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Quasi-isogeny groups of supersingular abelian surfaces
via pro-étale fundamental groups

Thibaud van den Hove

Abstract. We consider a Jb.Qp/-torsor on the supersingular locus of the Siegel threefold con-
structed by Caraiani–Scholze, and show that it induces an isomorphism between a free group on a
finite number of generators, and the group of self-quasi-isogenies of a supersingular abelian surface,
respecting a principal polarization and a prime-to-p level structure. Along the way, we classify cer-
tain pro-étale torsors in terms of the pro-étale fundamental group, describe the category of geometric
covers of non-normal schemes, and use this to compute pro-étale fundamental groups of curves.

1. Introduction

In [3, Proposition 1.13], Caraiani and Scholze construct a pro-étale Jb.Qp/-torsor on each
Newton stratum Sb of certain PEL Shimura varieties at hyperspecial level, where Jb.Qp/

is the locally profinite group of self-quasi-isogenies of a certain p-divisible group, respect-
ing extra structures. For connected strata, these torsors induce a continuous morphism

�
proKet
1 .Sb; x/! Jb.Qp/;

where x is a geometric point of Sb , and �proKet
1 is the pro-étale fundamental group of Bhatt

and Scholze classifying geometric covers, as introduced in [2, Section 7]. The main goal
of this paper is to show that in the case of the basic stratum of the Siegel threefold, this
map is injective, and to determine its image. More precisely, we compute the pro-étale
fundamental group in this special case, and the image of the map to Jb.Qp/ consists
exactly of those quasi-isogenies coming from a quasi-isogeny of abelian surfaces. This
gives the following main theorem (cf. Remark 6.3, and Propositions 6.5 and 6.7).

Theorem 1.1. Let p � 3 be prime, N � 3 be prime to p, and let VN be the supersingular
locus of the moduli space of principally polarized abelian surfaces over Fp with level-N
structure. Then the Jb.Qp/-torsor PN on VN considered above induces an isomorphism
between a free group on a finite number of generators, and the group of self-quasi-
isogenies of a supersingular abelian surface, respecting a principal polarization and a
level-N structure.
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Part of this theorem is an instance of the fact that for the basic stratum of general PEL
Shimura varieties, the image of �proKet

1 .Sb;x/! Jb.Qp/ is related to p-adic uniformization
of Shimura varieties as in [20], cf. [3, Remark 1.14], although we do not make use of p-
adic uniformization to determine this image. On the other hand, we do use it to get the
corollary that the corresponding Rapoport–Zink space is simply connected. Indeed, this
is the smallest cover of VN trivializing PN (essentially by definition), so that this follows
from injectivity of �proKet

1 .VN ; x/! Jb.Qp/.
Before we mention other results we will use, let us sketch the strategy for Theorem 1.1.

We consider families of principally polarized supersingular abelian surfaces with level
structure over the projective line, constructed by Moret–Bailly, which give morphisms
P1

Fp
! VN . By work of Katsura and Oort, these morphisms are jointly surjective, and each

normalize an irreducible component of VN . This will allow us to compute �proKet
1 .VN ; x/,

by Theorem 1.3 below. Using that P1
Fp

is simply connected, we then study the morphism

�
proKet
1 .VN ; x/! Jb.Qp/;

and use arguments on the level of abelian surfaces to show injectivity and determine its
image.

To compute �proKet
1 .VN ; x/, we will prove more general results about the pro-étale fun-

damental group. To partially reduce the problem to determining étale fundamental groups,
we show that all geometric covers of a scheme can be obtained by gluing finite étale cov-
ers of its normalization. More precisely, we prove Theorem 1.2 below, cf. Theorem 3.4.
Here, we need some small topological assumption to ensure the pro-étale fundamental
group exists and behaves well. Moreover, we assume the normal locus to be open, so
that we can give the non-normal locus the structure of a closed subscheme. This holds
e.g. for quasi-excellent schemes [6, Corollaire 6.13.5]. On the other hand, by topological
invariance of the pro-étale fundamental group, we may assume reducedness without losing
generality. For any scheme X , we denote the category of geometric covers of X by CovX .
Let us also note that a similar result, with different assumptions and proof, was obtained
in [12, Lemma 2.17]: there, the authors allow more general proper covers than just the
normalization map, but at the cost of assuming that the scheme is locally noetherian.

Theorem 1.2. Let X be a locally topologically noetherian, connected, reduced scheme,
whose normal locus is open. Denote by � WX� ! X its normalization, Y � X its non-
normal locus, and let Z D ��1.Y /, where both Y and Z have the reduced closed sub-
scheme structure. Then base change induces an equivalence

CovX Š CovX� �CovZ CovY :

The 2-fibre product CovX� �CovZ CovY can be viewed as a descent data category for
the covering X�

`
Y ! X ; as Y ! X is a monomorphism, there is no need for cocycle

conditions.
While Theorem 1.2 above does not allow us to compute the pro-étale fundamental

group in general, it suffices for the case of curves over separably closed fields, which is
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enough for our purposes. In that case, we get the formula below, cf. Theorem 4.4. Again,
we note that a similar result was independently obtained in [12, Theorem 2.27].

Theorem 1.3. Let X be a connected curve over a separably closed field k, with irre-
ducible components X0; : : : ; Xm. Choose geometric basepoints xi in the normal locus of
Xi for each i , and for each x 2 X , let bx denote the number of branches at x. Then there
is an isomorphism

�
proKet
1 .X; x0/ Š Fb.X/�m �

N
N©

iD0;:::;m

� Ket
1 .X

�
i ; xi /;

with Fb.X/�m a discrete free group on b.X/�m generators, and b.X/D
P
x2X .bx � 1/.

Here, the notation �N denotes the Noohi coproduct, but for this introduction, one
can think of it as the usual topological coproduct, cf. Remark 2.15. For curves over
general fields, we can then use the fundamental exact sequence from [11]. Let us also
mention another method from Lara to compute pro-étale fundamental groups, namely to
use descent to deduce a general Van Kampen type theorem, cf. [11, Corollary 3.19]. Our
method however, will show that elements of the free group Fb.X/�m can be thought of
as loops in X , recovering the topological intuition of fundamental groups. Moreover, this
interpretation will be useful while proving Theorem 1.1.

Finally, we need to know how the torsor PN induces a morphism of topological
groups. This is an instance of the more general fact that the pro-étale fundamental group
classifies pro-étale G-torsors for certain topological groups G, similarly to the case of
topological and étale fundamental groups. However, since pro-étale fundamental groups
naturally live in the category of Noohi groups, this classification holds for all Noohi groups
G (and in particular for the locally profinite groups); cf. Theorem 5.3, which describes the
whole groupoid of G-torsors.

Theorem 1.4. Let X be a locally topologically noetherian connected scheme with geo-
metric basepoint x, and G a Noohi group. Then the isomorphism classes of pro-étale
G-torsors on X are in bijection with Homcont.�

proKet
1 .X; x/;G/= Inn.G/.

Note that we cannot expect the theorem to hold for groups that are not Noohi. This is
similar to the case of étale fundamental groups, which are naturally profinite, but where
the analogue of this theorem fails already for infinite discrete groups. As an example,
the nodal curve over a separably closed field has a universal geometric cover, which is
an étale Z-torsor. But since the étale fundamental group of this nodal curve is yZ, this
would correspond to a non-trivial continuous homomorphism yZ! Z, and such maps do
not exist. This is another aspect with respect to which the pro-étale fundamental group
behaves better than the étale version.

Let us outline the structure of this article. In Section 2, we recall the definitions and
basic properties of the pro-étale fundamental group and Noohi groups, that we will need
in the rest of the paper. In Section 3, we explain how one can obtain geometric covers
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of non-normal schemes by gluing geometric covers of their normalizations, which leads
to Theorem 1.2. Specializing to the case of curves, we use this in Section 4 to prove
Theorem 1.3, and to compute some examples of pro-étale fundamental groups of curves
over non-separably closed fields. In Section 5, we show Theorem 1.4, and in finally, in
Section 6, we work out the concrete example of a torsor on the basic stratum of the Siegel
threefold, leading to Theorem 1.1.

2. The pro-étale fundamental group

In this section, let us recall the definition of the pro-étale fundamental group, and basic
properties that we will need.

