences those maps f such
that f H is a Joyal equivalence for every subgroup H � G, and proved that ˆ is the right
half of a Quillen equivalence to Fun.Oop

A``
;SSetJoyal/, see [6, Theorem 3.3].

We caution the reader that the corresponding statement is not true in our situation,
even if M D G is a finite discrete group and F D A``. Indeed, if ˆ were to induce an
equivalence of associated quasi-categories, it would have to preserve homotopy pushouts,
and hence so would any of the fixed point functors .–/H Š evG=H ıˆ for H 2 F . By
Theorem 3.8 above this would imply that pushouts along injective cofibrations commute
with fixed points up to equivalence. We will show that this is not the case, already for
G D Z=2 and F D A``; note that this does not contradict Bergner’s result mentioned
above as the nerve does not preserve (homotopy) pushouts.

For this, we consider the “fork” x � y ! z where the arrow y ! z coequalizes the
two arrows x� y. Comparing corepresented functors then shows that the pushout of

.x� y ! z/ - .x� y/! � (3.1)
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is simply the category y ! z (with the evident maps). We now make this square into a
diagram in Z=2-Cat by letting the non-trivial element of Z=2 exchange the two arrows
x � y and act trivial otherwise; it follows formally that this is then a pushout square
again.

However, the Z=2-fixed points of (3.1) are given by

.x y z

 

!

 

! / - .x y/! � (3.2)

and the pushout of this is the category y � z.
Note that the same example shows that the injective F -model structure does not exist

for general collections of subgroups F (as opposed to families). Namely, if the injective
model structure for G D Z=2 and F D ¹Z=2º existed, then it would necessarily be left
proper as all G-categories are injectively cofibrant. However, the inclusion of (3.2) into
(3.1) is a levelwise F -equivalence, while the induced map on pushouts is not.

Remark 3.11. Let M D G be a finite discrete group and let F be a family of finite
subgroups of G; we now want to construct some fibrant objects of the injective F -model
structure on G -Cat in more concrete terms.

To this end, we letQ be a cofibrant replacement of the terminal category � in the usual
F -model structure on G -Cat. Then QH D ¿ for any H … F by Lemma 3.5, so Q � –
sends F -equivalences to G-equivalences. On the other hand, it clearly preserves injective
cofibrations, so that we get a Quillen adjunction

Q � –WG -Catinjective F � G -CatA`` W Fun.Q; –/I

in particular Fun.Q; C / is injectively fibrant for any G-category C . While we will not
do this here, one can in fact show (using the general theory of Bousfield localizations
of model categories) that a G-category C is injectively fibrant if and only if the map
C ! Fun.Q;C / induced by Q! � is an A``-equivalence, also cf. [16, discussion after
Proposition 1.12] for the corresponding (classical) statement for simplicial sets.

As one particular instance of this, let us consider the case that F D Triv consists
only of the trivial group. Then we have a standard choice of Q as the indiscrete category
EG with G-action induced by the left regular action of G; in particular, Fun.EG; C / is
injectively fibrant for any G-category C . G-categories of this form play a central role in
Merling’s treatment of equivariant algebraic K-theory [31], and several of the key prop-
erties established by her actually become formal consequences of injective fibrancy: in
particular, Ken Brown’s lemma shows that Fun.EG; –/ takes underlying equivalences to
G-equivalences [31, Proposition 2.16], while the abstract Whitehead theorem shows that
any underlying equivalence between categories of the form Fun.EG; C / is already a G-
equivalence, which immediately implies Lemma 2.8 of op. cit.

Remark 3.12. We can also use the above to answer a question raised by Merling as [31,
Question 3.5]: namely, she shows in Proposition 3.3 of op. cit. how Fun.EG; –/ lifts to a
functor from the category ofG-objects and pseudoequivariant functors (i.e. pseudonatural
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transformations of functors BG ! Cat2 into the 2-category of categories) to just G-
objects and strictly equivariant functors, and she asks whether all equivariant functors
Fun.EG;C /! Fun.EG;D/ arise this way.

This is indeed the case: first we observe that the non-equivariant equivalences in
G -Cat are the just the usual level weak equivalences, so [10, Theorem 7.9.8 and Remark
7.9.7] together with [17, Section 1.4.3] implies that the canonical map

G -Cat! Fun
�

N.BG/;N�.Cat/
�

is a quasi-localization at the non-equivariant equivalences, where we view Cat as simpli-
cially enriched in the same way as before. This map can be identified up to equivalence
with the nerve of the inclusion of G -Cat into the strict 2-category Fun2.BG;Cat2/ of
strictG-objects, pseudoequivariant functors, and pseudoequivariant natural isomorphisms
(i.e. invertible modifications); alternatively, one can use a standard argument due to Dwyer
and Kan recalled in [20, Proposition A.1.10] to directly prove that the latter map is a
quasi-localization. In any case we in particular see that we have an ordinary 1-categorical
localization G -Cat! h Fun2.BG;Cat2/.

On the other hand, G -Cat is a model category in which every object is cofibrant,
so the natural map of the 1-category of injectively fibrant G-objects into the category
hFun2;strict.BG;Cat2/fibrant of injectively fibrant (strict)G-objects and isomorphism class-
es of strictly G-equivariant maps is also a localization. By direct inspection, Merling’s
construction is compatible with invertible modifications, and accordingly it descends to a
map h Fun2.BG;Cat2/! h Fun2;strict.BG;Cat2/fibrant, yielding a commutative diagram

G -Cat G -Catfibrant

h Fun2.BG;Cat2/ h Fun2;strict.BG;Cat2/fibrant.

 !

 

!
Fun.EG;–/

 !

 

!
Fun.EG;–/

Thus, we can view her construction as the derived functor of Fun.EG; –/WG -Cat !
G -Catfibrant. As the latter is homotopy inverse to the inclusion we see that Merling’s con-
struction is an equivalence, hence in particular fully faithful as desired.

Finally, we remark that a slightly more elaborate version of the above argument actu-
ally shows that her construction extends to induce for every C;D 2G -Cat an equivalence
between the category of pseudoequivariant functors C !D and pseudoequivariant trans-
formations between such to the category of strictly equivariant functors and strictly natural
transformations between Fun.EG;C / and Fun.EG;D/.

3.1. Functoriality

We now discuss some functoriality properties of the model structures from Theorem 3.1
analogous to the situation for simplicial sets. Throughout, we let M be a categorical
monoid and F a family of finite subgroups of Ob.M/.
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Lemma 3.13. Let ˛WH ! G be any group homomorphism. Then

˛ŠW .M �H /-CatGF ;H
� .M �G/-CatGF ;G

W ˛�

is a Quillen adjunction with homotopical right adjoint.

Proof. One immediately checks from the definitions that ˛� preserves weak equivalences
as well as fibrations.

Lemma 3.14. LetG be any discrete group and assume f WC !D is a GF ;G-equivalence
in .M �G/-Cat such that G acts freely on both C and D. Then f=GWC=G ! D=G is
an F -equivalence.

Proof. As before we reduce to the case that M D H is a finite discrete group and F D

A``. As G acts freely on C , the isotropy of any c 2 C intersects G trivially, i.e. it is an
element of the family GH;G , and likewise for D. Thus, Lemma 3.5 shows that both C
and D are cofibrant in the GH;G-model structure, and the claim follows by applying the
previous lemma to the unique homomorphism G ! 1.

Lemma 3.15. Let ˛WH ! G be an injective homomorphism of discrete groups. Then

˛�W .M �G/-CatGF ;G
� .M �H /-CatGF ;H

W ˛�

is a Quillen adjunction and ˛� is fully homotopical.

Proof. It suffices to show that ˛� preserves fibrations and weak equivalences, for which
we may again reduce to the case that M D K is a finite discrete group and F D A``.
As restriction along an injective homomorphism preserves freeness, the same argument as
in the previous lemma then shows that ˛� preserves cofibrations; moreover, it is clearly
homotopical, hence left Quillen. Thus, ˛� is right Quillen and hence homotopical by Ken
Brown’s lemma.

Arguing as in the proof of Corollary 2.14 we get the following result.

Corollary 3.16. Let G be any discrete group, let n � 0, and let f WC ! D be a GF ;G-
equivalence in .M �G/-Cat. Then the map f �nWC�n!D�n is a GF ;G�†n -equivalence
in .M �G �†n/-Cat with respect to the †n-action permuting the factors.

3.2. Equivariant categorical operads

We now want to study operads in G -Cat and EM-G -Cat for any (finite) group G, along
with their algebras. Again, the basic theory works in greater generality, so we fix a cate-
gorical monoid M together with a family F of finite subgroups of Ob.M/.

Construction 3.17. Analogously to the simplicial situation, the forgetful functor

forgetWAlgO.M -Cat/!M -Cat
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has a left adjoint P given by the formula PC D
`
n�0 O.n/ �†n C

�n with the evident
functoriality in C and the O-algebra structure induced by operad structure maps of O.

Again, AlgO.M -Cat/ is enriched, tensored, and cotensored over Cat (with cotensors
created in M -Cat), and the adjunction P a forget is then naturally a Cat-enriched adjunc-
tion.

Theorem 3.18. Let O be any operad in M -Cat. Then there exists a unique model struc-
ture on AlgO.M -Cat/ in which a map is a weak equivalence or fibration if and only if it
is so in the F -model structure on M -Cat. We call this the F -model structure again. It
is combinatorial, right proper, Cat-enriched (hence simplicial), and filtered colimits in it
are homotopical. Moreover, the free-forgetful adjunction

PWM -CatF � AlgO.M -Cat/ W forget

is a Quillen adjunction with homotopical right adjoint.

Proof. It is clear that AlgO.M -Cat/ is locally presentable, so to prove that the trans-
ferred model structure along P a forget exists and is combinatorial, right proper, and
Cat-enriched, it is again enough to construct functorial path objects.

For this we observe that Fun.E¹0; 1º; C / inherits a natural O-algebra structure from
C as Fun.E¹0; 1º;–/ is Cat-enriched and product-preserving. With respect to this algebra
structure, the maps

C
const
���! Fun

�
E¹0; 1º; C

� .ev0;ev1/
�����! C � C

are then O-algebra maps, so this provides the desired path object by the proof of Theo-
rem 3.1.

Example 3.19. LetG be a finite group. Analogously to the simplicial situation, an operad
O in G -Cat will be called a naïve G-E1-operad if each O.n/ is G-equivariantly equiv-
alent to the terminal category and O.n/H D ¿ for any H � G �†n not contained in G.
Such an operad is in particular †-free (i.e. †n acts freely on O.n/ for any n � 0).

Again the prototypical example is an E1-operad Q in Cat that we equip with the
trivialG-action. A Q-algebra in G -Cat is then the same data as aG-object in AlgQ.Cat/.
A particularly important example of Q for us is the (categorical) Barratt–Eccles operad
E†� whose n-ary operators are given by the category E†n with the evident right †n-
action. There is then a unique way to make E†� into an operad; we refer the reader to
[29, Proposition 4.2 and Lemma 4.4] for details. Any permutative category gives rise to an
algebra over E†� by [29, Lemmas 4.3–4.5], and as observed e.g. in [14, Proposition 4.2]
without proof this yields an isomorphism between the category PermCat of permutative
categories and strict symmetric monoidal functors and AlgE†�.Cat/. As an upshot of
all of this, we can identify AlgE†�.G -Cat/ with the category G -PermCat of G-objects
in PermCat. Following [14, Section 4.1], we will refer to the objects of G -PermCat as
naïve permutative G-categories.
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Example 3.20. In analogy to the terminology in the simplicial setting, a †-free operad
O in G -Cat will be called a genuine G-E1-operad if the unique map O ! � is a G-
equivalence, i.e. each O.n/ is GG;†n -equivalent to the terminal category.

If P is a †-free operad such that each P .n/ is non-equivariantly equivalent to the
terminal category, then we can build a genuine G-E1-operad PEG from this as follows,
also see [14, Definition 4.4]: we set PEG.n/ D Fun.EG;P .n// with the induced †n-
action and G acting via the diagonal of its action on P .n/ and the left action induced by
its right regular action onEG; the structure maps of PEG are induced from the ones of P

in the obvious way. In particular, we can apply this to the Barratt–Eccles operad (equipped
with trivial G-action), yielding a genuine G-E1-operad E†EG� with n-ary operations
given by Fun.EG;E†�/. Following [14, Definition 4.5], we will refer toE†EG� -algebras
as genuine permutative G-categories.

As observed by Guillou and May in Proposition 4.6 of op. cit., also see [41, Remark
after Theorem A0], we can apply the same construction to algebras: since Fun.EG;–/ pre-
serves products, Fun.EG;C / carries a natural OEG-algebra structure for any O-algebraC .
In particular, Fun.EG;–/ lifts to a functor from naïve permutativeG-categories to genuine
ones.

Remark 3.21. While permutative categories are rare in practice, MacLane’s strictification
theorem implies that any symmetric monoidal category is equivalent to a permutative cat-
egory, and in fact the quasi-localizations of PermCat and SymMonCat at the underlying
equivalences of categories are equivalent.

In the equivariant setting, Guillou, May, Merling, and Osorno [15] introduced genuine
and naïve symmetric monoidal G-categories as pseudoalgebras over genuine and naïve
G-E1-operads, respectively. Generalizing the non-equivariant situation, they provide a
strictification result showing that the homotopy theory of genuine and naïve symmet-
ric monoidal G-categories (with respect to the underlying G-equivalences) is equivalent
to the homotopy theory of genuine and naïve permutative G-categories, respectively, as
defined above. In particular, while we will for simplicity talk exclusively about the above
categories of strict algebras in this paper, our results carry over to the pseudoalgebra set-
ting immediately.

Example 3.22. LetG be a discrete group. AG-global operad is an operad in EM-G -Cat.
We call a G-global operad O a G-global E1-operad if it is †-free and moreover each
O.n/ is .G �†n/-globally equivalent to the 1-point category, i.e. the unique map O ! �

is a G-global equivalence.
Analogously to Example 3.20, we can easily construct these from ordinary E1-oper-

ads: for this, let O be any operad in G -Cat that is an underlying E1-operad. The functor
Fun.EM; –/W .G �†n/-Cat! .EM �G �†n/-Cat sends underlying equivalences to
.G �†n/-global equivalences, so we obtain aG-globalE1-operad OEM via OEM.n/D

Fun.EM;O.n// with the induced operad structure maps, left G-actions, and right actions
by the symmetric groups. In particular, we can apply this to the usual Barratt–Eccles
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operad (equipped with the trivial G-action). We call the resulting operad E†EM
� the

G-global Barratt–Eccles operad. Its nerve (denoted by the same symbol) is then in partic-
ular a G-global E1-operad of simplicial sets. We emphasize that E†EM

� still has trivial
G-action.

3.3. Change of operad

Our next goal is to prove that also in the categorical setting the model categories of
algebras are invariant under suitable equivalences of †-free operads. The corresponding
statement for simplicial sets ultimately relied on geometric realization preserving level-
wise weak equivalences (so that it models�op-shaped homotopy colimits) as well as finite
products (as used in Proposition 2.23), and we begin by establishing the corresponding
results for Cat.

For this let us first recall that by definition of the SSet-tensoring of Cat, the geometric
realization of a simplicial object C�W�op ! Cat is given by the coendZ Œn�2�op

�n ˝ Cn D

Z Œn�2�op

grpdfy.h�n/ � Cn

with the evident Cat-enriched functoriality; here h again denotes the left adjoint of the
nerve (assigning to a simplicial set its homotopy category) and grpdfy is the left adjoint
of the inclusion Grpd ,! Cat.

More generally, if M is any categorical monoid, then M -Cat likewise acquires a
notion of geometric realization, and this can be explicitly computed as the geometric real-
ization in Cat together with the induced M -action.

Proposition 3.23. The geometric realization functor

j–jWFun.�op;M -Cat/!M -Cat (3.3)

sends levelwise F -equivalences to F -equivalences for every family F of finite subgroups
of Ob.M/.

Proof. We equip M -Cat with the injective F -model structure. As this is simplicial, (3.3)
is left Quillen with respect to the Reedy model structure on the source. To complete the
proof it is then enough by Ken Brown’s lemma that every object of the source is Reedy-
cofibrant.

For this we observe that the functor discr ıObWM -Cat! SSet is cocontinuous and
creates cofibrations. In particular, X 2 Fun.�op;M -Cat/ is Reedy cofibrant if and only if
discr ObX is a Reedy cofibrant bisimplicial set. The claim follows immediately as every
bisimplicial set is Reedy cofibrant.

Lemma 3.24. Let M be any categorical monoid. Then the geometric realization functor
j–jWFun.�op;M -Cat/!M -Cat preserves finite products.
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Proof. It suffices to prove the corresponding statement for Cat. As the canonical natural
transformation j– � –j ) j–j � j–j is Cat-enriched and since both source and target pre-
serve Cat-tensors and colimits in each variable separately, it suffices to check this on pairs
of represented functors, hence in particular on levelwise discrete simplicial categories. As
the functor discrW Fun.�op; Set/ ! Fun.�op;Cat/ preserves products, it is then finally
enough to prove the claim after restricting along discr.

Claim. The diagram

Fun.�op;Set/ Fun.�op;Cat/

SSet Cat

((

 

!
discr

 ! j–j

 

!
grpdfyıh

commutes up to natural isomorphisms.

Proof. It suffices to construct the natural isomorphism after restricting to �, where we
just take the isomorphisms grpdfy.h�m/!

R Œn� grpdfy.h�n/ � Hom.Œn�; Œm�/ provided
by the co-Yoneda lemma. N

The lemma follows as grpdfy ı hWSSet! Cat preserves finite products.

With this established we can prove the desired homotopy invariance statement.

Definition 3.25. A map f WO ! P of operads in M -Cat is called an F -equivalence if
f .n/WO.n/ ! P .n/ is a GF ;†n -equivalence for every n � 0 (where we turn the right
†n-action into a left one as usual).

Theorem 3.26. Let f WO ! P be an F -equivalence of †-free operads in M -Cat. Then
the Quillen adjunction

fŠWAlgO.M -Cat/F � AlgP .M -Cat/F W f � (3.4)

is a Quillen equivalence.

This will again rely on a monadicity argument.

Proposition 3.27. Let O be any operad in M -Cat. Then

forget1WAlgO.M -Cat/1F !M -Cat1F (3.5)

is conservative and preserves�op-shaped homotopy colimits. In particular, the adjunction
LP a forget1 is monadic.

Proof. Arguing as in Proposition 2.22, the only non-trivial statement is that (3.5) preserves
�op-homotopy colimits. However, these can again simply be computed via geometric real-
ization as geometric realizations in M -Cat are fully homotopical by Proposition 3.23,
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and hence so are geometric realizations in AlgO.M -Cat/ by Proposition 2.23 together
with Lemma 3.24. The claim then simply follows from another application of Proposi-
tion 2.23.

Proof of Theorem 3.26. It is again clear that (3.4) is a Quillen adjunction with homotopi-
cal right adjoint, so it suffices that .f �/1 is an equivalence of quasi-categories. For this
we consider the diagram

AlgP .M -Cat/1
F

AlgO.M -Cat/1
F

M -Cat1F M -Cat1F

 

!
.f �/1

 !forget1  ! forget1)

(

(

which commutes up to the natural isomorphism induced by the identity transformation
forget) forget ıf �. By monadicity, it will once more suffice that the canonical mate
of the above transformation is an equivalence, which amounts to saying that for each
(cofibrant) C 2M -Cat the mapa

n�0

O.n/ �†n C
n
!

a
n�0

P .n/ �†n C
n

induced by f is an F -equivalence. This is in turn immediate from Lemma 3.14.

3.4. A comparison functor for E1-algebras

Let G be a finite group and let O;P be genuine G-E1-operads. As a consequence of
Theorem 3.26 we have equivalences of quasi-categories

AlgO.G -Cat/1F
.pr�

O
/1

����! AlgO�P .G -Cat/1F
L prP Š
����! AlgP .G -Cat/1F I (3.6)

as the final result in this section, we want to represent this equivalence by an explicit
functor on the pointset level. This construction is a generalization of the functor from
parsummable categories to permutative categories we constructed in [21]. In fact, every-
thing we do here works in slightly greater generality without any extra cost, so we treat it
accordingly.

