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On computational properties of Cauchy problems
generated by accretive operators

Pedro Pinto and Nicholas Pischke

Abstract. In this paper, we provide quantitative versions of results on the asymptotic behavior of
nonlinear semigroups generated by an accretive operator due to O. Nevanlinna and S. Reich as well
as H.-K. Xu. These results themselves rely on a particular assumption on the underlying operator
introduced by A. Pazy under the name of “convergence condition”. Based on logical techniques from
“proof mining”, a subdiscipline of mathematical logic, we derive various notions of a “convergence
condition with modulus” which provide quantitative information on this condition in different ways.
These techniques then also facilitate the extraction of quantitative information on the convergence
results of Nevanlinna and Reich as well as Xu, in particular also in the form of rates of convergence
which depend on these moduli for the convergence condition.

1. Introduction

One of the fundamental questions in the theory of differential equations is that of the
asymptotic behavior of the solutions to a particular system. Concretely, consider the fol-
lowing initial value problem [1,42]

(*)

u'(t) € —Au(t), 0<t <oo0
u0) =x

over a Banach space X generated by an initial value x € X and an accretive set-valued
operator A : X — 2% (see Section 2 for a precise definition). In that context, one calls
a function u : [0, 00) — X a solution of (x) if u(0) = x, u(¢) is absolutely continuous,
differentiable almost everywhere in (0, 00) and satisfies (:) almost everywhere

It is straightforward to show that any solution is unique as A is accretive (see e.g. [1]).
Unfortunately, the system is in general not solvable for x € dom A even if A is m-accretive
as shown by Crandall and Liggett in [8]. If the system is solvable, however, then one can
consider the operator S(¢)x on dom A induced by the solutions u(¢) to () with initial
values x € dom A. This operator is continuous in x and can thus be extended to dom 4,
thereby generating the semigroup § = {S() | ¢ > 0} on dom A associated with (*) (see
Section 2 for a precise definition of the notion of semigroup).
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As studied in the fundamental paper of Brezis and Pazy [3], these solutions have a
particularly intriguing representation in terms of the so-called exponential formula:

t —n
Ux(t) = lim (Id + —A) X.
n—o00 n
Extending the results of Brezis and Pazy, in [8] Crandall and Liggett further showed that
this formula in general always generates a nonexpansive semigroup. Concretely, a special

case of their results yields that if 4 is m-accretive, then the limit

t —n
S(t)x = lim (Id + —A) X
n—o00 n

exists for any x € dom A and any ¢ > 0 and the S(¢) generated in that way form a non-
expansive semigroup on dom A. Note that by the above result of Brezis and Pazy, the
semigroup thus generated generalizes the solution semigroup discussed above and Cran-
dall and Liggett in [8] even obtained a characterizing condition for when an S(¢)x as
above actually represents a solution to (). Namely, their result yields in particular that if
0 < T < oo and A is m-accretive, then u, is a solution of the initial value problem with
x € dom A on [0, T') if and only if u, (¢) = lim,— oo (Id + %A)_”x fort € [0,T) and uy
is differentiable almost everywhere.

As the function S(#)x induced by lim, o, (Id 4 %A)_”x is Lipschitz continuous in ¢
(see, e.g., the proof of Theorem 1.3 in [1, Chapter III]), the additional differentiability
condition is in particular immediately satisfied if any Lipschitz continuous function from
the real numbers into X is differentiable almost everywhere. This in turn is true in any
reflexive space X by (an extension of) Rademacher’s theorem which, as is well known, in
particular includes uniformly convex spaces by the Milman—Pettis theorem.

In our paper, we are concerned with the asymptotic behavior of these semigroups of
solutions for ¢ — oo in the context of uniformly convex and uniformly smooth spaces.
It is well known that S(z)x does not always converge in that case. Motivated by these
circumstances, there has been a search for potential conditions guaranteeing the conver-
gence of the orbits of the semigroup generated by A via the exponential formula. In that
context, Pazy in [41] introduced the so-called convergence condition for the operator A.
Concretely, over a Hilbert space X with inner product (-, -), we say (following Pazy) that
an operator A4 (assuming A~10 # @) satisfies the convergence condition' if for all bounded
sequences (X, yn) < A such that

lim (yn,x, — Px,) =0,

n—>00

it holds that liminf,_, || X, — Px,| = 0 where P is the projection onto the closed and
convex set A710 (if A is maximally monotone). Then Pazy obtained the following result:

! Actually, Pazy also emphasized a particular consequence of the above condition as a separate addi-
tional property for the convergence condition, but we refrain from doing so (in line with the presentation
in [40]).
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Theorem 1.1 (Pazy [41]). Let X be a Hilbert space and A be maximally monotone with
A0 # O andlet S = {S(t) | t > 0} be the semigroup generated by A. If A satisfies the
convergence condition then, for every x € dom A, S(¢)x converges strongly to a zero of A
ast — oQ.

This convergence result was subsequently extended to uniformly convex and uni-
formly smooth Banach spaces by Nevanlinna and Reich in [40] who simultaneously adap-
ted the above convergence condition to a suitable variant in said classes of Banach spaces
by modifying the premise to the assumption that

lim (yn, J(xn — Pxy)) =0,
n—>oo

where J is the normalized-duality map. Concretely, the following result was obtained:

Theorem 1.2 (Nevanlinna and Reich [40]). Let X be uniformly convex and uniformly
smooth and A be m-accretive with A='0 # @ and such that it satisfies the convergence
condition. If § = {S(¢t) | t > 0} is the semigroup generated by A via the exponential
Sformula then, for any x € dom A, S(t)x converges strongly to a zero of A ast — oo.

This result was further generalized by Xu in [51] who studied the behavior of almost-
orbits associated with the semigroup generated by A as introduced by Miyadera and
Kobayasi [38]: an almost-orbit of § is a continuous function u : [0, c0) — dom A4 such
that

lim sup {|u(r +5) = S@)u(s)| |t =0} = 0.
S—>00

Concretely, Xu obtained the following result:

Theorem 1.3 (Xu [51]). Let X be uniformly convex and uniformly smooth and A be
m-accretive with A~'0 # @ and such that it satisfies the convergence condition. If § =
{S(t) | t = 0} is the semigroup generated by A via the exponential formula, then every
almost-orbit u(t) of § converges strongly to a zero of A ast — oo.

All the above results do not offer any quantitative information on the convergence of
the orbits or almost-orbits. We resolve this in this paper by analyzing the proofs of The-
orem 1.2 as well as 1.3 and by extracting from that explicit computable transformations
which translate a modulus witnessing a quantitative reformulation of the convergence con-
dition into quantitative information on the convergence result. By this latter statement, we
mean in particular full rates of convergence for S(¢)x as ¢ — oo in the context of the res-
ult of Nevanlinna and Reich. In the case of the result of Xu, this amounts to two kinds of
quantitative “translations" with the first translating a rate of convergence for the almost-
orbit into a rate of convergence of the solution of the Cauchy problem towards a zero of the
operator A. Akin to fundamental results of Specker [47] from recursion theory whereas
even computable monotone sequences of rational numbers in [0, 1] do not have a comput-
able rate of convergence, one can see that those rates will in general not be computable
(see for similar results also the work of Neumann [39]).
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Even if computable rates of convergence are in general unattainable, one can, in very
general situations, provide effective rates of so-called metastability which are, moreover,
highly uniform. This notion of metastability has been recognized as an important finitary
version of the Cauchy property from a non-logical perspective by Tao (see e.g. [49, 50])
and originates from a (noneffectively) equivalent but constructively weakened reformula-
tion of the Cauchy property in some metric space (X, d), say

.. 1
VkeNElnENVl,] Zl’l(d(xl',x]‘)<m)
into
1
VkeNVg:N—>NIneNVijenn+gh) (d(x,-,xj) < k_—i-l)’

where we write [a;b] := [a,b] N N, with a rate of metastability being a bound on “In € N”
in terms of k and g.

