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The locus of curves with an odd subcanonical point

André Contiero and Aislan Fontes

Abstract. We present an explicit construction of a compactification of the locus of smooth curves
whose symmetric Weierstrass semigroup at a marked point is odd. This construction extends Stöhr’s
techniques, which can be seen as a variant of Hauser’s algorithm for computing versal deformation
spaces. As an application, we prove the rationality of the locus for genus at most six.

1. Introduction
Let H2g�2 be the locus of compact Riemann surfaces (smooth projective algebraic curves)
of genus g � 4 with a fixed abelian differential vanishing at a point to order 2g � 2. In
a remarkable work, M. Kontsevich and A. Zorich [17, Thm. 1] showed that H2g�2 has
exactly three irreducible components, namely the locus H

hyp
2g�2 of hyperelliptic points,

the even Heven
2g�2 and the odd Hodd

2g�2 points. Ten years later E. Bullock [4, Thm. 2.1]
characterized the general points of such components.

Theorem 1.1 (Bullock [4, Thm. 2.1]). For g � 4, the following hold.

• A general point of Hhyp
2g�2 has Weierstrass gaps ¹1; 3; 5; : : : ; 2g � 3; 2g � 1º;

• A general point of Hodd
2g�2 has Weierstrass gaps ¹1; 2; 3; : : : ; g � 1; 2g � 1º;

• A general point of Heven
2g�2 has Weierstrass gaps ¹1; 2; 3; : : : ; g � 2; g; 2g � 1º.

We recall that an abelian differential has a zero of order 2g � 2 at a point if, and
only if, this point is subcanonical, [4, Def. 1], i.e. the associated Weierstrass semigroup is
symmetric.

Let M�
g;1 be the moduli space of smooth pointed curves of genus g > 1 with a fixed

symmetric Weierstrass semigroup � at the marked point. In his famous Ph.D. thesis,
Pinkham [20] studied the moduli M�

g;1 relating it to the negatively graded part of the
versal deformation space of the monomial curve associated to � . Various authors have
used his techniques to explicitly determine the defining equations of M�

g;1 for low genus.
For instance, in a recent paper, Stevens [23] uses computational methods to describe all
the moduli spaces M�

g;1 when g � 7, determining their dimensions, that coincide with a
lower bound given by A. Contiero, A. Fontes, J. Stevens, and J. Vargas in [7].

Following a proposal made by D. Mumford [18], and also inspired by Pinkham’s
approach, K.-O. Stöhr [24] constructed a compactification of M�

g;1, when � is symmetric,

2020 Mathematics Subject Classification. Primary 14H55; Secondary 14H10, 13D02, 14D15.
Keywords. Weierstrass points, moduli of curves, versal deformation.

https://creativecommons.org/licenses/by/4.0/


A. Contiero and A. Fontes 1028

by allowing Gorenstein curves at the boundary. Stöhr’s techniques avoid suitable classes
of symmetric semigroups. Precisely, it is assumed that the multiplicity n1 of � satisfies
3 < n1 < g, and that � ¤ h4; 5i, not achieving the general points of Hhyp

2g�2 and of Hodd
2g�2

of the Kontsevich–Zorich space H2g�2. The main obstruction in Stöhr’s techniques to
also deal with odd subcanonical points, lies in his way of constructing linear syzygies of
the defining equations of the monomial curve, [24, Lem. 2.3]. Stöhr’s syzygies are not
explicitly given. They are constructed using the general position theorem for canonical
curves and Petri’s original paper, which requires the defining equations to be quadratic
forms. However, the defining equations of a monomial curve associated to an odd numer-
ical semigroup may not be quadratic forms

Since Gorenstein curves are not necessarily nodal, Stöhr’s compactification does not
relate to the Deligne–Munford stack of stable curves. A successful approach to study fam-
ilies of Weierstrass points and their limits in the moduli stack of Deligne–Mumford stable
curves is to consider (generalized) Wronskians and their derivatives, we refer to [11, 12].

In this paper, we extend Stöhr’s techniques to construct in a rather explicit way a com-
pactification xM�

g;1 of the moduli space M�
g;1 when � is a symmetric semigroup different

from the hyperelliptic h2; 2g C 1i. Numerical semigroups of odd type tend to be realized
as Weierstrass semigroups of possibly singular Gorenstein curves that are a triple covering
of the projective line P1, i.e. 3-gonal singular curves, see Lemma 3.1. Hence the canonical
ideal of the monomial Gorenstein curve associated to a numerical odd semigroup cannot
be generated by only quadratic forms as required in Stöhr’s paper [24], cf. Lemma 3.4 of
the present work.

Given a non-hyperelliptic symmetric semigroup � ¤ h2; 2g C 1i, following Hauser’s
algorithm [14,15], and also [22], we unfold the defining equations of the associated canon-
ically embedded monomial Gorenstein curve, introducing new variables. To take care of
flatness, we explore suitable syzygies that are given by purely combinatorial arguments,
see Lemma 3.6, we then obtain a compactification of M�

g;1 by allowing Gorenstein sin-
gularities at the boundary, cf. Theorem 3.9. The compactification is (by construction) a
closed subset of the weighted projective space P .T1;�kŒ��jk

/, where T1;�kŒ��jk
stands for the

negatively graded part of the first module of the cotangent complex associated to the
monomial curve singularity with semigroup � , which relates to Pinkham’s approach.
Since our construction is completely explicit (and implementable) we can produce non-
trivial examples and investigate the global geometry of the moduli spaces M�

g;1.
In the last section of this paper we illustrate our techniques computing the equations

of xM�
g;1 when � is odd of genus 5, � D h5; 6; 7; 8i, and of genus 6, � D h6; 7; 8; 9; 10i,

showing that the moduli varieties M�
g;1 associated to these two odd numerical semigroups

are rational.

2. Gorenstein subcanonical curves and Weierstrass points
Let � be a symmetric non-hyperelliptic numerical semigroup � of genus g > 1 with first
g non-gaps 0D n0 < n1 < � � � < ng�1 D 2g � 2. We recall that a numerical semigroup �
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of genus g is symmetric if its Frobenius number (its largest gap) `g is the largest possible,
namely `g D 2g � 1. Equivalently, � is symmetric if and only if `i D `g � ng�i , for all
i D 1; : : : ; g, where `i stands for a gap of � . Additionally, � is non-hyperelliptic if 2 … � .

Let us associate to � its canonical monomial curve

C .0/ WD
®
.sn0 t`g�1 W sn1 t`g�1�1 W � � � W sng�2 t`2�1 W sng�1 t`1�1/ j .s W t / 2 P1

¯
� Pg�1:

It can be checked that it has a unique unbranched singular point, namely .1 W 0 W � � � W 0/, of
singularity degree g. Since the semigroup � is symmetric, C .0/ is a Gorenstein curve. The
contact orders with hyperplanes at its unique point P D .0 W � � � W 0 W 1/ at the infinity are
exactly `i � 1, i D 1; : : : ; g (the vanishing sequence). Thus C .0/ has degree 2g � 2 and
its Weierstrass semigroup at P is � . Hence every symmetric non-hyperelliptic numerical
semigroup can be realized as a Weierstrass semigroup at a smooth point on a canonical
Gorenstein curve.

Let C be a complete integral Gorenstein curve of arithmetic genus g > 1 defined over
an algebraically closed field k. Throughout this section we assume that C is subcanonical,
i.e. there is a rational function on C with pole divisor .2g � 2/P , where P is a nonsingular
point of C . The dualizing sheaf ! of C is OC ..2g � 2/P /, and the vector space of its
global sections is

H 0.C ;!/D k � xn0 ˚ k � xn1 ˚ � � � ˚ k � xng�1 ; .n0 D 0 < n1 < � � �< ng�1 D 2g � 2/;

where each xni is a rational function on C whose pole divisor is niP . Equivalently, the
marked point P 2 C is a Weierstrass point with gap sequence 1 D `1 < `2 < � � � < `g D
2g � 1, and whose symmetric Weierstrass semigroup � of genus g is canonically gener-
ated by its first g non-gaps, hn0; n1; : : : ; ng�1i D � .