Definition 3.28. Let F be a family of finite subgroups of a discrete group G. An F -E1-
operad is a†-free operad O in G -Cat such that for every n� 0 the unique map O.n/!�

is a GF ;†n -equivalence.

In particular, if G is finite and F D A``, this recovers the notion of genuine G-
operads; on the other hand, for F D Triv the family consisting only of the trivial sub-
group, an F -E1-operad is the same as an underlyingE1-operad, i.e. an operad in G -Cat
that becomes an E1-operad in the usual sense after forgetting the G-action. In particular,
any naïve G-E1-operad is a T riv-E1-operad.
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Throughout, fix a family F , and let � WO ! P be a map of F -E1-operads such that
O.n/' ! P .n/' is strictly surjective on objects for every H 2 F ; 'WH ! †n.

Construction 3.29. Given an O-algebra C , we define a G-category �˙.C / as follows:

(1) The objects of �˙.C / agree with the objects of PP .forgetO C/, i.e. they are given
by equivalence classes ŒP IX� with P 2 P .n/, X 2 C n, n � 0 with ŒP IX� D
ŒQI Y � for Q 2 P .n/, Y 2 C n if and only if there exists a permutation � 2 †n
(necessarily unique) such that P:� D Q and �:Y D X .

(2) Given two objects a; b 2 �˙.C /, the homomorphisms A! B are given by equiv-
alence classes ŒO 0; X 0If IO;X� with

(a) O 2 O.m/;X 2 Cm such that a D Œ�.O/IX�

(b) O 0 2 O.n/; X 0 2 C n such that b D Œ�.O 0/IX 0�

(c) f WO�.X/! O 0�.X
0/ a morphism in C .

Here .O 0;X 0If IO;X/ and .N 0; Y 0IgIN;Y / represent the same equivalence class
if and only if there are � 2 †m; � 0 2 †n such that

(a) �.O/ D �.N/:� (whence in particular Y D �:X )

(b) �.O 0/ D �.N 0/:� 0 (whence in particular Y 0 D � 0:X 0)

(c) g agrees with the composite

N�.Y / D .N:�/�.X/
ŒO;N:��
�����! O�.X/

f
�! O 0�.X

0/ D .O 0:� 0/�.Y
0/

ŒN 0;O 0:.� 0/�1�
���������! N 0�.Y

0/;

where for every r � 0;A;B 2 O.r/ we write ŒB;A�WA�) B� for the action
of the unique edge .B;A/WA! B in O.r/ ' �.

Note that there are always unique permutations � , � 0 satisfying the first two con-
ditions by †-freeness. We omit the routine verification that the above is indeed an
equivalence relation.

(3) The composition ŒN 0; Y 0I gIN; Y � ı ŒO 0; X 0I f IO;X� is ŒN 0; Y 0I hIO;X� where
h is the composite

O�.X/
f
�! O 0�.X

0/ D .O 0:�/�.Y /
ŒN;O 0:��
�����! N�.Y /

g
�! N 0�.Y

0/I

here � is the unique permutation such that �.O 0/:� D �.N/ (hence in particular
X 0 D �:Y ).

(4) G acts on both objects and morphisms diagonally, i.e. g:ŒP IX�D Œg:P Ig:X� and
g:ŒO;X 0If IO;X� D Œg:O; g:X 0; g:f; g:O; g:X�.

Lemma 3.30. The above is a well-defined G-category. Moreover, for every O 2 O.m/,
X 2 Cm the identity of Œ�.O/IX� is given by ŒO;X I idO�.X/IO;X�, and for any further
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O 0 2 O.n/, X 0 2 C n the map

HomC

�
O�.X/;O

0
�.X

0/
�
! Hom�˙C

��
�.O/IX

�
;
�
�.O 0/IX 0

��
f 7! ŒO 0; X 0If IO;X�

(3.7)

is bijective.

Proof. First, we will show that composition is independent of the choices of representa-
tives, for which we pick a; b; c 2 �˙.C / and let

.N 01; Y
0
1Ig1IN1; Y1/ � .N

0
2; Y

0
2Ig2IN2; Y2/; (3.8)

.O 01; X
0
1If1IO1; X1/ � .O

0
2; X

0
2If2IO2; X2/ (3.9)

represent morphisms b ! c and a ! b, respectively. We write � for the unique permu-
tation with �.O1/ D �.O2/:� (whence X2 D �:X1), � for the unique permutation with
�.N1/ D �.N2/:� (whence Y2 D �:Y1), and analogously we define � 0 and � 0. Moreover,
as ŒN1I Y1� D ŒO 01IX

0
1� there is a unique permutation � with �.O 01/:� D �.N1/ (whence

X 01 D �:Y1), and similarly we get � with �.O 02/:� D �.N2/ and X 02 D �:Y2. But then
�.N1/ D �.O

0
1/:� D �.O

0
2/:�

0� as well as �.N1/ D �.N2/:� D �.O 02/:�� , hence

� 0� D �� (3.10)

by †-freeness.
We now have to show that�
N 01; Y

0
1Ig1 ı ŒN1; O

0
1:� � ı f1IO1; X1

�
�
�
N 02; Y

0
2Ig2 ı ŒN2; O

0
2:�� ı f2IO2; X2

�
:

Plugging in the definition of the equivalence relation, this amounts to saying that the total
rectangle in the diagram

O2�.X2/ O 02�.X
0
2/ .O 02:�/�.Y2/ N2�.Y2/ N 02�.Y

0
2/

.O2:�/�.X1/
�
O 01:.�

0/�1
�
�
.X 02/ .N2:�/�.Y1/

�
N 01:.�

0/�1
�
�
.Y 02/

O1�.X1/ O 01�.X
0
1/ .O 01:�/�.Y1/ N1�.Y1/ N 01�.Y

0
1/

 

!
f2

((

(

(

 

!
ŒN2;O

0
2:��

((

 

!
g2

 !ŒO1;O2:�� ((
 !ŒO 02;O

0
1:.�

0/�1� ( (
 !ŒN1;N2:�� ((

 !ŒN 02;N
0
1:.�

0/�1�

 

!
f1

(

(

 

!
ŒN1;O

0
1:��

 

!
g1

commutes. But indeed, the left-hand rectangle and the right-hand rectangle commute by
the relations (3.9) and (3.8), respectively, so it only remains to check commutativity of the
rectangle in the middle. For this we compute

ŒN2; O
0
2:��Y2

�
O 02; O

0
1:.�

0/�1
�
X 02
D ŒN2:�; O

0
2:���Y1 ŒO

0
2:�
0; O 01�X 01

(3.10)
D ŒN2:�; O

0
2:�
0��Y1 ŒO

0
2:�
0�;O 01:� �Y1

D ŒN2:�; O
0
1:� �Y1 ;
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where the unlabelled equalities use the functoriality of the O-action or its compatibility
with the symmetric group actions. Plugging this in, we then get

ŒN1; N2:� �Y1 ŒN2; O
0
2:��Y2

�
O 02; O

0
1:.�

0/�1
�
X 02
D ŒN1; N2:� �Y1 ŒN2:�; O

0
1:� �Y1

D ŒN1; O
0
1:� �Y1

as desired. This completes the proof that composition is well defined.
Before we prove that composition is unital and associative, let us show that (3.7) is

bijective.
For injectivity we have to show that .O 0; X 0I f IO; X/ � .O 0; X 0I gIO; X/ only if

f D g. Indeed, the permutations � , � 0 from the definition of the equivalence relation are
the respective identities in this case, whence

g D ŒO 0; O 0� ı f ı ŒO;O� D id ıf ı id D f

by design.
For surjectivity, we let ŒN 0; Y 0I gIN; Y � be any morphism Œ�.O/IX�! Œ�.O 0/IX 0�.

Then Œ�.N /I Y � D Œ�.O/IX�, so we find � with �.N/ D �.O/:� and X D �:Y , and
similarly we get � 0 with �.N 0/ D �.O 0/:� 0 and X 0 D � 0:Y 0. But then

ŒN 0; Y 0IgIN; Y � D
�
O 0; X 0I ŒO 0; N 0:� 0� ı g ı ŒN;O:��IO;X

�
by definition of the equivalence relation, proving surjectivity.

Now we can easily prove that ŒO; X I idIO;X� is a right unit for Œ�.O/IX�: indeed,
if Œ�.O 0/IX 0� is any other object, then any morphism Œ�.O/IX�! Œ�.O 0/IX 0� can be
written as ŒO 0; X 0If IO;X� for f WO�.X/! O 0�.X

0/ by the above, and then

ŒO 0; X 0If IO;X�ŒO;X I idIO;X� D ŒO 0; X 0If ı idIO;X� D ŒO 0; X 0If IO;X�

by definition of the composition in the special case N D O 0; Y D X 0. Likewise, one
shows that ŒO; X I idIO;X� is also a left unit, and one deduces that composition in �˙C
is associative from the fact that it is so in C .

It remains to show that the above makes �˙C into a G-category. For this we first
check that g:–W �˙C ! �˙C is well defined. Indeed, well definedness on objects is
immediate; to check that this is also well defined on morphisms, let .O 0; X 0If1IO;X/ �
.N 0; Y 0If2IN; Y / and write � , � 0 for the unique permutations with

�.O/ D �.N/:�; Y D �:X

and �.O 0/ D �.N 0/:� 0, Y 0 D � 0:X 0. Then f2 D ŒN 0; O 0:.� 0/�1� ı f1 ı ŒO;N:��, so

g:f2 D
�
g:N 0; g:O 0:.� 0/�1

�
ı g:f1 ı Œg:O; g:N:��

as C is an O-algebra in G -Cat. Thus, as desired

.g:O 0; g:X 0Ig:f1Ig:O; g:X/ � .g
0:N 0; g:Y 0Ig:f2Ig:N; g:Y /:
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With this established, the equality g:ŒO;X I idIO;X� D Œg:O; g:X I idIg:O; g:X� (fol-
lowing directly from the definition) shows that g:– preserves identities, while

g:
�
ŒO 00; X 00If2IO

0; X 0�ŒO 0; X 0If1IO;X�
�

D g:ŒO 00; X 00If2f1IO;X� D
�
g:O 00; g:X 00Ig:.f2f1/Ig:O; g:X

�
D Œg:O 00; g:X 00Ig:f2Ig:O

0; g:X 0�Œg:O 0; g:X 0Ig:f1Ig:O; g:X�

D
�
g:ŒO 00; X 00If2IO

0; X 0�
��
g:ŒO 0; X 0If1IO;X�

�
shows that g:– is compatible with compositions, hence a functor. Finally, it is clear from
the definition that gh:–D .g:–/ ı .h:–/ and 1:–D id, so this defines aG-action as desired.

Construction 3.31. For F WC ! D a map in AlgO.G -Cat/, we define �˙F W �˙C !
�˙D via .�˙F /ŒP IX� D ŒP IF.X/� and

.�˙F /ŒO
0; X 0If IO;X� D

�
O 0; F .X 0/IF.f /IO;F.X/

�
:

Lemma 3.32. The above is a well defined and G-equivariant functor �˙C ! �˙D.
Moreover, this makes �˙ into a functor AlgO.G -Cat/! G -Cat.

Proof. It is clear that �˙F is well defined on objects. To check that it is also well defined
on morphisms, we first observe that if .O 0;X 0If1IO;X/ represents a morphism in �˙.C /,
then F.f1/ is a morphism O�.F.X// D F.O�.X//! F.O�.X

0// D O�.F.X
0// as F

is a map of O-algebras. To check that �˙F is independent of the choice of representative,
let .O 0;X 0If1IO;X/� .N 0; Y 0If2IN;Y /, i.e. there are permutations � , � 0 with �.O/D
�.N/:� , Y D �:X and �.O 0/ D �.N 0/:� 0, Y 0 D � 0:X 0, and

f2 D
�
N 0; O 0:.� 0/�1

�
f1ŒO;N:��:

As F is a map of O-algebras, we then have

F.f2/ D
�
N 0; O 0:.� 0/�1

�
F.f1/ŒO;N:��;

whence .O 0; F .X 0/IF.f1/IO;F.X// � .N 0; F .Y 0/IF.f2/IN;F.Y // as desired.
The equality

.�˙F /ŒO;X I idIO;X� D ŒO; F.X/IF.id/IO;F.X/� D ŒO; F.X/I idIO;F.X/�

shows that �˙F preserves identities. Similarly, one shows that it is compatible with com-
positions, hence a functor.

We have

.�˙F /
�
g:ŒP IX�

�
D .�˙F /Œg:P Ig:X� D

�
g:P IF.g:X/

�
D
�
g:P; g:F.X/

�
D g:.�˙F /ŒP IX�
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by G-equivariance of F , i.e. �˙F commutes with the G-action on objects. Analogously,
one shows that �˙F commutes with the G-action on morphisms, i.e. it is a G-equivariant
functor as claimed.

Finally, it is clear from the definitions that

�˙.id/ D id and �˙.F2F1/ D .�˙F2/.�˙F1/;

i.e. �˙ indeed defines a functor to G -Cat.

Lemma 3.33. Let C be an O-algebra. Then we have a natural F -equivalence �WC !
�˙C ofG-categories sending an objectX to Œ1IX� and a map f WX!Y to Œ1;Y If I1;X�.

Proof. It follows immediately from the definitions that � is well defined, equivariant, and
natural.

Now letH 2F arbitrary; we have to show that �H WCH ! .�˙C/
H is an equivalence.

For this we observe that � is fully faithful by Lemma 3.30, whence so is �H as limits of
fully faithful functors are again fully faithful. It then only remains to show that �H is
essentially surjective. For this we let P 2 P .n/; X 2 C n such that ŒP IX� 2 .�˙C/H .
Then we have h:.P IX/D .h:P Ih:X/� .P IX/ for every h 2H , i.e. there exists a �.h/ 2
†n (necessarily unique) such that h:P D P:�.h/ and h:X D �.h/�1:X . For any further
k 2 H , we have

P:�.hk/ D .hk/:P D h:k:P D h:P:�.k/ D P:�.h/�.k/

whence �.hk/D �.h/�.k/ by†-freeness, i.e. � is a homomorphismH ! †n. With this
established, the relation h:P D P:�.h/ precisely tells us that P 2 P .n/� .

Now let O 2 O.n/� be a preimage of P (which exists as �� was assumed to be
surjective). Then h:.O�.X// D .h:O/�.h:X/ D .O:�/�.h:X/ D O�.�:h:X/ D O�.X/,
i.e.O�.X/2CH . We claim that �.O�.X//DŒ1IO�X� is isomorphic to ŒP IX� in .�˙C/H ,
which will then complete the proof of the lemma. Indeed, we have a map�

1;O�.X/I idIO;X
�
W ŒP IX�!

�
1IO�.X/

�
in �˙C with inverse ŒO;X I idI 1;O�.X/�, so it only remains to show that this is H -fixed,
for which we compute

h:
�
1;O�.X/I idIO;X

�
D
�
h:1; h:

�
O�.X/

�
I h: idI h:O; h:X

�
D
�
1;O�.X/I idI h:O; h:X

�
D
�
1;O�.X/I idIO:�.h/; �.h/�1:X

�
D
�
1;O�.X/I idIO;X

�
;

where the last step uses the definition of the equivalence relation.

By 2-out-of-3 we immediately conclude the following result.

Corollary 3.34. The functor �˙WAlgO.G -Cat/F ! G -CatF is homotopical.

Next, we will put a P -algebra structure on �˙C .
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Construction 3.35. For every Q 2 P .r/ we define a functor Q�W .�˙C/r ! �˙C as
follows: on objects, Q� is given by the usual action on Ob PP forgetO C D Ob�˙C , i.e.

Q�
�
ŒP1; X1�; : : : ; ŒPr IXr �

�
D
�
Q ı .P1; : : : ; Pr /IX1; : : : ; Xr

�
:

Given morphisms ŒO 0i ; X
0
i I fi IOi ; Xi �W ŒPi IXi �! ŒP 0i IX

0
i � for i D 1; : : : ; r we moreover

define

Q�
�
ŒO 01; X

0
1If1IO1; X1�; : : : ; ŒO

0
r ; X

0
r Ifr IOr ; Xr �

�
D
�
N ı .O 01; : : : ; O

0
r /; X

0
1; : : : ; X

0
r IN�.f1; : : : ; fr /IN ı .O1; : : : ; Or /IX1; : : : ; Xr

�
;

where N 2 O.r/ is some preimage of Q under � .
Moreover, if Q0 is any other object of P .r/, then we define a natural transformation

ŒQ0;Q�WQ�) Q0� via

ŒQ0;Q�ŒP1IX1�;:::;ŒPr IXr �

D
�
N 0 ı .O1; : : : ; Or /; X�I

�
N 0 ı .O1; : : : ; Or /; N ı .O1; : : : ; Or /

�
X�
I

N ı .O1; : : : ; Or /IX�
�
;

where N 0; N 2 O.r/ are preimages of Q0 and Q, respectively, Oi is a preimage of Pi for
i D 1; : : : ; r , and we abbreviate X� D X1; : : : ; Xr .

Proposition 3.36. The above is independent of choices and makes �˙C into a P -algebra.
This way, �˙ becomes a functor AlgO.G -Cat/! AlgP .G -Cat/.

Proof. First, we show thatQ�W .�˙C/r ! �˙C is a well-defined functor, independent of
all choices. This is clear on objects. On morphisms, we first observe that

�
�
N ı .O1; : : : ; Or /

�
D �.N/ ı

�
�.O1/; : : : ; �.Or /

�
D Q ı

�
�.O1/; : : : ; �.Or /

�
as � is a map of operads, whence�

�
�
N ı .O1; : : : ; Or /

�
; X�

�
D Q�

�
ŒP1IX1�; : : : ; ŒPr ; Xr �

�
;

and similarly �
�
�
N ı .O 01; : : : ; O

0
r /
�
IX 0�

�
D Q�

�
ŒP 01IX

0
1�; : : : ; ŒP

0
r IX

0
r �
�
:

As moreover N�.O1�.X1/; : : :/ D .N ı .O1; : : : ; Or //.X�/ and N�.O 01�.X1/; : : :/ D
.N ı .O 01; : : : ; O

0
r //.X�/ since C is an O-algebra, we see that the above indeed defines a

morphism Q�.ŒP1IX1�; : : :/! Q�.ŒP
0
1IX

0
1�; : : :/.

This is independent of the choice of representatives: indeed, if . xO 0i ; xX
0
i I
Nfi I xOi ; xXi / �

.O 0i ; X
0
i I fi IOi ; Xi /, then we let �i be the unique permutation with �.Oi / D �. xOi /:�i ,

xXi D �:Xi , and define � 0i analogously. If we then write � for the block sum �1˚ � � � ˚ �r ,
and � 0 D � 01 ˚ � � � ˚ �

0
r , then xX� D �:X� and xX 0� D �

0:X� as well as�
N ı .O1; : : : ; Or /

�
:� D N ı .O1:�1; : : : ; Or :�r /�

N ı .O 01; : : : ; O
0
r /
�
:� 0 D N ı .O 01:�

0
1; : : : ; O

0
r :�
0
r /
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because O is an operad. Thus, the desired relation�
N ı .O 01; : : :/; X

0
�IN�.f1; : : :/IN ı .O1; : : :/; X�

�
D
�
N ı . xO 01; : : :/;

xX�IN�. Nf1; : : :/IN ı . xO1; : : :/; xX�
�

is equivalent to asking that N�. Nf1; : : :/ agree with the composite�
N ı . xO 01; : : :/;N ı

�
O 01:.�

0
1/
�1; : : :

��
ıN�.f1; : : : ;fr / ı

�
N ı .O1; : : :/;N ı . xO1:�1; : : :/

�
which in turn follows from Nfi D Œ xO 0; O 0:.� 0i /

�1� ı fi ı ŒOi ; xO:�i � and C being an O-
algebra.