The second quantitative result on Theorem 1.3 then takes the form of a translation
converting a rate of metastability of the almost-orbit (which will be discussed later on)
into a rate of metastability for the convergence towards a zero of the operator A. For this,
note in particular the example presented in [25] for a concrete almost-orbit where such
a rate of metastability can be naturally obtained and is moreover computable and highly
uniform while any rate of convergence will not even be computable in this case.

Methodologically, the results of this work are based on the general approach and meth-
ods of the “proof mining” program, a discipline of mathematical logic which aims at the
extraction of quantitative information from prima facie nonconstructive proofs by logical
transformations (see [21] for a book treatment and [24] for a recent survey). In that vein,
this work can in particular be viewed as a new case study in this program and is fur-
ther strongly related to the only other previous foray of proof mining into the theory of
partial differential equations and abstract Cauchy problems presented by Kohlenbach and
Koutsoukou-Argyraki in [25] (as well as to the only two other previous considerations on
nonexpansive semigroups presented in [26, 32]).

In particular, the theorem of Garcia-Falset [11] analyzed by them is strongly related
to the results of Pazy, Nevanlinna and Reich as well as Xu presented above. Concretely,
Garcia-Falset obtains a similar result on the asymptotic behavior of the almost-orbits of
the solution semigroup of the abstract Cauchy problem generated by an operator A under
the condition that A is ¢-accretive at zero as defined in [11]. The generality gained by
assuming ¢-accretivity at zero of A is that the space is allowed to be an arbitrary Banach
space.

In that context, our dichotomous situation of the two quantitative versions of the result
of Xu is also similar to the results from [25] and, as will be discussed later, the work [25]
is where the metastable version of the almost-orbit condition was first introduced.

In contrast to the results by Garcfa-Falset in [11] where the notion of ¢-accretive at
zero carries the strength of removing the convergence condition as well as the assumptions
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on the space X but simultaneously provides a strong restriction on the operator (by, among
others, making the zero of the operator unique), the results given by Pazy, Nevanlinna and
Reich as well as Xu offer a practically higher generality at the modest price of a uniformly
convex and uniformly smooth space, a property which is still fulfilled for most spaces of
interest, in particular for all L?-spaces as is the case for all examples of application given
in[11].

Further, these assumptions on the space and the operator offer a rich complexity of
interworking notions, all having logically interesting properties which in particular cru-
cially rest on many of the recent logical insights into accretive operators obtained in [43],
making this case study especially interesting in the context of the proof mining program.
In particular, the logically motivated quantitative considerations on the convergence con-
dition are independently of interest beyond the scope of this paper as they, for one, offer
a new perspective on the notion of being ¢-accretive at zero and its quantitative version
introduced by Kohlenbach and Koutsoukou-Argyraki in [25] (as will be discussed later
on), and, for another, as the convergence condition features in many other results on the
approximation of zeros of accretive operators like, e.g., the iteration schemes considered
by Nevanlinna and Reich in [40] or the asymptotic behavior of incomplete Cauchy prob-
lems as considered by Poffald and Reich [45]. In that way, future quantitative analyses of
such results will depend on these moduli for the convergence condition. Lastly, we further
find that a logical analysis of the results of Nevanlinna and Reich as well as Xu also yields
a qualitative improvement on said theorems. Concretely, the analysis reveals exactly the
assumptions necessary on the duality map and projection involved in the proofs and we
in that way obtain a generalization of the results to arbitrary Banach spaces which only
satisfy some weak additional requirements on said mappings.

As an outline of the paper, we begin by discussing some preliminaries in Section 2.
Section 3 is then devoted to the study of the convergence condition and its quantitat-
ive versions as mentioned previously which are crucially used in Section 4 where we
present quantitative versions of the previously discussed results contained in Theorems 1.2
and 1.3. The logical properties of these results and their extractions in the context of the
proof mining program will be discussed in Section 5.

2. Preliminaries

2.1. Convexity and smoothness in Banach spaces

Consider a Banach space (X, [|-]|). We use X* to denote the dual of X, i.e. the set of all
linear continuous functionals
x*: X - R.

We assume throughout that X is uniform convex, i.e.

xX+y
2

Ve €(0,2]38 € (0,1] Vx,y € B1(0) (||x—y|| >e— ”

S1oi)
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and uniformly smooth, i.e.
Ve>038>0Vx,ye X (Ixl =1Alyl =8 — llx +yll+llx =yl <2 +elyl).

Note that X is uniformly convex iff its dual X * is uniformly smooth.
Associated with X is the normalized duality mapping J : X — 2X", defined by

Je) = {f € X" | f(x) = |lx|* and [ £1I" = [|x[|}.

for all x € X where we write ||-||* for the dual norm on X *. This mapping is single-valued
and uniformly continuous if, and only if, X is uniformly smooth (see [7]). As is common in
that context, we identify J with this unique mapping X — X * and write (y, J(x)) instead
of J(x)(y) given x,y € X.

As X is uniformly convex, if C C X is a nonempty, closed, convex subset of X, then
the nearest point projection Pc : X — C 1is single-valued and outputs the unique point
satisfying the condition

Ix = Pex| = inf {|lx — y|l | y € C}.

Even further, the projection map Pc¢ is continuous and even uniformly continuous in uni-
formly convex spaces as will be used later (see [46]).

2.2. Accretive operators

Throughout, we will be concerned with set-valued operators 4 : X — 2% on the space X.
As such an operator is set-theoretically nothing else than its graph, i.e. a relation A C
X x X, we use both notations (x, y) € A and y € Ax interchangeably. The operator A4 is
called accretive if

V(x1, 1), (x2,y2) € A ((yl —y2,J(x1 — xz)) > 0).

These operators originate in the work of Kato [17] (based itself on works of Minty,
Browder and others). In fact, the connection between these operators and partial differen-
tial equations (as studied here) has already been a motivating consideration since Kato’s
groundbreaking work. For further background on these connections we refer to the stand-
ard reference of Barbu [1] and for further background on accretive operators, we also refer
to the classical text of Takahashi [48].

We say that A is m-accretive if ran(Id + yA) = X for all y > 0 in addition to being
accretive. We write dom A := {x € X | Ax # @} for the domain and ran 4 := | J .y Ax
for the range of A.

One of the main tools for studying these classes of set-valued operators is their resolv-
ent J);‘i, which is defined as

JA = (1d+yA)™!

for y > 0. Immediately, we see that Jlj“ (as a set-valued mapping) satisfies dom JyA =
ran(Id + yA) and JyAx C dom A for all x. Fundamental to the resolvent in the context of
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accretive operators are the following characterizing properties: A is accretive if, and only
if JVA is single-valued and nonexpansive for every y > 0, or alternatively if, and only if
J);‘1 is single-valued and firmly nonexpansive in the sense of [5] for all/some y > 0. Proofs
for these equivalences can be found in the standard references mentioned above. Further,
by definition J)j“ is total for every y > 0 if A is m-accretive.

Rather immediately one can see that the set 4710 coincides with the set of fixed
points of the resolvent functions. If A is m-accretive, it is also maximally accretive. Con-
sequently, note that if A is m-accretive, then A710 is closed and convex. We henceforth
write P for P4-1, which is well defined in uniformly convex spaces if 4710 # @. Note
though, that in contrast to monotone operators on Hilbert space and Minty’s theorem [37],
the converse does not hold as first asked in [10] and then answered in [6, 9] negatively.

2.3. Nonlinear semigroups and the exponential formula

As discussed in the introduction, the main structure of concern in this paper is that of a
nonexpansive semigroup” over a set C by which we will concretely mean a set

§={S() [t =0}

of functions S(¢) : C — C such that
(1) SO)x =xforx € C,
2) St +s)x =S()S(s)x fort,s >0and x € C,
(3) S(t)x is continuous in ¢ > 0 for x € C,
(4) Foranyt >0andany x,y € C: |S@t)x — S@O)y| < |lx —y|.