Let us assume that C is also non-hyperelliptic, thus its dualizing sheaf ! induces an
embedding in the .g � 1/-dimensional projective space Pg�1 defined over k,

.xn0 W � � � W xng�1/ W C
!
,�! Pg�1 D P

�
H 0.C ; !/

�
:

Therefore, C can be identified with its image under the canonical embedding. Hence C �

Pg�1 is a projective curve of genus g, degree 2g � 2 and P D .0 W � � � W 0 W 1/.
According to Enriques–Babbage’s theorem for smooth curves, if we assume that C is

not isomorphic to a plane quintic, then its ideal can be generated by quadratic forms, when
it is non-trigonal, and by quadratic and cubic forms when it is trigonal.

An extended version of Max Noether’s theorem for complete integral non-hyperelliptic
curves, cf. [6, 25], states the homomorphism

Symr
�
H 0.C ; !/

�
! H 0.C ; !r /

is surjective for all r � 1. In the following, we recall a proof of Max Noether’s theorem
for subcanonical curves given by Stöhr in [24].

Let C be a complete non-hyperelliptic Gorenstein curve of genus g with a subcanoni-
cal point P . Since C is non-hyperelliptic, we must assume that the Weierstrass semigroup
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� at P is not hyperelliptic, i.e. 2 … � , equivalently � ¤ h2; 2gC 1i. Now, for each nongap
s � 4g � 4, we consider a suitable partition of s as a sum of two nongaps

s D as C bs; as � bs � 2g � 2;

with as the smallest possible nongap. From Oliveira’s paper [19, Thm. 1.3] the 3g � 3
rational functions xasxbs of C form a P -hermitian basis for the space of the global sec-
tions of the bicanonical divisor !2 D OC ..4g � 4/P /. Now, for each integer r � 3 a
P -hermitian basis for the space H 0.C ; !r / is given by the r-monomial expressions

xr�1n0
xni .i D 0; : : : ; g � 1/;

xr�2�in0
xasxbsx

i
ng�1

.i D 0; : : : ; r � 2; s D 2g; : : : ; 4g � 4/;

xr�3�in0
xn1x2g�n1xng�2x

i
ng�1

.i D 0; : : : ; r � 3/:

Note that the pole orders of the above .2r � 1/.g � 1/ rational functions are pairwise
different, so they form a linearly independent set in H 0.C ; !r /.

Let I.C/ D ˚1rD2Ir .C/ be the homogeneous canonical ideal of C � Pg�1. As an
immediate consequence of the existence of the above P -hermitian basis of r-monomials
for H 0.C ; !r /, the homomorphism

kŒXn0 ; : : : ; Xng�1 �r ! H 0.C ; !r /

induced by the substitutionsXni 7! xni is surjective for each r � 1. Thus we obtain a proof
of Max Noether’s theorem for non-hyperelliptic Gorenstein curves with a subcanonical
point.

Now Riemann’s Theorem assures that for each r � 2, the codimension of Ir .C/ in the�
rCg�1
r

�
-dimensional vector space kŒXn0 ; : : : ; Xng�1 �r of homogeneous r-forms is equal

to .2r � 1/.g � 1/. So the vector spaces of quadratic and cubic relations have dimensions

dim I2.C/ D
.g � 2/.g � 3/

2
and dim I3.C/ D

�
g C 2

3

�
� .5g � 5/;

respectively.
For each r � 2, we define the vector subspace ƒr of kŒXn0 ; : : : ; Xng�1 �r spanned

by the lifting, substituting xni 7! Xni , of the above P -hermitian r-monomial basis of
H 0.C ; !r /. It is spanned by the r-monomials in Xn0 ; : : : ; Xng�1 whose weights are all
the nongaps n � r.2g � 2/ and are pairwise different. We declare the weight of Xni to
be ni . Since ƒr \ Ir .C/ D 0 and

dimƒr D dimH 0.C ; !r / D codim Ir .C/;

we obtain
kŒXn0 ; : : : ; Xng�1 �r D Ir .C/˚ƒr ; for each r � 2:

Let r� be the set of all sums of r nongaps ni with i D 0; : : : ; g � 1. Oliveira showed,
cf. [19, Thm. 1.5], that each nongap smaller than or equal to r.2g � 2/ belongs to r� .
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Moreover, each sum of r nongaps � 2g � 2 is a nongap � r.2g � 2/. Consequently,
#r� D .2r � 1/.g � 1/ and therefore

#r� D dimH 0.C ; !r /:

Now, for each nongap s � 4g � 4 we list all the partitions of s as sums of two nongaps,
namely s D asi C bsi 2 2� where

asi � bsi � 2g � 2 .i D 0; : : : ; �s/ and as WD as0 < as1 < as2 < � � � < as�s :

Since xasixbsi 2 H
0.C ; !2/ and ¹xasxbs º is the above fixed basis for H 0.C ; !2/, we can

write

xasixbsi D

sX
nD0

csinxanxbn ;

for each i D 0; : : : ; �s , where the coefficients csin are uniquely determined constants and
the summation index only varies through nongaps.

In the same way, for each nongap � � 6g� 6we consider all the partitions of s as sums
of three non-gaps, without repetitions, namely � D a�j C b�j C c�j 2 3� . Analogously,
we can write

xa�j xb�j xc�j D

�X
nD0

d�jnxanxbnxcn ;

for each integer j D 0; : : : ; �� , where the coefficients d�jn are uniquely determined con-
stants and the summation index only varies through nongaps.

Multiplying the functions xn0 ; : : : ; xng�1 by constants we do not change the P -hermit-
ian property of the above basis, thus we can normalize the coefficients csis D 1 and d�j�
D 1. Therefore, the

�
gC1
2

�
� .3g � 3/ D 1

2
.g � 3/.g � 2/ quadratic forms

Fsi D XasiXbsi �XasXbs �

s�1X
nD0

csinXanXbn (2.1)

and the
�
gC2
3

�
� .5g � 5/ cubic forms

G�j D Xa�jXb�jXc�j �Xa�Xb�Xc� �

��1X
nD0

d�jnXanXbnXcn ; (2.2)

vanish identically on C . We attach to the coefficient csin the weight s � n and to d�jn the
weight � � n. Thus the above quadratic and cubic forms are also isobaric forms, recalling
that the weight of Xni is ni .

The above quadratic and cubic forms are unfolded forms of the initial quadratic forms
F
.0/
si DXasiXbsi�XasXbs and the initial cubic formsG.0/�j DXa�jXb�jXc�j �Xa�Xb�Xc� ,

respectively. Also, note that these initial forms vanish identically over the canonical mono-
mial curve C .0/ and they only depend on � .
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We want to ensure that the canonical ideal of C can be generated by the above qua-
dratic and cubic forms. Next, we show that there is only one remaining class of symmetric
semigroups to be considered. We assume that the non-hyperelliptic symmetric semigroup
� is non-ordinary of genus g > 3, that is equivalent to assume that the multiplicity n1 of �

satisfies 2 < n1 � g. By a theorem of Oliveira [19, Thm. 1.7], if we consider 3 < n1 < g,
then there is at least one quadratic form, i.e. �s � 1, whenever s D ni C 2g � 2 for i D
0; : : : ; g � 3. In this case, Contiero–Stöhr [9] gave an algorithmic proof that the canonical
ideal of a Gorenstein curve C � Pg�1 with Weierstrass semigroup � at the base point is
generated by only quadratic relations. If 3 2 � , then its genus has residue 1 or 0modulo 3,
hence � WD h3;gC 1i, implying that C .0/ is a complete intersection curve. The case where
C .0/ is a local complete intersection curve is completely studied by Contiero and Mazzini
in [8], where they show that xM�

g;1 D P .T 1;�kŒ��jk/. If � D h4; 5i, then it is very known that C

is isomorphic to a plane quintic contained in the Veronese surface. In addition, Contiero–
Mazzini’s work also achieves this last case. Hence the remaining case is just the odd case,
S D Nn¹1; 2; : : : ; g � 1; 2g � 1º, and the curve C is possibly trigonal.

In the next section, we investigate the Weierstrass semigroup of trigonal complete
curves and then, we will give an algorithmic proof that the canonical ideal of a complete
Gorenstein curve with odd symmetric Weierstrass semigroup

S WD Nn¹1; 2; : : : ; g � 1; 2g � 1º D h0; g; g C 1; : : : ; 2g � 2i

at a smooth point is generated by quadratic and cubic forms.

3. Curves with an odd subcanonical point

Let C be a complete integral curve of arithmetic genus g defined over an algebraically
closed field k. A linear system of dimension r on C is a set of the form

L D L.F; V / WD ¹x�1F j x 2 V n 0º

where F is a coherent fractional ideal sheaf on C and V is a vector subspace ofH 0.C ;F/

of dimension r C 1.
The notion of linear systems on curves presented here is characterized by replacing

bundles by torsion-free sheaves of rank 1. This is a meaningful approach since they may
possess non-removable base points, see Coppens [10].