The above is also independent of the choice of preimageN : if xN is any other preimage,
then

�
�
xN ı .O1; : : :/

�
D �. xN/ ı

�
�.O1/; : : :

�
D �.N/ ı

�
�.O1/; : : :

�
D �

�
N ı .O1; : : :/

�
and similarly �. xN ı .O 01; : : :// D �.N ı .O 01; : : ://, so the desired relation amounts to
asking that

xN�.f1; : : : ; fr /

D
�
xN ı .O 01; : : :/; N ı .O

0
1; : : :/

�
ıN�.f1; : : : ; fr / ı

�
N ı .O1; : : :/; xN ı .O1; : : :/

�
:

As �
xN ı .O 01; : : :/; N ı .O

0
1; : : :/

�
X 0�
D Œ xN;N �O 01.X

0
1/;:::�

N ı .O1; : : :/; xN ı .O1; : : :/
�
X�
D Œ xN;N ��1O1�.X1/;:::;

this follows from naturality of Œ xN;N �.
To show that Q� is a functor, consider composable maps ŒO 00i ; X

00
i I f

0
i IO

0
i ; X

0
i � and

ŒO 0i ; X
0
i Ifi IOi ; Xi � for i D 1; : : : ; r ; then

Q�
�
ŒO 001 ; X

00
1 If

0
1 IO

0
1; X

0
1�ŒO

0
1; X

0
1If1IO1; X1�; : : :

�
D Q�

�
ŒO 001 ; X

00
1 If

0
1f1IO1; X1�; : : :

�
D
�
N ı .O 001 ; : : :/IX

00
� IN�.f

0
1f1; : : :/IN ı .O1; : : :/IX�

�
D
�
N ı .O 001 ; : : :/IX

00
� IN�.f

0
1 ; : : :/N�.f1; : : :/IN ı .O1; : : :/IX�

�
D Q�

�
ŒO 001 ; X

00
1 If

0
1 IO

0
1; X

0
1�; : : :

�
Q�
�
ŒO 01; X

0
1If1IO1; X1�; : : :

�
;

so Q� is compatible with compositions. Analogously, one shows that Q� preserves iden-
tities.

A similar computation as the one for Q� shows that ŒQ0; Q� is independent of the
choice of the lifts N 0; N 2 O.n/. With this established, naturality amounts to the relation�

N 0 ı .O 01; : : :/; X
0
�IN

0.f1; : : :/IN
0
ı .O1; : : :/; X�

�
ı
�
N 0 ı .O1; : : :/IX�I ŒN

0; N �IN ı .O1; : : :/; X�
�

D
�
N 0 ı .O 01; : : :/; X

0
�I ŒN

0; N �IN ı .O 01; : : :/; X
0
�

�
ı
�
N ı .O 01; : : :/; X

0
�IN.f1; : : :/IN ı .O1; : : :/; X�

�
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which follows immediately from naturality of ŒN 0; N �. Similarly, one shows that

ŒQ00;Q0�ŒQ0;Q� D ŒQ00;Q�;

using that ŒN 00; N 0�ŒN 0; N � D ŒN 00; N � for all N;N 0; N 00 2 O.r/.
Altogether, we have therefore constructed a functor ˛r WP .r/� .�˙C/r!�˙C given

on objects by�
QI ŒP1IX1�; : : :

�
7! Q�

�
ŒP1IX1�; : : :

�
D
�
Q ı .P1; : : :/IX�

�
and on morphisms by�

.Q0;Q/I ŒO 01; X
0
1If1IO1; X1�; : : :

�
7! ŒQ0;Q� ıQ�

�
ŒO 01; X

0
1If1IO1; X1�; : : :

�
D Q0�

�
ŒO 01; X

0
1If1IO1; X1�; : : :

�
ı ŒQ0;Q�

which is in turn explicitly given by�
N 0 ı .O 01; : : :/; X

0
�I ŒN

0; N � ıN�.f1; : : :/IN ı .O1; : : :/; X�
�

D
�
N 0 ı .O 01; : : :/; X

0
�IN

0
�.f1; : : :/ ı ŒN

0; N �IN ı .O1; : : :/; X�
�

for arbitrary preimages N;N 0 2 O.r/ of Q, Q0.
This functor is G-equivariant: this is clear on objects where this agrees with the usual

P -action on PP forgetO.C /. On morphisms, we explicitly compute that

g:
�
.Q0;Q/I ŒO 01; X

0
1If1IO1; X1�; : : :

�
D
�
.g:Q0; g:Q/I Œg:O 01; g:X

0
1Ig:f1Ig:O1; g:X1�; : : :

�
is sent to�
.g:N 0/ ı .g:O 01; : : :/; g:X

0
�I Œg:N

0; g:N � ı .g:N /�.g:f1; : : :/Ig:N ı .g:O1; : : :/Ig:X�
�

D
�
g:
�
N 0 ı .O 01; : : :/

�
; g:X 0�Ig:

�
ŒN 0; N � ıN�.f1; : : :/

�
Ig:
�
N ı .O1; : : :/

�
; g:X�

�
which agrees with g:ŒN ı .O 01; : : :/; X�I ŒN

0; N � ı N�.f1; : : :/I N ı .O1; : : :/; X�� as
desired.

Next, we will check that these functors indeed make �˙C into a P -algebra, i.e. that
the above maps are unital, associative, and compatible with the symmetric group actions.
Again, all the required identities hold on the level of objects because PP .forgetO C/ is a
P -algebra, so it only remains to check these statements on the level of morphisms. For
this we make the following observation that will slightly simplify some computations: if
.O 0; X 01I f1IO;X1/ and .O 0; X 02I f2; O;X2/ represent morphisms between the same pair
of objects, then necessarily X1 D X2 and X 01 D X

0
2 (as P is †-free); we will therefore

simply write ŒO 0If1IO� and ŒO 0If2IO� for the corresponding equivalence classes below.
Now we check that ˛r is compatible with the symmetric group actions, i.e.

˛r
�
ŒQ0;Q�:� I ŒO 01If1IO1�; : : :

�
D ˛r

�
ŒQ0;Q�I ŒO 0

��1.1/
If��1.1/IO��1.1/�; : : :

�
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for all � 2 †r . Indeed, if N;N 0 are preimages of Q, Q0, then N:�;N:� 0 are preimages of
Q:�;Q:� 0, so the left-hand side is given by�

.N 0:�/ ı .O 01; : : :/I ŒN
0:�; N:�� ı .N:�/�.f1; : : : ; fr /I .N:�/ ı .O1; : : :/

�
:

Similarly, the right-hand side can be computed as�
N 0 ı .O 0

��1.1/
; : : :/I ŒN 0; N � ıN�.f��1.1/; : : :/IN ı

�
O�1� .1/; : : :

��
;

so we even have an equality of representatives by the compatibility of the operad structure
maps of O with the symmetric group actions, and the compatibility of the action maps on
C with the symmetric group actions.

Similarly, one deduces associativity of the action on �˙C from associativity of the
action on C . For unitality, it suffices to observe that a preimage of 1 2 P .1/ is given by
1 2 O.1/, so that

1�ŒO
0
If IO� D

�
1 ıO 0I 1�.f /I 1 ıO

�
D ŒO 0If IO�

as desired.
Finally, we have to show that �˙F is a map of P -algebras for every O-algebra map

F WC ! D. Again, this is clear on objects, while on morphisms we compute

˛r
�
ŒQ0;Q�I ŒO 01IFf1IO1�; : : :

�
D
�
N 0ı.O 01; : : :/I ŒN

0; N �N�.Ff1; : : :/IN ı.O1; : : :/
�

D
�
N 0ı.O 01; : : :/IF

�
ŒN 0; N �N�.f1; : : :/

�
IN ı.O1; : : :/

�
D.�˙F /

�
˛r
�
ŒQ0;Q�I ŒO 01If1IO1�; : : :

��
;

where the middle equality uses that F is a map O-algebras. This completes the proof of
the proposition.

Theorem 3.37. The functor .�˙/1WAlgO.G -Cat/1
F
! AlgP .G -Cat/1

F
is an equiva-

lence and quasi-inverse to .��/1.

In particular, we see that .�˙/1 is a model for L�Š.

Proof. As we already know that .��/1 is an equivalence (Theorem 3.26), it will suffice
to show that �˙�� is homotopic to the identity. For this, we define for every P -algebra
C a map "W�˙��C ! C on objects via ŒP IX� 7! P�.X/ and on morphisms via

ŒO 0; X 0If IO;X� 7!
�
f W�.O/�.X/! �.O 0/�.X

0/
�
I

we omit the routine verification that this is well defined and a G-equivariant functor.
The functor " is even a map of P -algebras: this is clear on objects (where this is just

the counit of PP a forgetP ), and for the claim on morphisms we compute

"
�
Q�
�
ŒO 01; X

0
1If1IO1; X1�; : : :

��
D "

�
N ı .O 01; : : :/; X

0
�I�.N/�.f1; : : :/IN ı .O1; : : :/; X�

�
D �.N/�.f1; : : :/ D Q�

�
"ŒO 01; X

0
1If1IO1; X1�; : : :

�
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(where N is a preimage of Q) and similarly

"ŒQ0;Q�ŒP1IX1�;::: D ŒQ
0;Q�P1�.X1/;::::

Moreover, plugging in the definitions shows that " is a natural transformation �˙��) id,
so it only remains to show that it is an F -equivalence for every P -algebra C . But as a
map of G-categories " is left-inverse to the F -equivalence �WC D ��C ! �˙�

�C from
Lemma 3.32, so the claim follows by 2-out-of-3.

Definition 3.38. Let O;P be E1-F -operads. We write †O
P

for the composite

AlgO.G -Cat/
pr�

O
��! AlgO�P .G -Cat/

prP˙
���! AlgP .G -Cat/:

Corollary 3.39. The functor†O
P

is homotopical. The induced functor on associated quasi-
categories is an equivalence naturally equivalent to (3.6).

4. G -global versus G -equivariant algebras

In this section we will compare theG-global andG-equivariant algebras introduced above
to each other. The argument for the simplicial and categorical cases will be almost entirely
parallel, so we denote by C one of the categories Cat and SSet.

4.1. Globally twisted G -operads

For our comparison it will be useful to first introduce a variant of G-global operads that
combines the operadic structure with the core.M/-action used to define theG-global weak
equivalences.

Definition 4.1. A globally twisted G-operad (or just twisted G-operad for short) is an
operad O in G-C together with a monoid homomorphism core.M/! O.1/G .

The attribute “twisted” refers to the homomorphism core.M/! O.1/G that provides
an additional group action on any algebra over a twisted G-operad; in particular, we will
see below (Construction 4.22) that the correct notion of underlyingG-space or underlying
G-category of such an algebra will have to take this action into account.

As usual, however, we will keep the homomorphism from core.M/ implicit most of
the time and just call O itself a twisted G-operad.

Construction 4.2. If O is a twistedG-operad, then we obtain for any n�0 a left core.M/-
action on O.n/ by restricting the operad structure map O.1/ � O.n/! O.n/ along the
given homomorphism core.M/ ! O.1/. By construction, this commutes with the G-
action on O.n/, making the latter into a .core.M/ � G/-object; we caution the reader
however that O is typically not an operad in core.M/-G-C as the structure maps won’t be
core.M/-equivariant.
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Analogously, we get n commuting right core.M/-actions on O.n/ via restriction of
the structure map O.n/ � O.1/�n ! O.n/. Together with the right †n-action that is part
of the operad structure, this assembles into an action of the wreath product †n o core.M/

that again commutes with the G-action.

Construction 4.3. If O is any twisted G-operad and A is an O-algebra in G-C, then
we can similarly restrict the O.1/-action on A to core.M/ via the given homomorphism,
thereby equipping A with the structure of a .core.M/ � G/-object in C. The resulting
forgetful functor AlgO.G-C/! core.M/-G-C admits a left adjoint P given on objects by

PX D
a
n�0

O.n/ �†nocore.M/ X
�n

(with respect to the above right †n o core.M/-action on O.n/ and the natural action on
X�n) and likewise on morphisms.

Proposition 4.4. Let O be a twisted G-operad. Then there is a unique model structure on
AlgO.G-C/ in which a map f is a weak equivalence or fibration if and only if forget f
is a weak equivalence or fibration, respectively, in the G-universal model structure on
core.M/-G-C (see Remarks 2.6 and 3.3). We call this the G-global model structure. It is
right proper, C-enriched (hence simplicial), and filtered colimits in it are homotopical.

Proof. For CDCat it suffices as before to show that the model structure transferred along
the forgetful functor AlgO.G -Cat/! core.M/-G -Cat exists, for which one can take the
same path objects as before.

The argument in the simplicial case is analogous, except that we additionally use Ex1

or Singj–j again to construct functorial fibrant replacements.

Definition 4.5. A twisted G-operad O is called †-free, if the above †n o core.M/-action
on O.n/ is free for all n � 0. A map of twisted G-operads is a map f of G-operads
such that f .1/ is compatible with the maps from core.M/. We call f a G-global (weak)
equivalence if f .n/ is aG � .†n o core.M//-universal (weak) equivalence for every n� 0.

Proposition 4.6. Let f WO ! P be a map of twisted G-operads. Then the adjunction

fŠWAlgO.G-C/� AlgP .G-C/ W f � (4.1)

is a Quillen adjunction with respect to the model structures from Proposition 4.4. If f is a
G-global weak equivalence (for C D SSet) or G-global equivalence (C D Cat) and both
O and P are †-free, then (4.1) is a Quillen equivalence.

The proof will again rely on a monadicity argument.

Lemma 4.7. Let O be a twisted G-operad. Then the forgetful functor

AlgO.G-C/1 ! core.M/-G-C1

is monadic.
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Proof. It is clear that the forgetful functor is conservative. To prove that it is monadic
it will then be enough to show as before that the forgetful functor of simplicial cat-
egories AlgO.G-C/ ! core.M/-G-C preserves geometric realizations. This is in turn
immediate from Proposition 2.23 as core.M/-G-C! G-C is conservative (as a functor of
1-categories) and preserves both tensors and small colimits.

Proof of Proposition 4.6. It is clear that f � is compatible with the forgetful functors, so
that it preserves (and reflects) weak equivalences as well as fibrations; in particular, it is
right Quillen.

Now assume that f is a G-global (weak) equivalence and O and P are †-free. As in
the proof of Theorem 2.24, it suffices that for every X 2 core.M/-G-C the mapa
n�0

f .n/ �†nocore.M/ X
�n
W

a
n�0

O.n/ �†nocore.M/ X
�n
!

a
n�0

P .n/ �†nocore.M/ X
�n

is a G-global (weak) equivalence. However, each f .n/ � X�n is a G � .†n o core.M//-
global (weak) equivalence by assumption and †n o core.M/ acts freely on both source
and target, so the claim follows from Lemmas 2.12 and 3.14.

Definition 4.8. A twisted G-operad O is called a twisted G-global E1-operad if it is †-
free and the unique map O ! � to the terminal object is a G-global (weak) equivalence.

Example 4.9. We define the (categorical or simplicial) injection operad 	 as follows,
also cf. [36, Construction A.1] where the underlying operad of sets is denoted by M:

For any n � 0, the n-ary operations are given by 	.n/ D E Inj.n � !; !/ where as
usual n D ¹1; : : : ; nº with the tautological †n-action. The structure maps on 	 are given
by juxtaposition and precomposition, i.e. they are induced under E by the maps

Inj.r � !;!/ � Inj.n1 � !;!/ � � � � � Inj.nr � !;!/! Inj.n � !;!/

.uI v1; : : : ; vr / 7! u ı .v1 q � � � q vr /;

where nD n1C � � � C nr and we have identified
`r
kD1.nk �!/with n�! in the obvious

way.
We can make 	 (equipped with the trivial G-action) into a twisted G-operad via the

inclusion core.M/ ,! EM Š 	.1/. This is a twisted G-global E1-operad: for the free-
ness it suffices to observe that the natural .†n o core.M//-action on n � ! is faithful so
that †n o core.M/ acts freely on Inj.n � !; !/, whence on 	.n/. To show that 	.n/ is
G � .†n o core.M//-globally contractible it suffices to observe that for every universal
H �M and every 'WH ! G � .†n o core.M//

	.n � !;!/' D 	.n � !;!/pr†nocore.M/ ı' D E
�
Inj
�
.pr†nocore.M/ ı'/

�.n � !/; !
�H �

which is non-empty and hence contractible because there exists an equivariant injection

.pr†nocore.M/ ı'/
�.n � !/! !

by universality of H .
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Corollary 4.10. Let O be any twisted G-global E1-operad. Then there exists an explicit
zig-zag of Quillen equivalences AlgO.G-C/$ Alg	.G-C/.

Proof. By Proposition 4.6, it suffices to observe that also O �	 is a twistedG-globalE1-
operad and that the projections O  O � 	 ! 	 are G-global (weak) equivalences.

Theorem 4.11. Let O be any G-global E1-operad in EM-G-C and let P be a twisted
G-global E1-operad in G-C. Then there is an explicit zig-zag of Quillen equivalences
AlgO.EM-G-C/$ AlgP .G-C/ with respect to the G-global model structures on both
sides.

For the proof of the theorem, we will first relate AlgO.EM-G-C/ to the algebras over a
suitable twisted G-global E1-operad built from O and then appeal to the previous result.
This relies on the following construction.

Construction 4.12. Let O be any operad in EM-G-C. We define an operad O Ì EM in
G-C as follows: the n-ary operations are given by .O Ì EM/.n/ D O.n/ � EM�n with
the diagonal right†n-action and the inducedG-action. For CD SSet, the operad structure
maps OÌEM of O ÌEM are given by

OÌEM
�
.o; u�/I .f

.1/; v.1/� /; : : : ; .f
.r/; v.r/� /

�
D
�
O.o; u1:f

.1/; : : : ; ur :f
.r//I EM�.u�I v

.1/
� ; : : : ; v

.r/
� /

�
for all m � 0 and r; n1; : : : ; nr � 0, u� 2 .EM/rm, v.i/� 2 .EM/

ni
m , o 2 O.r/m, pi 2

O.ni /m, and similarly for C D Cat. Here O denotes the operad structure map of O and
EM� is given by juxtaposition and precomposition analogously to the definition of 	.
We omit the straightforward but lengthy verification that O Ì EM is indeed an operad
in G-C, and that we have a map of G-operads i WO ! O Ì EM induced in degree n
by the inclusion ¹.1; 1; : : : ; 1/º ,! EMn. Similarly, we obtain a monoid homomorphism
kWEM ! .O Ì EM/.1/ and restricting this to core.M/ then makes O Ì EM into a
twisted G-operad.

Remark 4.13. The above construction works more generally for every monoid M in C,
also see [37, Definition 2.1] or [27, Section 3.5], where this appears for groups acting on
topological spaces.

Remark 4.14. Plugging in the definitions, we see that the left core.M/-action on .O Ì
EM/.n/ in the sense of Construction 4.2 is the diagonal of the natural core.M/-action on
EMn and the restriction of the given EM-action on O.n/. On the other hand, the right
core.M/n-action is given by acting in the evident way on EMn and trivially on O.n/.

Proposition 4.15. Let O be an operad in EM-G-C and let A be an O Ì EM-algebra
in G-C. Then A defines an O-algebra in EM-G-C by restricting the O Ì EM-algebra
structure along the above inclusion i WO ,! O Ì EM and equipping A with the EM-
action obtained by restricting along the above homomorphism kWEM ! .O Ì EM/.1/.



T. Lenz 1118

This construction extends to an equivalence of ordinary categories

AlgOÌEM.G-C/! AlgO.EM-G-C/

by sending a map f WC ! D of .O Ì EM/-algebras to the same map viewed as a mor-
phism of O-algebras.

The corresponding statement for groups acting on topological spaces also appears
without proof as [37, Proposition 2.3].

Proof. Let us first show that this is well defined, for which it only remains to show that
the above O-action onA isEM-equivariant. We will show this for CD SSet, the proof for
categories being analogous. To this end we note that by definition for each u 2 .EM/m,
o 2 O.n/m and a1; : : : ; an 2 Am the action maps satisfy

˛O
n .u:oIu:a1; : : : ; u:an/

D ˛OÌEM
n

�
.u:o; 1/I˛OÌEM

1

�
.1; u/I a1

�
; : : : ; ˛OÌEM

1

�
.1; u/I an

��
for 1 D .1; : : : ; 1/ 2 EMn

m. Using that A was an .O Ì EM/-algebra together with the
definition of the operad structure on O ÌEM this then equals

˛OÌEM
n

�

�
.u:o; 1/I .1; u/; : : : ; .1; u/

�
I a1; : : : ; an

�
D ˛OÌEM

n

��
u:o; .u; : : : ; u/

�
I a1; : : : ; an

�
D ˛OÌEM

n

�

�
.1; u/I

�
o; .1; : : : ; 1/

��
I a1; : : : ; an

�
and again using that A is an .O Ì EM/-algebra and plugging in the definitions this then
agrees with u:˛O.oI a1; : : : ; an/ as desired.