As discussed in the introduction as well, these semigroups arise naturally in the context
of initial value problems associated with an accretive operator and in that context can be
characterized by the exponential formula as shown by Crandall and Liggett [8]. Precisely,
the following result was established therein:

Theorem 2.1 (Crandall and Liggett [8]). Let X be a Banach space and A an m-accretive
operator. Then

t —n
S(t)x := lim (Id + —A) by
n—00 n

exists for all x e dom A andt > 0and § = {S(t) | t > 0} is a nonlinear semigroup on
dom A. Further, if X is reflexive, then for x € dom A, S(t)x is a solution for the system (x)
at x.

In the following, we call § the semigroup generated by A via the exponential formula.

2The name derives from the fact that § becomes a semigroup if the group operation is taken to be the
composition of the functions S(z) : C — C which is well defined as item (2) guarantees that the set § is
closed under this operation (which is naturally associative).
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3. The convergence condition and quantitative versions

As discussed in the introduction, the central notion for the asymptotic results from [40,
41,51] is that of the convergence condition for the operator A inducing the differential
equation. In the quantitative versions of these results of Pazy, Reich and Nevanlinna as
well as Xu, we will rely on a (or rather multiple) particular quantitative version(s) of that
condition, which we shall call a convergence condition with a modulus. These quantitat-
ive reformulations are motivated by logical considerations on different equivalent variants
of the convergence condition in the spirit of the proof mining program (see in particular
Section 5 later on for a discussion of these logical aspects). In particular, we will discuss
in Section 5 that these moduli have the two central properties that general logical meta-
theorems underlying the whole logical approach of proof mining guarantee, for one, the
extractability of such moduli for a large class of operators which provably satisfy the con-
vergence condition and, for another, the same logical metatheorems guarantee that from
any proof confined by certain general logical conditions and using the assumption that an
operator satisfies the convergence condition, quantitative results can be extracted which
depend on such a modulus.

3.1. Variants of the convergence condition

To begin with, as mentioned in the introduction, the original formulation of the conver-
gence condition is due to Pazy [41], but in our setting of uniformly convex and uniformly
smooth Banach spaces, we follow the notion of Nevanlinna and Reich [40] and, there-
fore, say that an 4 with 4710 # @ satisfies the convergence condition if for all bounded
sequences (x,, y,) C A:

lim (yn, J (x5 — Px,)) = 0 — liminf || x, — Px,|| = 0.

Already in the literature, other equivalent variants are sometimes mentioned, e.g. replacing
the limit in the premise of the implication by a limit inferior or conversely replacing the
limit inferior in the conclusion by a limit (see for example [45]). However, in the following
we only focus on the usual formulation of the convergence condition in the form above,
together with one particular equivalent version which is of a different spirit entirely:

Lemma 3.1. An operator A satisfies the convergence condition if, and only if, for all
natural numbers k, K € N, there exists n € N such that®

1 1
V(x.y) €4 (||x||, PN <K Ay J =P <~ — =P sm). +)

Proof. For sufficiency, consider arbitrary sequences (xy), (¥,) such that y, € Ax,, and
Iz, | yn]l < K for some K € N. Assume that

lim (yn, J(xn — Pxy)) =0

3The absolute values are actually not necessary in the premise as 4 is accretive.
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and let k£ € N be given. By (+), there is an n € N such that

1 1
Vm e N (|(ym, J(xm — me))} < P = ||Xm — Pxpm]| < k—-l-l) (++)

Then, by lim(y,,, J(x, — Px,)) = 0 there exists N € N such that

1
VYm > N (|(ym, J(xXm — Pxm))| < n_+l)’

which by (++) entails that ||x,, — Px,| < for all m > N. This means that

1
k+1°
lim ||x, — Px,| =0,

and we conclude that A satisfies the convergence condition.
For necessity, suppose that (+) fails. Then for some k, K € N, we have

Vne N3 (x,,yn) € A

1
(nxnu,nynn = K A [l 0o = P = — KT

1
Al — Pl > —)

Then in particular |{y,, J(x, — Px,))| < ﬁ for all n € N which entails that
lim(y,,, J(xn — Px,,)) =0.

However (||x, — Pxy||) is bounded away from zero by k+r1’ and so A cannot satisfy the
convergence condition. [ ]

The above equivalent version does not feature sequences at all and, in this way, is
of a much more local nature than the original formulation. By applying the underlying
logical considerations of proof mining to these two formulations, we will now derive the
previously mentioned quantitative versions of the convergence condition in the form of
two different moduli (where this difference of the moduli can actually be recognized in
terms of logical properties of their equivalence proof as will be discussed in Section 5 later
on). We want to note that both the above equivalence and the following quantitative ver-
sions are similar in character to the alternative characterization of strongly nonexpansive
mappings introduced in [23] as well as the moduli introduced there.

3.2. Quantitative versions of the convergence condition

Note that the convergence condition is essentially (modulo the boundedness condition) of
the general form
lima, = 0 — liminfb, = 0

with a, = (yn, J(xn — Pxy)) and b, = ||x, — Px,|. In that conceptual vein, two of
our quantitative versions of the convergence condition will be certain moduli translating
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a quantitative witness for the convergence lima, = 0 in the premise into a quantitative
witness for lim inf b, = 0 in the conclusion (or even for a weakening of that).

In that way, two of these moduli arise by considering combinations of a quantitative
witness for the convergences in the premise or conclusion and for that, we rely on the
following notions providing such a quantitative account in various ways:

Definition 3.2. Let (a,) be a sequence of non-negative real numbers.

(1) We say that a functional ¢ : N — N is a rate of convergence for (a,) (towards
zero) if

1
Vk e NVn >k n<——J).
ezt (241

(2) We say that a functional ¢ : N x N — N is a lim inf-rate for (a,) (towards zero)
if

1
Vk, N 3 sk, n<——"1.
m € ne[m<p( m)](a k—l—I)

(3) We say that a functional ¢ : N — N is a rate of approximate zeros for (a,) if

1

Combinations of these quantitative versions of lim / lim inf = 0 (or even of the weaker
property of approximate zeros) now yield the previously mentioned different quantitative
versions of the convergence condition. We begin with the most immediate version which
translates a rate of convergence for the premise together with the upper bound on the
sequence into a lim inf-rate for the conclusion.

Definition 3.3. A modulus for the convergence condition is a functional
Q: N x NN — NNxN
such that for any (x,), (y4) € X andany K € Nand¢p : N — N:

if Vi € N(yn € Axp Al xal, lynll < K)

and ¢ is a rate of convergence for |(yn, J(xn — Pxp))

3

then Q(K, ¢) is a lim inf-rate for ||x, — P x|

While conceptually appealing due to its naturality, the logical considerations underly-
ing the approach of proof mining actually in general suggest a stronger type of modulus,
named a full modulus here, to be necessary in the context of general quantitative analyses
of results relying on the convergence condition as well as classical logic. Actually, we will
present two general logical metatheorems in Section 5 that guarantee both

(1) the extractability of a computable full modulus (and thus of a “simple” modulus)
for the convergence condition from a wide range of (noneffective) proofs of the
convergence condition for definable classes of operators, as well as,
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(2) that from a proof using the convergence condition as a premise, a transformation
can be extracted that transforms

(a) a full modulus into quantitative information on the conclusion if the underly-
ing proof is nonconstructive,

(b) a “simple” modulus into quantitative information on the conclusion if the
underlying proof is “essentially” constructive,

where, moreover, the complexity of the principles used in the proof is reflected in
the complexity of the extracted transformation.

In that way, while the above modulus is derived from a “constructive” perspective on the
convergence condition, the following full modulus is attained from a “classical” perspect-
ive on it. We however postpone a detailed discussion of these logical aspects to the end
of the paper (see Section 5) where in particular we will give formal justifications for the
above statements. For the rest of this section, and for the rest of the paper, up to Section 5
for that matter, we just state the full modulus as another notion which provides a quant-
itative perspective on the convergence condition and discuss examples of such a modulus
for various classes of operators.