The degree of the linear system L is the integer deg F WD �.F/ � �.OC /, where �
denotes the Euler characteristic. Note, in particular, that if OC � F then

degF D
X
P2C

dim.FP =OC ;P /:

The notation gr
d

stands for a linear system of degree d and dimension r . The linear system
is said to be complete if V DH 0.C ;F/, in this case one simply writes LD jFj. According
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to E. Ballico’s [1, p. 363, Def. 2.1 (3)], the gonality of C is the smallest d for that there
exists a g1

d
on C , or equivalently, a torsion free sheaf F of rank 1 on C with degree d and

h0.C ;F/ � 2.
The following lemma is a straightforward generalization of Kim’s result [16, Thm. 2.6]

characterizing the Weierstrass semigroup associated to an unramified point on a trigonal
curve.

Lemma 3.1. Let C be a complete integral trigonal curve of arithmetical genus g � 5 and
P 2 C a Weierstrass unramified point. The Weierstrass semigroup � of C at P is of the
form ®

0;m;mC 1;mC 2; : : : ; mC .s � g/; s C 2; s C 3; s C 4; : : :
¯
;

where s and m are positive integers such that g � m � b sC1
2
c C 1. In particular, if � is

symmetric, the Weierstrass semigroup is odd

� D ¹0; g; g C 1; : : : ; 2g � 2; 2g; 2g C 1; 2g C 2; : : :º:

Proof. Let `g be the Frobenius number of theWeierstrass semigroup � associated to P2C.
Equivalently, s WD `g � 1 is the largest positive integer such that the divisor D0 D s P

is special. Since P is a Weierstrass point, follows that g � `g � 1 � 2g � 2. By the
maximality of s

dim
ˇ̌
O.D0/

ˇ̌
D s � g C 1:

Since D0 is a special divisor,

!C ' OC .D0 C P1 C P2 C � � � C P2g�2�s/

is the dualizing sheaf of C where Pi 2 C , Pi ¤ P and i D 1; : : : ; 2g � 2 � s. As P is
an unramified point, the first nongap m is greater than 3, and so the linear system jmP j is
not g13 . Let us consider the divisor

D WD .s �m/P C P1 C P2 C � � � C P2g�2�s : (3.1)

We observe that !C D OC .mP /˝OC .D/ and by [16, Lem. 2.1] follows that

jDj D .g �m/g13 C B;

where B is the base locus of jDj, and dim jDj D g � m by Riemann–Roch theorem.
For each element R of g13 with R � P , we have R D P CQ1 CQ2, with P ¤ Q1 and
P ¤Q2 because P is an unramified point of C . SinceD is the right-hand side of equation
(3.1) we obtain

P1 C P2 C � � � C P2g�2�s � .g �m/Q1 C .g �m/Q2;

implying 2.g �m/ � 2g � 2 � s. Therefore, m � b sC1
2
c C 1.

On the other hand,
B � .s � g/P;
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that means that .s � g/P is contained in the base locus of jDj. Consequently, each divi-
sor iP is not in the base locus of jmP C iP j, i D 0; : : : ; s � g, and therefore m;m C
1; : : : ; mC s � g are nongaps of � . As s C 1 is a gap and each r � s C 2 is a nongap the
set

S D
®
0;m;mC 1; : : : ; mC .s � g/; s C 2; : : :

¯
is contained in � and the cardinality of N � S is g.

Let us consider a non-hyperelliptic symmetric semigroup of genus g � 5 and let us fix
at once the 1

2
.g � 3/.g � 2/ initial quadratic forms as in (2.1)

F
.0/
si WD XasiXbsi �XasXbs (3.2)

and
�
gC2
3

�
� .5g � 5/ initial cubic forms as in (2.2)

G
.0/
�j WD Xa�jXb�jXc�j �Xa�Xb�Xc� : (3.3)

Remark 3.2. Many cubic initial forms are simply multiples of quadratic initial forms. Let
} denote the number of cubic initial forms that are not multiples of quadratic ones.

The next result explicitly identifies all the initial cubic forms that are not multiples of
quadratic ones when � is an odd symmetric semigroup.

Proposition 3.3. Let � WD h0;g;gC 1; : : : ; 2g � 2i. There are } D
�
gC2
3

�
� .5g � 5/� �,

with

� D .g � 3/.g � 2/C .g � 2/

�
g � 2

2

�
C

�
g � 3

2

�
C

g�4X
jD1

�
g � 2 � j

2

�
;

initial cubic forms that are not multiples of the quadratic initial forms.

Proof. We starting by taking the fixed basis for ƒ2, that is,

g�2[
iD0; jD1

¹X20 ; X0XgCi ; XgXgCi ; XgCjX2g�2º:

The monomials of degree two that are not inƒ2 are just XgCiXgCj where 1 � i � j and
j D 1; : : : ; g � 3. The basis for ƒ3 is[

iD0;g;gC1;:::;2g�2
XasXbs2ƒ2

¹X20Xi ; X0XasXbs ; XasXbsX2g�2; X
2
gX2g�3º:

Set F WD F
.0/

sl
for an initial quadratic form. The products X0F and X2g�2F are cubic

forms for every F . Hence we already have .g � 3/.g � 2/ cubic forms that are multiple
of quadratic initial forms.
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SinceXgCkXgCiXgCj …ƒ3, for kD 0; : : : ;g� 3 and i; j D 1; : : : ;g� 3, the product
XgCkF defines an initial cubic form when XgCkXgXgCi or XgCkXgCjX2g�2 is in ƒ3.
In the first case,

XgCkXgXgCi 2 ƒ3

for i D g � 2, k D 0; : : : ; g � 3 and .i D g � 3; k D 0/. Hence, the initial cubic forms
XgCk.XaslXbsl �XgX2g�2/, with k D 0; : : : ; g � 3, and Xg.XaslXbsl �XgX2g�3/ are
multiples of quadratic initial forms, and there are .g � 2/bg�2

2
c C b

g�3
2
c of them. In

the remaining case, XgCkXgCjX2g�2 2 ƒ3 just for k D 0, j D 1; : : : ; g � 2, obtainingPg�4
jD1b

g�2�j
2
c initial cubic forms Xg.XaslXbsl �XgCjX2g�2/, with j D 1; : : : ; g � 4,

and we are done.

It is straightforward that the quadratic F .0/si and cubic forms G.0/�j introduced in (3.2)
and (3.3), respectively, vanish identically on the monomial curve C .0/. The next lemma
shows that F .0/si and G.0/�j generate the ideal of C .0/, providing an extension of Contiero–
Stoher’s result [9, Lem. 2.2].

Lemma 3.4. Let � be a non-hyperelliptic symmetric semigroup of genus g � 4. The
canonical ideal I.C .0// is generated by the 1

2
.g � 2/.g � 3/ quadratic forms F .0/si and

the } (cf. Remark 3.2) cubic forms G.0/�j . In particular, when � is odd the ideal of C .0/

is given by the 1
2
.g � 2/.g � 3/ quadratic initial forms and by the } cubic initial forms

described in Proposition 3.3.

Proof. Since I.C .0// is generated by homogeneous and isobaric forms, all we have to
do is show that a homogeneous and isobaric form belongs to I.C .0// if and only if it
belongs to the ideal J generated by the binomials F .0/si and G.0/�j . It is just obvious that
J � I.C .0//. For the opposite inclusion we order the monomials

Qg�1

kD0
X
ik
nk according to

the lexicographic ordering of the vectors�X
ik ;
X

nk ik ;�i0;�ig�1; : : : ;�i1

�
:

In this way, the binomials F .0/si and G.0/�j form a Groebner basis for J. Now, for each
homogeneous form F of degree r that is also isobaric of weight ! we divide it by the
Groebner basis obtaining a decomposition

F D
X

HsiF
.0/
si C

X
T�jG

.0/
�j CR;

where R 2 ƒr and Hsi and T�j are homogeneous of degrees r � 2 and r � 3, respec-
tively, and isobaric of weights ! � s and ! � � , respectively. The remainder R is the only
monomial in ƒr of weight ! whose coefficient is equal to the sum of the coefficients of
F . Since F 2 I.C .0// the sum of its coefficients is equal to zero, then R D 0.