To finish the proof, we now observe that the above functor ‰ fits into a commutative
diagram of 1-categories

AlgOÌEM.G-C/ AlgO.EM-G-C/

G-C G-C

 !forget

 

!
‰

 ! forget

(

(

in which the vertical functors are monadic. By the (1-categorical) Barr–Beck monadicity
theorem it is then again enough that the canonical mate of the identity transformation is an
isomorphism POX! POÌEMX for everyX 2G-C. However, plugging in the definitions
this is indeed just the canonical isomorphisma

n�0

O.n/ �†n .EM �X/�n !
a
n�0

�
O.n/ �EMn

�
�†n X

�n:

Remark 4.16. One immediately checks from the definitions that with respect to the
G-global model structures on both sides, the above equivalence preserves and reflects
fibrations and weak equivalences; thus, it also preserves and reflects cofibrations.
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Proposition 4.17. Let O be a G-global operad.

(1) If O is †-free, then so is O ÌEM.

(2) If O is a G-global E1-operad, then O ÌEM is a twisted G-global E1-operad.

Proof. For the first statement we restrict to the case C D SSet; the proof for categories is
analogous or alternatively follows by passing to the nerve. For this, let .oI u0; : : : ; un/ 2
O.n/m �EMn

m and .� Iv0; : : : ; vn/ 2†n o core.M/with .oIu0; : : : ;un/:.� Iv0; : : : ; vn/D
.oIu0; : : : ; un/, i.e.

.o:� Iu�.0/v0; : : : ; u�.n/vn/ D .oIu0; : : : ; un/:

But then � D 1 as†n acts freely on O.n/. Thus, uivi D ui for all i D 0; : : : ; n and hence
also vi D 1 as desired since core.M/ acts freely on M from the right. This completes the
proof of the first statement.

For the second statement, it remains to show that .O ÌEM/.n/!� is a†n o core.M/-
global (weak) equivalence if O is a G-global E1-operad. For this we let H � M be
universal and 'WH ! G � .†n o core.M// be any homomorphism. If we write

pWG �
�
†n o core.M/

�
! G �†n

and qWG � .†n o core.M//! †n o core.M/ for the projections, then

.O ÌEM/.n/' D O.n/pı' �E
�
.Mn/qı'

�
:

But O.n/pı' is (weakly) contractible as O was assumed to be a G-global E1-operad,
while .Mn/qı' � Inj.n � !;!/qı' is non-empty as seen in Example 4.9, so that also the
second factor is contractible as desired.

Proof of Theorem 4.11. The zig-zag is given by

AlgO.EM-G-C/ ' AlgOÌEM.G-C/� Alg.OÌEM/�P .G-C/� AlgP .G-C/;

where the equivalence on the left is the one from Proposition 4.15 and the remaining two
Quillen equivalences are induced by the projections as in Corollary 4.10.

4.2. G -global versus G -equivariant coherent commutativity

Throughout, let G be a finite group and fix an injective homomorphism j WG !M with
universal image. We write ıWG!EM�G for the homomorphism sending g to .j.g/;g/.

If O is any G-global operad, then we can restrict the EM-G-action along ı to yield a
G-operad ı�O, and likewise for algebras. In this subsection we will prove the following
theorem.

Theorem 4.18. Let O be a †-free G-global operad. Then

ı�WAlgO.EM-G-C/! Algı�O.G-C/
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induces a left and right Bousfield localization at the G-equivariant equivalences (for C D
Cat) or G-equivariant weak equivalences (for C D SSet).

Remark 4.19. If O is a G-global E1-operad, then ı�O is evidently a genuine G-E1-
operad. Thus the above theorem in particular allows us to express the homotopy theory
of (categorical or simplicial) genuine G-E1-algebras as a Bousfield localization of the
homotopy theory of G-global E1-algebras.

The proof of the theorem will occupy the rest of this subsection. For this, we will first
prove an analogous result for twisted G-operads, from which we will then in a second
step deduce the above comparison for ordinary operads.

Construction 4.20. IfO is a twistedG-operad, thenweget induced left and right core.M/-
actions on O.n/ for every n � 0 that commute with each other and the G-action. While
the structure maps of O.n/ are usually not equivariant with respect to either of these
core.M/-actions, one immediately checks that they are equivariant with respect to the
conjugate action, making O into a .core.M/ �G/-operad. We write OG for the operad in
G-C obtained via restricting this action along the homomorphism

ı D .j; id/WG ! core.M/ �G:

Example 4.21. Let 	 be the categorical/simplicial injection operad from Example 4.9.
Then the above G-action on 	G is given by

g:u D j.g/ ı u ı
�
n � j.g�1/

�
:

Put differently, 	G.n/ D E Inj.n �UG ;UG/ where UG WD j
�! is a (specific) complete

G-set universe. Operads of this form were considered for example by Guillou and May in
[14, Definition 7.4], and they are examples of genuine G-E1-operads. In fact, if O is any
twisted G-global E1-operad, then OG is a genuine G-E1-operad as

OG.n/
'
D O.n/.j

�1;'j�1/Wj.H/!G�†n ' �

for every H � G, 'WH ! †n.

Construction 4.22. Let j WG !M be as above and let O be a twisted G-operad. Then
any O-algebra A in G-C carries an “external” G-action by restricting the action of O.1/

along

G
j
�! core.M/

k
�! O.1/G ;

and this commutes with the “internal” G-action coming from the fact that we started
with an algebra in G-categories. Equipping A with the diagonal of these two actions, we
therefore obtain a functor ıWAlgO.G-C/!G-C. One easily checks that the original action
maps O.n/ � A�n ! A are G-equivariant when viewed as maps OG.n/ � .ıA/

n ! ıA,
so that this construction lifts to a functor

�WAlgO.G-C/! AlgOG
.G-C/: (4.2)
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Lemma 4.23. Let O be a twisted G-operad. Then (4.2) induces a right Bousfield local-
ization

�1WAlgO.G-C/1G-global ! AlgOG
.G-C/1G-equivariant:

Proof. It is clear that (4.2) precisely inverts the G-equivariant (weak) equivalences; it
remains to show that �1 is a quasi-localization and that it admits a left adjoint.

For the first statement it suffices to observe that � is an isomorphism of 1-categories:
an inverse is given by equipping an OG-algebra C with the G-action in which g 2 G acts
via the composition

A
g:–
��! A

˛.kj.g�1/;–/
��������! A

for k as in Construction 4.12, where –:– denotes the internal G-action and ˛ denotes the
operadic action; note that this is indeed a G-action as g:.kj.h// D kj.ghg�1/ for all
g; h 2 G with respect to the G-action on OG .

Finally, to construct the left adjoint it suffices to observe that � is right Quillen with
respect to the G-global model structure on the source and the G-equivariant one on the
target.

Proof of Theorem 4.18. It is clear that ı� inverts precisely theG-equivariant equivalences.
It remains to show that .ı�/1 is a right Bousfield localization and that it in addition admits
a right adjoint.

Claim. The map i WO ! O Ì EM defines a G-equivariant (weak) equivalence ı�O !
.O ÌEM/G of operads.

Proof. Plugging in the definitions, we immediately see that

.O ÌEM/G.n/ D .ı
�O/.n/ �E.Mconj/n

as .G �†n/-objects in C, where Mconj denotes M with G-action given by

g:u D j.g/uj.g�1/

and†n acts in the evident way on each factor. In particular, i indeed defines a map ı�O!
.O Ì EM/G and it only remains to show that E.Mconj/n has contractible '-fixed points
for every 'WG ! †n. However, these are just the fixed points for

j.G/
j�1

��! G
.'Iid;:::;id/
�������! †n oG;

and as j.G/ is universal, the claim then follows from the proof of Proposition 4.17 (2). N

We now have a strictly commutative diagram

AlgO.EM-G-C/ Algı�O.G-C/

AlgOÌEM.G-C/ Alg.OÌEM/G
.G-C/

 !Š

 

!
ı�

 

!
�

 !i� (4.3)
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where the unlabelled isomorphism is the one from Proposition 4.15. Upon passing to asso-
ciated quasi-categories, the lower horizontal arrow induces a right Bousfield localization
by Lemma 4.23, while the right-hand arrow induces an equivalence by Theorems 2.24 and
3.26 together with Proposition 4.17 (2). Thus, also .ı�/1 is a right Bousfield localization.

Finally, to see that .ı�/1 admits a right adjoint, we observe that we have a Quillen
adjunction

ı�WEM-G-C� G-C W ı�I

while this is not quite an instance of Lemmas 2.13 and 3.15, the left adjoint is homotopical
and it moreover preserves cofibrations as the ones on the right-hand side are simply the
injective cofibrations. Since both adjoints preserve products, this lifts to an adjunction

AlgO.EM-G-C/� Algı�O.G-C/;

which is again a Quillen adjunction as fibrations and weak equivalences on both sides are
created in the underlying categories. The claim follows immediately.

Remark 4.24. Conversely, we can now conclude from (4.3) that also �1 admits a right
adjoint, exhibiting it as left Bousfield localization as well.

5. Parsummability

Let G be any discrete group. In this section we will compare the above categories of
G-global E1-algebras to the models of “G-globally coherently commutative monoids”
studied in [20, Chapter 2] and in particular to so-called G-parsummable categories and
G-parsummable simplicial sets.

5.1. Tameness and the box product

In order to talk about parsummability we first have to introduce a technical condition on
EM-actions that is called tameness.

Definition 5.1. Let X be an M-set. An element x 2 X is supported on a finite set A � !
if u:x D x for all u 2 M fixing A pointwise; we write XŒA� � X for the subset of all
elements supported on A. Moreover, we say that x is finitely supported if it is supported
on some finite set A � !, and we call X tame if all its elements are finitely supported.

If X is an EM-simplicial set, then we say that an n-simplex x 2 Xn is supported on
the finite set A� ! if it is supported on A as an element ofXn equipped with the diagonal
M-action. Analogously, we define the support of a finitely supported n-simplex, and the
notion of tameness of EM-simplicial sets. We write EM-SSet� � EM-SSet for the full
subcategory spanned by the tame EM-simplicial sets.

Finally, a small EM-category is tame if its set of objects is so. We write EM-Cat� �
EM-Cat for the full subcategory spanned by the tame EM-categories.
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For a detailed treatment of the combinatorics of tame actions we refer the reader to
[36, Section 2] and [20, Section 1.3].

Remark 5.2. While the above definition of support forEM-simplicial sets might look too
weak at first, one can actually show that if X is an EM-simplicial set and x 2 Xn is sup-
ported on A in the above sense, then .u0; : : : ; um/:f �x D f �x for all f W Œm�! Œn� in �
and .u0; : : : ;um/ 2 .EM/m such that each ui fixesA pointwise, see [20, Theorem 1.3.17].
A similar statement for EM-categories can be found as [39, Proposition 2.13 (ii)].

Remark 5.3. The inclusions EM-Cat� ,! EM-Cat, EM-SSet� ,! EM-SSet both
admit right adjoints .–/� given by passing to the full subcategory of finitely supported
objects or the subcomplex of finitely supported simplices, respectively, see [39, Exam-
ple 2.15] and [20, proof of Corollary 1.3.23]. It follows formally, that these subcategories
are closed under small colimits and that they possess small limits, which can be com-
puted by forming limits in the ambient category and then applying .–/� . Moreover, one
immediately checks that both EM-Cat� and EM-SSet� are closed under all finite limits.

Theorem 5.4. The category EM-G -SSet� of G-objects in EM-SSet� admits a unique
cofibrantly generated model structure with weak equivalences the G-global weak equiva-
lences and generating cofibrations given by

I D
®�
E Inj.A; !/ �' G

�
� .@�n ,! �n/ W H finite group,

A 6D ¿ finite faithful H -set,

'WH ! G, n � 0
¯
:

We call this the positive G-global model structure. It is combinatorial, simplicial, proper,
and filtered colimits in it are homotopical. Moreover, the adjunction

inclWEM-G -SSet� � EM-G -SSetinjectiveG-global W .–/�

is a Quillen equivalence.

Strictly speaking, we of course have to restrict to sets of finite sets A and finite groups
H (covering all isomorphism classes) in the definition of the generating cofibrations to
get an honest set, but we will ignore this technicality below.

We moreover remark that there is also an absolute G-global model structure with the
same weak equivalences as above but where we additionally allowAD¿ in the definition
of the generating cofibrations. While this absolute model structure is more natural in most
contexts, the positive one will be necessary for our applications below.

Proof of Theorem 5.4. See [20, Theorem 1.4.60].

Our next goal now is to construct an analogous model structure on EM-G -Cat� and
to show that the inclusion EM-G -Cat� ,! EM-G -Cat is similarly part of a Quillen
equivalence.
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Theorem 5.5. The category EM-G -Cat� admits a unique cofibrantly generated model
structure with weak equivalences the G-global equivalences and generating cofibrations
given by

I D
®�
E Inj.A; !/ �' G

�
� i W H finite group, A 6D ¿ finite faithful H -set,

'WH ! G, i 2 ICat
¯
:

We call this the positive G-global model structure. It is left proper, Cat-enriched (hence
in particular simplicial), and combinatorial.

Before we can prove the theorem, we need the following technical lemma.

Lemma 5.6. The adjunction hWSSet� Cat W N lifts to an adjunction

hWEM-G -SSet� � EM-G -Cat� W N : (5.1)

Proof. Since both h and N preserve finite products, they naturally lift to an adjunction
EM-G -SSet� EM-G -Cat, and it only remains to show that they preserve tameness.
For the nerve this appears in [23, Example 2.7], while the claim for h follows immediately
from the definitions.

Proof of Theorem 5.5. The category EM-G -Cat� is locally presentable as the adjunc-
tion (5.1) exhibits it as an accessible Bousfield localization of the category EM-G -SSet�

which in turn is locally presentable by [20, Theorem 1.4.60].
We will now verify the assumptions of [24, Proposition A.2.6.13]: first, we have to

show that the G-global equivalences on EM-G -Cat� are perfect in the sense of [24, Def-
inition A.2.6.10]. However, theG-global equivalences on the whole category EM-G -Cat
are part of a combinatorial model structure and closed under filtered colimits (Corol-
lary 3.2), hence perfect by [24, Remark A.2.6.14]. Thus, the claim follows from [24,
Corollary A.2.6.12] applied to the inclusion EM-G -Cat� ,! EM-G -Cat.

Next, let j be any pushout of a map in I (along an arbitrary map); we have to show
that pushouts along j preserve G-global equivalences. But j is in particular an injective
cofibration, so this is simply an instance of Proposition 3.7.

Finally, we have to show that every map f with the right lifting property against I
is a G-global equivalence. But indeed, looking at corepresented functors shows that in
this case f '

ŒA�
is an acyclic fibration in Cat for each universal subgroup H , each finite

non-empty H -subset A � !, and each homomorphism 'WH ! G. Passing to the filtered
colimit over A (and using that f is a map of tame EM-G-categories), then shows that f '

is an equivalence of categories (as a filtered colimit of equivalences) as desired.
Thus, [24, Proposition A.2.6.13] shows that the model structure exists and that it is

combinatorial and left proper. It only remains to show that it is Cat-enriched as a model
category, i.e. to verify the pushout product axiom. For the statement about cofibrations,
we may restrict to generating cofibrations, where this follows easily from the fact that Cat
itself is Cat-enriched. The part about acyclic cofibrations then follows as in the proof of
Theorem 3.8.
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Theorem 5.7. The adjunction

inclWEM-G -Cat� � EM-G -CatinjectiveG-global W .–/�

is a Quillen equivalence.

Proof. It is clear that the left adjoint preserves cofibrations and creates weak equivalences.
It therefore only remains to show that the counit C � ,! C is a G-global equivalence for
each injectively fibrant EM-G-category C .

This will be analogous to the argument we gave in the simplicial situation as part
of [20, Corollary 1.3.28]. Namely, we will show that C '

ŒA�
,! C ' is an equivalence of

categories for each universal H �M, non-empty finite faithful H -set A � !, and homo-
morphism 'WH ! G; the claim will then again follow by passing to the filtered colimit
over all such A.

To prove the claim we consider for each such C the map

FunEM�G
�
E Inj.A; !/ �' G;C

�
! FunEM�G.EM �' G;C/ (5.2)

induced by the restriction EM! E Inj.A; !/. It is clear that (5.2) is conjugate to

C
'

ŒA�
,! C ' :

AsC is injectively fibrant and since the injectiveG-global model structure is Cat-enriched,
it is therefore enough to show that

EM �' G ! E Inj.A; !/ �' G

is a G-global equivalence.
Clearly, the H -actions via precomposition on EM and E Inj.A; !/ are free. Unrav-

elling the definition of – �' G and appealing to Lemma 3.14 it is then enough to show
that EM ! E Inj.A; !/ is an H -global equivalence, for which it in turn suffices that
.E Inj.B; !// is equivalent to the terminal category for every universal K �M, every
 WK ! H , and each countable H -set B . As before this just amounts to saying that
Inj.B;!/ is non-empty, i.e. that there exists anK-equivariant injection  �B� !. This
is in turn immediate from universality of K (also see [20, Example 1.2.35]).

Now we are ready to define parsummable categories as first introduced in [39] as well
as their simplicial counterpart, the parsummable simplicial sets [23].

Definition 5.8. LetC;D 2EM-Cat� . Their box product is the full subcategoryC �D�
C �D of the Cartesian product spanned by all those .c; d/ 2 C �D such that c and d
are disjointly supported, i.e. supp.c/ \ supp.d/ D ¿.

One can show that C �D is again tame and that� defines a subfunctor of the Carte-
sian product. The usual coherence isomorphisms of the Cartesian symmetric monoidal
structure then restrict to make� the monoidal product of a preferred symmetric monoidal
structure on EM-Cat� , see [39, Proposition 2.35]. Taking diagonal G-actions this then
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more generally provides a symmetric monoidal structure on EM-G -Cat� for every (dis-
crete) group G.

Definition 5.9. We write

G -ParSumCat WD CMon.EM-G -Cat� ;�/

for the category with objects the commutative monoids (with respect to the box prod-
uct) in EM-G -Cat� and morphisms the monoid homomorphisms. We call its objects
G-parsummable categories.

Similarly, there is a box product of tameEM-simplicial sets which is however slightly
more intricate to define:

Definition 5.10. Let X; Y be tame EM-simplicial sets. We call x 2 Xn; y 2 Yn dis-
jointly supported if they are disjointly supported as elements of the M-sets i�

k
Xn and

i�
k
Yn, respectively, for every 0 � k � n, where ik WM !MnC1 denotes the inclusion of

the .k C 1/-th factor; note that these are indeed tame M-sets by Remark 5.2. The box
product X � Y is the subsimplicial set of X � Y given by all pairs of disjointly supported
simplices.

One can show that this is indeed a subsimplicial set, that it is preserved by the diagonal
EM-action [23, Proposition 2.17], and that this yields a symmetric monoidal structure
analagous to the above [23, Proposition 2.18].

Lemma 5.11. The usual strong symmetric monoidal structure for the Cartesian products
restricts to a strong symmetric monoidal structure on NWEM-G -Cat� ! EM-G -SSet�

with respect to the box products. In particular, the nerve lifts to a functor

G -ParSumCat! G -ParSumSSet:

Proof. See [23, Proposition 2.20].

Example 5.12. Let A, B be finite sets. The restriction maps

E Inj.Aq B;!/! E Inj.A; !/ and E.Aq B;!/! E Inj.B; !/

induce an isomorphism E.Aq B; !/ Š E Inj.A; !/ � E Inj.B; !/ in EM-Cat� (and
hence also in EM-SSet� ): namely, both E Inj.Aq B; !/ and the box product are indis-
crete, so it suffices to show this on the level of objects, where this follows from [36,
Example 2.15].