Definition 2.1. (1) A morphism f WY ! X of schemes is weakly étale if both f and the
diagonal �f W Y ! Y �X Y are flat.

(2) The pro-étale siteXproKet ofX is defined as the category of weakly étaleX -schemes,
with fpqc covers.

Let us denote the category of set-valued sheaves onXproKet by Shv.XproKet/, and by LocX
the full subcategory of locally constant sheaves.

Definition 2.2. For a scheme X and a geometric basepoint x of X , let evx WLocX ! Set
be the evaluation functor. We define the pro-étale fundamental group ofX at the basepoint
x as �proKet

1 .X; x/ WD Aut.evx/. We endow it with the topology coming from the compact-
open topology on each Aut.evx.F //, for F 2 LocX .

For a topological group G, we denote by G -Set the category of discrete sets with a
continuous G-action, which comes with a fibre functor

FG WG -Set! Set;

given by the forgetful functor. The main theorem about the pro-étale fundamental group
is the following:

Theorem 2.3 ([2, Theorem 1.10]). If X is a locally topologically noetherian and con-
nected scheme, then there is an equivalence LocX Š �

proKet
1 .X; x/ -Set, compatible with

fibre functors.

Note that some topological assumption on X is necessary, as there exist examples of
connected schemes for which such an equivalence cannot hold, cf. [2, Example 7.3.12]. It
will also be useful to have a geometric interpretation of locally constant pro-étale sheaves,
similarly to the fact that the finite locally constant étale sheaves are exactly those repre-
sented by finite étale covers.

Definition 2.4. A morphism f WY ! X of schemes is a geometric cover if it is étale and
satisfies the valuative criterion for properness. We denote the category of geometric covers
of X by CovX .
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Proposition 2.5 ([2, Lemma 7.3.9]). IfX is locally topologically noetherian, then LocXD
CovX , as subcategories of Shv.XproKet/.

As for both the topological and the étale fundamental groups, the pro-étale funda-
mental group is independent of the choice of basepoint, up to (usually non-canonical)
isomorphism. This is an immediate corollary of the proof of [2, Lemma 7.4.1], but we
state it explicitly below, as we will need it later on.

Lemma 2.6. Let X be a locally topologically noetherian connected scheme, and x1, x2
two geometric points of X . Then there is an isomorphism

evx1 Š evx2

of functors LocX ! Set.

Another property of locally topologically noetherian schemes, is that any étale mor-
phism into such a scheme also has a locally topologically noetherian source. This was
shown in [2, Lemma 6.6.10], and it implies that any étale morphism into a locally topolog-
ically noetherian scheme is quasi-separated. We will use this fact without further mention
in this paper.

For the rest of this section, let us fix some locally topologically noetherian connected
scheme X , and a geometric basepoint x of X . As the étale fundamental group � Ket

1 .X; x/

is the automorphism group of the fibre functor evx W FEtX ! FSet, there is a natural map
�

proKet
1 .X;x/! � Ket

1 .X;x/. These two fundamental groups are closely related, and even the
same for nice schemes:

Proposition 2.7 ([2, Lemma 7.4.3]). The canonical continuous morphism �
proKet
1 .X;x/!

� Ket
1 .X; x/ induces an isomorphism on profinite completions.

Proposition 2.8 ([2, Lemma 7.4.10]). IfX is geometrically unibranch, the canonical mor-
phism �

proKet
1 .X; x/! � Ket

1 .X; x/ is an isomorphism of topological groups.

Example 2.9 ([2, Paragraph before Definition 1.9]). To show that the pro-étale funda-
mental group is a strictly finer invariant than the étale fundamental group, consider the
nodal curve X over a separably closed field k, obtained by identifying the points 0 and1
in P1

k
. The connected geometric covers of X are then given by gluing copies of P1

k
along

their points at 0 and1. In particular there is a universal connected cover X1, for which
Aut.X1=X/ Š Z. So in this case, we have

�
proKet
1 .X; x/ Š Z © yZ Š � Ket

1 .X; x/:

Remark 2.10. In the example above, the pro-étale fundamental group is prodiscrete, and
hence agrees with the enlarged fundamental group introduced in [4, Exp. X.6]. However,
in general the pro-étale fundamental group is a strictly finer invariant, cf. [2, Lemma 7.4.6
and Example 7.4.9]. Another example is the pushout Gm;C

`
Spec C Gm;C , where both

maps Spec C ! Gm;C are given by the unit map. This already appears in [11, Exam-
ple 4.5], but will also follow from Theorem 4.4 as � Ket

1 .Gm;C; x/Š yZ for any basepoint x.
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Another useful property of the pro-étale fundamental group, is that just like the étale
fundamental group, it is a topological invariant:

Proposition 2.11 (Topological invariance). A universal homeomorphism of locally topo-
logically noetherian connected schemes induces an isomorphism of pro-étale fundamental
groups.

This can easily be shown using topological invariance of the étale site, and the fact that
separatedness and satisfying the existence part of the valuative criterion are topological
properties. We refer to [11, Proposition 2.17] for more details.

As a last topic in this section, let us briefly mention the kind of groups that can appear.
Throughout the rest of the paper, we will assume any topological group is Hausdorff.
(Recall that this is equivalent to being a T1-, or even a T0-space. Indeed, in a T0-group any
point is closed, as translations and inversion are homeomorphisms. But then the diagonal
is closed as the inverse image of the identity under the continuous map G � G ! G W

.x; y/ 7! xy�1.)

Definition 2.12. Let G be a topological group, FG WG -Set! Set the forgetful functor,
and consider the group Aut.FG/, topologized similarly as in Definition 2.2. We say that
G is Noohi if the natural map G ! Aut.FG/ is an isomorphism of topological groups.

Since the equivalence LocX Š �
proKet
1 .X; x/ -Set is compatible with the fibre functors

evx and F
�

proKet
1 .X;x/

to Set, any pro-étale fundamental group is Noohi. Below, a more
intrinsic characterization of Noohi groups is given in terms of Raikov completeness and
the Raikov completion G� of a topological group G, for which we refer to [1, Section
3.6]. Note that the identity of any Noohi group has a basis of open neighbourhoods given
by open subgroups, as this holds for groups of the form Aut.S/ with the compact-open
topology, where S is a discrete set.

Proposition 2.13 ([2, Proposition 7.1.5]). If G is a topological group where the identity
has a basis of open neighbourhoods given by open subgroups, then there is a natural
isomorphism Aut.FG/ŠG�. In particular,G is Noohi if and only ifG is Raikov complete.

Example 2.14. Using this characterization, we see that any locally profinite group is
Noohi.

Remark 2.15 ([2, Example 7.2.6]). This characterization shows that the product of two
Noohi groups is Noohi, so that the category of Noohi groups admits products. And while
it is not true that the coproduct of Noohi groups is always Noohi, the category of Noohi
groups does admit coproducts: for two Noohi groupsG andH , it is given by Aut.FG�H /,
where G �H is the coproduct of topological groups, and we denote it by G �N H . Using
infinite Galois theory, cf. [2, Theorem 7.2.5], one sees that .G �H/ -SetŠ .G �N H/ -Set,
compatibly with both forgetful functors. For a different description of the Noohi coproduct
as the Raikov completion of G �H endowed with a certain topology (not the coproduct
topology), we refer to [13, Corollary 1.14].
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3. Geometric covers of non-normal schemes

In this section, we show how to reduce the computation of the pro-étale fundamental
group to the case of a normal scheme, where it agrees with the étale fundamental group
by Proposition 2.8. A natural candidate for such a normal scheme is the normalization X�

of X . The idea is then similar to Example 2.9: we would like show that any geometric
cover of X can be obtained by gluing finite étale covers of X� . However, as not every
scheme can be obtained by such a gluing process, we will start by approximating X by
a scheme that can be obtained that way, and then show how the pro-étale fundamental
groups ofX and this other scheme relate. For this section, let us fix a locally topologically
noetherian connected schemeX , which we may assume to be reduced by Proposition 2.11.
Moreover, since the gluing procedure mentioned above will be formalized using pushouts,
which are mostly only well-behaved when one morphism is a closed immersion, we will
also assume that the normal locus of X is open in X , so that the non-normal locus is
closed. This holds for example for all quasi-excellent schemes, and hence for all schemes
locally of finite type over a field; cf. [6, Section 6.13] for this and other criteria.