A different proof of the above lemma when � is odd can be found in [13, Thm. 1.1]
by noting that the symmetric semigroup � D h0; g; g C 1; : : : ; 2g � 2i is generated by a
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generalized arithmetic sequence. The ideal I.C .0// is then generated by the 2 � 2 minors
of suitable matrices, cf. [13, Thm. 1.1]. So, it can be seen immediately that the ideal given
by the 2 � 2 minors is equal to the ideal generated by the initial forms F .0/si and G.0/�j .

As we noted above, for each numerical symmetric semigroup � of genus g > 4, it is
associated the canonical monomial curve C .0/ and also 1

2
.g � 2/.g � 3/ initial quadratic

forms and } initial cubic forms, F .0/si and G.0/�j , respectively, that generated the ideal
I.C .0//, cf. Lemma 3.4. Now we unfold the quadratic and cubic initial forms in the fol-
lowing way:

Fsi WD XasiXbsi �XasXbs �

s�1X
nD0

csinXanXbn

and

G�j WD Xa�jXb�jXc�j �Xa�Xb�Xc� �

��1X
nD0

d�jnXanXbnXcn ;

where the coefficients csin and d�jn belong to the ground field k. Each unfolded is taken
by adding to the initials forms F .0/si (respectivelyG.0/�j ) a summation, a linear combination,
of basis elements in ƒ2 (in ƒ3) whose weights are less than the weight s (respectively
� ) of the respective quadratic initial forms F .0/si (cubic initial forms G.0/�j ). We want to
preserve the pole orders at P when we specialize Xni 7! xni , keeping the P -hermitian
properness, that was the starting point to produce the quadratic and cubic (initial) forms.

Goal 3.5. Let AN be the affine space whose coordinates function are the coefficients csin
and d�jn. By considering X � Pg�1 � AN the zero locus of the unfolded forms, and
taking � to be the restriction to X of the second projection Pg�1 �AN !AN , we obtain
a commutative diagram

C .0/
� � //

��

X

�

��

Spec k // AN

whose fibers are closed subsets of Pg�1 and the special fiber is C .0/. Our goal is to
explicitly describe the conditions on the coefficients csin and d�jn that provide canoni-
cal Gorenstein curves with a Weierstrass semigroup � as fibers over � .

To achieve the Goal, we require some technical results. We begin by generalizing a
result in [9, Lem. 2.3], which only considers the first syzygies of quadratic initial forms
due to its assumptions. Here, we must also consider syzygies of cubic forms, which will
induce nonlinear syzygies (see, for example, equations (4.1) and (4.3) of Section 4).

Syzygy lemma 3.6. For each of the 1
2
.g � 3/.g � 4/ quadratic forms F .0/s0i 0 not equal to

F
.0/
niC2g�2;1

.i D 1; : : : ; g � 3/ there is a linear syzygy of the form

X2g�2F
.0/
s0i 0 C

X
nsi

"
.s0i 0/
nsi XnF

.0/
si D 0 (3.4)
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and for each cubic form G
.0/
� 0j 0 not equal to G.0/4g�4;1, there is a syzygy of the form

X2g�2G
.0/
� 0j 0 C

X
q�j

�
.� 0j 0/
q�j XqG

.0/
�j D 0; (3.5)

where the coefficients ".s
0i 0/

nsi , �.�
0j 0/

q�j are equal to 1;�1 or 0, and where the sum is taken
over the nongaps n; q < 2g � 2, the double indices si with s C n D 2g � 2C s0 and �j
with q C � D 2g � 2C � 0.

Proof. Given a quadratic form F D F
.0/
s0i 0 or F D �F .0/s0i 0 , we can write

F D XmXn �XqXr ;

where m;n; q; r are nongaps satisfying mC n D q C r and q < m � n < r < 2g � 2. If
r C 1 is a gap then, by symmetry, k WD 2g � 2� r C n is a nongap and we find the syzygy

X2g�2.XmXn �XqXr /CXr .XqX2g�2 �XmXk/ �Xm.XnX2g�2 �XrXk/ D 0;

The binomials in the brackets can be written as F .0/si � F
.0/
sj , F .0/si or �F .0/sj . Analogously

ifmC 1 is a gap then we take the nongap k WD 2g � 2�mC r and we obtain a syzygy as
above. Now we can assume that r C 1 and mC 1 are nongaps, hence we have the syzygy

X2g�2.XmXn �XqXr /CXq.X2g�2Xr �X2g�3XrC1/

�X2g�3.XmC1Xn �XqXrC1/ �Xn.XmX2g�2 �X2g�3XmC1/ D 0:

For a cubic form, if we set G D G.0/�j or G D �G.0/�j then we can write

G D XmXnXp �XqXrXt ;

where m; n; p; q; r; s are nongaps satisfying mC nC p D q C r C t and q < m � n �
r � p < t � 2g � 2.

If p C 1 is a gap then, by symmetry, the integer k WD 2g � 2 � p C q is a nongap
smaller than 2g � 2, hence we have the syzygy

X2g�2.XmXnXp �XqXrXt /CXr .X2g�2XtXq �XtXpXk/

�Xp.X2g�2XmXn �XrXtXk/ D 0;

where the binomials in the brackets can be written as G.0/�j � G
.0/
� i , G.0/�j or �G.0/� i . Anal-

ogously, if r C 1 is a gap then k WD 2g � 2 � r C p is a nongap, and therefore we obtain
the syzygy

X2g�2.XmXnXp �XqXrXt /CXm.XkXrXn �X2g�2XpXn/

�Xr .XkXmXn �X2g�2XtXq/ D 0:

Now we can assume that p C 1 and r C 1 are the nongaps. We just take the syzygy

X2g�2.XmXnXp �XqXrXt /CX2g�3.XrC1XqXt �XpC1XnXm/

�Xm.XpX2g�2Xn �XpC1X2g�3Xn/ �Xq.X2g�3XrC1Xt �X2g�2XrXt / D 0:
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The syzygies corresponding to the cubic forms that are multiples of the quadratics
forms are trivial, therefore we just consider syzygies for the } � 1 cubic forms, however,
these } � 1 syzygies are not necessarily linear.

Lemma 3.7. Let I be the ideal generated by the 1
2
.g � 2/.g � 3/ unfolded quadratic

forms Fsi and by the } unfolded cubic forms G�j . Then,

kŒXn0 ; : : : ; Xng�1 �r D Ir Cƒr for each r � 2:

Proof. Let F be a homogeneous polynomial of degree r and weight w. Let S be its
quasi-homogeneous component of weight w and R the unique monomial in ƒr of weight
w whose coefficient is the sum of the coefficients of S . Thus, S � R 2 I.C .0// and by
Lemma 3.4 we can write the expression

S �R D
X
si

SsiF
.0/
si C

X
�j

H�jG
.0/
�j :

Replacing each polynomial Ssi andH�j with its homogeneous component of degree r � 2
and r � 3, respectively, we can take Ssi andH�j homogeneous of degree r � 2 and r � 3,
respectively. Likewise, we can assume that Ssi andH�j are quasi-homogeneous of weight
w � s and w � � , respectively. Then the polynomial

F �R �
X
si

SsiF
.0/
si �

X
�j

H�jG
.0/
�j

is homogeneous of degree r and weight smaller than w. Now, the proof follows by induc-
tion on w.