Remark 5.13. The iterated box products on EM-Cat� on EM-SSet� each admit a nat-
ural unbiased description that we will tacitly use below. Namely, if C1; : : : ; Cn are any
tame EM-categories, then for any bracketing of the left-hand side

C1 � � � �� Cn ! C1 � � � � � Cn

induces an isomorphism onto the full subcategory spanned by the tuples .c1; : : : ; cn/ 2
C1 � � � � � Cn with pairwise disjoint support, and analogously in the simplicial case.
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5.2. The box product as an operadic product

In order to compare G-parsummable categories and G-parsummable simplicial sets to
algebras over (twisted) G-global E1-operads, we will first devise an alternative, “op-
eradic” description of iterated box products.

Throughout the remainder of this section, let C 2 ¹Cat; SSetº again; we will write
ParSum-C for CMon.EM-C� ;�/ and refer to its objects as parsummable C-objects.

Construction 5.14. Let n � 0. Then Mn acts from the right on Inj.n � !;!/ via

f:.u.1/; : : : ; u.n// D f ı .u.1/ q � � � q u.n//;

which as usual induces a right action of EMn on E Inj.n � !;!/.
Now let X1; : : : ; Xn be EM-objects, which then yields a left EMn-action on X1 �

� � � � Xn. We write E Inj.n � !; !/ �EMn .X1 � � � � � Xn/ for the EM-object obtained
from E Inj.n � !; !/ � .X1 � � � �Xn/ by coequalizing the right EMn-action on the first
factor with the left EMn-action on the second one. Acting with

E Inj.n � !;!/ � EMn

then induces a natural map

ˆWE Inj.n � !;!/ �EMn .X1 � � � � �Xn/! X1 � � � �Xn: (5.3)

Theorem 5.15. For all X1; : : : ; Xn 2 EM-G-C� the natural map (5.3) restricts to an
isomorphism onto X1 � � � ��Xn.

Proof. For C D SSet this appears as [20, Theorem 2.1.19]; as the nerve is fully faithful
and strong symmetric monoidal (Lemma 5.11), the corresponding statement for categories
then follows formally by applying this to N.X1/; : : : ;N.Xn/ and passing to homotopy
categories.

Let us draw some immediate consequences from this description.

Corollary 5.16. The box product on EM-G-C� is cocontinuous in each variable. Thus,
the symmetric monoidal structure on EM-G-C� described above is closed.

Proof. For CD SSet this is [20, Corollary 2.1.21], and the same proof works for CDCat:
namely, the first claim follows from the previous theorem asE Inj.2�!;!/�EM2 .–� –/
is clearly cocontinuous in each variable. The second claim is then immediate asEM-G-C�

is locally presentable (Theorems 5.4 and 5.5).

Proposition 5.17. Let n � 0.

(1) Let X1; : : : ; Xn 2 EM-G-C. Then the natural map

ˆWE Inj.n � !;!/ �EMn .X1 � � � � �Xn/! X1 � � � � �Xn

is a G-global (weak) equivalence.
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(2) Let X 2 EM-G-C. We equip E Inj.n � !;!/ �EMn X�n with the †n-action via

�:Œu0; : : : ; umI x1; : : : ; xn�

D
�
u0 ı .�

�1
� id/; : : : ; um ı .��1 � id/I x��1.1/; : : : ; x��1.n/

�
:

Then the natural map E Inj.n � !; !/ �EMn X�n ! X�n is a .G �†n/-global
(weak) equivalence.

Proof. For the first statement, it suffices to show that E Inj.n � !;!/ ,! EMn is a right-
EMn-left-H -equivariant equivalence of categories for every universalH �M, for which
suffices to give a left-H -right-Mn-equivariant map Mn ! Inj.n � !; !/. For this we
simply pick anH -equivariant injection uWn� !� ! (which exists by universality of the
target) and consider the map .v1; : : : ; vn/ 7! u ı .v1 q � � � q vn/.

For the second statement it suffices similarly to construct for each givenH -action on n

a left-H -right-Mn-equivariant map Mn ! Inj.n � !;!/, which can be done in the same
way.

We immediately conclude the following comparisons between the box product and
the Cartesian product, which for G D 1 and C D Cat also appear in [39, proof of Theo-
rem 2.33] and [39, proof of Theorem 4.13], respectively, while the corresponding simpli-
cial statements can be found in [20, Section 2.1.2.1].

Corollary 5.18. Let n � 0.

(1) Let X1; : : : ; Xn 2 EM-G-C� . Then the inclusion

X1 � � � ��Xn ,! X1 � � � � �Xn

is a G-global (weak) equivalence.

(2) LetX 2EM-G-C� . Then the inclusionX�n ,!X�n is a .G �†n/-global (weak)
equivalence.

Corollary 5.19. The box product is homotopical in each variable.
Moreover, if f WX ! Y is a G-global (weak) equivalence in EM-G-C� , then f �n is

a .G �†n/-global (weak) equivalence for every n � 0.

Proof. The first statement follows immediately from the first part of the previous corollary
as the Cartesian product is homotopical. The second statement follows similarly from
Corollaries 2.14 and 3.16.

5.3. 	 -algebras versus parsummability

As mentioned without proof in [39, Remark 4.20], parsummable categories can be iden-
tified with tame 	-algebras, also see [36, Theorem A.13] for the corresponding Set-level
statement. Using Theorem 5.15 we can now easily give a full proof of this as well as of its
simplicial counterpart, for which we begin with the following observation.
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Lemma 5.20. The free-forgetful adjunction PWEM-G-C� Alg	.G-C/ W forget restricts
to an adjunction

PWEM-G-C� � Alg	.G-C/� W forget : (5.4)

Proof. We have to show that PX is tame for every X 2 EM-G-C� , for which we note
that as EM-G-objects

PX D
a
n�0

�
	.n/ �EMn X�n

�
=†n;

which is isomorphic to
`
n�0X

�n=†n by Theorem 5.15; the claim follows immediately
as EM-G-C� is closed under colimits and the box product.

Construction 5.21. Let A be a tame 	-algebra. We defineCWA� A! A via

A� A
ˆ�1

��! E Inj.2 � !;!/ �EM2 A�2 ! A;

where the right-hand map is induced by the action map. Moreover, we define 0 2 A as the
image of the unique 0-ary operation.

Proposition 5.22. For any tame 	-algebra A, the above defines the structure of a par-
summable C-object. Moreover, this construction extends to an equivalence of ordinary
categories Alg	.G-C/� !G-ParSum-C by sending an 	-algebra homomorphismA!B

to the monoid homomorphism with the same underlying map.

Proof. For clarity, let us write P� for the left adjoint of the forgetful functor

G-ParSum-C! EM-G-C�

and P	 for the left adjoint in (5.4).
The forgetful functor Alg	.G-C/! G-C preserves reflective coequalizers, hence so

does Alg	.G-C/� ! EM-G-C as colimits on the right-hand side are created in G-C. As
it is moreover clearly conservative, we see that (5.4) is monadic, i.e. the canonical functor
Alg	.G-C/� ! AlgP	

is an equivalence.
On the other hand, we have an equivalence of categories AlgP� ! G-ParSum-C that

sends an algebra .A; P�A! A/ to A equipped with the sum induced by the restriction
of P�A! A to the summand A�2=†2 and 0-object the image of the zeroth summand,
and that sends a map f of P�-algebras to the monoid homomorphism with the same
underlying map.

Finally, Theorem 5.15 shows that the natural transformation
`
n�0ˆWP	 ! P� is an

isomorphism. Moreover, this is a map of monads either by direct inspection, or alterna-
tively using that both sides are naturally submonads of the monad

P�WX 7!
a
n�0

X�n=†n
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for strictly commutative monoids (viewing 	 as a suboperad of � Ì EM). Thus, pulling
back along the inverse isomorphism yields an equivalence

AlgP	
! AlgP� :

The resulting equivalence

Alg	.G-C/� ! AlgP	
! AlgP� ! G-ParSum-C

then clearly admits the above description.

In order to achieve the desired comparison betweenG-ParSum-C and all of Alg	.G-C/
we will introduce suitable model structures next.

Theorem 5.23. There is a unique model structure onG-ParSum-C in which a map is weak
equivalence or fibration if and only if it is so in the positive G-global model structure on
EM-G-C� . We call this the positive G-global model structure. It is proper, C-enriched
(hence in particular simplicial), and combinatorial. Moreover, the adjunction

PWEM-G-C� � G-ParSum-C W forget (5.5)

is a Quillen adjunction.

Proof. For C D SSet this appears as [20, Theorem 2.1.36]; the proof for C D Cat is anal-
ogous, so we will be somewhat terse here.

We will verify the assumptions of [44, Theorem 3.2], whose terminology we follow.
The smallness assumptions are automatically satisfied as EM-G -Cat� is locally pre-
sentable.

Next, let us show that EM-G -Cat� is a symmetric monoidal model category with
respect to the box product. Indeed, the box product provides a closed symmetric monoidal
structure by Corollary 5.16; moreover, the unit axiom is satisfied as the box product is
fully homotopical (Corollary 5.19). In order to verify the pushout product axiom for cofi-
brations we may restrict to the generating cofibrations, in which case we note that we can
identify the pushout product of standard generating cofibrations

E Inj.A; !/ �' G � i and E Inj.B; !/ � G � i 0

(where A is a finite non-empty faithful H -set and B is a finite non-empty faithful K-set
for some finite groups H;K) up to isomorphism with�

E Inj.Aq B;!/ �G2 � .i � i 0/
�
=.H �K/; (5.6)

where H �K acts on Aq B in the obvious way (which is then clearly faithful) and on
G2 via ' and  , and where the pushout product of i and i 0 is formed with respect to the
Cartesian product on Cat. As Cat is Cartesian, i � i 0 is a cofibration, and as G acts freely
from the left on G2, we conclude from the following claim that (5.6) is a cofibration as
desired.
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Claim. Let L be a finite group, let C be a finite faithful L-set, and let f WX ! Y be a map
in .G �L/-Cat such that f is injective on objects andG acts freely on Ob.Y /X f .ObX/.
Then E Inj.C; !/ �L f is a cofibration in EM-G -Cat� .

Proof. The functor E Inj.C; !/ �L – is a left adjoint and it sends generating cofibrations
of the GL;G-model structure to generating cofibrations in the G-global model structure by
direct inspection. Thus the claim follows from Lemma 3.5. N

The pushout product axiom for acyclic cofibrations then follows again as in the proof
of Theorem 3.8. Thus, EM-G -Cat� is symmetric monoidal.

For the monoid axiom we observe that for any acyclic cofibration j and any tame
EM-G-category C the map C � j is aG-global equivalence and an injective cofibration.
Thus, also any pushout of C � j is a G-global equivalence by Proposition 3.7, and as the
G-global equivalences are stable under filtered colimits, so is any transfinite composition
of such.

Next, we verify the strong commutative monoid axiom, for which we again may
restrict to generating (acyclic) cofibrations by [44, Lemma A.1]. For the part about cofi-
brations, we therefore have to show that the map i�n=†n is a cofibration for each of the
standard generating cofibrations .E Inj.A; !/ �' G/ � i 0 (i 0 2 ICat, H finite, A 6D ¿ a
finite faithful H -set, 'WH ! G), where i�n denotes the iterated pushout product and
†n acts by permuting the factors. However, using Example 5.12, this map agrees up to
conjugation by isomorphisms with�

E Inj.n � A;!/ �Gn � .i 0/�n
�
=.†n oH/; (5.7)

where the wreath product acts on Inj.n � A;!/ via the action on n � A given by

.� I h1; : : : ; hn/:.k; a/ D .�.k/; hk :a/

and similarly on Gn � .i 0/�n. One easily checks that the .†n o H/-action on n � A is
faithful (which uses A 6D ¿). Thus, we again conclude from the above claim that (5.7) is
a cofibration.

The sources of the standard generating cofibrations of EM-G -Cat� are cofibrant, so
we can pick a set of generating acyclic cofibrations with cofibrant sources by [2, Corol-
lary 2.7]. Thus, to verify the strong commutative monoid axiom for acyclic cofibrations,
it is enough by [13, Corollaries 10 and 23] to show that j�n=†n is a G-global equiv-
alence for any G-global equivalence j WC ! D between cofibrant objects. As j�n is a
.G � †n/-global equivalence by Corollary 5.19, it suffices by Lemma 3.14 to show that
†n acts freely onA�n for every cofibrantA. But indeed, one easily checks inductively that
such an A has no M-fixed objects (hence no M-fixed points at all), so the claim follows
by applying the argument from [20, proof of Corollary 2.1.17] to the nerve of A.

Altogether, this shows that we may apply [44, Theorem 3.2] to conclude that the trans-
ferred model structure along (5.5) exists, which easily implies all of the above claims
except for the left properness, which is instead an instance of [44, Theorem 4.17].
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Corollary 5.24. There is a unique model structure on Alg	.G-C/� in which a map is a
weak equivalence or fibration if and only if it so in the positive G-global model structure
on EM-G-C� . We call this the positive G-global model structure again. It is combinato-
rial, right proper, and simplicial. Moreover, the adjunction (5.4) is a Quillen adjunction.

Proof. As the forgetful functors are compatible with the equivalence (of ordinary cate-
gories) from Proposition 5.22, Theorem 5.23 implies that the model structure transferred
along (5.4) exists. The claims follow as before.

Proposition 5.25. Geometric realization inEM-G-C� andEM-G-C is homotopical, and
the forgetful functors Alg	.G-C/� ! EM-G-C� , Alg	.G-C/! EM-G-C preserve geo-
metric realizations.

Proof. The first statement for EM-G-C is an instance of Proposition 3.23 (or its clas-
sical simplicial analogue), and this immediately yields the corresponding statement for
EM-G-C� as the inclusion preserves tensors and colimits.

Likewise, the second statement for EM-G-C is an instance of Proposition 2.23 (using
that geometric realization is created in C and Alg	.C/, respectively), and for the tame
statement it suffices to show that Alg	.G-C/� is closed under geometric realizations. How-
ever, as geometric realizations in Alg	.G-C/ can be computed in EM-C, this follows as
for the first statement.

The same argument as in the proof of Proposition 2.22 now shows the following.

Proposition 5.26. The adjunctions

LPWEM-G-C1� Alg	.G-C/1 W forget1

LPW .EM-G-C� /1�
�

Alg	.G-C/�
�1
W forget1

are monadic.

Theorem 5.27. The inclusion G-ParSum-C ' Alg	.G-C/� ,! Alg	.G-C/ descends to
an equivalence of associated quasi-categories. In particular, if O is any twisted G-global
E1-operad, then G-ParSum-C1 ' AlgO.G-C/1.

Proof. By Corollary 4.10 it suffices to prove the first statement. For this we consider the
diagram �

Alg	.G-C/�
�1 Alg	.G-C/1

.EM-G-C� /1 EM-G-C1

EM-G-C EM-G-C1

 

!
incl1

 !forget1  ! forget1

 

!
incl1

 !incl1

)

((

(

(

)
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where the two squares commute up to the natural equivalences induced by the respective
identity transformations. The vertical composites are monadic by the previous proposition
together with Theorems 5.4 and 5.7. As in the proof of Theorem 2.24 it then suffices to
show that the canonical mate of the total rectangle is an equivalence. As the functors in
the bottom square are equivalences, it is enough to prove this for the top square, where
this is immediate from the construction of the adjunctions (cf. Lemma 5.20).

For C D SSet this implies the following result which in particular subsumes Theo-
rem C from the introduction.

Theorem 5.28. The following quasi-categories are equivalent:

• the quasi-category AlgO.EM-G -SSet/1 for any G-global E1-operad O,

• the quasi-category .� -G -EM-SSetspecial
� /1 of specialG-global �-spaces in the sense

of [20, Definition 2.2.50], and

• the quasi-category G -UCom1 of G-ultra-commutative monoids in the sense of [20,
Definition 2.1.25].

Proof. Let O be aG-globalE1-operad; the previous theorem together with Theorem 4.11
implies that AlgO.EM-G -SSet/1 is equivalent to the quasi-category of G-parsummable
simplicial sets. These are in turn equivalent to special G-global �-spaces by [20, Theo-
rem 2.3.1 and Corollary 2.2.53] and to G-ultra-commutative monoids by Corollary 2.1.38
of op. cit.

Assume now that G is finite. As a consequence of the above, we get the following
result which for C D Cat generalizes Theorem D from the introduction.

Theorem 5.29. The composition

.G-ParSum-C/ ,! Alg	.G-C/
�
�! Alg	G

.G-C/

induces a quasi-localization at the G-equivariant (weak) equivalences. In particular, if O

is any genuine G-E1-operad, then we have an equivalence

.G-ParSum-C/1G-equivariant ' AlgO.G-C/1G-equivariant:

Proof. The first statement is immediate from Theorem 5.27 together with Lemma 4.23.
With this established, the second statement then follows from Theorem 3.26.

Remark 5.30. For G D 1 and O D E†� the above in particular yields an equivalence
between permutative categories and parsummable categories, both viewed with respect to
the underlying equivalences of categories. On the other hand, we previously proved in [21]
that a specific functorˆ constructed by Schwede [39, Construction 11.1] from permutative
to parsummable categories descends to an equivalence of associated quasi-categories. This
induced functor is in fact inverse to the above equivalence for abstract reasons: namely,
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both ˆ and the above equivalence preserve underlying categories in the sense that they
come with an equivalence forget ı ˆ ' forget and similarly for the above composition.
It then follows formally from [12, Corollary 2.5 (iii)] that there are essentially unique
equivalences between the two composites and the respective identities that are compatible
with the chosen equivalences for the underlying categories.

On the other hand, while the results of Section 3.4 allow us to make the comparison
between G-parsummable categories and genuine permutative G-categories explicit, the
resulting functor is quite complicated. I do not know of any simple comparison in this
case, or in fact even an interesting direct functor from genuine permutative G-categories
to G-parsummable ones.

However, we can at least describe the H -fixed points (H � G) of the genuine permu-
tativeG-category associated to aG-parsummable category concisely: namely, by the same
trick as in the case H D G D 1 it will suffice to give a functor ‰H WG -ParSumCat!
SymMonCat that on underlying categories agrees with the H -fixed points of the above
equivalence. For this we will in fact give a functor ‰ to G -SymMonCat that on underly-
ingG-categories agrees with our equivalence, i.e. that lifts the functor ı�WEM-G -Cat�!
G -Cat.

This is a straightforward adaption of the construction for G D 1 presented in [39,
Section 5]: for any n � 0 and any injection 'W n � ! ! ! we define '�WC�n ! C on
objects via '�.x1; : : : ; xn/ D

Pn
iD1 '.i; –/:xi and analogously on morphisms; note that

the sum is indeed well defined as '.i; –/:xi and '.j; –/:xj are disjointly supported for
i 6D j by [39, Proposition 2.13 (iii)]. For any other such injection  we then get a natural
transformation Œ ; '�W'�)  � given on .x1; : : : ; xn/ by

Pn
iD1. .i; –/; '.i; –//:xi . One

immediately checks from the definitions that if H � M is any subgroup such that ' is
H -equivariant with respect to the tautological H -action on !, then '� is H -equivariant,
and similarly for Œ ; '�. Moreover, '�,  � and Œ ; '� are clearly G-equivariant (without
any assumptions on ' and  ) because the EM-action on C commutes with the G-action.
In particular, we see that if ' and  are j.G/-equivariant (for our chosen embedding
j WG!M), then '� and  � define G-equivariant functors .ı�C/�n! ı�C and Œ ; '� is
a G-equivariant natural transformation between them.

Now [39, Construction 5.5] associates to any choice of an injection �W 2 � ! ! ! a
symmetric monoidal category with underlying category C and tensor product C�2 ! C

given by ��. The tensor unit is the object 0 and the structure isomorphisms are given
by the canonical isomorphisms provided by the EM-action: for example, the left unital-
ity isomorphism ��.0; x/ D �.2; –/�x ! x is simply given by Œ�.2; –/; 1�x ; we refer
the reader to loc.cit. for further details. As an upshot of the above, we see that if � is
j.G/-equivariant, then this equips ı�C with the structure of a symmetric monoidal G-
category C . Moreover, for any map f WC !D ofG-parsummable categories the induced
G-equivariant functor ı�C ! ı�D is actually strict symmetric monoidal with respect to
these symmetric monoidal structures. Thus, any choice of a j.G/-equivariant � (which
is possible as j.G/ is universal) provides a lift of ı� to a functor G -ParSumCat !
G -SymMonCat as desired.
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Remark 5.31. We can also make the comparison functor explicit on the genuine permuta-
tive G-categories arising from naïve ones via the Guillou–May–Shimakawa construction
(Example 3.20), which covers most examples from practice. However, as this requires
some additional terminology and techniques that we will only establish later, this descrip-
tion is given in the appendix as Proposition A.2.