Construction 3.1. Consider the normalization map � WX� ! X , let Y � X be the non-
normal locus, and Z WD ��1.Y /. We view both Y and Z as closed subschemes of respec-
tively X and X� , with the reduced subscheme structure. Let us consider the pushout
X�

`
Z Y , which exists by [5, Théorème 7.1], as Z ! X� is a closed immersion, and

Z ! Y is integral. By the pushout property, there is a natural map 'WX�
`
Z Y ! X .

While this map is not an isomorphism in general, it is always a universal homeomorphism:

Lemma 3.2. The natural map 'WX�
`
Z Y ! X is a universal homeomorphism.

Proof. By [5, Théorème 7.1], the underlying topological space ofX�
`
Z Y is the pushout

of the respective topological spaces, Y ! X�
`
Z Y is a closed immersion, and X� !

X�
`
Z Y is an isomorphism away from Y . In particular, ' is bijective and induces iso-

morphisms on residue fields, so by [7, Corollaire 18.12.11] we are left to show that ' is
integral. To show that ' is affine, we note that the normalization map � is affine, and for
any affine open U � X , the preimage '�1.U / is the image of U � D ��1.U / � X� in
X�

`
Z Y , as X� ! X�

`
Z Y is surjective. But this image is just U �

`
ZU
YU , where

YU WD Y �X U andZU WD Z �X U are both affine. And as the pushout of affine schemes
is again affine (as the spectrum of the fibre product on the level of rings), ' is also affine. So
we may assume that X D SpecA, and similarly X�

`
Z Y D SpecA0 and X� D SpecA� ,

where we know that A! A� is integral. Now, A0 is just the fibre product of A� along an
injection of rings, as Z ! Y is a dominant morphism of reduced schemes. And because
fibre product of rings preserves injectivity, we see that A0 ! A� is injective. Since A� is
integral over A, the same then holds for A0, so that ' is integral, and hence a universal
homeomorphism.

In particular, by Proposition 2.11, the pro-étale fundamental groups ofX andX�
`
ZY

coincide.
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Remark 3.3. The reason we introduced the pushout X�
`
Z Y is that, although it will

still be non-normal in general, its singularities are better behaved than those of X . And
since the natural map X� ! X�

`
Z Y is surjective and birational, it is a normalization

morphism, so that taking the pushout X�
`
Z Y is a weaker process than normalizing. In

fact, under certain assumptions on X , we can show that X�
`
Z Y is exactly the seminor-

malization of X , cf. Remark 4.2.

To simplify the notation, we will from now on write yX instead of X�
`
Z Y . Let us

now describe the category of geometric covers of yX , similarly to [24, Tag 0ECL].

Theorem 3.4. Base change induces an equivalence

Cov yX Š CovX� �CovZ CovY :

Recall from the introduction that one can view this 2-fibre product as a descent cate-
gory for the covering X�

`
Y ! X , and that no cocycle condition is needed as Y ! X

is a monomorphism.

Proof. First, we note that CovX� �CovZ CovY can be identified with the category C of
diagrams of the form

X 0 Z0 Y 0

X� Z Y;

f g

j 0i 0

h

ji

where the vertical morphisms are geometric covers and the two squares cartesian, with
the obvious morphisms between them. So it is enough to find an equivalence Cov yX Š C .
For a geometric cover W ! yX , let X 0 WD X� � yX W , and similarly Y 0 WD Y � yX W and
Z0 WD Z � yX W . With the obvious morphisms, this gives a diagram in C , since being a
geometric cover is stable under base change, and because we have

X 0 �X� Z D W � yX X
�
�X� Z Š W � yX Z D Z

0;

and similarly for Y 0.
Conversely, if we have a such a diagram in C , we want to show the pushoutX 0

`
Z0 Y

0

exists, and is a geometric cover ofX�
`
Z Y D

yX . We will show this pushout exists under
the additional assumption that � WX� ! X is finite, and refer to the first paragraph of the
proof of [24, Tag 0ECK] for the general case. By [5, Théorème 7.1], we have to show
that for any point y0 2 Y 0, there is an open affine U 0 � X 0 such that j 0�1.y0/ is contained
in U 0. If the three vertical maps f , g and h in our diagram are the identity, this holds
because the normalization map is affine. Otherwise, note that as X� is normal, X 0 is the
disjoint union of finite étale covers of X� . And by our assumption that the normalization
map is finite, Z0 ! Y 0 is finite as well, so that y0 only has finitely many preimages in Z0,
which are contained in the disjoint union X 00 of finitely many components of X 0, each of
which is finite étale over X� . So we can consider the image y D h.y0/, an affine open
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U � X� containing j�1.y/, and then the inverse image f �1
jX 00
.U / � X 00 is the open affine

we are looking for.
Using [24, Tag 08KQ] (resp. [24, Tag 0ECK]), we find thatX 0

`
Z0 Y

0!X�
`
Z Y is

étale (resp. separated), so we are left to show the existence part of the valuative criterion.
Fix a valuation ring V with fraction field K, and consider a commutative diagram as
follows:

SpecK X 0 X 0
`
Z0 Y

0 Y 0

SpecV X� yX Y;

considering only the solid arrows at first. If the image of SpecK in X 0
`
Z0 Y

0 is in the
normal locus, we can uniquely lift this map to a map SpecK ! X 0, and compose it to
get a map SpecK ! X� . Since X� ! yX is a normalization map, it is integral, and hence
universally closed. In particular, it satisfies the existence part of the valuative criterion,
so we can lift Spec V ! yX to a map Spec V ! X� , and we get two dotted arrows as
in the diagram. Since X 0 ! X� is a geometric cover by assumption, we also get a lift
Spec V ! X 0, which we can compose with X 0 ! X 0

`
Z0 Y

0 to get the desired lift. On
the other hand, if the image of SpecK ! X 0

`
Z0 Y

0 is in the non-normal locus, we can
uniquely lift this map to SpecK! Y 0. And since Y ! yX is a closed immersion, the same
argument as above gives a lift SpecV ! X 0

`
Z0 Y

0. We conclude that X 0
`
Z0 Y

0 ! yX

is a geometric cover.
Both mappings on objects of C and Cov yX can be upgraded to functors, and we want

to show they are mutual quasi-inverses. We will only check this on objects, as once we
know this the case of morphisms is easy. If we have a diagramD in C , take the associated
geometric cover, and then the diagram in C obtained by fibre products, this new diagram
will be isomorphic to D by [24, Tag 07RU] and cartesianness of the squares of D.

Conversely, let W be a geometric cover of yX , and construct X 0, Y 0 and Z0 as above.
There is a natural map X 0

`
Z0 Y

0 ! W , and we can check locally that it is an isomor-
phism. To do this, let A! C  B be a fibre diagram of rings, and let M be a flat ring
over A�C B . Then we have an exact sequence 0! A�C B! A˚B! C of modules.
Tensoring this with M over A �C B gives another exact sequence, which realizes M as
the fibre product of M ˝A�CB A and M ˝A�CB B over M ˝A�CB C . Since this is just
the affine version of the construction above, we are done.

4. Computing the pro-étale fundamental group

Using Theorem 3.4 to compute �proKet
1 .X; x/ can still be difficult if Y and Z have compli-

cated geometric covers. This happens to a lesser extent if Y and Z consist of points, such
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as whenX is a curve, and we will see that ifX is moreover defined over a separably closed
field, we will actually be able to find a formula for �proKet

1 .X;x/. Note that we will not need
any separatedness or irreducibility assumptions on X , and by topological invariance we
do not lose any generality by assuming reducedness.

Assumption 4.1. For this section, assume X is connected, reduced, of finite type over a
field k, and that its non-normal locus is zero-dimensional, i.e., consists of finitely many
closed points.

Remark 4.2. Under these assumptions, let us show that X�
`
Z Y is exactly the semi-

normalization of X . Recall that this seminormalization is the initial scheme X s with a
universal homeomorphism toX that induces isomorphisms on residue fields. So we imme-
diately get a morphism ˛WX s!X�

`
Z Y . On the other hand, because of our assumption

onX , we also have a natural morphism Y !X s such that the compositionsZ! Y !X s

and Z ! X� ! X s agree (recall that the normalization always factors through the semi-
normalization, so that we also have a map X� ! X s). The pushout property then gives
a map ˇWX�

`
Z Y ! X s . Since maps obtained by universal properties are unique, the

compositions ˛ ı ˇ and ˇ ı ˛ must be the identity maps, so that ˛ and ˇ are mutual
inverses.