To achieve Goal 3.5, a key step is to establish conditions on the coefficients csin and
d�jn such that each homogeneous element in kŒXn0 ; : : : ; Xng�1 �r can be uniquely written
as a sum of a homogeneous element in the ideal Ir generated by the unfolded quadratic
and cubic forms and element in�r . In order to do this, we start by replacing the binomials
F
.0/
s0i 0 and F .0/si on the left-hand side of equation (3.4) of the Syzygy lemma by the unfolded

quadratic forms Fs0i 0 and Fsi , we obtain for each of the 1
2
.g � 3/.g � 4/ double indexes

s0i 0 a linear combination of cubic monomials of weight less than s0 C 2g � 2, that by
Lemma 3.7 admits the decomposition

X2g�2Fs0i 0 C
X
nsi

"
.s0i 0/
nsi XnFsi D

X
nsi

�
.s0i 0/
nsi XnFsi CRs0i 0 ;

where the sum on the right-hand side is taken over all the nongaps n � 2g � 2, the double
indexes si with nC s < s0 C 2g � 2, the coefficients ".s

0i 0/
nsi are constants and where Rs0i 0

is a linear combination of cubic monomials of pairwise different weights less than s0 C
2g � 2.
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Repeating the above procedure for the initial cubic forms on equation (3.5) of the
Syzygy lemma, and applying the above Lemma 3.7 we obtain a decomposition

X2g�2G� 0j 0 C
X
q�j

�
.� 0j 0/
q�j XqG�j D

X
mq�j

�
.� 0j 0/
mq�jXmXqF�j C

X
q�j

�
.� 0j 0/
q�j XqG�j CR� 0j 0 ;

where the sum on the right-hand side is taken over the nongapsm;q � 2g � 2, the indexes
mq� and q� with mC q C � < 2g � 2C � 0 and q C � < 2g � 2C � 0, the coefficients
�
.� 0j 0/
mq�j ; �

.� 0j 0/
q�j are constants and whereR� 0j 0 is a linear combination of quartic monomials

of pairwise different weights less than 2g � 2C � 0.
For each nongap m < s0 C 2g C 2 (resp. r < � 0 C 2g C 2) let %s0i 0m (resp. #� 0j 0r ) be

the unique coefficient of Rs0i 0 (resp. R� 0j 0 ) of weightm (resp. r). Note that we do not lose
any information on the coefficients of Rs0i 0 and R� 0j 0 when we replace Xni 7! tni , where
t is an indeterminate. So we introduce the polynomials

Rs0i 0.t
n0 ; : : : ; tng�1/ D

s0C2g�2X
mD0

%s0i 0mt
m;

R� 0j 0.t
n0 ; : : : ; tng�1/ D

� 0C2g�2X
rD0

#� 0j 0r t
r :

We can assume that the coefficients %s0i 0m are quasi-homogeneous polynomial expres-
sions of weight s0 C 2g � 2 � m in the constants csin, while the coefficients #� 0j 0r are
quasi-homogeneous polynomial expressions of weight � 0 C 2g � 2 � r in the constants
d�jn.

The next theorem outlines the effort required to achieve Goal 3.5.

Theorem 3.8. Let � be a non-hyperelliptic numerical symmetric semigroup of genus
g>4. The 1

2
.g � 2/.g � 3/ unfolded quadratic forms Fsi and the } unfolded cubic forms

G�j cut out a canonical integral Gorenstein curve on Pg�1 if and only if their coeffi-
cients csin; d�jn satisfy the quasi-homogeneous equations %s0i 0m D 0 and #� 0j 0r D 0. In
this case, the point P D .0 W � � � W 0 W 1/ is a smooth point on the canonical curve whose
Weierstrass semigroup is equal to � .

Proof. We first assume that the 1
2
.g � 2/.g � 3/ unfolded quadratic forms Fsi and the }

unfolded cubic formsG�j cut out a canonical curve C � Pg�1. Since eachRs0i 0 andR� 0j 0
belong to the ideal I generated by the unfolded quadratic and cubic forms, it follows that
Rs0i 0.xn0 ; : : : ; xng�1/ D R� 0j 0.xn0 ; : : : ; xng�1/ D 0 for each pair of index s0i 0 and � 0j 0.
We can write

Rs0i 0.xn0 ; : : : ; xng�1/ D

s0C2g�2X
mD0

%s0i 0mzs0i 0m;

R� 0j 0.xn0 ; : : : ; xng�1/ D

� 0C2g�2X
rD0

#� 0j 0rz� 0j 0r ;
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where the zs0i 0m; z� 0j 0r are monomial expressions of weights m and r respectively in the
projective coordinates functions xn0 ; : : : ; xng�1 , and hence zs0i 0m has pole divisor mP
while z� 0j 0r has pole divisor rP . Then we conclude that %s0i 0m D #� 0i 0r D 0.

Conversely, let us assume that the coefficients csin; d�jn satisfy the equations %s0i 0m
D 0 and #� 0i 0r D 0. Since the g � 3 quadratic hypersurfaces V.FniC2g�2;1/ � Pg�1, for
i D 1; : : : ; g � 3, and the cubic hypersurface V.G4g�4;1/ intersect transversely at P , in
an open neighborhood of P their intersection has a unique irreducible component that
contains P , and so this component is a projective integral algebraic curve, say C , that
is smooth at P and whose tangent line is the intersection of their tangent hyperplanes
V.Xni /, i D 0; : : : ; g � 3.

Let yn0 ; : : : ; yng�1 be the projective coordinate functions of C . Let us consider the
affine open set with defining equation yng�1 D 1. Since the local coordinate ring of C at
P is a discrete valuation ring and ng�1 � ng�2 D l2 � l1 D 1, we have that t WD yng�2 is
a local parameter of C at P , and yn0 ; : : : ; yng�3 are the power series in t of order greater
than 1. More precisely, comparing coefficients in the g � 3 equations

FniC2g�2.yn0 ; : : : ; yng�2 ; yng�1/ D 0; i D 1; : : : ; g � 3

and
G4g�4; 1.yn0 ; : : : ; yng�2 ; yng�1/ D 0

one sees that

yni D t
ng�1�ni C .sum of higher orders terms/

D t lg�i�1 C .sum of higher orders terms/;

for each integer i D 0; : : : ; g � 1. This means that the g integers li � 1 .i D 1; : : : ; g/

are the contact orders of the curve C � Pg�1 with the hyperplanes at P . In particular, the
curve C is not contained in any hyperplane.

By assumption, %s0i 0m D 0 and #� 0j 0r D 0 for each pair of double indexes s0i 0 and
� 0j 0, respectively. Hence, we obtain the syzygies

X2g�2Fs0i 0 C
X
nsi

"
.s0i 0/
nsi XnFsi �

X
nsi

�
.s0i 0/
nsi XnFsi D 0

and

X2g�2G� 0j 0 C
X
q�j

�
.� 0j 0/
q�j XqG�j �

X
mq�j

�
.� 0j 0/
mq�jXmXqF�j �

X
q�j

�
.� 0j 0/
q�j XqG�j D 0:

Replacing the variables Xn0 ; : : : ; Xng�1 by the projective coordinates functions yn0 ; : : : ;
yng�1 , two systems are provided: a system with 1

2
.g � 3/.g � 4/ linear homogeneous

equations in the 1
2
.g � 3/.g � 4/ functions Fs0i 0.yn0 ; : : : ; yng�1/ with the coefficients in

the domain kŒŒt �� of formal power series; the second system is composed by } � 1 linear
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homogeneous equations in the } � 1 functionsG� 0j 0.yn0 ; : : : ; yng�1/with the coefficients
in the domain kŒŒt �� of formal power series. Since the triple indexes nsi of the coefficients
"
.s0i 0/
nsi , respectively, �.s

0i 0/
nsi , satisfy the inequalities n < 2g � 2 and nC s D 2g � 2C s0,

respectively, n� 2g � 2 and nC s < 2g � 2C s0, the diagonal entries of the matrix of the
system have constant terms 1, while the remaining entries have positive orders. Therefore,
the matrix is invertible, and so the equation

Fsi .yn0 ; : : : ; yng�1/ D 0

holds for each double index si . In the second system, the indexes q�j;mq�j and n�j of
the coefficients �.�

0j 0/
q�j ; �

.� 0j 0/
mq�j and �.�

0j 0/
n�j , respectively, are such that satisfy the inequali-

ties q < 2g � 2 and q C � D 2g � 2C � 0, respectively,m;q � 2g � 2 andmC q C � <
2g � 2C � 0. So the diagonal entries of the matrix of the system have constant terms 1,
while the remaining entries have positive orders, hence the matrix is also invertible. This
means that the equation G�j .yn0 ; : : : ; yng�1/ D 0 holds for each double index �j . There-
fore we just proved that I � I.C/, where I is the ideal generated by the 1

2
.g � 2/.g � 3/

quadratic forms Fsi and by the } cubic forms G�j .
By virtue of Lemma 3.7, codim Ir � dimƒr for each r � 2. Since Ir .C/ \ƒr D 0,

we deduce dimƒr � codim Ir .C/ and we obtain

codim Ir .C/ D codim Ir D dimƒr D .2g � 2/r C 1 � g:

Thus I.C/D I and the curve C � Pg�1 has Hilbert polynomial .2g � 2/r C 1� g, hence
C has degree 2g � 2 and arithmetic genus g.

Intersecting the curve C with the hyperplane V.X2g�2/ we obtain the divisor D WD
.2g � 2/P of degree 2g � 2, whose complete linear system jDj has dimension at least
g � 1, and so by Riemann–Roch theorem for complete integral curves the Cartier divisor
D is canonical, and C is a canonical Gorenstein curve.