Finally, Theorem 5.29 together with [20, Theorem 2.3.18] implies the following result,
which was previously proven (using quite different and more explicit means) by May,
Merling, and Osorno [30, Section 10.2].

Corollary 5.32. Let O be any genuine G-E1-operad in G -SSet. Then there is an equiv-
alence of quasi-categories AlgO.G -SSet/1 ' � -G -SSetspecial

� between O-algebras and
Shimakawa’s special �-G-spaces [41].

6. Equivariant algebraic K -theory and the K -theory of group rings

As alluded to in the introduction, G-parsummable categories are arguably easier to con-
struct than genuine symmetric monoidal G-categories. To demonstrate this, we will use
Theorem 5.29 to produce certain genuine symmetric monoidal G-categories with inter-
esting equivariant algebraic K-theory of which I do not know any direct construction
avoiding the use of G-parsummable categories.

To put this into context, we recall that Guillou and May defined the equivariant alge-
braicK-theory KG.C / of any genuine permutativeG-category C in [14, Definition 4.12],
which is a genuineG-spectrum in the sense of equivariant stable homotopy theory; we will
not need any specifics of their construction. This was then used by Merling to define the
equivariant algebraic K-theory of a G-ring R [31, Definition 5.23].

Construction 6.1. For a ring R, let P.R/ denote the symmetric monoidal category of
finitely generated projective R-modules and R-linear isomorphisms under direct sum. For
technical convenience, we insist that the direct sums be obtained by fixing a choice of
coproducts of abelian groups once and for all, and then equipping the chosen coproduct
of underlying abelian groups with the usual R-module structure; as a consequence of this
specific choice, the underlying abelian group of M ˚ N only depends on the underlying
groups of M and N up to equality, and not just up to isomorphism.

Now assume G acts on R through ring automorphisms. Then we define a G-action on
P.R/ by sending an R-module M to the module g:M with the same underlying abelian
group, but with scalar multiplication

R � .g:M/! g:M

.r;m/ 7! .g�1:r/mI

moreover, an R-linear isomorphism f WM ! N is sent to the same map of underlying
abelian groups, considered as a morphism g:M ! g:N . As an upshot of our specific



T. Lenz 1136

choices of direct sums, this defines a G-action through strictly symmetric monoidal
functors.

The equivariant algebraicK-theory KG.R/ of the G-ring R is then defined by taking
a (small) naïve G-permutative replacement P.R/! P.R/ and then applying the equiv-
ariant algebraic K-theory functor KG of Guillou and May to the genuine permutative
G-category Fun.EG;P.R// (see Example 3.20).

For her construction, Merling provided a description of the categorical fixed points in
terms of the K-theory of twisted group rings.

Construction 6.2. We write RGG for the ring with underlying abelian group
L
g2G R

and with multiplication given by�X
g2G

rgg
��X

h2G

shh
�
D

X
g;h2G

�
rg.g:sh/

�
.gh/:

In particular, whenG acts trivially onR this recovers the usual group algebraRG. Beware
however that for non-trivial actions this is not an R-algebra as the multiplication maps
g:–WRGG ! RGG are not R-linear, but instead R-semilinear, i.e. they are additive and
satisfy

g.rx/ D .g:r/.gx/:

More generally, given any RGG-module M , the multiplication maps g:–WM ! M

define a G-action through R-semilinear maps, and conversely any such action on an R-
module extends uniquely to an RGG-module structure (in the obvious way). Moreover,
an R-linear map M ! N is RGG-linear if and only if it commutes with the action maps,
also see [31, Observation 4.3].

Theorem 6.3 (Merling). If H � G is a subgroup such that jH j 2 R�, then we have a
preferred equivalence

FHKG.R/ ' K.RHH/:

Proof. See [31, Theorem 5.28].

The assumptions of the theorem are in particular satisfied if R is a Q-algebra. How-
ever, in absence of the above invertibility condition the H -fixed points only recover the
K-theory of finitely generated RHH -modules which are projective over R (as opposed to
RHH ), which yields the wrong result already for R D Z and H D G the cyclic group of
order 2 (acting trivially).

We will now define a genuine permutativeG-category PG.R/ whose equivariant alge-
braic K-theory upon taking fixed points recovers the algebraic K-theory of twisted group
rings over R without any such invertibility assumption. To this end, we first begin with a
concrete construction of a G-parsummable category PG.R/, which is a variant of the par-
summable category used in Schwede’s construction [39, Construction 10.1] of the global
algebraic K-theory of rings.
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Construction 6.4. Let RŒ! � G� be the free left R-module with basis ! � G; we let
M �G act on RŒ! �G� via

.u; g/:
� X
.v;h/2M�G

r.v;h/.v; h/
�
D

X
.v;h/2M�G

.g:r.v;h//.uv; gh/:

In particular, M acts R-linearly, while G acts semilinearly; note that this is still enough to
ensure that g:– maps R-submodules to R-submodules.

We will now write PG.R/ for the following category: an object of PG.R/ is a pair
.M; r/ of a finitely generated R-submodule M � RŒ! � G� together with an R-linear
retraction r WRŒ! �G�!M of the inclusion such that r sends almost all of the standard
basis vectors to zero. A map ' from .M; r/ to .N; s/ is an abstract R-linear isomorphism
M ŠN ; no compatibility of ' with the chosen retractions (or the embeddings) is required.

If u 2M is any injection, then acting with u onRŒ! �G� sends any finitely generated
R-submoduleM to a finitely generated submodule u:M . Moreover, if r WRŒ! �G�!M

is R-linear, then we define ru by R-linearly extending the map ! � G ! M sending
.u.x/; g/ to u:.r.x; g// and .y; g/ to 0 for any y … im.u/. Clearly ru ı .u:–/ D .u:–/ ı r ,
and in particular ru is a retraction to the inclusion u:M ,! RŒ! � G�. As moreover ru

again sends almost all basis vectors to zero by direct inspection, we may now define
u:.M; r/ D .u:M; ru/ for every .M; r/ 2 PG . One easily checks that this defines an
M-action on Ob PG.R/. Moreover, we have a natural isomorphism u

.M;r/
ı W .M; r/ !

.u:M; ru/ D u:.M; r/ given by acting with u; these maps clearly satisfy the relations

vu:.M;r/ı u.M;r/ı D .vu/.M;r/ı

for all v; u 2 M, so there is by [39, Proposition 2.6] a unique way to define an EM-
action on PG.R/ such that the underlying M-action on objects is as above and such that
in addition the natural isomorphism id) .u:–/ induced by the map .u; 1/ in EM is given
for each u 2M by the maps uı.

In addition, we define a G-action on PG as follows: for any g 2 G, an object .M; r/
is sent to .g:M; rg/ where g:M is again given as the image of M under the G-action
on RŒ! � G�, while rg D .g:–/ ı r ı .g�1:–/. If now 'W .M; r/! .N; s/ is any map in
PG.R/, then we define g:' as the map .g:–/ ı ' ı .g�1:–/; one easily checks that this
defines a G-action on PG.R/. Moreover, the G-action on objects clearly commutes with
the M-action, and moreover g:.u.M;r/ı / D ug:.M;r/ as both sides are given as maps of R-
modules simply by .g:–/ ı .u:–/ ı .g�1:–/ D u:–. Thus, [21, Corollary 1.3] shows that
g:– is a map of EM-categories, i.e. we altogether get an .EM �G/-action.

Lemma 6.5. The EM-G-category PG.R/ is tame. The support of an element .M; r/ is
given by supp.M/ [ supp.r/ where we define

supp.M/ WD
®
i 2 ! W pr.i;g/.M/ 6D 0 for some g 2 G

¯
supp.r/ WD

®
i 2 ! W r.i; g/ 6D 0 for some g 2 G

¯
I

here pr.i;g/WRŒ! �G�! R denotes the projection onto the basis vector .i; g/.
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Proof. First observe that supp.M/ is finite as M is finitely generated, while supp.r/ is
finite by assumption on r .

If u fixes supp.M/ pointwise, then clearly u:M D M . Moreover, if u fixes supp.r/
pointwise, then r.u.i/; g/ D r.i; g/ for all .i; g/ 2 ! � G: namely, if i 2 supp.r/, then
already .u.i/; g/ D .i; g/, while otherwise also u.i/ … supp.r/ by injectivity, so that
r.u.i/; g/ D 0 D r.i; g/. Thus, if u also fixes supp.M/ pointwise, then

ru
�
u.i/; g

�
D u:r.i; g/ D r.i; g/ D r

�
u.i/; g

�
for all .i; g/ 2 ! �G, while ru.i; g/ D 0 D r.i; g/ when i … im.u/ as im.u/ � supp.r/.

Conversely, let A � ! be a finite set such that .M; r/ is supported on A. We will show
that A � supp.r/; the argument that A � supp.M/ is similar. To this end, assume for
contradiction that A 6� supp.r/ and pick i 2 supp.r/XA as well as u 2M with u.a/D a
for all a 2 A, but i … imu. Since i 2 supp.r/, there exists a g 2G with r.i; g/ 6D 0. On the
other hand ru.i; g/ D 0 as i … im.u/ so ru 6D r contradicting the assumption that .M; r/
be supported on A.

Construction 6.6. We make the tame EM-G-category PG.R/ into a G-parsummable
category as follows: the neutral element is given by the pair .0; 0/ of the zero submod-
ule and the zero map RŒ! � G� ! 0; this has empty support by the previous lemma.
If now .M; r/ and .N; s/ are disjointly supported, then we define .M; r/ C .N; s/ as
.M CN; r C s/ where M CN is the internal sum as submodules and

.r C s/.x/ D r.x/C s.x/

as usual. Note that the sum M CN is actually direct as

supp.M/ \ supp.N / D ¿I

moreover, r C s is indeed a retraction: we will show that s.x/ D 0 for every x 2 M ;
analogously one shows that r.x/ D 0 for every x 2 N which then easily yields the claim.
To this end, we observe that if x 2 M and pr.i;g/.x/ 6D 0, then i 2 supp.M/ and hence
i … supp.s/ by the previous lemma, which shows s.i; g/ D 0. As we can express x as an
R-linear combination of .i; g/’s with pr.i;g/.x/ 6D 0, the claim follows. Finally, M C N
is clearly finitely generated while r C s still sends almost all standard basis vectors to 0,
so that .M C N; r C s/ is a well-defined element of PG.R/. If 'W .M; r/! .N; s/ and
'0W .M 0; r 0/! .N 0; s0/ are maps in PG.R/ such that

supp.M; r/ \ supp.M 0; r 0/ D ¿ D supp.N; s/ \ supp.N; s0/;

then we define .' C '0/.mC m0/ D '.m/C '0.m0/; this is well defined as the internal
sum M CM 0 is direct, and it is again bijective as also the internal sum N CN 0 is direct
by assumption. Altogether, we have defined a map PG.R/�PG.R/! PG.R/, and one
trivially verifies that this is strictly unital, associative, and commutative.
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Finally, the sum is clearly M-equivariant on objects and it satisfies the relation

u.M;r/ı C u.N;s/ı D u.MCN;rCs/ı

whenever the sum is defined as both sides are simply given by restricting the action of u
on RŒ! � G�. We conclude from another application of [21, Corollary 1.3] that the sum
is EM-equivariant; as it is moreover G-equivariant by a similar computation, we have
altogether defined a G-parsummable category PG.R/.

Applying our equivalence G -ParSumCat1 ' AlgE†EG� .G -Cat/1 from Theorem
5.29 now produces a genuine permutative G-category PG.R/ from this, which we can
feed into the Guillou–May machinery.

Theorem 6.7. For every subgroup H � G there is a preferred equivalence

FHKG

�
PG.R/

�
' K.RHH/: (6.1)

We emphasize again that unlike for Merling’s construction (Theorem 6.3) there is no
invertibility condition on jH j here; in particular, we can apply this toRDZ and any finite
G (acting trivially) to get a genuineG-spectrum whoseH -fixed points forH �G recover
the K-theory of the integral group ring ZH .

Proof. By [14, Theorem 4.14] we can identify the left-hand side of (6.1) with the K-
theory of the H -fixed points PG.R/H viewed as a permutative category in the usual way.
On the other hand, Remark 5.30 gives an explicit description of an equivalent symmet-
ric monoidal structure on .ı�PG.R//H . We will now show that the latter is symmetric
monoidally equivalent to P.RHH/, which will then complete the proof of the theorem.

To this end, observe that restricting the .M � G/-action on RŒ! � G� to H along ı
yields a semilinearH -action, so we may viewRŒ! �G� as anRHH -moduleRH Œ! �G�,
also cf. [31, Proposition 4.5]. By definition, an object .M; r/ of ı�PG.R/ is now fixed
by h 2 H if and only if acting with h on RH Œ! � G� sends M to itself (not necessarily
identically) and r commutes with h:–; thus, .M;r/ isH -fixed if and only ifM is anRHH -
submodule ofRH Œ! �G� and r isRHH -linear. Similarly, a morphism 'W .M;r/! .N; s/

ofH -fixed objects isH -fixed if and only if it is RHH -linear. Thus, we get a well-defined
functor from PG.R/

H into the category of RHH -modules and RHH -linear isomor-
phisms by sending an H -fixed object .M; r/ to M with the above H -action and an
H -fixed morphism ' simply to '. This actually factors through P.RHH/: namely, M
is finitely generated as an R-module by assumption, and hence also as an RHH -module,
and the RHH -linear map r WRH Œ! � G�! M exhibits M as an RHH -linear summand
of RH Œ! � G�; the latter is a free RHH -module as ı�.! � G/ is a free H -set, so M is
projective over RHH as desired.

We now claim that this functor PG.R/
H ! P.RHH/ is an equivalence of categories.

Indeed, it is fully faithful by the above discussion, so it only remains to show essential
surjectivity. For this we let M be any finitely generated projective RHH -module, and we
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pick generatorsm1; : : : ;mr . We now choose r distinctH -orbitsO1; : : : ;Or of ı�.! �G/,
which yields an RHH -linear surjection

RH Œ! �G�! RH ŒO1 [ � � � [Or � Š .RHH/
r

which we can postcompose with the map .RHH/r !M sending the i -th standard basic
vector to mi to yield an epimorphism pWRH Œ! � G� ! M , which then admits a sec-
tion s by projectivity. As M Š s.M/ in P.RHH/ via s, it will then be enough to show
that .s.M/; sp/ defines an element of PG.R/

H . Indeed, s.M/ is finitely generated as an
RHH -module and hence also as an R-module as H is finite; moreover, O1 [ � � � [Or �
! �G is finite, so sp.i; g/ D 0 for almost all .i; g/ and hence .s.M/; sp/ is an object of
PG.R/. However, s.M/ is an RHH -submodule as s is RHH -linear, and since also p is
RHH -linear, so is sp, whence .s.M/; sp/ is indeed H -fixed by the above description of
the fixed points.

It remains to show that the forgetful functor .ı�PG.R//H ! P.RHH/ is naturally
a strong symmetric monoidal functor with respect to the symmetric monoidal structure
from Remark 5.30. For this we will make a clever choice of coproducts ofRHH -modules:
namely, if �W2�!! ! is our chosen injection andM;N �RŒ! �G� are any subgroups,
then a coproduct ofM andN in the category of abelian groups is given by ��.M;N /with
structure maps

M
Œ�.1;–/;1�
������! ��.M; 0/

��.idM ;0/
������! ��.M;N /

��.0;idN /
 ������ ��.0;N /

Œ�.2;–/;1�
 ������ N: (6.2)

If we now simply agree to take the coproducts on the category of RHH -modules defining
the symmetric monoidal structure on P.RHH/ to be given by (6.2) whenever M and
N are literally RHH -submodules of RH Œ! � G�, then our above functor is even strict
symmetric monoidal by direct inspection, also cf. [20, Remark 4.1.37]. This completes
the proof of the theorem.

Remark 6.8. We end this section by giving a comparison map

KG

�
PG.R/

�
! KG.R/

in the quasi-category ofG-spectra that onH -fixed points recovers the inclusion of finitely
generated RHH -modules that are projective over RHH into those modules that are only
required to be projective over R.

Given the complicated nature of the genuine permutative G-category PG.R/, this is
more easily done using the language ofG-parsummable categories instead. We first define
a G-parsummable category QG.R/ analogously to PG.R/ where now its objects are sim-
ply finitely generated submodules ofRŒ! �G� such that there exists anR-linear retraction
to the inclusion (but the retraction is no longer part of the data). This then receives a natu-
ral fully faithful map from PG.R/ given by forgetting the retraction, and by an analogous
computation to the proof of the above theorem the effect on ı�.–/H can be identified with
the inclusion of modules that are projective over RHH into those projective over R.
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On the other hand, QG.R/ receives a map from the G-parsummable category P .R/

modelling the G-global algebraic K-theory of rings (defined in the same way as QG , but
using the set ! instead of ! �G as a basis) induced by the embeddingRŒ!�!RŒ! �G�,
i 7!

P
g2G.i; g/. One then easily checks that this is even a G-equivalence.

Applying our comparison between G-parsummable categories and genuine permuta-
tive G-categories, we then obtain a map in the underlying quasi-category from PG.R/
into the genuine permutative G-category P 0 associated to P .R/ that on fixed points
models the above inclusion. However, by Theorem A.1 in the appendix together with
[20, Remark 4.1.43] the equivariant K-theory spectrum KG.P

0/ is equivalent to KG.R/,
yielding the desired comparison map. (In fact, we already have an equivalence between
P 0 and Fun.EG;P.R// by Proposition A.2 together with [20, Remark 4.1.37]).

7. Categorical versus simplicial algebras

A classical result of Quillen (appearing for example in [18, Section VI.3]) says that the
nerve provides an equivalence between the homotopy theory of small categories (with
respect to weak homotopy equivalences) and the usual homotopy theory of spaces. This
comparison was later lifted to a comparison between the corresponding notions of E1-
algebras by Mandell [26, Theorem 1.9]. In [20, Section 4.3] we proved analogous compar-
isons between permutative G-categories (i.e. naïve categorical G-E1-algebras) and vari-
ous models of genuineG-equivariantly orG-globally “coherently commutative monoids.”
As an upshot of the above results we now also get a corresponding statement for genuine
categorical algebras.

Theorem 7.1. Let O be a G-global E1-operad in EM-G -Cat. Then the nerve

NWAlgO.EM-G -Cat/G-global w.e. ! AlgN O.EM-G -SSet/G-global w.e.

descends to an equivalence of quasi-localizations; here we again call a functor of EM-
G-categories a G-global weak equivalence if its nerve is a G-global weak equivalence in
the usual sense.

Proof. Appealing to Propositions 4.15 and 4.17 (2), it will be enough to prove that

NWAlgP .G -Cat/! AlgN P .G -SSet/

induces an equivalence for every twisted G-global E1-operad P .
To this end, let P be the class of all twisted G-global E1-operads P for which this

holds. We will show that P is not empty and that it is closed underG-global equivalences;
as any two twisted G-global E1-operads can be connected by a zig-zag of equivalences,
this will then imply that P indeed consists of all twisted G-global operads.

The closure under G-global equivalences is immediate from Proposition 4.6. For the
remaining statement we will show that P contains the categorified injection operad 	. For



T. Lenz 1142

this we observe that we have a commutative diagram

G -ParSumCat G -ParSumSSet

Alg	.G -Cat/ AlgN 	.G -SSet/

 

!
N

 
-

!

 
-

!

 

!
N

where the vertical inclusions come from Proposition 5.22. By Theorem 5.27 we are there-
fore reduced to showing that the top horizontal arrow induces an equivalence after local-
izing at the G-global weak equivalences, which we proved as [23, Theorem 5.8].

For finite G, we also get a version for G-equivariant algebras.

Theorem 7.2. Let O be a genuine G-E1-operad in G -Cat. Then the nerve

NWAlgO.G -Cat/! AlgN O.G -SSet/

descends to an equivalence of the quasi-localizations at the G-weak equivalences.