Let us recall the notion of (geometric) branches of a point of a scheme:

Definition 4.3. Let T be a scheme which locally has finitely many irreducible compo-
nents, and � WT � ! T its normalization. For a point t 2 T , one defines:

(1) The number of branches of T at t is the number of inverse images of t in T � .

(2) The number of geometric branches of T at t is
P
t�2��1.t/Œk.t

�/ W k.t/�sep.

Clearly, for schemes of finite type over a separably closed field, the two definitions
agree. Note also that if we denote the number of geometric branches at x 2 X by bx ,
then by the assumption on our scheme X , the number of points x 2 X for which bx > 1 is
finite. In particular, we can give sense to the infinite sum

P
x2X .bx � 1/. Finally, note that

sinceX� is the normalization of bothX and yX , and because yX!X is a homeomorphism
which induces isomorphisms on residue fields, the number of (geometric) branches of X
at some point agrees with the number of (geometric) branches at the corresponding point
of yX .

These numbers of branches allow us to find a nice formula for the pro-étale funda-
mental group of X , which we prove in the following theorem. This generalizes a result
obtained in [13, Proposition 1.17] for the case of projective normal crossing curves. It is
also similar to [12, Theorem 2.27]; we note that both results were obtained independently.
The picture to keep in mind is that of the fundamental group of a graph of groups. Indeed,
to X we can attach a graph of groups, where the vertices correspond to the irreducible
components of X , equipped with the étale fundamental group of their normalization, and
points on X with multiple branches give rise to edges, equipped with the trivial group.
Then the formula below is similar to [21, Example 1, p. 43], adapted to the setting of
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Noohi groups. Similar computations have also appeared in [8, Exp. XI, Corollaire 5.4]
(and more generally in [23]) for the étale fundamental group, and a specific example can
be found in [11, Example 3.25].

Recall that �N denotes the coproduct of Noohi groups, as in Remark 2.15.

Theorem 4.4. Assume k is separably closed, and let X0; : : : ; Xm be the irreducible com-
ponents of X . Choose geometric basepoints xi of Xi with closed image in the normal
locus of X , for each i . Then there is an isomorphism

�
proKet
1 .X; x0/ Š Fb.X/�m �

N
N©

iD0;:::;m

� Ket
1 .X

�
i ; xi /;

with Fb.X/�m a discrete free group on b.X/�m generators, and b.X/D
P
x2X .bx � 1/.

Proof. Since we are working over a separably closed field, we can simplify our notation
and not distinguish between a geometric point and its closed image. Similarly, we will not
distinguish a point of a scheme from its image under a closed immersion.

By Proposition 2.11 and Lemma 3.2, we can replace X by yX . By Remark 2.15, it is
enough to show

Cov yX Š
�
Fb.X/�m �

©
iD0;:::;m

� Ket
1 .X

�
i ; xi /

�
-Set :

By Theorem 3.4, we can instead show that .Fb.X/�m �
¨
iD0;:::;m �

Ket
1 .X

�
i ; xi // -Set is

equivalent to C , where C is the category of diagrams appearing in the proof of the afore-
mentioned theorem. To do this, we make the following choices, using Lemma 2.6:

• For each z 2 Z � X� (i.e., for each z 2 X� whose image in yX is not normal), fix a

natural isomorphism Fz W evxi
Š
�! evz of functors CovX�i ! Set, where i is the index

such that z 2 X�i . By base change, this gives a natural isomorphism xFz W evxi
Š
�! evz

of functors Cov yX ! Set, with z the image of z in yX .

• Rearranging the indices of the irreducible components of yX , we may assume that for
each i D 1; : : : ; m, there is some j < i such that yXi \ yXj ¤ ¿. For any index i ,
fix some point yi in such an intersection, and some points yii 2 X

�
i and yji 2 X

�
j

lying above it. In particular, we get natural isomorphisms Fi W evx0 Š evxi of functors
Cov yX ! Set, by composing the isomorphisms

evx0 ! � � � ! evxj

xF
y
j
i

��! evyi

xF �1
yi
i

���! evxi :

• For each x 2 yX with bx > 1 that is not one of the yi ’s, choose some x� 2 X� over x.
And to simplify the notation later on, let us denote yji by y�i , where j < i .

• Finally, we fix a set of free generators T of Fb.X/�m, and an identification of T with
the set of z 2 Z which are not one of the choices for yii , y

j
i or x� made above. (Note

that the number of such z 2 Z is exactly b.X/ �m.)
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Now, suppose we have a diagram

D D
X 0 Z0 Y 0

X� Z Y;

in C , and denote the preimage of X�i in X 0 by X 0i . Since x0 lies in the normal locus of
yX , the fibre functor FC of C (corresponding to the fibre functor evx0 of Cov yX under the

equivalence C Š Cov yX ) sends this diagram to the set of points ofX 0 over x0. Considering
only X 00, we see that FC admits an obvious action by

�
proKet
1 .X�0 ; x0/ Š �

Ket
1 .X

�
0 ; x0/:

Similarly, using the fixed isomorphisms Fi W evx0 Š evxi , we obtain actions of

�
proKet
1 .X�i ; xi / Š �

Ket
1 .X

�
i ; xi /

on FC . To define an action of Fb.X/�m as well, it is enough to specify b.X/ � m auto-
morphisms of the functor FC . For each z 2 T in X�i with image w 2 yXi , we define the
following automorphism tz : for a point p 2 FC .D/, consider Fz.X 0i / ı Fi .X

0/.p/. This
is a point of Z0 lying over z 2 Z. Let q be the unique point of Z0 which gets mapped
to the same point in Y 0, but also gets mapped to w� 2 Z. Then we define tz.p/ D
Fj .X

0/�1 ıFw� .X
0
j /
�1.q/, where j is the index such thatw� 2X�j . This defines a natural

automorphism of FC , as Fi , Fj , Fz and Fw� are natural isomorphisms, and because the
morphisms in C are induced by morphisms of CovX� , CovY and CovZ . (Note the slight
abuse of notation we use by composing Fz and Fi , but since xi lies in the normal locus of
yX , this does not lead to any problems.)

Conversely, let S be a set with a continuous .Fb.X/�m �
¨
iD0;:::;m �

Ket
1 .X

�
i ; xi //-

action. Consider, for each i , the set S with the restricted � Ket
1 .X

�
i ; xi / Š �

proKet
1 .X�i ; xi /-

action. By the equivalence �proKet
1 .X�i ; xi / -Set Š CovX�i we get a geometric cover X 0i of

X�i , and we define X 0 WD
Fm
iD0 X

0
i and Z0 WD X 0 �Xn Z. Since we are working over a

separably closed field, both Z and Z0 are disjoint unions of copies of Speck, and we have
Z0 Š

`
S Z. So to get a diagram in C , we have to take Y 0 D

`
S Y ! Y , and we are left

to determine the map Z0 ! Y 0, i.e., how points of Z0 � X 0 are glued together.
We start by gluing X 0i ’s and X 0j ’s together, for i ¤ j . We do this inductively on i D

1; : : : ;m. For i D 1, fix an identification of S with both the points ofX 00 lying over x0 and
the points ofX 01 lying over x1, compatibly with the actions of � Ket

1 .X
�
0 ;x0/ and � Ket

1 .X
�
1 ;x1/

respectively. We then map, for each s 2 S , the points Fy01 .X
0
0/.s/ and Fy11 .X

0
1/.s/ to the

same point in Y 0 (which maps to the right point in Y ), using the identification we just
made. This determines the images of points lying over y01 and y11 , and we can repeat this
process for i > 1.

For each x 2 yX with bx > 1 that was not of the form yi , we had fixed some x� 2 X�

lying over x. Points of Z0 lying over these x� do not need to be glued to the points
considered in the previous paragraph, so one can simply choose their image in Y 0 (with
correct image in Y ), such that they all map to distinct points.
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Finally, consider some z 2 T with z 2 X�
l

. Then z is not of the form yii , y
j
i or x� .