Definition 3.4. A full modulus for the convergence condition is a functional
Q/ :NxN-=>N

satisfying that for any k, K € N:if y € Ax are such that ||x||, | y|| < K, then

1
= |x—Px|| < ——

|<y,J(x—Px)){§ N

1

QS (K, k) +1

In that way, the above modulus is not of the general pattern laid out before that con-
verts quantitative information on the limit in the premise into quantitative information
on the limit in the conclusion but rather represents a kind of local perspective that already
transfers local errors of the conclusion into local errors for the premise. In a way, the above
is a true finitization of the convergence condition in the sense that the above notion only
refers to finitely many objects together with the fact that by the result given in Lemma 3.1,
we have effectively shown the following:

Proposition 3.5. An operator A satisfies the convergence condition if, and only if, it has
a full modulus for the convergence condition Q7.

Remark 3.6. Note by Lemma 3.1 that the convergence condition is nothing else but a
uniform version of the property

1 1
V(x,y) € AVkeNdneN (|(y,J(x—Px))| < P — |lx = Px|| < k—-i—l)’

which can easily be seen to be equivalent to

V(x,y)e A ((y,J(x - Px)) =0—|x—Px| = O).
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This property was already singled out as an important special case of the convergence
condition in Pazy’s original paper [41] (as mentioned already in a footnote in the intro-
duction). In particular, based on the logical form of the above statement, the logical
metatheorems mentioned above actually guarantee a strengthened form of item (1) in the
sense that already from a (possibly noneffective) proof of the above property for a class
of operators, one can extract a computable full modulus (and thus a “simple” modulus)
for the convergence condition, provided the proof is as before confined by the logical con-
ditions of the metatheorem. Also this situation is conceptually similar to the results on
strongly nonexpansive mappings from [23], in particular to the fact that the SNE-modulus
introduced there arises as the uniform version of the notion of strict nonexpansivity.

In any way, even in the case of a (semi-)constructive proof and in the context of a
“simple” modulus, the required modulus can often further be weakened. While our quant-
itative versions of the convergence results of Nevanlinna and Reich as well as Xu can, for
one, be stated already in terms of a “simple” modulus for the convergence condition, the
only sequences to which the convergence condition is ever applied (in the context of this
paper) are such that || x, — P x,|| is nonincreasing. In that case, it is clear that it already
suffices to require a modulus which translates a rate of convergence ¢ for the sequence
[{yn, J(xn — Pxp))| together with the bound K into a rate of approximate zeros Q(K, ¢)
for the sequence ||x, — Px,||. As this circumstance seems to occur rather frequently,”*
we introduce this special case as a particular other notion for a quantitative form of the
convergence condition:

Definition 3.7. A weak modulus for the convergence condition is a functional
Q¥ :NxNN - NN
such that for any (x,), (y,) € X andany K € Nand ¢ : N — N:
if Vi € N(yn € Axp A [xall, [ynll < K)

and ¢ is a rate of convergence for |(y, J(x, — Px,))

)

then Q% (K, ¢) is a rate of approximate zeros for ||x, — P x,||.

In that way, while both the full and “simple” moduli represent the correct quantitat-
ive content of the convergence condition (from a classical and a constructive perspective,
i.e. complying with the properties (1) and (2) mentioned above, respectively), the extrac-
tions formulated here will be phrased in terms of the weaker quantitative assumption of
a weak modulus for the convergence condition. Note for this that there is of course no
loss of generality as given a full modulus 7, a “simple” modulus  can be defined via

“In fact, in e.g. the related work [11] on quantitative behavior of semigroups generated by ¢-accretive
operators, the requirements in the condition of ¢-accretivity (essentially replacing the convergence con-
dition) are such that they restrict the conclusion essentially to sequences x, such that ||x, — Px,|| is
decreasing. A similar restriction could have been made in the case of the convergence condition since, as
said above, the applications given in [40,41,51] satisfy the requirement but it seems that the authors have
refrained from doing so to make the condition less technical.
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Q(K, ) (k,m) = max{m, (7 (K,k))} and in turn, given a “simple” modulus 2, a weak
modulus 2% can be defined just via Q¥ (K, ¢)(k) = Q(K, ¢)(k,0).
3.3. Examples for operators and their moduli

In the following, we survey various examples given in the works [40,41] and beyond for
classes of operators which naturally satisfy the convergence condition. Based on the cor-
responding proofs, we extract respective full moduli in the sense of the previous section.

3.3.1. Strongly accretive operators. The following is an immediate generalization of
[41, Example 4.3].

Lemma 3.8. If A is strongly accretive, by which we mean there exists an o« > 0 such that
(u—v,J(x =) = alx —y|?

for any (x,u), (y,v) € A and additionally A='0 # @, then A satisfies the convergence
condition with a full modulus for the convergence condition Q,{ (K. k) =a(k + 1)2=1

forany a € N*3 such that « > a1

Proof. Let (x,y) € A with ||x|, ||y|| < K and where

(V. I = Px)) £ —————
Q, (K, k) +1
Then as (y, J(x — Px)) > afx — Px||*> we get
alx—Pxps——t < L
Ql (K, k)y+1 " atk+1)2 7 (k+1)?
which yields || x — Px| < 1/(k + 1). (]

As already mentioned in [41], a particular example of a strongly monotone operator is
the negative Laplacian: Let Q be a bounded domain in R” with smooth boundary. L?(£)
is the space of square-integrable functions as usual and W(l)’z(Q) the associated subspace
of the Sobolev-space W!-2(Q2) containing functions of zero-trace. Then using Poncairé’s
inequality (see e.g. [36]), we get that

—/ Au-udxz/ |Vu|2dxz/h/ u)? dx,
Q Q Q

where A is the usual Laplacian operator and A; > 0 is the minimal eigenvalue of —A.
Therefore, A = —A is strongly monotone and by the above lemma satisfies the conver-
gence condition with a full modulus for the convergence condition

QL (K. k) = Ak + 1)2=1,

where A € N* is such that A™! is a lower bound on the eigenvalues of —A.

SWe write N* for N \ {0}.
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3.3.2. Operators that are ¢-accretive at zero or uniformly accretive at zero. The
above case of strongly monotone operators is a special case of the notion of operators
which are ¢-accretive at zero introduced in [11] over general Banach spaces.

Definition 3.9 ([11]). An operator A with 0 € Az is ¢-accretive at zero in the sense of [11]
if ¢ : X — [0, 00) is a continuous function with ¢(0) = 0, ¢(x) > 0 for x # 0 and

¢(xn) = 0= |lxu]| >0

for every sequence (x,) C X such that ||x, || is nonincreasing and we have that

(y. J(x —2)) = ¢p(x — 2)
for all (x, y) € A.

As already mentioned in [11], it is a straightforward consequence of [12, Theorem 8]
that if A is m-yr-strongly accretive in the sense of [11], then A is (¢ o ||-||)-accretive at
Zero.

In the course of their proof-theoretic analysis of the main result of [11], which is
similar in kind to the results analyzed here, Kohlenbach and Koutsoukou-Argyraki in [25]
introduced (similarly motivated by proof-theoretic considerations) a generalized uniform
version of the above property (without any reference to a function ¢) under the name of
uniform accretivity at zero:

Definition 3.10 ([25]). An accretive operator A with 0 € Az is called uniformly accretive
at zero if forall k € N and all K € N*, there exists an m € N such that

Vixu)e A (Ix —zl € 275, K] — (u,x —z)4 > 27™)
with (-, -) 1 defined by

(yox)4 ==max {(y. /) | j € J()}.

This notion was accompanied in [25] with a corresponding uniform quantitative mod-
ulus of being uniformly accretive at zero which is defined in the following sense:

Definition 3.11 ([25]). A function ® : N x N* — N is a modulus of accretivity at zero
for Aif m := O (k) satisfies the condition in Definition 3.10.

Note that this notion in particular encompasses the moduli of uniform ¢-accretivity at
zero also introduced in [25] which provide a quantitative perspective on the above notion
of ¢-accretivity at zero.