Proof. We pick a homomorphism j WG !M with universal image, and we consider the
homomorphism ıWG!EM�G;ı.g/D .j.g/;g/. If now P is anyG-globalE1-operad,
then ı�P is a genuine G-E1-operad, and arguing as before it suffices to prove the theo-
rem for O D ı�P . But in the commutative diagram

AlgP .EM-G -Cat/G-global w.e. AlgN P .EM-G -SSet/G-global w.e.

Algı�P .G -Cat/G-equivariant w.e. AlgN.ı�P /.G -SSet/G-equivariant w.e.

 !ı�

 

!
N

 ! ı�

 

!
N

the vertical arrows induce quasi-localizations by Theorem 4.18, while the top horizontal
arrow is an equivalence by the previous theorem. The claim follows immediately as the
lower horizontal arrow preserves and reflects weak equivalences by definition and as the
weak equivalences on the target are saturated, being part of a model structure.

8. Modelling genuine G -E1-algebras by naïve ones

Let G be a finite group. In this section we will finally prove that the homotopy theory
of genuine permutative G-categories with respect to the G-equivariant weak equivalences
can already be modelled by the naïve ones. For this, we first introduce the following new
notion of weak equivalence.

Definition 8.1. A map f WC ! D in G -Cat is called a G-“homotopy” fixed point weak
equivalence (or G-“h”fp weak equivalence for short) if Fun.EH; f /H is a weak homo-
topy equivalence for every H � G.
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Warning 8.2. The scare quotes around “homotopy” refer to the fact that the above are
homotopy fixed points with respect to the underlying equivalences of categories, not with
respect to the (G-equivariant) weak equivalences, also see Example 8.6.

Remark 8.3. The G-“h”fp weak equivalences are part of a model structure on G -Cat
modelling ordinary G-equivariant unstable homotopy theory, see [22, Theorem 4.13].

Moreover, we could also impose the stronger condition that Fun.EH; '�f /H be
a weak homotopy equivalence for every finite group H and every homomorphism 'W

H ! G. This yields the so-called G-global weak equivalences (or maybe more system-
atically G-global “h”fp weak equivalences), and G -Cat with respect to the G-global
weak equivalences is another model of unstable G-global homotopy theory, see [22, The-
orem 4.3].

We can now formally state the main result of this section, which for O D E†� in
particular gives a precise version of Theorem A from the introduction.

Theorem 8.4. Let O be an operad in G -Cat whose underlying non-equivariant operad
is an E1-operad. Then the Guillou–May–Shimakawa construction

Fun.EG; –/WAlgO.G -Cat/G-“h”fp w.e. ! AlgOEG .G -Cat/G-w.e.

(see Example 3.20) induces an equivalence of associated quasi-categories.

8.1. Comparison of weak equivalences

By now, we have encountered a variety of different classes of weak equivalences we can
put on G -Cat, in particular:

(1) the G-equivariant equivalences (functors inducing equivalences of categories on
all fixed points)

(2) the G-equivariant weak equivalences (functors inducing weak homotopy equiva-
lences on all fixed points, or equivalently functors that induce G-weak equiva-
lences on nerves)

(3) the underlying equivalences of categories (i.e. T riv-equivalences)

(4) the G-“h”fp weak equivalences (Definition 8.1 above).

As the interplay of these notions will be crucial to the proof of Theorem 8.4, let us pause
for a moment to make the relationship between these different classes precise. Clearly,
every G-equivariant equivalence is a G-equivariant weak equivalence and an underlying
equivalence, and moreover any underlying equivalence is a G-“h”fp weak equivalence by
Remark 3.11, yielding the following diagram of implications:

G-equivariant equivalence underlying equivalence

G-equivariant weak equivalence G-“h”fp weak equivalence

()

(

)

(

)

()

These are in fact all implications between these notions unless G D 1.
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Example 8.5. The unique functor EG ! � is an underlying equivalence, but not a G-
equivariant (weak) equivalence.

Example 8.6. Not everyG-equivariant weak equivalence is aG-“h”fp weak equivalence,
as the following example shows:

Let f WC ! BG be a cofibrant replacement in the Thomason model structure on Cat;
in particular, C is a poset [43, Proposition 5.7]. If we now equip both sides with the trivial
G-action, then f becomes aG-equivariant weak equivalence in G -Cat, and we claim that
this is not a G-“h”fp weak equivalence. Indeed, as both sides carry trivial G-action, this
would in particular mean that Fun.BG; f /W Fun.BG; C / ! Fun.BG; BG/ again were
a weak homotopy equivalence. But the left-hand side is equivalent to C (as C contains
no non-trivial isomorphisms), hence in particular has connected nerve, while the identity
of BG and the trivial functor BG ! � ! BG belong to different components of the
right-hand side.

Example 8.7. Let f W Œ0� ! Œ1� be the inclusion of either object, considered as a map
of G-categories with trivial actions. Obviously, f is not an underlying equivalence of
categories; however, it is a G-“h”fp weak equivalence: any functor from a groupoid into a
poset is constant, so f “h”H is again isomorphic to f for anyH �G, whence in particular
a weak homotopy equivalence.

8.2. Saturation

We now return to the proof of Theorem 8.4. For this let us first observe that we can
easily prove a variant of the theorem with respect to another of the above notions of weak
equivalence.

Lemma 8.8. The functor Fun.EG; –/WAlgO.G -Cat/! AlgOEG .G -Cat/ descends to an
equivalence between the localizations at the underlying equivalences of categories.

Proof. The functor � given by restricting along the inclusion O ! OEG is a left homo-
topy inverse; on the other hand, O ! OEG is a Triv-equivalence of †-free operads, so
Theorem 3.26 shows that � induces an equivalence. The claim follows by 2-out-of-3.

Unfortunately, this of course does not yet tell us anything about Theorem 8.4: while
any underlying equivalence is a G-“h”fp weak equivalence, the underlying equivalences
are unrelated to the G-equivariant weak equivalences in general. Nevertheless, we will be
able to reduce the theorem to the above lemma; the crucial insight for this is that there is an
interesting and wide class of objects for which the notions of G-“h”fp weak equivalences
and G-equivariant weak equivalences coincide.

Definition 8.9. A G-category is called G-equivariantly saturated if the natural map

CH ! C “h”H
D Fun.EH;C /H

is a weak homotopy equivalence for every H � G.
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Lemma 8.10. Let O be any underlying E1-operad in G -Cat. Then the inclusion

AlgO.G -Cat/sat ,! AlgO.G -Cat/

of G-equivariantly saturated O-algebras is a homotopy equivalence with respect to the
underlying equivalences of categories on both sides.

Proof. A homotopy inverse is given by applying the functor Fun.EG; –/ and restricting
the operad action along the natural map O ! OEG .

Theorem 8.11. Let P be any genuine G-E1-operad in G -Cat. Then the inclusion

AlgP .G -Cat/sat ,! AlgP .G -Cat/

induces an equivalence after quasi-localizing at the G-equivariant weak equivalences on
both sides.

Proof. Let us consider the class P of all genuine G-E1-operads P for which the state-
ment of the theorem holds. It again suffices to show that P is non-empty and closed under
G-equivariant equivalences.

For the first statement, we will show that P contains the operad 	G where we have
identified G with a universal subgroup of M. For this we apply the isomorphism of 1-
categories Alg	G

.G -Cat/ Š Alg	.G -Cat/ from Lemma 4.23. Under this identification,
the saturated 	G-algebras correspond precisely to those 	-algebras C for which the natu-
ral map

C � ! C “h”�
D Fun.EH;C /�

is a weak homotopy equivalence for every universal H �M and every injective homo-
morphism �. We call such 	-algebras G-equivariantly saturated again, and it will then be
enough to show that the inclusion

Alg	.G -Cat/sat ,! Alg	.G -Cat/

is an equivalence with respect to the G-equivariant weak equivalences. For this we will
prove more generally the following claim.

Claim. Consider the commutative diagram

Alg	.G -Cat/�;sat Alg	.G -Cat/�

Alg	.G -Cat/sat Alg	.G -Cat/

 - !

 
-

!

 
-

!

 - !

of inclusions, where Alg	.G -Cat/�;sat denotes the subcategory of those 	-algebras that
are both tame and saturated. Then all of the above functors induce equivalences (a) after
quasi-localizing at the underlying equivalences of categories, as well as (b) after quasi-
localizing at the G-equivariant weak equivalences.
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Proof. For the first statement we observe that the right-hand arrow induces an equiva-
lence with respect to the G-global equivalences by Theorem 5.27, hence in particular also
with respect to the underlying equivalences. Moreover, the lower horizontal arrow has a
homotopy inverse induced by Fun.EG; –/ according to Lemma 8.10, and one immedi-
ately checks that this also provides a homotopy inverse to the top horizontal arrow. Thus,
also the left-hand vertical arrow induces an equivalence by 2-out-of-3.

For the second statement, we conclude in the same way as before that the right-hand
vertical arrow descends to an equivalence, and so does the left-hand vertical arrow by the
first statement since theG-equivariant weak equivalences between saturatedG-categories
are coarser than the underlying equivalences of categories. By another application of
2-out-of-3 it will then be enough to show that the top horizontal arrow is a homotopy
equivalence.

For this we observe that the equivalence Alg	.G -Cat/'G -ParSumCat from Propo-
sition 5.22 preserves underlying categories, so that it suffices to show that the inclusion
G -ParSumCatsat ,! G -ParSumCat of the G-equivariantly saturated G-parsummable
categories is a homotopy equivalence. This is however immediate from [23, Theorem 5.9].

N

It remains to show that P is closed under G-equivariant equivalences. For this we
consider any G-equivariant equivalence f WP ! Q, which induces a commutative square

AlgQ.G -Cat/sat AlgQ.G -Cat/

AlgP .G -Cat/sat AlgP .G -Cat/:

 - !

 !f �  ! f �

 - !

The vertical arrow on the right induces an equivalence after quasi-localizing at the G-
equivariant equivalences by Theorem 3.26, hence in particular with respect to the G-
equivariant weak equivalences or with respect to the underlying equivalences of cate-
gories. By 2-out-of-3 it will then suffice to show that also the left-hand vertical arrow
induces an equivalence with respect to the G-equivariant weak equivalences, for which
it is as before enough to prove this for the underlying equivalences of categories. This is
however in turn immediate from Lemma 8.10 and 2-out-of-3.

Proof of Theorem 8.4. It is clear that Fun.EG; –/ factors through the full subcategory
AlgOEG .G -Cat/sat of G-equivariantly saturated OEG-algebras. As OEG is a genuine G-
E1-operad, it is therefore enough to show by the previous theorem that

Fun.EG; –/WAlgO.G -Cat/! AlgOEG .G -Cat/sat (8.1)

induces an equivalence with respect to the G-weak equivalences on the target and the G-
“h”fp weak equivalences on the source. For this we observe that Fun.EG;–/ preserves and
reflects weak equivalences and that the weak equivalences on both source and target are
coarser than the underlying equivalences of categories; this again critically uses that we
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restricted to the saturated algebras in the target. It is therefore once more enough to show
that (8.1) induces an equivalence when we equip source and target with the underlying
equivalences of categories. By another application of Lemma 8.10 we are then altogether
reduced to showing that Fun.EG; –/WAlgO.G -Cat/! AlgOEG .G -Cat/ descends to an
equivalence when we equip both sides with the underlying equivalences of categories,
which is precisely the content of Lemma 8.8.

In fact, similar arguments also prove the following comparison (for not necessarily
finite G).

Theorem 8.12. Let O be any operad in G -Cat that forgets to anE1-operad in Cat. Then

Fun.EM; –/WAlgO.G -Cat/! AlgOEM .EM-G -Cat/

descends to an equivalence with respect to the G-global weak equivalences on both sides.

Remark 8.13. We can also equip AlgOEG .G -Cat/ with the G-equivariant equivalences
of categories; however, in this case the resulting functor

AlgO.G -Cat/! AlgOEG .G -Cat/

is not even essentially surjective on homotopy categories unless G D 1 as we will show
now:

Since the class of saturated G-categories is closed under G-equivalences, it suffices
to construct a non-saturated OEG-algebra. To this end, we pick g 2 G X ¹1º and write
H WD hgi for the subgroup generated by g. This is cyclic, hence in particular abelian.
Thus, the category C with one object and endomorphism monoid given by H can be
equipped (in a unique way) with the structure of a commutative monoid in Cat. Equipping
C with the trivial G-action therefore yields an algebra in G -Cat over the terminal operad,
and restricting along the unique operad map OEG ! � then gives C the structure of
an OEG-algebra. To finish the proof it suffices now to show that the composition C ,!

FunH .EH; C / Š Fun.EH=H; C / Š Fun.C; C / is not an equivalence. But clearly the
identity of C is not contained in the essential image.

Remark 8.14. For G the cyclic group of order 2 (and many other groups), the gen-
uine permutative G-category PG.Z/ from Section 6 provides another example of a non-
saturated permutative G-category. Note that while the above theorem asserts that this is
G-weakly equivalent to Fun.EG;C / for some naïve permutative G-category C , this C is
far from admitting any nice tractable description. In particular, unlike PG.Z/, it will have
to contain non-invertible morphisms in order to elicit the correct equivariant behaviour,
and these have no evident algebraic interpretation.

With this established, we can deduce Theorem B from our results in [20].

Theorem 8.15. The Guillou–May construction

KG WAlgE†EG� .G -Cat/1G-w.e. ! G -Spectra1
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of equivariant algebraic K-theory [14, Definition 4.12] exhibits the quasi-category of
connective genuine G-spectra as a Bousfield localization of the category of genuine per-
mutative G-categories.

Proof. By Theorem 8.4 it is enough to show this after restricting along the above func-
tor Fun.EG; –/WG -PermCat! AlgE†EG� .G -Cat/. This is in turn immediate from [20,
Theorem 4.3.9] together with the comparison of the operadic and �-space approach to
equivariant algebraic K-theory given in [30].

9. Categories internal to G -spaces and their algebras

Let G be a finite group again. Guillou and May [14] more generally consider genuine
and naïve permutative (or symmetric monoidal) G-categories in the context of categories
internal to G -Top, or, equivalently, categories internal to Top that are equipped with an
additional G-action. In this final section, we want to extend the above comparisons to this
context.

9.1. Realization

For this we first need to recall some basics about simplicial spaces and bisimplicial sets
(i.e. “simplicial simplicial sets”), and more generally about G-simplicial spaces and G-
bisimplical sets.

Construction 9.1. The categories

G -STop D Fun.�op;G -Top/ and G -BiSSet D Fun.�op;G -SSet/

come with Reedy model structures, and as both G -Top and G -SSet are simplicial model
categories, we get left Quillen realization functors

k–kWG -STop! G -Top and k–kWG -BiSSet! G -SSet:

Definition 9.2. We say that a map of G-simplicial spaces or G-bisimplicial sets is a real-
ization G-weak equivalence if it is sent to a weak equivalence under the respective left
derived realization functor.

As every bisimplical set is Reedy cofibrant, the realization functor is actually fully
homotopical for BiSSet. Moreover, we see that applying the usual adjunction j–jWSSet�
Top W Sing levelwise yields a Reedy cofibrant replacement in G -STop. As in addition the
diagram

Fun.�op;G -SSet/ Fun.�op;G -Top/

G -SSet G -Top

 

!
Fun.�op;j–j/

 !k–k  ! k–k

 

!
j–j
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commutes up to isomorphism (since the usual geometric realization functor is a simplicial
left adjoint), we conclude the following result.

Lemma 9.3. The functor Fun.�op; Sing/WG -STop! G -BiSSet creates realization G-
weak equivalences.

9.2. Topological versus simplicial categories

We write CatSSet and CatTop for the category of categories internal to simplicial sets and
topological spaces, respectively. Just like every ordinary category gives rise to a simplicial
set via the usual nerve construction, we have the following construction.

Construction 9.4. LetC 2G -CatSSet orC 2G -CatTop. The nerve NC ofC is the bisim-
plicial set or simplicial space, respectively, given in degree n by

.NC/n D Mor.C / �Ob.C/ � � � �Ob.C/ Mor.C /„ ƒ‚ …
n factors

together with the evident structure maps. Defining N analogously on morphisms we then
get functors

NWG -CatSSet ! G -BiSSet and NWG -CatTop ! G -STop:

Definition 9.5. A functor f WC !D in G -CatTop or G -CatSSet is a G-weak equivalence
if Nf is a realization G-weak equivalence.

As both geometric realization as well as the singular set functor preserve finite prod-
ucts, they lift to an adjunction

j–jWG -CatSSet � G -CatTop W Sing (9.1)

for every (finite) group G.

Proposition 9.6. The adjunction (9.1) is a homotopy equivalence with respect to the G-
weak equivalences on both sides.

Proof. As Sing preserves limits, the diagram

G -CatTop G -CatSSet

G -STop G -BiSSet

 !N

 

!
Sing

 ! N

 

!
Fun.�op;Sing/

commutes up to natural isomorphism; more precisely, the canonical maps

Sing Mor.C / �Sing Ob.C/ � � � �Sing Ob.C/ Sing Mor.C /

! Sing
�
Mor.C / �Ob.C/ � � � �Ob.C/ Mor.C /

�
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assemble into an isomorphism N.SingC/Š SingN.C / for everyC 2G -CatTop. Together
with Lemma 9.3 we conclude that SingWG -CatTop ! G -CatSSet creates G-weak equiva-
lences. It therefore only remains to show that the unit C ! SingjC j is a G-weak equiv-
alence for every simplicial G-category C . However, using that also k–k preserves finite
limits, the induced map N.C /n ! N.SingjC j/n agrees up to isomorphism with the unit

Mor.C / �Ob.C/ � � � �Ob.C/ Mor.C /! Sing
ˇ̌
Mor.C / �Ob.C/ � � � �Ob.C/ Mor.C /

ˇ̌
;

so it is a G-weak equivalence. Thus, N.�/WN.C /! N.SingjC j/ is a levelwise G-weak
equivalence in G -BiSSet and hence in particular a realization G-weak equivalence as
desired.

Construction 9.7. Both G -CatSSet and G -CatTop are Cartesian closed, so we get internal
function categories that we denote by Fun again. We will make these explicit in the case
that I is an ordinary G-category, which is the only case we will need below.

For G -CatSSet, we observe that we can identify categories internal to simplicial sets
with simplicial objects in Cat as products in functor categories can be computed levelwise.
Using this, we can now describe Fun.I; C / for any C 2 G -CatSSet very easily: namely,
it is the simplicial G-category whose G-category of n-simplices is the ordinary func-
tor category Fun.I; Cn/; the simplicial structure maps are given in the obvious way. Put
differently, Ob Fun.I; C / is the simplicial subset of Ob.C /Ob.I / �Mor.C /Mor.I / whose
n-simplices are the functors I ! Cn, and similarly Mor Fun.I;C / is defined as a subcom-
plex of Ob.C /Ob.I�Œ1�/ �Mor.C /Mor.I�Œ1�/. The unit and counit are given by applying the
usual unit and counit of I � –WCat� Cat W Fun.I; –/ levelwise.

On the other hand, if D 2 G -CatTop, then Ob Fun.I; D/ is the set of all (ordinary)
functors I !D, topologized as a subspace of Ob.D/Ob.I / �Mor.D/Mor.I /, and similarly
for Mor Fun.I;D/. The unit and counit are given by the usual unit and counit of

I � –WCat� Cat W Fun.I; –/:

Definition 9.8. A functor f in G -CatSSet or G -CatTop is called a G-“h”fp weak equiva-
lence if Fun.EG; f / is a G-weak equivalence.

We now want to prove the following comparison complementing Proposition 9.6.

Proposition 9.9. The adjunction (9.1) is also a homotopy equivalence with respect to the
G-“h”fp weak equivalences on both sides.

Before we can do this, we have to establish a certain compatibility property of the
above adjunction with respect to internal function categories.

Construction 9.10. As j–jWG -CatSSet!G -CatTop preserves finite products, the calculus
of mates provides us with a natural map

˛I;C W
ˇ̌
Fun.I; C /

ˇ̌
! Fun

�
jI j; jC j

�
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for every G -CatSSet, and passing to mates again then yields a natural map

ˇI;D WFun.I;SingD/! Sing Fun
�
jI j;D

�
for every D 2 G -CatTop. By the calculus of mates, ˇ is actually an isomorphism (being
the total mate of the isomorphism jI � –j Š I � j–j), and ˛; ˇ are compatible with the
unit of the adjunction j–j a Sing in the sense that the diagram

Fun.I; C / Sing
ˇ̌
Fun.I; C /

ˇ̌
Fun

�
I;Sing jC j

�
Sing Fun

�
jI j; jC j

�

 

!
�

 !Fun.I;�/  ! Sing˛I;C

 

!
ˇI;jC j

Š

(9.2)

commutes for all I 2 G -Cat and C 2 G -CatSSet.