But any point z0 lying over z must be glued together with exactly one point lying over
some x� or some yji D y

�
i (let us denote both by x� 2 X�j ), and the images in Y 0 of these

points are already determined. To determine to which point z0 must be glued, consider
the automorphism tz on S associated to z 2 T � Fb.X/�m. Looking at the way that we
constructed an automorphism associated to z before, we see that z0 must be glued to the
point Fx� .X 0j / ı Fj .X

0/ ı tz ı Fl .X
0/�1 ı Fz.X

0
l
/�1.z0/.

The constructions above can naturally be upgraded to functors, which are readily seen
to be mutual quasi-inverses. This concludes the proof.

Remark 4.5. In a certain sense, the elements of Fb.X/��
proKet
1 .X;x0/ correspond to loops

in X , which recovers some of the topological intuition for fundamental groups.

Remark 4.6. Even ifX is irreducible, it is relatively difficult to determine � Ket
1 .X

� ; x/ �N

Fb.X/ completely: if � Ket
1 .X

� ; x/ is infinite profinite, then � Ket
1 .X

� ; x/ � Fb.X/ will have
some non-discrete topology, so it might not be Noohi. However, we do know that the
natural map

� Ket
1 .X

� ; x/ � Fb.X/ ! � Ket
1 .X

� ; x/ �N Fb.X/

is injective. Indeed, since the latter is the automorphism group of Cov yX , we have to show
that any non-trivial element  2 � Ket

1 .X
� ; x/ � Fb.X/ acts non-trivially on the image under

evx of some geometric cover of yX . To construct such a cover, consider the (unique)
reduced decomposition of  as a product of elements in � Ket

1 .X
� ; x/ and in Fb.X/, and let

Y !X� be a connected finite étale cover on which some element of � Ket
1 .X

� ; x/ appearing
in the decomposition of  acts non-trivially. (This is always possible unless  is in the
image of

Fb.X/ ! � Ket
1 .X

� ; x/ � Fb.X/:

In that case, taking Y D X� will suffice, as we assumed  was non-trivial.) Let Y1 be
the universal connected geometric cover of yX whose irreducible components are Y . It is
then clear that  acts non-trivially on evx.Y1/.

Remark 4.7. Similarly as for the étale fundamental group, there is a fundamental exact
sequence for the pro-étale fundamental group, cf. [11, Theorem 4.14]: if Y is a geometri-
cally connected scheme of finite type over k, then there is a short exact sequence

1! �
proKet
1 .Yksep/! �

proKet
1 .Y /! Gal.ksep=k/! 1

of topological groups. In particular, using this together with our Theorem 4.4, we can
determine the pro-étale fundamental group of a geometrically connected curve, up to some
extension problem. For simple cases however, we can fully determine the pro-étale funda-
mental group, as the following examples show.

Example 4.8. [11, Example 3.24] Consider a curve X obtained by gluing the k-rational
points 0 and 1 of the projective line P1

k
together. (This is similar as in Example 2.9,

except that we allow k to be any field.) For any étale field extension k0=k, we get a
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geometric cover ofX by gluing copies of P1
k0

, either a finite or an infinite number, by using
Theorem 3.4. To show that, up to isomorphism, we can get all the connected geometric
covers of X this way, we have to show we cannot glue some P1

k1
to some P1

k2
if k1 © k2.

Indeed, there were such a geometric cover, it would correspond to a diagram

X 0 Z0 Y 0

P1
k

Spec k
F

Spec k Spec k;

where Z0 contains Spec k1 and Spec k2 as clopen subschemes, which are mapped to the
same point of Y 0. But the right square of this diagram must be a fibre square, which shows
this can only happen if k1 Š k2. So we have found all connected geometric covers of X .
Let x be a geometric point of X . For the pro-étale fundamental group, note that it is
generated by Z and Gal.k=k/, where Z acts by translation, and Gal.k=k/ by the usual
Galois action on the irreducible components. Indeed, we are only gluing points of P1

k
, and

� Ket
1 .P

1
k
; x/ Š Gal.k=k/. Moreover, it is readily seen that these two actions commute with

each other, so that �proKet
1 .X; x/ Š Z � Gal.k=k/, with the product topology.

So far, we only considered curves whose normalization map induced isomorphisms
on residue fields. Let us see what can happen if this is not the case.

Example 4.9. We want to consider a scheme X which looks like the complex projective
line, except that the residue field at1 is R instead of C. Formally, we can construct this
as P1C

`
Spec C Spec R, where Spec C ,! P1C is the inclusion of1. Using Theorem 3.4, we

can see that, up to isomorphism, X has only two connected geometric covers: the identity,
and a scheme Y gotten by gluing two copies of P1C together along their respective points
at infinity. This corresponds to the diagram

P1C
F

P1C Spec C
F

Spec C Spec C

P1C Spec C Spec R:

Indeed, since P1C has no nontrivial geometric covers, we see that any such diagram where
the upper right scheme is not connected will give rise the a geometric cover that is not
connected. Since Y ! X is a cover of degree 2, we see that for any geometric point x
of X , we have �proKet

1 .X; x/ Š Z=2Z, with the discrete topology.

Example 4.10. Similarly as in the example above, consider a scheme X which looks like
the complex projective line, but which has residue field R at two points: 0 and1. While it
is possible to determine all the connected geometric covers, let us just mention that X has
a universal geometric cover Y . It is obtained by taking countably many copies of P1C , and
gluing them together by repeatedly identifying two points lying over 02X , and two points
over 1 2 X (this is in contrast to Example 4.8, where we identified points lying over
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0 2 P1
k

with points over1 2 P1
k

). So the pro-étale fundamental group of X is discrete,
and isomorphic to the automorphism group of Y over X . This automorphism group is
generated by translations, and the Galois action of C over R. Since this Galois action
essentially reverses the order of the copies of P1C , we see that �proKet

1 .X; x/ Š Z Ì Z=2Z
for any geometric point x ofX , where the action of Z=2Z is the unique non-trivial action.

Remark 4.11. By [24, Tags 0C1S and 0C39], an integral scheme is (geometrically) uni-
branch at a point if and only if the number of (geometric) branches at that point is 1. So the
example above gives a scheme which is unibranch, but whose étale and pro-étale funda-
mental group are not isomorphic. This shows that the geometrically unibranch assumption
from Proposition 2.8 cannot be weakened to only unibranch.

5. Pro-étale torsors

Although the pro-étale fundamental group of a scheme X classifies the geometric cov-
ers of X , we already had to determine the whole category of geometric covers of X to
compute its pro-étale fundamental group. However, the pro-étale fundamental group can
also be used to classify more general torsors, as we will show. Throughout this section,
X again denotes a locally topologically noetherian connected scheme, and x a geometric
basepoint of X .

Notation 5.1. For any topological space T , denote by FT the presheaf on XproKet given by
U 7! cont.U; T /. This is a sheaf by [2, Lemma 4.2.12], and if T is a topological group
or monoid, this gives FG the structure of a pro-étale sheaf of groups or monoids. For a
topological group G, we denote by BFG.XproKet/ the groupoid of (right) FG-torsors on
XproKet, with equivariant morphisms.

To construct such torsors later in this section, we will need to consider the limit
lim
 �U

G=U of topological spaces, where U ranges over the set of open subgroups of a
Noohi groupG. As these form a basis of open neighbourhoods of 1 2 G, there is a natural
injective map

G ! lim
 �
U

G=U;

but it is not surjective in general1: let S be a discrete set, and G D Aut.S/ with the
compact-open topology. Then G is a Noohi group by [2, Example 7.1.2], and a basis
of open neighbourhoods of 1 2 Aut.S/ is given by the pointwise stabilizers UF of finite
subsets F � S . For each such F , there is a natural injection G=UF ! map.F; S/, with
image the injective maps F ! S . Passing to the limit, we get a continuous injection

lim
 �
F

G=UF ! lim
 �
F

map.F; S/ D map.S; S/;

1This failure of surjectivity and the counterexample were pointed out to me by Marcin Lara.
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and its image are again exactly the injective maps. In particular, if S is infinite, the map
G D Aut.S/! lim

 �F
G=UF is not surjective.

What does hold, is that there is a natural homeomorphism lim
 �U

G=U Š End.FG/,
with FG WG -Set! Set the forgetful functor, and where End.FG/ is topologized using the
compact-open topology, similarly as in Definition 2.2. This was shown in [14, Proposition
4.1.1], and the isomorphism is given by sending .gU /U 2 lim

 �U
G=U to the endomorphism

mapping s 2 S 2G -Set to gGs � s, whereGs �G is the stabilizer of s in S . Moreover, the
natural map G ! lim

 �U
G=U can be identified with the inclusion Aut.FG/! End.FG/,

so that the image of this map are exactly the invertible elements of the monoid End.FG/.