Now, while our setting is more restrictive in terms of the space, we can neverthe-
less recognize the above notion as essentially stating the existence a full modulus for the
convergence condition for A, at least in our context of uniformly convex and uniformly
smooth spaces: At first, the expression (u, x — z) 4 reduces to (u, J(x — z)) in a uniformly
smooth space while in the context of uniformly convex spaces, through the presence of
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the projection P and as the zero z is unique, the point z can be replaced by the projection
P x for any point x. Reading the resulting condition as its contraposition, we obtain that a
modulus of accretivity at zero for A4 satisfies that for any k and K, if ||x — Px| < K, then

V(x,u)e A (|<u J(x — Px))| <27%® _, |lx — Px|| < 2_k).
Since we can bound || x — Px|| by
lx = Px|| < llx[l + lIz]|

using the single witness z € zerA for zerA # @ (as required in the context of the conver-
gence condition), we get that therefore Q7 defined by

Qf(K, k) = 2®K+Z(k)7

where Z > ||z||, is a full modulus for the convergence condition of A which is even inde-
pendent of an upper bound for u € Ax. In that way, we find that the notion of being uni-
formly accretive at zero is essentially an equivalent formulation of the convergence con-
dition in that context, which was moreover discovered by Kohlenbach and Koutsoukou-
Argyraki by applying the same logical methodology as is underlying this work.

Thus, if restricted to the class of spaces considered here, we find that the quantitative
results on the behavior of the semigroups generated by A as derived in [25] can also be
recognized as applications of our general quantitative results, using the notion of a full
modulus for the convergence condition /.

3.3.3. Operators without unique zeros. All operators discussed so far are ¢-accretive
in the sense of [11]. The convergence condition however encompasses a far larger class
of operators and the difference set of those two notions is already populated with fairly
simple examples of which we exhibit one in the following. For this, we recall the following
result due to Pazy:

Proposition 3.12 (Pazy [41]). Let ¢ : X — R be proper, convex and Ls.c. on a Hilbert
space X and assume that ¢(x) > 0 for all x € X as well as minyex ¢(x) = 0. If the
level-sets

Kr={x||x] =R. ¢(x) < R}

are totally bounded, then the maximally monotone operator
dp(x) = {u € X [ ¢(y) —p(x) = (y — x,u) forany y € X}
satisfies the convergence condition.

Now, for an example of an operator which satisfies the convergence condition but is
not ¢-accretive at zero for any ¢, consider the following function f : R — R:

(x + D* ifx € (—oo,—1],
fx)=130 if x € [—1,1],
(x =D* ifx e[l,00).
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This function is continuously differentiable with first derivative

4(x+1)3 ifx € (—oo,—1],
f'x)=10 ifx € [-1,1],
4(x —1)3 ifx €[1,00).

Therefore df (x) = {f’(x)} for any x € R and it is easy to see that f is convex and that
the level sets K g are compact. Thus df satisfies the convergence condition. However, we
have zerdf = [—1, 1] and thus df does not have an unique zero. The uniqueness of the
zero is, however, a property of every operator that is ¢-accretive at zero (see [11]) and
even of every operator that is uniformly accretive at zero (see [25]).

Nevertheless, by a quantitative analysis of the application of Proposition 3.12 to the
function f, we can immediately extract a full modulus for the convergence condition
Q7 (K.k) = (k + 1)* — 1 for the convergence condition of df: Let consider x € R and
assume |x|, | f'(x)| < K as well as

1

(k+D*=1)+1
As in [41], one can show (y, x — Px) > f(x). Thus in particular
1
(k+D*=1)+1
Generically, one can immediately show that if f(x) < ¢ for ¢ > 0, then
x €[—1— e, 1+ e]
and thus ||x — Px| < {/e. Therefore the above implies
1

— Pxll < ———
Ix = Pl <

(y,x — Px) <

fx) =

as desired.

4. Quantitative results on the asymptotic behavior of semigroups and
their almost-orbits

In this section, we employ the previous quantitative considerations on the convergence
condition for establishing quantitative versions of the theorems of Nevanlinna and Reich
as well as of Xu outlined in the introduction. Note that since the proofs of the respective
results are essentially constructive, a dependence on a “simple” (or even weak) modulus
for the convergence condition can be guaranteed a priori for the extracted results (see the
logical remarks in Section 5) which is also the case for the concrete rates presented below.
In that vein, we in the following denote all moduli just by an © without the previous
superscripts. We begin with the result of Nevanlinna and Reich.
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4.1. The asymptotic behavior of nonlinear semigroups

Consider again the setup from Theorem 1.2 and write § = {S(¢) | ¢ > 0} for the semig-
roup generated by A via the exponential formula. In following, if not stated otherwise,
let x € dom A. We write wy(¢) for S(¢)x (in the spirit of Xu [51]), v (¢) for —w’.(¢)
and jx(¢) for J(wx(t) — Pwy(?)). Note that w’.(¢) is defined almost-everywhere and
(wx (1), —w)(¢)) € A is satisfied almost-everywhere (see [1]), say both on [0, co) \ N;
where N is a Lebesgue null set.

The first step in the proof is to establish (vx(¢), jx(¢)) > 0 and subsequently to estab-
lish that liminf;_, o (vx(?), jx(t)) = 0. The following results extract from their proof a
rate for the lim inf expression.

Lemma 4.1. If f : [0, 00) — [0, 00) is Lebesgue integrable with

/Ooo flydi<L

for some L € [0, 00), then for any Lebesgue null set N C [0, 00) and any k, n:

It e [n,[L+1](k+1)+n]\N(f(z < kLH)

Proof. Suppose not. Then there are a Lebesgue null set N and k, n such that for any
ten,[L+ 11k + 1)+ n]\ N itholds that f(¢) > 1/(k + 1). As f is nonnegative, we
get that

00 N >((L+1)(k+1)+n—n)_
/o fydez /[‘n,(L+1)(k+1)+n]\N fydez k+1 =@+

which is a contradiction. [

Now, ||wx(t) — Pwy(2)] is Lipschitz-continuous as ||x — P x|| is nonexpansive and
wy (1) is Lipschitz with

Jwx @) = we )] < 2]l =],

where v € Ax which exists as x € dom A (see the proof of Theorem 1.3 in [1, Chapter III]).
Thus ||wy () — Pwy(t)| is absolutely continuous on every [0, 7] which implies that the
derivative %wa (t) — Pwx(t)||? exists almost everywhere, say on [0, c0) \ N, and that
this derivative is Lebesgue-integrable such that the fundamental theorem of calculus is
valid. Further, as shown in [40], we have that

1

(020, (1)) = —3 5[ = Puo)

holds almost everywhere, say w.l.0.g. also on [0, 00) \ N, where we assume, also without
loss of generality, that N, DO Nj.
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Lemma 4.2. Let b > | x — Px||. For any Lebesgue null set N 2 N and any k,n:

3r € |:n Ebz + 1—‘(k + 1)+ n] \N((vx(t),jx(t)) < ﬁ)

Proof. We have (v (2), jx(t)) > 0 for any ¢ € [0, 00) \ N; by accretivity of A. As

d
(020, o)) = =3 3 Jwe(®) = Puc(o)|

holds almost everywhere, we get

o0 . 1 [*d
fo (vx(2). jx(2))dt < —5/0 d—t||wx(t)— wa(,)||2 dt

3 Jim ([ (1)~ P = [0 ~ Pur)])

3 Jim ([ — Pus ) ~ [u(T) ~ Pu(D)]?)

1
5w = Pu. ]

IA

<Ly
2
By Lemma 4.1, we get that for any N 2 N, and any k, n:

T (T VY ((NONAGIE =

which is the claim. [

The next step in the proof of Nevanlinna and Reich infers the respective lim inf result
for the function || wy () — P wx(?) || via the convergence condition together with Lemma 4.2
and then, using that ||w, () — Pwx(¢)|| is nonincreasing, infers the convergence of wy (¢).
An analysis of this proof yields, in combination with the above, the following quantitative
version of Theorem 1.2. For this, we first focus on the special case when x € dom A. Note
that the following theorem does not use the full lim inf-rate of the previous lemma but
only requires an instantiation of the above for n = 0.