The fixed P -hermitian basis xn0 ; xn1 ; : : : ; xng�1 of H 0.C ; .2g � 2/P / is uniquely
determined up to a linear transformation of the form

xni 7!

g�1X
jDi

cijxnj ;

where .cij / 2 GLg.k/ is an upper triangular matrix with diagonal entries of the form
ci i D cni , i D 0; : : : ; g � 1, for some non-zero constant c, due to the normalizations
csis D 1. We assume that the characteristic of the field of constants k is zero, or a prime
not dividing any of the differences m � n with n;m nongaps such that m < n � 2g � 2.

If the symmetric semigroup is non-odd we can normalize 1
2
g.g � 1/ coefficients csin

of the unfolded quadratic forms to be zero, for each i D 1; : : : ; g � 1 just transforming

Xni 7! Xni C

iX
jD1

cnini�jXni�j
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and proceeding by induction on the weight of the coefficients, as in [9, p. 587]. In the odd
case, we can normalize g � 3 coefficients of the cubic form G4g�4;1 by transforming

X2g�4 7! X2g�4 C

g�3X
iD1

d2g�4;ng�3�iXng�3�i ;

and

Xni 7! Xni C

iX
jD1

cnini�jXni�j

with ni ¤ ng�3 D 2g � 4. Next we normalize the remaining 1
2
g.g � 1/ � .g � 3/ coef-

ficients of the unfolded quadratic forms FniC2g�2;1.
Due to the normalizations the only freedom left to us is to transform xni 7! cnixni ,

i D 0; : : : ; g � 1 for some non-zero constant c 2 k. Therefore, a fine moduli space is
realized as a weighted projective space, as follows.

Theorem 3.9. Let � be a non-hyperelliptic symmetric semigroup of genus g � 5. The
isomorphism classes of the pointed complete integral Gorenstein curves with Weierstrass
semigroup � correspond bijectively to the orbits of the Gm.k/-action

.c; : : : ; csin; : : : ; d�jm; : : :/ 7! .: : : ; cs�ncsin; : : : ; c
��md�jm; : : :/

on the affine quasi-cone of the vectors whose coordinates are the coefficients csin, d�jm
of the normalized unfolded quadratic and cubic forms Fsi and G�j satisfying the quasi-
homogeneous equations %s0i 0m D #� 0i 0r D 0.

4. Odd numerical semigroups of genus at most six

We start this section with the following observation on the rationality of xM�
g;1. If the

symmetric semigroup � is generated by less than 5 elements, using Pinkham’s equivariant
deformation theory [20], complete intersection theory and a quasi-homogeneous version
of the rather technical Buchsbaum–Eisenbud’s structure theorem for Gorenstein ideals of
codimension 3 (see [2, p. 466]), one can deduce that the affine monomial curve C .0/ can
be negatively smoothed without any obstructions (see [3, 26], [27, Satz 7.1]), hence

xM�
g;1 D P .T 1;�kŒ��jk/:

Although the above observation assures that xM�
g;1 D P9 for � WD h5; 6; 7; 8i, we believe it

is relevant to illustrate our techniques in a simpler example without the need for complex
computations. Therefore, we guess that a simpler and explicit proof of the rationality
of xM�

g;1 for symmetric semigroups generated by less than five elements can be carried
forward.
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4.1. Odd of genus five

Let C .0/ be the canonical monomial Gorenstein curve associated to the odd symmetric
semigroup of genus 5. Up to change of coordinates, we can write

C .0/ WD
®
.a8 W a3b5 W a2b6 W a1b7 W b8/ j .a W b/ 2 P1

¯
� P4:

The symmetric Weierstrass semigroup associated to the point P D .0 W 0 W 0 W 0 W 1/ is
� WD h5; 6; 7; 8i. Following Lemma 3.4 the ideal of C .0/ can be generated by the seven
isobaric and homogeneous initial forms

F
.0/
12 D X

2
6 �X5X7; F

.0/
13 D X6X7 �X5X8;

F
.0/
14 D X

2
7 �X6X8; G

.0/
15 D X

3
5 �X0X7X8;

G
.0/
16 D X

2
5X6 �X0X

2
8 ; G

.0/
18 D X

3
6 �X

2
5X8;

G
.0/
21 D X

3
7 �X5X

2
8 :

Now we follow the procedure described in Theorem 3.8 to achieve Goal 3.5. We begin
by unfolding the seven quadratic and cubic initial forms above, we also introduce new
variables to reduce the notation

Fi WD F
.0/
i �

iX
jD1

cijZi�j ; .i D 12; 13; 14/;

Gi WD G
.0/
i �

iX
jD1

dijWi�j ; .i D 15; 16; 18; 21/;

where Zi�j (respectively Wi�j ) stands for the basis monomial in ƒ2 (in ƒ3) of weight
i � j , and the summation index j varies only through the integers such that i � j 2 � .

In view of Goal 3.5, counting all the coefficients cij and dij that are involved, we have
the commutative diagram

C .0/
� � //

��

X � P4 �A74

�

��

Spec k // A74

Due to the normalizations made before Theorem 3.9 are independent of the procedure
described in Theorem 3.8, we perform them once to reduce the number of coefficients.
Using the transformations

Xi 7! Xi C

i�1X
jD1

�jXi�j ;

we can normalize the ten coefficients

c12;1 D c12;2 D c12;7 D c13;1 D c13;2 D c13;3 D c13;8 D d16;1 D d16;6 D d21;5 D 0:
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Now we produce the syzygies associated to the canonical monomial curve C .0/ � P4 that
are described in Syzygy lemma 3.6:

X8F
.0/
12 �X7F

.0/
13 CX6F

.0/
14 D 0;

X8G
.0/
15 �X5X6F

.0/
12 CX5G

.0/
18 �X7G

.0/
16 D 0;

X8G
.0/
18 �X5G

.0/
21 CX5X7F

.0/
14 �X6X8F

.0/
12 D 0;

X8G
.0/
21 �X7X8F

.0/
14 CX

2
8F

.0/
13 D 0:

(4.1)

Replacing the binomials F .0/i and G.0/j and on the left-hand side of the above syzygies by
the unfolded quadratic and cubic forms Fi and Gj , respectively, and applying the division
algorithm recursively, as described in Theorem 3.8, until all the monomials of these new
equations belong to the basis ƒ3 or ƒ4, we obtain the four polynomial equations

X8F12 �X7F13 CX6F14

D �F12.c14;3X5 C c14;8X0/C F14c13;6X0 �G16c14;4

C F13.c13;7X0 � c14;2X5 � c14;7X0/;

X8G15 �X6G17 CX5G18 �X7G16

D .c12;6X0X5 � d18;1X0X8/F12

� .c14;3d16;4 C c14;3d15;3d18;1 C d18;7/X0G16 C .d16;5X5 C c12;5X5/X0F13

C .d16;9X0 � d18;1X8 C d15;8d18;1X0 C d15;3d18;1X5 C d16;4X5/X0F14

C .d16;10X0 C d15;9d18;1X0 C d15;1d18;1X8 C d15;4d18;1X5 C d16;2X8/X0F13

C .�c14;4d16;4X0 � c14;4d15;3d18;1X0 � d18;1X7 � d18;8X0/G15;

X8G18 �X5G21 �X6X8F12 CX7X5F14

D .�c214;3d16;4 � c14;2c14;3d15;5 � c14;3c14;4d15;3 C c14;3c14;7/G16X0

C .c14;3d15;3d14;4 C c14;2c14;8 � c14;2c14;4d15;4 C c
2
14;2c14;3d15;3/X0G16

� .Cc14;4d15;9X0 � d15;1c
2
14;2X8 � d15;4d14;4X5 � c14;8X5 C c12;5X8

C c14;2c14;3X8 C c14;3d16;2X8 � d15;4c
2
14;2X5 � c14;2c14;3d15;8X0

C c14;4d15;1X8 � d15;1d14;4X8 � d15;9d14;4X0 C c14;3d16;10X0 C c14;3d16;5X5

C c14;4d15;4X5 � d15;9c
2
14;2X0 � c14;2c14;3d15;3X5/X0F13

� .Cd14;11X0 C d14;4X7 C d14;3X8 � c14;4X7 C c
2
14;2X7 � c14;4c14;3d16;4X0

C c14;1c14;2X8 C d15;3c
2
14;2c14;4X0 � c

2
14;4d15;3X0 C c14;4d15;3d14;4X0

�c14;2c14;4d15;5X0Cc14;2c14;9X0Cc14;4c14;7X0Cc14;2c14;4X5Cc14;2c14;3X6/G15

� .c214;2X0X8 � c14;4X0X8 C d14;4X0X8 � c14;7X0X5 � c14;2X
2
5 C c14;3d16;9X

2
0

C c14;4d15;3X0X5 � d15;3d14;4X0X5 C c14;3d16;4X0X5 � d15;8d14;4X
2
0

C c14;4d15;8X
2
0 � c

2
14;2d15;3X0X5 � c

2
14;2d15;8X

2
0 /F14 C .d14;2X8 � c14;3X7/G16

� .Cc12;6X8 � c14;2c14;3d15;9X0 � c14;2c14;3d15;4X5 � c14;2c14;3d15;1X8/X0F12;
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G21;2X8 �G21;1X8 �G22X7