Lemma 5.2. Elements of End.FG/ with a left or right inverse are already invertible.

Proof. Let ';  2 End.FG/ be such that ' ı  D IdFG , and consider any S 2 G -Set.
Since the map 'S WS ! S is surjective, it will be enough to show 'S is injective. Indeed,
this will imply each 'S , and hence each  S D '�1S , is bijective.

Let .˛U /U 2 lim
 �U

G=U be the element corresponding to '. Choosing for each open
subgroup U � G a representative gU 2 ˛U � G gives a net in End.FG/, which converges
to '. Now, there is a natural map

ˆWEnd.FG/! map.S; S/:

If we equip the latter with the compact-open topology, this map is continuous by defini-
tion of the topology on End.FG/. In particular, we have a net .ˆ.gU //U in map.S; S/,
which converges to 'S . As a limit of injective (even bijective) maps into a discrete set, we
conclude that 'S is itself injective.

The following theorem classifies pro-étale FG-torsors, for Noohi groups G. Note that
the case of profinite groups already appeared in [2, Lemma 7.4.3], and one can use an
argument similar to the proof of [2, Lemma 7.4.7] to show the claim for locally profinite
groups. Our method, on the other hand, works for all Noohi groups, and does not need
to reduce to some simpler case. For two topological groups G and H , let us denote by
Homcont.H; G/ the groupoid of continuous homomorphisms H ! G, where the mor-
phisms between f1; f2WH ! G are given by elements g 2 G conjugating f1 into f2.

Theorem 5.3. If G is a Noohi group, there is an equivalence

BFG.XproKet/ Š Homcont.�
proKet
1 .X; x/;G/:

Proof. By [2, Theorem 7.2.5 (2)], Homcont.�
proKet
1 .X; x/; G/ is equivalent to the groupoid

of functorsG -Set! LocX compatible with the fibre functors FG and evx . So it is enough
to show that BFG.XproKet/ is equivalent with this groupoid of functors.

For a pro-étale FG-torsor P on X , we get a functor G -Set! LocX by sending S 2
G -Set to the contracted product P �FG FS , where the action of FG on FS is the one
induced by the action of G on S . To show compatibility with the fibre functors, let us
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fix q 2 Px , which can be identified with the underlying set of G. Then there is a natural
isomorphism S

Š
�! evx.P �FG FS /W s 7! .q; s/. Note that although we had to choose some

q 2 Px to show this compatibility, the functorG -Set! LocX itself is independent of this
choice.

On the other hand, suppose we have a functorˆWG -Set! LocX , compatible with the
fibre functors. For each S 2 G -Set, the action of End.FG/ on evx.ˆ.S// D S extends
uniquely to an action of FEnd.FG/ on ˆ.S/. Define a sheaf

QP 2 Shv.XproKet/ as lim
 �
U

ˆ.G=U /;

whereU ranges over the open subgroups ofG. Then the FEnd.FG/-action on eachˆ.G=U /
lifts to a unique FEnd.FG/-action on QP . To construct a torsor, we may assume X is affine,
as the general case will follow by gluing. In that case, X admits an affine w-contractible
pro-étale cover W by [2, Theorem 1.5]. Such w-contractible schemes are defined by the
property that any pro-étale cover over them splits. In particular, any locally constant pro-
étale sheaf over W is already constant, so that for any T 2 WproKet, we have an End.FG/-
equivariant isomorphism

QP .T / D lim
 �
U

ˆ.G=U /.T / Š lim
 �
U

cont.T;G=U / D cont.T; lim
 �
U

G=U /:

In particular, QP .T / Š lim
 �U

G=U if T is connected. Now observe that by Lemma 5.2,
the subset Aut.FG/ � End.FG/ can be characterized as those elements ' 2 End.FG/ for
which End.FG/ � ' D End.FG/. In particular, for connected T 2 WproKet, the End.FG/-
action allows us to recover which elements of QP .T / must correspond to elements of G,
and for connected T 0 ! T 2 WproKet, the restriction QP .T /! QP .T 0/ preserves these ele-
ments. This allows us to define the subpresheaf P of QP whose sections over some Y 2
XproKet consist of those sections whose restriction to T lies in G � QP .T /, for any con-
nected T ! Y with T 2 WproKet. Then P is a sheaf, the FEnd.FG/-action on QP restricts
to an FG-action on P , and for any T 2 WproKet, we have an equivariant isomorphism
P .T / Š cont.T; G/. In particular, P becomes isomorphic to FG over W , which shows
that P is an FG-torsor.

These mappings can be upgraded to functors, which are readily seen to be mutual
quasi-inverses.

In particular, taking isomorphism classes of these groupoids gives Theorem 1.4.

6. The Siegel threefold

In this final section, we use our previous results to deduce the main theorem. Let us fix a
prime p, some integerN � 3 prime to p, and consider the moduli space A2;1;N of princi-
pally polarized abelian surfaces with level-N structure over Fp . As it is three-dimensional
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and corresponds to the Siegel Shimura datum, it is also known as the Siegel threefold. The
associated basic Newton stratum VN is exactly the locus of supersingular abelian sur-
faces, which is one-dimensional, cf. [19, p. 217]. To study this supersingular locus, we
will construct families of principally polarized supersingular abelian surfaces over P1

Fp
.

These families will then give rise to maps P1
Fp
! VN , which will allow us to get a grasp

on the geometry of VN . This construction is originally due to Moret–Bailly, cf. [16], and
works for all p � 3. So we assume that p � 3, and refer to [15] for a similar construction
when p D 2. For the rest of this section, we let S D P1

Fp
, and any fibre product without

subscript will be over Spec Fp .

Construction 6.1. Choose two supersingular elliptic curves E1 and E2 over Fp . They
both admit a natural subgroup isomorphic to p̨ , given by the kernel of their respective
Frobenius maps; let us fix such inclusions p̨ D Spec FpŒˇi �=.ˇ

p
i / ,! Ei . Consider the

subgroup scheme H D V.Yˇ1 � Xˇ2/ � p̨ � p̨ � S , where .X; Y / is a homogeneous
coordinate of S D P1

Fp
. Now we consider the quotient X WD .E1 � E2 � S/=H , giving a

diagram

1 H E1 �E2 � S X 1

E1 �E2 S

�

pr1
pr2

�

q

where the top row is exact. Clearly, X is a family of supersingular abelian surfaces over
S , and we want to endow it with a principal polarization. For this, consider any ample line
bundle L onE1 �E2 which is symmetric (i.e., i�LŠL, with i WE1 �E2!E1 �E2 the
inversion map) and satisfiesKL Š p̨ � p̨ , whereKL WD ker.A! A_Wx 7! t�xL/ and tx
is the translation by an element x ofA. Then, asH �Kpr�1.L/ andH is totally isotropic for
the commutator pairing epr�1.L/WKpr�1.L/ � Kpr�1.L/ ! Gm;S associated to pr�1.L/ (since
this pairing is alternating, the fibres of H are isomorphic to p̨ , and there are no non-
zero homomorphisms p̨ !Gm), we see that pr�1.L/ descends to a unique line bundle M

on X, i.e., ��.M/ Š pr�1.L/. Moreover, as E1 �E2 � S ! X is an isogeny and M pulls
back to an S -relatively ample line bundle, M is S -relatively ample itself. And since both
the polarization induced by pr�1.L/, and the isogeny E1 �E2 � S ! X, have degree p, it
follows that M induces a principal polarization on X.

Remark 6.2. In fact, it does not matter which supersingular elliptic curves are chosen.
Indeed, due to a theorem of Deligne, a proof of which can be found in [22, Theorem 3.5],
all products of g � 2 supersingular elliptic curves are isomorphic. Moreover, since the
inclusion p̨ � p̨ ,! E1 � E2 is given by the kernel of the Frobenius map, this is also
independent of the chosen elliptic curves.