Theorem 4.3. Let X be uniformly convex and uniformly smooth and A be m-accretive
such that there exists a weak modulus for the convergence condition 2. Let

§={S() [t =0}

is the semigroup generated by A via the exponential formula. Let A~'0 # @ with p €
A710. For any x € dom A with v € Ax, we have

Yk € N Vs,s' = 7(QK.id)(2k + 1) (HS(s)x =860 = 5y i 1)’
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where

x(k) = Bbz + 1—‘(k +1)
forany b, K € N where b > ||x — Px|| as well as K > max{||v||, ||x — p|l + | pI}
Proof. First, note that we have

Jwe@ = p| = Il lim 7%= pll < llx = pl

as p € A0 (i.e. p is a fixed point for any resolvent). Therefore

|wx@| < llx = pl +lpl
for any ¢ € [0, 0o). Further, Proposition 1.2 in [1] implies

Jw @] < vl

almost everywhere as v € Ax, say for ¢ € [0, 00) \ N3. W.Lo.g. we assume that N3 D

Ny O Ny.
Now, Lemma 4.2 yields that for any k:

31 € [0 ()] \ Ns ((vx(r),jx(r)) < ﬁ) )

Now we choose a sequence (f;) C [0, 00) \ N3 using the previous () such that ¢, <
x(n) and (vx (1), jx(tn)) < ﬁ

This is well defined as N3 2 N, and by the above, we have ||wy ()], |wi (t)|| < K
for all n where also the latter is well defined. Now, id : N — N is a rate of convergence
for (vx(t4), jx(tn)) — 0. Then by assumption on €2, we get

1
VkIn < Q(K,id)(2k + 1 x(tn) — Pwx(ty)| < ———
n = @K i@k + 1) (st = Pusten)]| < 550 )
and thus, as t, < y(n), we get
1
Vi 3t < y(QK,id)(2k + 1 x@) —Pwy()| < ——— .
< @Kk + 1) (a0 = Puo)] < 35 )
Similar as in [40], using that

0 < (vx (). jx (1)) < —%%wa(t) — P

almost everywhere, we have that |wy (f) — Pwy (¢)] is nonincreasing and thus

' 1
Vk Vi > y((K,id)(2k + 1)) (||wx(t) — Pw(t)|| < D 1)).
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We then get

[wx (@) = wx @ + h)| < |wx@) = Pwxc(@)| + | Pwx(t) — wx(t + )|
=< 2||wx(t) - wa(t)”

for all ¢, h > 0 similarly as in [40] and therefore
1
Vk Vit > x(Q(K.id)(2k + 1)) Vh (”wx(t) —wx(t +h)| < k_+1)

which yields the claim. ]

The following is then an immediate extension to the case of x € dom A.
Theorem 4.4. Assume the conditions of Theorem 4.3. Let x € dom A where f : N — N

is such that f is nondecreasing and

1
Vn e NJuy, v, € X (Un € Auy A llunlls lvnll < f(1) A llup — x| < ?)
n

Then

Vk € N Vs, s' > yi(QKg,id)(6k + 5)) (”S(s)x —S(s")x|| < k—-lu)

where .
1e(j) = [zbf?* 11(/ +1)
for any by, Ky € N where by > || x — Px| + || x|| + f(3k + 2) as well as
Ki = f(3k +2) + 2| pl|.

Proof. By assumption on f, we get that there exists a u, v with v € Au such that |Ju||, ||v|| <
f(Bk + 2) and such that ||x —u|| < 1/(3(k + 1)). Therefore

[S(s)x = S(s")x|| < [Ss)x — S(s)ul| + [|S(s)u — S(s"u| + || S(s")x — S(s")u|
<2llx —ull + || S(s)u — S(s")u|

2 ’
< 3(k—+1) + “S(S)M —S(s )u”

Using the previous Theorem 4.3, since v € Au, we get that

Vk Vs, s > xe(QKg,id)(6k + 5)) (HS(s)u =S| < ﬁ)

and thus

Vk Vs.s" > yk(QUKk,id)(6k + 5)) (HS(s)x - 8(s")x| < T Jlr 1)
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since

max {[|v]l. u — pl| + I pll} < max{f(3k +2), Gk +2) +2l|pll} < K

as well as
u— Pul < [lu—Px| < |lu—x|+ [x—Px|

and thus ||u — Pu| < by. |

Remark 4.5. As revealed by the quantitative analysis, the above result as well as The-
orem 4.3 already hold in general Banach spaces whenever there exist selections of the
duality map and of the projection satisfying some simple requirements. See Section 5 for
further comments on this.

4.2. The asymptotic behavior of almost-orbits of nonlinear semigroups

We now turn to an analysis of Xu’s result. For that, consider the setup from Theorem 1.3
and write S = {S(¢) | ¢t > 0} for the semigroup generated by A via the exponential formula
as before.

Theorem 4.6. Let X be uniformly convex and uniformly smooth and A be m-accretive
such that there exists a weak modulus for the convergence condition 2. Let

§={St):t>0}

be the semigroup generated by A via the exponential formula. Let A~'0 # @ with p €
A710 and assume that P, the nearest point projection onto A~10, is uniformly continuous
on bounded subsets of X with a modulus w : N2 > N, ie.

B 1
Vr,keNVx,yGBr(P)(||X—J’||f ”PX_PyHSk-i-l)

and, without loss of generality, assume that w(r,k) > k for all r,k € N. Let u be an
almost-orbit of S with a rate of metastability ® on the almost-orbit condition, i.e.

1
w(r k) +1

VkeNV/f:N—NiIn<dk, f)Vie[0, f(n)] (”S(l)u(n)—u(t +n)|| < T J]F 1)

Let B € N* be such that |u(t) — p|| < B forallt > 0andlet fs : N — N fors > 0 be
such that fs is nondecreasing and

1
VneNAxg,, ysneX (ysneAxsn/\HxMH Hy”,“ <fs(n)/\||x”, u(s)H< +1)
Then we have

VkeNVf:N—>N3In<T(k, f)Ve.t' €[n.n+ f(n)] (Hu(l)—u(t)” < k+1)
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where
(k. £) = max {T"(8k + 7. je.s). @8k + T.hy.s) | N < T8k + 7. jip)}
with
hy,f(n) := f(max{N,n}) + max{N,n} —n,
Jk,f(n) :=max {n, ®@8k + 7. h, s)} —n
i, r(m) := Qu(Bk +2) + f(m + Qu(3k +2)),

I'(k. f) = ®(w(B. 3k +2). gr.r)
+ max {Qm(3k 4 2) | m< q)(a)(B,?ak + 2)»gk,f)}’

for Qg (k) with s > 0 defined by
Qs (k) = x(QKs . id) (3k +2)).

now with

1
x(k) == [5(3 +1)> + 11(1( +1)
forany Ky € N where K > max{ fs(w(B + 1,3k +2)),B + 1+ | pll}.

Proof. For x € dom A with v € Ax consider S(¢)x. As in the proof of Theorem 4.3, we
get

, 1
Vk e N Vi = Q (k) (||S(t)x - PS(t)x| < m) )

where :
Ql (k) = hbz + 11(9(& id)(k) + 1),

with K > max{[[v|, [[x — pll + l|pll} and b > ||x — Px]].
Claim 1. Foralls > 0,

Vk € N Vi > Q (k) (HS(t)u(S) — PS@)u(s)| = ﬁ)

Proof of Claim 1. For given s > 0, note that by assumption on f there exist ys x € Axgx
with [|xg k[l | Vsl < fs(@(B + 1,3k + 2)) such that

1 1
[sie —u)] < w(B+ 1,3k +2) + 1 (5 3(k + 1))'

For y and K x as above, since

I = Pxiell < x5 = PI = %o —u@) | + [uls) = p| < B+1,
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we have by (—) that

1
Vk € N Vi > Q(k) (||S(t)xs,k —PSOxsi| < 307 1)),

with Qg (k) defined as above since Q25(k) = Q’

X, ..(+1)(3k +2). For 1 = Q,(k), we thus

also have
HS(t)u(s) — PS(t)u(s) ||
< |S@us) = SO)xsic | + || SO)xs4c = PSW x| + | PSE)x54c — PS@)uls)||

< JJu(s) = xg x| + | SO xsx — PS@Oxsp| + | PS@)xsp — PS(E)uls)|

1 1
= 3(k+1) + 3kt 1) + | PS(O)xgx — PSE)uls)|.