Lemma 9.11. Let I be a finite G-category and let C 2 G -CatSSet. Then the above map
˛W jFun.I; C /j ! Fun.I; jC j/ is an isomorphism.

Proof. We will show that ˛ induces a homeomorphism on objects; the corresponding
claim for morphisms will then follow by replacing I by I � Œ1� everywhere.

An n-simplex I ! Cn of Ob Fun.I;C / corresponds to a functor I ��n! C , which
gives us a map j�nj � I Š j�n � I j ! jC j; unravelling definitions, we see that

˛W
ˇ̌
Ob Fun.I; C /

ˇ̌
! Ob Fun

�
I; jC j

�
is given by gluing together all these maps. In particular, the diagramˇ̌

Ob Fun.I; C /
ˇ̌

jObCOb I �MorCMor I j

Ob Fun
�
I; jC j

�
jObC jOb I � jMorC jMor I

 - !

 !˛  !Š ˆ

 - !

(9.3)

commutes, where the map ˆ on the right is the canonical homeomorphism induced by
the projections, i.e. it sends ŒF0; F1I˛� to the family that sends i 2 Ob I to ŒF0.i/; �� and
f 2 Mor.I / to ŒF1.f /I ��.

The top horizontal arrow in (9.3) is an embedding as the geometric realization of an
inclusion of simplicial sets, and so is the lower horizontal arrow by definition. To complete
the proof it suffices now to show that any F 2 jObCOb I �MorCMor I j for which ˆF is
a functor I ! jC j, is already contained in jOb Fun.I; C /j.

To this end, we write F D ŒF0; F1I �� with � 2 .�n/ı for some n � 0, and it will
be enough to prove that .F0; F1/ defines a functor I ! Cn. For this we will only show
that src ıF1 D F0 ı src, the argument for the other functoriality properties being similar.
Indeed, if f W i ! j is any morphism in I , then�

F0.i/; �
�
D .ˆF/.i/ D src.ˆF/.f / D

�
srcF1.f /; �

�
I



T. Lenz 1152

as � lies in the interior of�n by construction, this already implies that F0.i/D srcF1.f /
by the basic combinatorics of simplicial sets as desired.

Proof of Proposition 9.9. As Sing creates G-weak equivalences, the isomorphism ˇEG;–
shows that Sing also createsG-“h”fp weak equivalences. It therefore only remains to show
that the unit �WC ! SingjC j is a G-“h”fp weak equivalence for every C 2 G -CatSSet.

For this, we specialize the commutative diagram (9.2) to the finite G-category I D
EG. Then the lower horizontal map is an isomorphism, and so is the right-hand vertical
map by the previous lemma. As moreover the top horizontal arrow is a G-weak equiv-
alence by Proposition 9.6, 2-out-of-3 shows that Fun.EG; �/ is a G-weak equivalence,
i.e. � is a G-“h”fp weak equivalence as desired.

Now let O be any operad in G -CatSSet. As j–j preserves products, it lifts to a functor
AlgO.G -CatSSet/! AlgjOj.G -CatTop/, and likewise Sing induces AlgP .G -CatTop/!

AlgSing.P /.G -CatSSet/ for any operad P in G -CatTop. If P D jOj, then we can compose
this with the restriction along O ! SingjOj, yielding an adjunction

AlgO.G -CatSSet/� AlgjOj.G -CatTop/: (9.4)

Propositions 9.6 and 9.9 now immediately imply the following result.

Corollary 9.12. Let O be any operad in G -CatSSet. Then (9.4) is a homotopy equivalence
with respect to the G-weak equivalences as well as with respect to the G-“h”fp weak
equivalences.

9.3. Simplicial versus ordinary categories

It remains to compare algebras of simplicial G-categories to those of ordinary G-cate-
gories. Here the key idea will be to again exploit the identification between simplicial
G-categories and simplicial objects in G -Cat. We begin by describing the G-weak equiv-
alences from this point of view.

Lemma 9.13. A map in G -CatSSet is a G-weak equivalence if and only if it is sent to a
realization G-weak equivalence under the composition

G -CatSSet Š Fun.�op;G -Cat/
N ı–
��! Fun.�op;G -SSet/;

and analogously for maps in AlgO.G -CatSSet/ for any operad O in G -Cat.

Proof. One checks by direct inspection that the diagram

G -CatSSet Fun.�op;G -Cat/

Fun.�op;G -SSet/ Fun.�op;G -SSet/

G -SSet

 

!
Š

 !N  ! N ı–

 

!diag�

 

!
twist�

 

!

diag�
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commutes, where twist denotes the functor exchanging the two factors of �op ��op, and
diagW�op ! �op � �op is the diagonal embedding. The first statement now follows as
diag� is isomorphic to k–k, and the second statement is a formal consequence of the first
one as the forgetful functor AlgN O.G -SSet/! G -SSet preserves geometric realization
(Proposition 2.23).

For suitably nice model categories C, [33, Theorem 3.6] shows that the homotopy
theory of simplicial objects in C with respect to the realization weak equivalences is again
equivalent to C. However, in our situation, we do not have model structures available, so
we will argue1-categorically instead.

Lemma 9.14. Let C be a cocomplete quasi-category. Then

hocolimWFun.N�op;C/� C W const

is a Bousfield localization.

Proof. We have to show that for every X 2 C the counit hocolimN.�op/constX ! X is an
equivalence. However N.�op/ is weakly contractible as �op has an initial object, so the
claim is simply an instance of [24, Corollary 4.4.4.10].

Before we can apply this, however, there is a technical hurdle to overcome—namely,
we have to compare simplicial objects in the underlying 1-categories with simplicial
objects in the associated quasi-categories.

Proposition 9.15. Let I be any small category.

(1) Let O be a genuine G-E1-operad in G -Cat. Then the natural map

Fun
�
I;AlgO.G -Cat/

�1
levelwiseG-w.e. ! Fun

�
N I;AlgO.G -Cat/1G-w.e.

�
is an equivalence.

(2) Let P be an underlying E1-operad in G -Cat. Then the natural map

Fun
�
I;AlgP .G -Cat/

�1
lev.G-“h”fp w.e. ! Fun

�
N I;AlgP .G -Cat/1G-“h”fp w.e.

�
is an equivalence.

Proof. First some terminology: recall that a relative category [3, Section 3.1] is a pair of
a category C together with a wide subcategory W , called the weak equivalences of C; as
usual, we will also simply refer to C as a relative category ifW is understood. Any relative
category .C; W / again admits an1-categorical localization C1W (or C1 for short).

We now call C hereditary if the natural map Fun.I; C/1level w.e. ! Fun.N I; C1/ is an
equivalence for every I 2 Cat. Moreover, a relative equivalence f of relative categories
(i.e. a homotopical functor inducing equivalences of associated quasi-categories) will be
called hereditary if also f I is a relative equivalence (with respect to the levelwise weak
equivalences) for every I ; for example, every homotopy equivalence is hereditary.
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By 2-out-of-3 all relative equivalences of hereditary relative categories are heredi-
tary, and conversely the hereditary relative categories are closed under hereditary relative
equivalences. Moreover, [10, Theorem 7.9.8 and Remark 7.9.7] shows that the underlying
relative category of any model category is hereditary. It will therefore suffice to connect
AlgO.G -Cat/G-w.e. and AlgP .G -Cat/G-“h”fp w.e. by zig-zags of hereditary relative equiv-
alences to suitable model categories.

For this we will unravel parts of the proof of Theorem 7.2. We first recall we have a
zig-zag of relative equivalences

AlgO.G -Cat/
p�1
�! AlgO�	G

.G -Cat/
p�2
 � Alg	G

.G -Cat/ (9.5)

with respect to the G-equivariant equivalences. Since these are maps between model cat-
egories, they are hereditary, i.e. for every I 2 Cat also the induced functors

AlgO.G -Cat/I ! AlgO�	G
.G -Cat/I  Alg	G

.G -Cat/I

are relative equivalences with respect to the levelwiseG-equivalences of categories, hence
also with respect to the levelwise G-weak equivalences everywhere (as the latter are
saturated and each of the above functors creates G-weak equivalences). Put differently,
the zig-zag (9.5) also consists of hereditary relative equivalences with respect to the G-
equivariant weak equivalences everywhere.

Similarly, Theorem 5.27 implies that G -ParSumCat ,! Alg	.G -Cat/ is a heredi-
tary relative equivalence with respect to the G-global equivalences and hence also for the
G-equivariant weak equivalences. On the other hand, the functor �W Alg	.G -Cat/ !
Alg	G

.G -Cat/ is right Quillen (for the G-global model structure on the source) and
induces a quasi-localization at the G-equivariant equivalences by Lemma 4.23 and its
proof. Precomposing its left adjoint r with a functorial cofibrant replacement then pro-
vides a homotopy inverse to � with respect to the G-equivariant equivalences on both
sides, hence also for theG-equivariant weak equivalences. In particular, also� is a hered-
itary relative equivalence for the G-equivariant weak equivalences on both sides.

Moreover, the nerve G -ParSumCat! G -ParSumSSet is again a homotopy equiva-
lence (with respect to the G-global and hence also with respect to the G-equivariant weak
equivalences) by [23, Theorem 5.8], hence hereditary. Arguing just like above, we then
finally get a zig-zag of hereditary relative equivalences between G -ParSumSSet and the
model category Alg	G

.G -SSet/, which completes the proof of the first statement.
The proof of the second statement is similar: as above we get a zig-zag of heredi-

tary relative equivalences between AlgP .G -Cat/ and AlgE†�.G -Cat/ with respect to the
underlying equivalences of categories, hence also with respect to theG-“h”fp weak equiv-
alences. However, AlgE†�.G -Cat/ is even isomorphic as a 1-category to G -PermCat
(and this isomorphism respects underlying G-categories, hence also the weak equiva-
lences in question), which is in turn homotopy equivalent to G -ParSumSSet with respect
to the G-global weak equivalences [23, Theorems 5.8 and 6.9], hence in particular with
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respect to the G-“h”fp weak equivalences on G -PermCat and the G-weak equivalences
on G -ParSumSSet. The claim follows as before.

Proposition 9.16. For every genuine G-E1-operad O the inclusion

AlgO.G -Cat/G-w.e. ,! AlgO.G -CatSSet/G-w.e.

induces an equivalence of associated quasi-categories.

Proof. We first observe that the composition

AlgO.G -Cat/ ,! AlgO.G -CatSSet/ Š Fun
�
�op;AlgO.G -Cat/

�
is just the functor sending an O-algebra to the constant simplicial object. By Proposi-
tion 9.15 together with Lemma 9.14 it will therefore be enough to show that a map in
Fun.�op;AlgO.G -Cat// is a G-weak equivalence if and only if its image under the com-
position

Fun
�
�op;AlgO.G -Cat/

�
! Fun

�
N�op;AlgO.G -Cat/1

� hocolim
����! AlgO.G -Cat/1

is an equivalence. However, NWAlgO.G -Cat/! AlgN O.G -SSet/ descends to an equiv-
alence by Theorem 7.2, so a map is inverted by the above if and only if it is inverted
by

Fun
�
�op;AlgO.G -Cat/

� N
�! Fun

�
�op;AlgO.G -SSet/

�
! Fun

�
N�op;AlgO.G -SSet/1

�
hocolim
����! AlgO.G -SSet/1:

Finally, as AlgO.G -SSet/ is a simplicial model category, the composition of the final two
arrows is induced by geometric realization. The claim therefore follows from Lemma 9.13.

Now we can prove the following theorem.

Theorem 9.17. Let O be an underlying E1-operad in G -Cat. Then all the maps in the
commutative diagram

AlgO.G -Cat/G-“h”fp AlgOEG .G -Cat/G-w.e.

AlgO.G -CatSSet/G-“h”fp AlgOEG .G -CatSSet/G-w.e.

AlgO.G -CatTop/G-“h”fp AlgOEG .G -CatTop/G-w.e.

 

!
Fun.EG;–/

 
-

!  
-

!

 

!
Fun.EG;–/

 !j–j  ! j–j

 

!
Fun.EG;–/

descend to equivalences of quasi-categories.
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Proof. The right-hand vertical inclusion in the upper square induces an equivalence of
associated quasi-categories by the previous proposition, and so do the vertical functors
in the lower square by Corollary 9.12. Moreover, the top horizontal arrow induces an
equivalence by Theorem 8.4, and together with Proposition 9.15 we see that the middle
horizontal arrow becomes an equivalence when we define a map f in the target to be a
weak equivalence if applying the nerve levelwise turns it into a levelwise weak equivalence
of G-bisimplicial sets and a map f 0 in the source if Fun.EG; f 0/ has the same property.
Thus, it also becomes an equivalence when we quasi-localize the target at the G-weak
equivalences and the source at those maps inverted by Fun.EG; –/, i.e. the G-“h”fp weak
equivalences. By 2-out-of-3 we then see that also the top left vertical map and the bottom
horizontal map descend to equivalences, which completes the proof of the theorem.

As an immediate consequence we now get the following version of Theorem 7.2 for
simplicial G-categories.

Corollary 9.18. In the above situation,

k–k ı NWAlgO.G -CatSSet/G-w.e. ! AlgN O.G -SSet/G-w.e.

induces an equivalence of associated quasi-categories.

Next, we come to a version of this statement for G -CatTop. Here a slight subtlety
arises: namely, k–k ı NWG -CatTop ! G -Top is not homotopical, while the usual “fat”
realizations do not preserve products up to isomorphism. However, we can solve this issue
by composing k–k with the product-preserving cofibrant replacement given by the usual
geometric realization-singular set adjunction.

Corollary 9.19. The functor G -CatTop ! G -Top given on objects by

C 7! kj–j ı Sing ı NCk

and likewise on morphisms induces an equivalence

AlgO.G -CatTop/
1
G-w.e. ! AlgjOj.G -Top/1:

Finally, we also get a version of Theorem 8.15 in the internal context.

Corollary 9.20. The Guillou–May construction of equivariant algebraic K-theory ex-
hibits the quasi-category of connective genuine G-spectra as a quasi-localization of the
category of genuine permutative G-categories internal to Top.

A. Comparison of equivariant K -theory constructions

Throughout, let G be a finite group. Given a G-parsummable category C , we can use
Theorem 5.29 to build a genuine permutative G-category ‰.C/ from this, which then via
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the general equivariant infinite loop space machinery of Guillou and May [14] gives rise to
a G-equivariant K-theory spectrum KG‰.C/. On the other hand, [20, Definition 4.1.10]
produces a G-global K-theory spectrum directly from C , which by considering the same
object with respect to a coarser notion of weak equivalence in particular gives us another
G-equivariant spectrum KG.C /. The goal of this short appendix is to prove that these two
spectra actually agree. In fact, we will prove more generally.

Theorem A.1. Let ‚WG -ParSumCat1G-equiv ! AlgE†EG� .G -Cat/1G-equiv. be any functor
that preserves underlying G-categories, e.g. the equivalence ‰ considered above. Then
the diagram

G -ParSumCat1G-equiv. AlgE†EG� .G -Cat/1G-equiv.

G -Spectra1G-w.e.

 

!
‚

 

!KG

 

!

KG

(A.1)

commutes up to preferred equivalence.

Somewhat amusingly, we will never need to know how the above K-theory construc-
tions actually look like—instead, we will deduce the theorem formally from the results of
this paper together with [20, 23].

We begin by making the equivalence‰ (and more generally any‚ as above) explicit in
a special case, as promised in Remark 5.31. For this we recall from [20, Definition 4.1.25]
that any naïve permutative G-category C gives rise to an (explicit) G-parsummable cate-
gory ˆsat.C /; again, the precise construction will not be relevant.

Proposition A.2. Let ‚ be as above. Then

G -PermCat1G-equiv.

G -ParSumCat1G-equiv. AlgE†EG� .G -Cat/1G-equiv.

 

!

ˆsat

 

!

Fun.EG;–/

 

!
‚

(A.2)

commutes up to preferred equivalence.

Proof. Let us call a G-category strongly saturated if for every H � G the canonical map
CH ! Fun.EH;C /H ' Fun.EG;C /H of fixed points into (categorical) homotopy fixed
points is an equivalence (the G-global version of this was simply called saturated in [20,
23]). If A is any G-category, then Fun.EG; A/ is strongly saturated [31, Lemma 2.8],
and so is the underlying G-category of ˆsat.B/ for any permutative G-category B by
[20, Theorem 4.1.23]. Thus, both composites in (A.2) factor through the full subcategory
spanned by the strongly saturated genuine permutative G-categories. However, a map of
strongly saturatedG-categories is aG-equivariant equivalence if and only if it is an under-
lying equivalence, while the same argument as in Lemma 8.10 shows that the inclusion of
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strongly saturated algebras into all algebras is an equivalence with respect to the under-
lying equivalences. Altogether we are therefore reduced to proving the claim when we
consider the composites as functors into AlgE†EG� .G -Cat/1underlying.

However, in this case we have an isomorphism

AlgE†EG� .G -Cat/underlying Š Fun
�
BG;AlgE†EG� .Cat/equiv.

�
preserving and reflecting weak equivalences, hence an equivalence

AlgE†EG� .G -Cat/1underlying ' Fun
�
BG;CMon.Cat1equiv./

�
lying over the canonical equivalence G -Cat1underlying' Fun.BG;Cat1equiv./ from [10, Theo-
rem 7.9.8 and Remark 7.9.7]. As taking commutative monoid objects in the1-categorical
sense commutes with functor categories, this then gives an equivalence

AlgE†EG� .G -Cat/1underlying ' CMon
�
Fun.BG;Cat1equiv./

�
over the same equivalence as before, and hence by functoriality of CMon finally an equiv-
alence

AlgE†EG� .G -Cat/1underlying ' CMon.G -Cat1underlying/

over G -Cat1underlying. By [12, Corollary 2.5 (iii)] it therefore suffices to construct the equiv-
alence filling (A.2) after postcomposition with the forgetful functor to G -Cat1underlying,
where both paths through the diagram can simply be identified with the forgetful functor
(see [20, proof of Lemma 6.12] for the left-hand composite).

Proof of Theorem A.1. BothK-theory functors actually invertG-equivariant weak equiv-
alences, and so does‚ by assumption; we may therefore prove the theorem after localizing
at the G-equivariant weak equivalences instead. In this case, both Fun.EG; –/ and ˆsat

become equivalences with respect to the G-“h”fp weak equivalences on G -PermCat by
Theorem 8.4 and [23, Theorem 6.9], respectively. By the previous proposition it therefore
suffices to prove the theorem after precomposing (A.1) with the maps from (A.2), i.e. to
construct an equivalence filling

G -PermCat1G-“h”fp AlgE†EG� .G -Cat/1G-w.e.

G -ParSumCat1G-w.e. G -SpectraG-w.e.;

 

!
Fun.EG;–/

 !ˆsat  ! KG

 

!
KG

which is done in [20, Theorem 4.1.40].

Remark A.3. A slight variation of the above arguments yields the following uniqueness
result for our comparison G -ParSumCat1G-w.e. ' AlgE†EG� .G -Cat/1G-w.e.: for any functor

G -ParSumCat1G-equivalences ! AlgE†EG� .G -Cat/1G-equivalences
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compatible with the forgetful maps to G -Cat1G-equiv. (note the finer notion of weak equiv-
alence!), the induced functor

G -ParSumCat1G-w.e. ! AlgE†EG� .G -Cat/1G-w.e.

is canonically equivalent to the equivalence‰ we constructed, in particular itself an equiv-
alence.

I do not know whether this holds more generally without the assumption that our
comparison comes from a functor of the localizations at theG-equivariant equivalences, or
equivalently, whether the space of endomorphism of AlgE†EG� .G -SSet/1 over G -SSet1

is contractible. Similarly, it is not clear whether AlgE†EG� .G -Cat/1G-equiv. has non-trivial
endomorphisms over G -Cat1G-equiv..
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