Now, consider a principally polarized family X! S of supersingular abelian surfaces
as constructed above. This is an abelian scheme, and since N is prime to p, the N -torsion
subgroup XŒN � � X is finite étale over S . But since S Š P1

Fp
is simply connected, any
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finite étale cover is trivial, so that XŒN � is a disjoint union of copies of S . Using this
decomposition, we can easily put a level-N structure on the family X! S . By the moduli
interpretation of VN , this then corresponds to a map S ! VN . Moreover, the morphism
S ! VN is not constant, as X! S is not a constant family. Indeed, by Remark 6.2, it is
enough to show that if E=Fp is a supersingular elliptic curve, and H � E � E � S the
subgroup from Construction 6.1, then .E � E � S/=H has fibres that are isomorphic to
the product of two supersingular elliptic curves, and fibres that are not. For the former,
one can just take s D 0 2 S , and the latter is shown in [17, Introduction]. Finally, since
both S and VN are one-dimensional, we see that the image of this map is an irreducible
component of VN .

Remark 6.3. It was proven in [9, Theorems 2.1 and 2.3] that not only is every irreducible
component of VN the image of a map S ! VN as constructed above, but also that these
maps realize S D P1

Fp
as the normalization of such an irreducible component. As VN is

moreover connected, cf. [18, Theorem 7.3 and Corollary 8.4], we can use Theorem 4.4
to conclude that the pro-étale fundamental group of VN is a discrete free group on a
finite number of generators. In fact, one can determine the exact number of generators
using [9, Theorems 2.4, 5.1, and 5.3], but we will not need this. While we will also not
use it, it might be interesting to note that the non-normal points of VN are exactly those
whose corresponding abelian surface is isomorphic to the product of two supersingular
elliptic curves. Finally, what we will use later, is that all singularities of VN are ordinary
singularities. This is proven in [10, p. 193], and it implies that one can glue copies of
S D P1

Fp
along closed points to get VN itself, not just its seminormalization.

Now let us describe the pro-étale torsor we are interested in. While its precise defi-
nition is a bit involved, we will not need it in the following, so we content ourselves by
giving the description below. Let us fix a geometric basepoint

xWSpec Fp ! VN ;

with associated supersingular abelian surface Ax , principal polarization �x , and level
structure �x . Recall that Jb.Qp/ is the group of self-quasi-isogenies of the p-divisible
group Ax Œp1�, respecting the induced polarization up to a scalar in Q�p . As the notation
suggests, these are the Qp-valued points of an algebraic group, and hence are naturally
endowed with a locally profinite topology.

Definition 6.4 ([3, Proposition 4.3.13]). There is a natural pro-étale Jb.Qp/-torsor on
VN , which, above any geometric point y of VN , parametrizes the quasi-isogenies between
Ax Œp

1� and Ay Œp1�, respecting the polarizations up to a scalar in Q�p . We denote this
torsor by PN .

Since Jb.Qp/ is locally profinite, we can use Theorem 5.3 to get a map

�
proKet
1 .VN ; x/! Jb.Qp/;
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and it is the image of this map that we want to determine. Note that this map is only defined
up to inner automorphism of Jb.Qp/, but such inner automorphisms only conjugate the
image anyway.

To describe this map, note that it depends on a choice of element in evx.PN /. For this,
we can simply consider the natural quasi-isogeny

Ax Œp
1�! Ax Œp

1�

respecting the polarizations, given by the identity. Now, since all connected components
of the normalization of VN are simply connected, the proof of Theorem 4.4 allows us to
describe an element of �proKet

1 .VN ; x/ by a finite sequence .y0; y1; : : : ; y2m; y2mC1/ of
closed points of this normalization, such that y0 and y2mC1 map to x in VN , such that any
two consecutive points of the form .y2k ; y2kC1/ lie in the same connected component, and
such that any two consecutive points of the form .y2k�1; y2k/ map to the same point of
VN . Elements of �proKet

1 .VN ; x/ do not determine such sequences uniquely, but each such
sequence determines a unique element of �proKet

1 .VN ; x/.
Let ' 2 �proKet

1 .VN ; x/, and choose such a sequence .y0; : : : ; y2mC1/ associated to
'. For each pair .y2k�1; y2k/, let Ak be the supersingular abelian surface corresponding
to their image in VN . On the other hand, choose for each pair .y2k ; y2kC1/ a product
of supersingular elliptic curves Ek , E 0

k
that, along with some line bundle L as in Con-

struction 6.1 and the right level structure, gives a family of principally polarized abelian
surfaces over S , corresponding to the connected component of y2k and y2kC1. Then each
Ak is in an obvious way a quotient of Ek�1 � E 0k�1 and Ek � E 0k , both by a subgroup
isomorphic to p̨ . We get the following sequence of maps:

E0 �E
0
0 � � � Em �E

0
m

Ax A1 Am Ax :

(6.1)

Their composition in the category of abelian varieties up to isogeny gives a quasi-isogeny
Ax ! Ax , which only depends on ', not on the chosen sequence, and is also independent
of the choices of supersingular elliptic curves Ei and E 0i . Moreover, by the restrictions on
the yi , this quasi-isogeny is compatible with both the polarization and the level structure.
Finally, it induces a quasi-isogeny Ax Œp1�! Ax Œp

1� of p-divisible groups, and hence
an element of Jb.Qp/, which is exactly the image of '.

We can say a few things about the quasi-isogeny Ax ! Ax above:

• It is of degree 1,

• It is a p-power quasi-isogeny, and

• It is compatible with both the polarization �x and the level structure �x .

Our goal will be to show that any quasi-isogeny satisfying these conditions will arise
by a sequence as in (6.1), as this gives us a description of the image of

�
proKet
1 .VN ; x/! Jb.Qp/:
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In fact, only the last condition is really necessary: any quasi-isogeny preserving the prin-
cipal polarization must have degree 1, and every prime-to-p quasi-isogeny that preserves
the polarization and level structure is already trivial.

Proposition 6.5. The image of the map �proKet
1 .VN ; x/! Jb.Qp/ consists exactly of those

elements of Jb.Qp/ that are induced by self-quasi-isogenies of Ax , preserving the polar-
ization �x (not just up to a scalar) and level structure �x .

Proof. We showed above that any element of �proKet
1 .VN ; x/ maps to such a quasi-isogeny.

Now, fix a quasi-isogeny  WAx ! Ax respecting the polarization and level structure. We
want to factor  into a sequence of isogenies similar to (6.1). Since it is a p-power quasi-
isogeny, there is some n � 0 such that pn is an isogeny Ax ! Ax . So we can write  
as the composition

Ax
Œpn�
 �� Ax

pn 
���! Ax ;

where the degrees of Œpn� and pn agree. Moreover, since these degrees are powers of p,
we can inductively quotient out subgroups of their kernel of order p, to factor  into a
sequence of isogenies as follows, all of which have degree p:

Ax

Ak A0
k

A1 A01

Ax Ax :

Note that since all abelian surfaces are supersingular and we are working over Fp , all the
kernels of these isogenies are isomorphic to p̨ . Now, we want to obtain a factorization of
 into a sequence of the following kind, where all the arrows are isogenies of degree p:

A01 � � � A0
lC1

Ax A1 Al Ax :

(6.2)

Again, we do this inductively, by rearranging subsequences of the form Ai  A0! Aj . If
the kernels of the two maps agree, then the compositionAi A0!Aj is an isomorphism,
and we can replace it by a single abelian surface. If the two kernels do not agree, they are
still both isomorphic to p̨ . So we can quotient out Ai by the image of the kernel of
A0 ! Aj , and similarly take a quotient of Aj . As these two quotients agree, we get a
commutative diagram

A0

Ai Aj

A00;

and we can replace Ai  A0 ! Aj by Ai ! A00  Aj .
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Finally, we want to show that a sequence of isogenies as (6.2) can arise from an ele-
ment in �proKet

1 .VN ; x/. For this, equip each abelian surface Ai and A0i with the polarization
and level structure induced by the polarization and level structure of Ax . Consider a sub-
sequence of the form

Ai
fi
 � A0

fj
�! Aj ;

and let �i and �j be the induced principal polarizations on Ai and Aj respectively. Recall
that we may assume ker.fi / ¤ ker.fj /. Since both ker.fi / and ker.fj / are isomorphic
to p̨ , [17, Theorem 2] implies that A0 is isomorphic to the product of two supersingular
elliptic curves. Note also that f �i �i D f

�
j �j . We claim that ker.f �i �i / is isomorphic to

p̨ � p̨ . Indeed, this is a finite subgroup scheme of a supersingular abelian surface of
degree p2, so it must be isomorphic to either p̨ � p̨ or a non-trivial extension of p̨

by itself. But such a non-trivial extension has only one subgroup isomorphic to p̨ , while
ker.f �i �i / has at least two: ker.fi / and ker.fj /.