Since

1

|S@xsx = SOus)| < [xex —ul)| < oB+13k+2)+1

(using nonexpansivity of S(¢)) as well as

|SOxsx — p| < llxsk — pll < B+1

and ||S(t)u(s) — p|| < B < B + 1 (using nonexpansivity of S(¢) and that p is a common
fixed-point of all S(¢)), we conclude that | PS(¢)xsx — PS()u(s)|| <1/(3(k + 1)). This
yields the claim. ]

Claim 2. Forallk e Nand f : N — N:

In < T(k. f) Vi € [n.n + f()] (||u<f>—Pu<f>” S 1)

Proof of Claim 2. For givenk € N and f : N — N, consider the function g s as defined
above. Using the fact that u is an almost-orbit with rate of metastability ®, there is some
no < ®(w(B, 3k + 2), gk, r) such that

1
Vit e [O,gk’f(no)] (”S(I)u(”O) —u(t + ”0)” = w(B,3k +2) + 1)'

Since | S(t)u(no) — p|, |lu(t + no) — p|| < B, we conclude that

vVt € [O 8k, f(no)] (HPS(I)u(nO) — Pu(t +n0)“ < 3(k1+ 1))
Thus, for ¢ € [0, gk, r (n9)], we get
[u(t + no) — Pu(t + no)|
< ||u(t +no)—S(t)u(no) H + || S(Hu(ng)— PS(t)u(ng) || + ” PS(t)u(ng)— Pu(t+no) ||

2
< 3ty H8Ou@o) — PSOuo)|.



P. Pinto and N. Pischke 1258
Using Claim 1, we get

Vi > Qo (3k +2) (HS(t)u(no) PS(t)u(no)| = 3(k1+ ))
from which follows that
Vi € [Qny 3k +2), gk, 7 (n0)] (||u(t + 1) — Pu(t +no)| < 3 i 1)
and thus
Vi € [no + Quy 3k + 2), 10 + gk, 7 (n0)] (||”(f) —Pu®)| = = 1)

This yields the claim by the definition of g 1. ]
Claim 3. Forallk, N e Nand f : N — N:

An € [N,max {N, 2k + 1.hy,s)}] Vi < f(n) (||S(t)u(n) —u(t+n)| < kL—I—I)

Proof of Claim 3. Since ® is a rate of metastability for the almost-orbit u, there is a nat-
ural number ng < ®(2k + 1, iy, ) such that

1
Vi < hy,f(no) (”S(t)u(no) —ul(t +”0)” =20k + 1))

with iy ¢ defined as above. Writing n := max{N,no} € [N, max{N, ®(2k + 1,hn r)}],
we have for ¢t < f(n) that

”S(t)u(n) —u(t +n)”
< |S@um) — S +n —no)uno)| + | S +n + no)u(ne) —u( + n)|
< [u@m) — S(n —no)u(no)| + | St +n — no)u(no) —u(t + n)|.

Sincen —ng <t +n—ngo < hy, r(no), we conclude the claim. [

Claim 4. Forallk € N and f : N — N, there is some no < I''(8k + 7, ji, r) such that

dn; < max {no,CD(Sk + 7, hy,, f)} vVt < f(ny1) (”u(m) —ul(t +n1)|| < 2(k1+ 1))

Proof of Claim 4. Letk € N and f : N — N be given. From Claim 2 with the function
Jk,r defined as above, we may consider ng < I'"(8k + 7, ji, ) such that

Vi € [no.n0 + Jji,f (n0)] (””(I)_P”(t)“ = 8(k1+ ))

By Claim 3, there exists ny € [ng, max{ng, ®(8k + 7, h,,, r)}] satisfying

Vi < f(n) (HS(r)u(nl) Sl )| < 4(k1+ 1))
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Since ny € [ng, max{ng, ®(8k + 7, h,,, r)}] = [no. 1o + Jjk, r(no)], we also have

1
|u(n1) — Puny)| < Skt

Thus, for any t < f(ny):

|lu(ny) —u@ 4+ ny)|| < |Jumn) = Pu(ny)| + | Pu(ny) — S(@)u(ny)||
+ ||S(t)u(n1) —u(t +n1)H
< 2|u(ny) = Pu(ny) | + || S@u(ny) —u +ny)|
2 1 1
S8+ D) Akt D20+ 1)

which yields the claim. ]

Lastly, using the n; from Claim 4, by triangle inequality it follows that

Ve,t" € [n1,ny + f(n)] (””(t)_u(t/)” =% _1|_ 1)

and this yields the claim of the theorem, noticing that n; < I'(k, f). L]

Remark 4.7. Similar to Remark 4.5, as revealed by the quantitative analysis, the above
result already holds in general Banach spaces whenever there exist suitable selections of
the duality map and projection. We again refer to Section 5 for further comments on this.

This theorem is now (essentially) a true finitization of Xu’s original convergence result
since it trivially (though non-effectively) implies back the original statement but only talks
about finite initial segments (if relativized to sequences t, with t,, — 00).

Remark 4.8. Asused above, if X is uniformly convex, then P is uniformly continuous on
bounded subsets of X and it should be noted that in a given modulus of uniform convexity
n:(0,2] — (0, 1] in the sense that

Vae&ﬂvnyeX(MWWWflAM—szs+HX+y

fl—ﬂ@)

one can compute a modulus of uniform continuity w for P as used above. Concretely, we
want to mention the following result given e.g. in [46]: if dist(x, A7'0) < r and

1 £
_ < _
I =51 = 5o( 15 )

e enle) }
"4 4(1-n() )’

then || Px — Py| < e. From this, a suitable modulus w(r, k) can be immediately derived.

where
a(g) = min {1
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Now, similarly to [25] and as discussed in the introduction already, the analysis of
Xu’s result (by being essentially constructive) allows for the extraction of two kinds of
quantitative “translations" and we now focus on the other variant compared to the above
which translates the stronger quantitative assumption of a rate of convergence for the
almost-orbit into a rate of convergence of the solution of the Cauchy problem towards a
zero of the operator A.

Theorem 4.9. Let X be uniformly convex and uniformly smooth and A be m-accretive
such that there exists a weak modulus for the convergence condition 2. Let

S§={S() [t =0}

is the semigroup generated by A via the exponential formula. Let A~'0 # @ with p € A~10
and assume that P, the nearest point projection onto A0, is uniformly continuous on
bounded subsets of X with a modulus w : N2 > N, je.

— 1 1
Vr,k e NVx,yeB — < — Px—Py| < ——|,
ke vy € B (vl = oo~ 1Px = Pyl < )

and, without loss of generality, assume that w(r,k) > k for all r,k € N. Let u be an
almost-orbit with a rate of convergence ® : N — N on the almost-orbit condition, i.e.

Vk € N Vs > ®(k) (flzlg Hu(s +1)— S(l)u(s)H = k;~|—1)

Let B € N* be such that ||u(t) — p|| < B forallt > 0andlet fs : N — N fors > 0 be
such that f; is nondecreasing and

1
VneNAxgp, ysn€X (ys,n €Axsu A Xsnlls [ Vsnll < fs(n)/\”xS,n_u(s) ” = m)

Then we have

k+1
where s* = ®(w(B, 24k + 23)) and where Q25(k) is defined as in Theorem 4.6.

Vk Vit > max {@(8k + 7),s* + Qg (24k + 23)}(||u(t) —u(t)| < L)

Proof. Given a rate of convergence ® on the almost-orbit condition, it is clear that (ignor-
ing the slight abuse of notation) ®(k, f) := ®(k) is a rate of metastability for the almost-
orbit. Therefore, by Theorem 4.6, we get that the previously constructed I'(k, f) is rate
of metastability for the conclusion. As shown® in [29, Proposition 2.6], a function p :
(0, 00) — N is a Cauchy rate of a sequence iff ¢(g, ) := p(e) is a rate of metastability
(which also holds in our adapted context where we consider rates to be functions operating
on natural numbers as errors). Now, using that ®(k, f) = ®(k), we find by inspection of
the defining term that also I'(k, f) is independent of the parameter f. Thus, we get that

Correction to [29, Proposition 2.6]: “p : (0, c0) — N instead of “p : (0, c0) — (0, 00)”.
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['(k) := ['(k, f) is a rate of convergence and the given bound in the above theorem just
results by simplifying the expressions accordingly. ]

Note in particular that the above result is indeed a consequence of the previous meta-
stability result and does not require one to reiterate the proof. In that way, the metastability
result already contained the quantitative information regarding rates of convergence. We
refer to [22] for further discussions of such phenomena.