D X8.c14;3X5 C c14;8X0/F13

CX8
�
.c14;2X5 C c14;7X0/F14 � c14;2c14;4G15 � c14;2c14;3G16

�
:

Now we determine the weighted vector space T 1;�kŒ��jk, that is (up to an isomorphism) the
locus of the linearizations of the above four equations. Solving in the coefficients cij and
dij , the linearizations are given by the system of polynomials

X8F12 �X7F13 CX6F14 D 0;

X8G15 �X5X6F12 CX5G18 �X7G16 D 0;

X8G18 �X5G21 CX5X7F14 �X6X8F12 D 0;

X8G21 �X7X8F14 CX
2
8F13 D 0;

(4.2)

by solving it in the coefficients cij and dij . Note that the system in (4.2) is given by
substituting by zeros each right-hand side of the above four equations. To solve this system
we replace Xni 7! tni , giving rise to another 20 linear equations on the coefficients cij
and dij . We can solve this linear system as follows:

d16;10 D d15;10; d16;9 D d15;9; d16;8 D d15;8; c14;7 D c13;7; d18;7 D c13;7;

d15;7 D �c13;7; d21;7 D 2c13;7; c14;6 D �c12;6; d21;6 D �c12;6; d18;6 D c12;6;

d16;5 D d15;5; c14;4 D �c12;4; d16;4 D d15;4; d21;4 D �c12;4; d18;4 D c12;4;

d16;3 D d15;3; d16;2 D d15;2:

We can verify that the weighted vector space T 1;�kŒ��jk depends only on the ten coefficients
d15;2, d15;3, c12;4, d15;4, d15;5, c12;6, c13;7, d15;8, d15;9, d15;10, that implies

dimT
1;�

kŒ��jk D 10:

More precisely, counting the coefficients of weight s, we obtain the dimension of the
graded component of T 1;�kŒ��jk of negative weight �s:

dimT 1;�s D 1; .s D �10;�9;�8;�7;�6;�5;�3;�2/ and dimT
1;�
�4 D 2:

For the remaining integers the dimension of T 1;�s is zero. In particular, the compactified
moduli space xM�

5;1 can be realized as closed subset of the 9-dimensional weighted pro-
jective space P .T 1;�kŒ��jk/ D P9. Note that in Diagram 4.1 we start with a large affine space
of dimension 74, which was reduced to dimension 64 due to the 10 normalizations. The
above computations imply that to achieve our Goal 3.5 the solution of the four equations
in the coefficients cij and dij depends on 10 coefficients, i.e. there are 54 coefficients that
can be expressed in terms of the other 10.

Finally, due to Theorem 3.8 and Theorem 3.9 to obtain the equations of M�
5;1, we must

solve the four polynomial equations in the coefficients cij and dij . By replacing, again,
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Xni 7! tni in theses four equations, the compactified moduli space M�
5;1 is cut out by 70

equations that depend on 64 variables. We can solve them, according to the linearizations,
in the following way:

• 18 coefficients that are identically zero, namely:

c12;5 D c13;5 D c13;6 D c14;1 D c14;2 D c14;3 D d15;1 D d16;11 D d18;1 D 0;

d18;2 D d18;3 D d18;5 D d18;8 D d18;11 D d21;1 D d21;2 D d21;3 D d21;10 D 0;

• 11 linear equations:

c14;4 D �c12;4; d15;7 D �c13;7; d16;2 D d15;2;

d16;4 D d15;4; d16;5 D d15;5; d16;9 D d15;9;

d18;4 D c12;4; d18;6 D c12;6; d18;7 D c13;7;

d21;4 D �c12;4; d16;3 D d15;3;

• 17 quadratic polynomials:

c12;12 D �c12;4d15;8; c13;13 D c12;4d15;9;

c14;6 D �c12;4d15;2 � c12;6; c14;7 D �c12;4d15;3 C c13;7;

c14;8 D �c12;4d15;4; c14;9 D �c12;4d15;5;

c14;14 D �c12;4d15;10; d15;15 D c12;6d15;9 C c13;7d15;8;

d16;8 D �c12;4d15;4 C d15;8; d16;10 D �c12;6d15;4 � c13;7d15;3 C d15;10;

d18;12 D �c12;4d15;8 � c
2
12;6; d21;6 D �c12;4d15;2 � c12;6;

d18;13 D c12;4d15;9; d21;7 D �c12;4d15;3 C 2 c13;7;

d21;8 D �c12;4d15;4; d21;9 D �c12;4d15;5;

d18;10 D �c12;4c12;6;

• and the following 8:

d16;16 D �c12;4d15;3d15;9 C c12;4d15;4d15;8;

d18;18 D c12;4c12;6d15;8;

d21;13 D �c
2
12;4d15;2d15;3 � c12;4c12;6d15;3 C c12;4c13;7d15;2

C c12;4d15;9 C c12;6c13;7;

d21;14 D �c
2
12;4d

2
15;3 C 2 c12;4c13;7d15;3 � c12;4d15;10 � c

2
13;7;

d21;15 D �c
2
12;4d15;3d15;4 C 2 c12;4c13;7d15;4;

d21;11 D �c
2
12;4d15;3 C c12;4c13;7;

d21;16 D �c
2
12;4d15;3d15;5 C c12;4c13;7d15;5;

d21;21 D �c
2
12;4d15;3d15;10 C c

2
12;4d15;4d15;9 C c12;4c13;7d15;10:
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We note that there are 16 missing equations from the 70 mentioned, but they are
repeated. Recall that the weight of the coefficient cij (respectively dij ) is j . The equa-

tions of the moduli space M�
5;1 are given by the first 18 equations, and by the zeros of

the isobaric polynomials of the right-hand side of the last 36 equations whose weights
are greater than the weights of the respective left-hand side. However, there is no iso-
baric polynomial satisfying this condition. Hence,

M�
5;1 D P .T 1;�kŒ��jk/ Š P9˛ ; with ˛ D .2; 3; 4; 4; 5; 6; 7; 8; 9; 10/:

4.2. Odd of genus six

Let C .0/ be the canonical monomial Gorenstein curve of genus 6 associated to the odd
symmetric semigroup � WD h6; 7; 8; 9; 10i. The point P D .0 W 0 W 0 W 0 W 0 W 1/ is smooth
in C .0/ and its Weierstrass semigroup is � . Applying Lemma (3.4), the generators of the
ideal of C .0/ are given by the following initial 6 quadratic and 8 cubic forms

F
.0/
14 D X

2
7 �X6X8; F

.0/
15 D X7X8 �X6X9;

F
.0/
16 D X

2
8 �X6X10; F

.0/
16;1 D X7X9 �X6X10;

F
.0/
17 D X8X9 �X7X10; F

.0/
18 D X

2
9 �X8X10;

G
.0/
18 D X

3
6 �X0X8X10; G

.0/
19 D X

2
6X7 �X0X9X10;

G
.0/
20 D X

2
6X8 �X0X

2
10; G

.0/
20;1 D X6X

2
7 �X0X

2
10;

G
.0/
21 D X

3
7 �X

2
6X9; G

.0/
22 D X

2
7X8 �X

2
6X10;

G
.0/
26 D X8X

2
9 �X6X

2
10; G

.0/
27 D X

3
9 �X7X

2
10:

Now we unfold the above 14 initial forms using the more suggestive notion of the previous
subsection

Fi D F
.0/
i �

iX
jD1

cijZi�j ; .i D 14; : : : ; 18 and i D 16; 1/;