In particular, we can apply Construction 6.1 with the product of elliptic curves A0, the
polarization f �i �i and the right level structure, to get a family of abelian surfaces over
S D P1

Fp
that specializes to Ai and Aj at two points: these points are determined by the

subgroups ker.fi / and ker.fj / of ker.f �i �i /D ker.f �j �j /Š p̨ � p̨ . So eachAi with the
induced polarization and level structure corresponds to a point of VN , the A0j ’s determine
by the discussion above a path in VN connecting all these points, and our assumption that
 preserves �x and �x assures us that this path is in fact a loop. This gives us an element
of �proKet

1 .VN ; x/, which maps to  2 Jb.Qp/.

Remark 6.6. We have shown that the image � of the map �proKet
1 .VN ; x/! Jb.Qp/ cor-

responding to PN consists of the self-quasi-isogenies of Ax Œp1� that are induced by
self-quasi-isogenies of Ax , preserving the polarization �x and the level structure �x . This
agrees with a group defined in the proof of [20, Theorem 6.23], which is shown to be
discrete. Using [20, Theorem 6.30], it follows that one can obtain the formal completion
of A2;1;N along VN as the quotient of some Rapoport–Zink space by � . Note the slight
inaccuracy in [3, Remark 1.14] however, where it is stated that � is a discrete cocom-
pact subgroup of Jb.Qp/. This is not correct: all quasi-isogenies in � have degree one, so
the degree map Jb.Qp/! Q>0 factors through Jb.Qp/=� . But since the image of this
degree map is not compact, Jb.Qp/=� is not compact either, so that � � Jb.Qp/ is not
cocompact. What does hold however, is that � � Jb.Qp/ is cocompact modulo the center
of Jb.Qp/, which is also the statement given in [20, Theorem 6.30].

Next, we show that the map �proKet
1 .VN ; x/ ! Jb.Qp/ is injective. In the proof, the

following observation will be used multiple times: let G be a finite subgroup scheme of
a supersingular abelian variety over Fp , of degree pn with n � 1. If G does not contain
a subgroup scheme isomorphic to p̨ � p̨ , then G has only one subgroup scheme of
degree p.

Proposition 6.7. The map �proKet
1 .VN ; x/! Jb.Qp/ is injective.



Quasi-isogenies of supersingular abelian surfaces 1075

Proof. Consider a sequence of degree p isogenies between principally polarized abelian
surfaces with level structure, of the form

E0 �E
0
0 � � � Em �E

0
m

Ax A1 Am Ax

(6.3)

as in (6.1). Let us assume that the composition Ax ! Ax is just the identity, in which
case we need to show this sequence determines the trivial element of �proKet

1 .VN ; x/. Our
goal will be to find a different, strictly shorter sequence determining the same element of
�

proKet
1 .VN ; x/, so that the proposition will follow by induction. Consider the commutative

diagram

BmC2;0

BmC1;0 BmC1;1

: :
: :::

: : :

B2;0 B2;m�1

B1;0 B1;1 B1;m�1 B1;m

Ax A1 � � � Am Ax ;

(6.4)

where we denote Ei � E 0i by B1;i , and the Bj;i for j > 1 are defined as the reductions of
the obvious fibre products. We will also denote Ai by B0;i and Ax by B0;0, B0;mC1, or
A0, depending on the situation. One can inductively show that the Bj;i ’s are supersingular
abelian surfaces: as reducedness implies smoothness and isogenies are proper, we only
need to show they are connected. But this follows from [24, Tag 0377] and the fact that all
our isogenies have degree 1 or p. For the rest of this proof, we will use the term arrow to
denote a single isogeny of degree 1 or p in (6.4) or (6.3), and use isogeny for compositions
of such arrows. We want to show that there is some Bj;i , with j 2 ¹1; 2º, such that the two
arrows out of it have the same kernel. Indeed, in that case two consecutive arrows in (6.3)
will be equal, so that removing them gives a strictly shorter sequence that determines the
same element of �proKet

1 .VN ; x/.
Let us start by showing that there exists some Bj;i with j � 1, such that the two

arrows out of it have the same kernel. This is clear if there is some arrow in (6.4) of
degree 1: then one can take some Bj;i , with j � 1 minimal such that one arrow out of
Bj;i has degree 1; minimality of j then implies both arrows out of Bj;i have degree 1. So
we may assume all arrows have degree p. First, assume there is a composition of arrows
BmC2;0 ! Ai (where Ax D A0 is allowed) whose kernel does not contain a subgroup
of the form p̨ � p̨ . Then the same holds for any composition which starts at the other
arrow going out of BmC2;0, but where the composed isogeny is the same; we can always
find at least one such composition by our assumption that the composed quasi-isogeny
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Ax ! Ax is the identity. But then the kernels of these composed isogenies BmC2;0! Ai
contain only one subgroup of order p, so that the arrows out of BmC2;0 have the same
kernel. On the other hand, if the kernels of all isogenies BmC2;0 ! Ai in (6.4) contain a
subgroup p̨ � p̨ , choose a composition BmC2;0 ! Bj;i , with j � 1 minimal such that
the composed isogeny does not contain a subgroup of the form p̨ � p̨ . Then both Bj�1;i
and Bj�1;iC1 can be obtained by quotienting out the image of p̨ � p̨ � BmC2;0 in Bj;i ,
and in particular, the two arrows out of Bj;i have the same kernel. (Here, we used that
abelian surfaces have at most one subgroup scheme isomorphic to p̨ � p̨ .)

Now, consider someBj;i as above, so that the two arrows out of it have the same kernel.
As we want to have j D 1 or j D 2, let us assume that j > 2; again we may assume that
all arrows with source Bj 0;i 0 for j 0 < j have degree p, as otherwise we could already
find a smaller j with the desired property. Note that Bj�1;i and Bj�1;iC1 get canonically
identified. If the two compositions Bj�1;i ! Bj�3;iC1 do not have kernel isomorphic to
p̨ � p̨ , then the kernels of the arrows out ofBj�1;i agree. A similar statement holds if we

replace Bj�1;i by Bj�1;iC1. On the other hand, if the isogenies Bj�1;i ! Bj�3;iC1 and
Bj�1;iC1 ! Bj�3;iC2 both have kernel isomorphic to p̨ � p̨ , then both Bj�3;iC1 and
Bj�3;iC2 can be obtained by quotienting out the image of (the unique subgroup scheme)
p̨ � p̨ � Bj�1;i D Bj�1;iC1 in Bj�2;iC1. In particular, the arrows out of Bj�2;iC1 have

the same kernel. Continuing in this fashion, we can find j 2 ¹1; 2º and a Bj;i with this
property, concluding the proof.

Let us end this paper with two immediate corollaries to Propositions 6.5 and 6.7:

Corollary 6.8. Let A be a supersingular abelian surface over Fp , equipped with a prin-
cipal polarization and level-N structure. Then the group of self-quasi-isogenies of A
respecting this extra structure is a free group on a finite number of generators.

Our second corollary is concerned with Rapoport–Zink spaces as defined in [20]. Since
we do not use these spaces in the rest of this paper, we omit their definition, and refer to
loc. cit. for the theory behind them. Let us just mention that they are formal schemes over
Spf MZp D SpfW.Fp/, but by topological invariance, we can and do consider their reduced
subschemes instead, which live over SpecFp . Moreover, recall from Remark 6.6 that by p-
adic uniformization, VN is canonically a quotient �nMb , where Mb is the Rapoport–Zink
space corresponding to VN , and � is the image of �proKet

1 .VN ; x/! Jb.Qp/, as before.

Corollary 6.9. The Rapoport–Zink space Mb corresponding to the basic stratum of the
Siegel threefold is simply connected.

Proof. Essentially by definition of both Mb and PN , Mb is the smallest geometric cover
of VN trivializing PN . Hence, as in topology, Mb being simply connected is equivalent to
injectivity of the natural map �proKet

1 .VN ; x/! � . We conclude by Proposition 6.7.
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