Gi D G
.0/
i �

iX
jD1

dijWi�j ; .i D 18; : : : ; 22; 26; 27 and i D 20; 1/;

where Zi�j , respectively Wi�j , is a monomial in ƒ2, respectively ƒ3, of weight i � j ,
whenever i � j is a nongap of � . Next, we do the normalizations described before the
Theorem 3.9, transforming the variablesX0;X6;X7;X8;X9;X10 we are able to normalize
the 15 coefficients

c14;1 D c15;1 D c16;1;1 D d18;1 D d18;2 D c15;2 D c16;1;2 D c15;3 D 0;

c16;1;3 D c16;1;4 D c15;6 D c14;7 D c14;8 D c15;9 D c16;1;10 D 0:
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We also consider the ten syzygies of the monomial curve C .0/, that are given by the
Syzygy lemma (3.6)

X10F
.0/
14 �X8F

.0/
16;1 CX7F

.0/
17 D 0;

X10F
.0/
15 �X9F

.0/
16;1 CX7F

.0/
18 D 0;

X10F
.0/
16 �X10F

.0/
16;1 �X9F

.0/
17 CX8F

.0/
18 D 0;

X10G
.0/
18 �X8G

.0/
20 CX

2
6F

.0/
16 D 0;

X10G
.0/
19 �X9G

.0/
20;1 CX6X7F

.0/
16;1 D 0;

X10G
.0/
20 �X10G

.0/
20;1 CX6X10F

.0/
14 D 0;

X10G
.0/
21 �X7X10F

.0/
14 �X6X10F

.0/
15 D 0;

X10G
.0/
22 �X6X10F

.0/
16 �X8X10F

.0/
14 D 0;

X10G
.0/
26 �X

2
10F

.0/
16;1 �X9X10F

.0/
17 D 0;

X10G
.0/
27 �X

2
10F

.0/
17 �X9X10F

.0/
18 D 0:

(4.3)

The 10 above syzygies of the monomial curve give rise to 10 polynomial equations involv-
ing the 14 unfolded forms Fi and Gj

X10F14 �X8F16;1 CX7F17;

X10F15 �X9F16;1 CX7F18;

X10F16 �X10F16;1 �X9F17 CX8F18;

X10G18 �X8G20 CX
2
6F16;

X10G19 �X9G20;1 CX6X7F16;1;

X10G20 �X10G20;1 CX6X10F14;

X10G21 �X7X10F14 �X6X10F15;

X10G22 �X6X10F16 �X8X10F14;

X10G26 �X
2
10F16;1 �X9X10F17;

X10G27 �X
2
10F17 �X9X10F18:

(4.4)

As in the preceding subsection, we compute the linearization of the above ten polynomial
equations, that is isomorphic to the weighted vector space T 1;�kŒ��jk. To do this, we make the
substitutions Xi 7! t i and solve a homogeneous linear system with 60 equations. We can
solve it in a way that the solution depends only on the 15 coefficients

d18;12; d18;11; c15;8; c16;1;9; c16;1;8; c15;7; c14;6; d18;6;

d18;10; c14;5; d18;5; c14;4; d18;4; d18;3; c14;2:

Therefore the compactified moduli space M�
6;1 can be realized as a closed subset of the

weighted projective space

P .T 1;�kŒ��jk/ Š P14˛ with ˛ D .2; 3; 4; 4; 5; 5; 6; 6; 7; 8; 8; 9; 10; 11; 12/:
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Since the odd symmetric semigroup � is negatively graded, cf. [21], the moduli space
M�
6;1 has codimension three in M6;1, cf. [7]. Hence M�

6;1 has dimension 11. So it is a
proper subset of P14, in contrast to the odd symmetric semigroup with genus 5.

Now we take each polynomial in (4.4) and make successive divisions until the result-
ing polynomial is such that all its monomials belong to the basisƒ3 orƒ4. This is ensured
by Lemma 3.7. This procedure is completely computational and we can make it by using
a suitable software on computer algebra, like Singular or Maple. Here we do not display
the resulting polynomials, just because they have a large number of monomials. Then,
we make the substitutions Xi 7! t i , with i D 6; 7; 8; 9; 10, on the 10 polynomials whose
monomials are in ƒ3 and ƒ4 and solve 188 polynomial equations. This system can be
solved by increasing weights whose solution depends only on the 15 coefficients of the
linearization, we rename these coefficients

d18;i WD bi .i D 3; 4; 5; 6; 10; 11; 12/;

c14;j WD aj .j D 2; 4; 5; 6/;

c16;1;8 WD b8; c15;7 WD a7; c15;8 WD a8; c16;1;9 WD a9:

By Theorem 3.9 we can conclude that the moduli space M�
6;1 is given by the zero locus

of 5 isobaric polynomials

#15 WD 4a5a6 � a2a5b8 C a4a5b6 � a4b3b8 C a
3
5 C a

2
5b5 C a4b11 C a5b10 C 2 a7b8;

#13 WD 2 a2a5a6 C a
2
4a5 C a

2
4b5 C a4a5b4 C a4a6b3 C a5

2b3 � a4a9 C a5a8

� a5b8 � 2 a6a7;

#17 WD a5b12 � a2a
3
5 � a2a

2
5b5 � a4a5b8 � a4b5b8 C 2 a

2
5a7 C a5a7b5 � a5a8b4

� a5a9b3 � a6b11 C a9b8;

#16 WD a2a4a
2
5 C a2a4a5b5 � a2a6b8 � 2 a4a5a7 � a4a

2
6 � a4a6b6 � a4a7b5

C b28 C a4a8b4 C a4a9b3 � a4b4b8 � a
2
5a6 � a5a6b5 � a5b3b8 � a4b12

� a6b10 � a8b8;

#19 WD a
2
2a
3
5 C a

2
2a
2
5b5 C a2a4a

2
5b3 C a2a4a5b3b5 � 4 a2a

2
5a7 � 3 a2a5a7b5 C b8b11

C a2a5a8b4 C a2a5a9b3 C a
2
4a5a6 C a

2
4a5b6 C a

2
4a6b5 C a

2
4b5b6 C a4a

3
5

� a9b10 C 2 a4a
2
5b5 � 2 a4a5a7b3 C a4a5b

2
5 � a4a7b3b5 C a4a8b3b4

C a4a9b
2
3 � a2a5b12 � a2a6b11 C a4a5b10 � a4a6a9 � a4a9b6 � a4b3b12

� a4b4b11 C a4b5b10 � a
2
5a9 C 4 a5a

2
7 � a5a9b5 � a5b3b11 C 2 a

2
7b5

� 2 a7a8b4 � 2 a7a9b3 C 2 a7b12 � a8b11:

By intersecting M�
6;1 with the open affine chart ¹a5 D 1º of P15, we see that M�

6;1 admits
the local parametrization

b10 D a4b3b8 C a2b8 � a4a6 � a4b6 � a4b11 � 2 a7b8 � b5 � 1;

b12 D a4b5b8 C a2b5 C a4b8 C a6b11 � a7b5 C a8b4 C a9b3 � a9b8 C a2 � 2 a7;

b8 D a
2
4b5 C a4a6b3 C 2 a2a6 C a

2
4 � a4a9 C a4b4 � 2 a6a7 C a8 C b3:
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Since M�
6;1 is irreducible [4, Thm.1.1], the moduli varietyM�

6;1 is rational of dimension11.
We also note that Bullock [5, Thm. 1] proved that the moduli spaces M�

g;1 are stably
rational when 2 � g � 6, with the possible exceptions h6; 7; 8; 9; 10i and h5; 7; 8; 9; 11i,
the last one is not subcanonical and is completely studied by Stevens in [23].

For a given monomial curve C associated to a semigroup � , its obstruction space
lies in the second cohomological module of cotangent complex T 2 WD T 2.kŒ� �jk/. As
noted at the beginning of the last section of this work, if � is symmetric and generated
by less than five elements, the monomial curve C can be smoothed without any obstruc-
tions, which implies that xM�

g;1 is the weighted projective space P .T 1;�.kŒ� �jk//. The
obstruction spaces of the two examples of this section are nonzero. To see this, we use
the description of T 2 given by Buschweitz in [3, Thm. 2.3.1]. We can conclude that in
genus five, � D h5; 6; 7; 8i, the homogeneous graded part of degree �9 of T 2 has dimen-
sion 1, for genus 6, � D h6; 7; 8; 9; 10i, the homogeneous graded part of degree �13 has
dimension 1, and in both cases T 1 and T 2 are negatively graded.
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