Remark 4.10. Such a rate of convergence of the almost-orbit condition as required as a
premise in the above theorem, i.e. a ® : N — N such that

Vk € NVs = ®(k) (3;13 |uts +1) = S@us)| < kLH)

can actually be derived from the seemingly weaker assumption on the existence of a ®
such that

Vk € N 3dsy < (k) (flzl%) Hu(so +1)— S(t)u(so)” < ﬁ)

Namely, for given k € N and for s > so with 5o < ¢(2k + 1) as stipulated above, we can
express s = sg + 51 for s; > 0 and then compute for all # > 0:
[uts +1) = S@u(s)| = |ulso + 51 +1) — SEulso + s1)||
< ||u(s0 +s514+1) - St + sl)u(so)n
+ | S + s1)ulso) — S()ulso + s1) |

< 50 SO GG = Swutso + 50|
= 2(]{;4_1) + ||S(SI)M(S0) _u(S() + SI)H

1
= m

Thus, ®(k) = ¢(2k + 1) is actually a full rate of convergence. This remark also applies
to the results regarding rates of convergence presented in [25] which thus also essentially
depend on a rate of convergence of the almost-orbit condition.

Further, note that in both cases the existence of the assumed bound on ||u () — p|| is
actually guaranteed by the assumption of u being an almost-orbit and that A=10 # @: the
definition implies

5% sup “u(t + 57— S(t)u(s*)” <1

t>0

and thus for p € A710, we have
|ut +5*) = p|| < |ut +s*) = SOu™)| + | SEu(s*) - p||
<1+ |u(s*)—p| <o
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for all # > 0. As u is continuous, we get that

sup ||u(t) - p|| <00
t€[0,s*]

which implies that u(¢) — p is bounded in norm. Note that a concrete bound can therefore
be computed using a modulus of continuity for ¥ on bounded sets together with a rate of
convergence ® on the almost-orbit condition and a norm upper bound on p.

5. Logical aspects of the above results

As discussed in the introduction already, the above quantitative results and considera-
tions on the convergence condition of Pazy (and its extension by Nevanlinna and Reich)
were obtained in the context of the proof mining program (see again the references in the
introduction) and as further commented on there, these extractions rest on some logical
properties which we want to discuss in this section. For this, we strongly rely on [21], in
general, and [43], in particular, for background information and notation (and only remind
on key notions, properties and notations in footnotes).

The starting point for these considerations are the logical systems introduced in [43]
(whose notation we follow) for an axiomatic treatment of set-valued accretive operat-
ors and their resolvents which is amenable for the proof-theoretic techniques used in
contemporary proof mining for the extraction of explicit quantitative information from
(non-)constructive proofs.

Following [43], we denote this system for abstract normed spaces with an accretive
operator with total resolvents by 'V which, as discussed in there, allows for the immediate
formalization of large parts of m-accretive operator theory. Further, as also shown in [43],
there is a bound extraction theorem for V* obtained by following the methods developed
in [14,20].

Theorem 5.1 ([43]). Let t be admissible’, § be of the form N — (--- — (N — N)) and s
be a closed term of V® of type § — o for admissible . Let By(x,y,z,u)/C3(x,y,z,v)
be V-/3 -farmulas8 of V¥ with only x,y,z,u/x,y,z,v free. Let A be a set of sentences
of the form® ¥a%3b =g ravc¥B,r(a, b, c) where By is quantifier-free, r is a tuple of
closed terms of suitable types and all types in §, o, y are admissible.

If
VO 4+ AR VX ¥y <4 s(x) V2" (Vul By (x, y,z,u) — 3N C5 (x, y,2,v)),

7A type 7 is called admissible if it is of the form o1 — (-+- — (0% — X)) or o7 — (--- — (0x — N)),
including N and X, and where each o; is of the foom N — (- > (N > N))or N - (--- > (N - X))
(also including N and X).

8 A formula is called a V-formula (respectively 3 -formula) if it has the form Ya F, 7 (a) (respectively
Ja Fy(a)), where F, s is quantifier-free and a are variables of admissible types.

“Here, < is defined pointwise with x <y y := ||x|lx <r |||lx for the base type X and n <y m :=
n < m for the base type N.
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then one can extract a bar-recursively computable partial function ® : S x S x N — N
such that for all x € Ss, z € Sy, z* € Sz and alln € N, if z* = z'% and n >g || J{(0)]|x,
then

$SOXEVy <4 5(x) (Yu<®(x,z*,n) By(x,y,z,u) = Jv < ®(x,z*,1) C3 (x, ,2,0))

holds for all (real) normed spaces (X, ||-||) with x4 interpreted by the characteristic func-
tion of an m-accretive operator A and JX4 by corresponding resolvents J)f1 fory >0
whenever $®X = A.

If we remove (essentially) the law of excluded middle and move to a semi-constructive
version of V®, then the above bound extraction theorem can be vastly strengthened, like,
e.g., by lifting the restrictions on the types, on the extensionality as well as on the com-
plexity of the formula, on the amount of choice and to some degree on the complexity of
the non-constructive principles allowed (see [13] for an extensive discussion).

In that vein, we consider the system V{” which is defined (essentially similar to the
definition of the related system J7;“ given in [30]) by extending the system

AC[X. [I] = E-HA®[ X, ||-|] + AC

from [13] with the axioms of A4 and its resolvent J);‘1 as outlined in [43]
Now, by use of the same methods developed in [13] (see also [30]), we obtain the
following bound extraction result.

Theorem 5.2 (essentially [30]). Let § be of the form N — (--- - (N — N)) and o, t
be arbitrary, s be a closed term of suitable type. Let B(x,y,z)/C(x,y,z,u) be arbitrary
formulas of V{® with only x,y,z/x,y,z,u free. Let '~ be a set of sentences of the form
VEQ(C(Z) — 3v <g tu—D(u,v)) where {, B are arbitrary types, C, D are arbitrary
formulas and t are closed terms. o

If
VO + o -Vl Vy <4 5(x) V27 (=B(x, y,2) = JuNC(x, y, z,u)),

one can extract a @ : §5 X § x N — N with is primitive recursive in the sense of Godel
such that for any x € Sg, any y € S with y <4 s(x), any z € §; and z* € Sz withz* = z'!
and any n € N withn >g ||J1A(0)||X, we have that

§OX = 3u < d(x,z%,n) (=B(x,y,z) > C(x,y,z,u))

holds for all (real) normed spaces (X, ||-||) with y4 interpreted by the characteristic func-
tion of an m-accretive operator A and J*4 by corresponding resolvents J;l fory >0
whenever §®X = T-.

9Here and in the following, z* = z denotes the extended strong majorization relation from the definition
of the model M®X as defined in [14] (see also [43]).
""Here, > denotes (not necessarily strong) majorization interpreted in the model $©-X .



P. Pinto and N. Pischke 1264

Now, while V®/V? are strong base systems (see again the discussion in [43]), the
applications presented here require the use of further extensions of these systems to handle
the various additional notions present in the theorems of Nevanlinna and Reich as well
as Xu. We shortly mention these in the following, before turning to logical remarks on the
convergence condition.

A point neglected in the following discussion is the treatment of the main object of
the above results and proofs: the semigroup generated by an accretive operator via the
exponential formula. A detailed treatment of those (together with various other objects
surrounding them) is given in the forthcoming [44] and the combination of the logical
considerations of the following subsection and of [44] then provides the full underlying
system for formalizing the above results as well as their proofs and thus provide the basis
for the extractions outlined above.

5.1. Uniform convexity and projections

As discussed already in some of the earliest papers on the treatment of abstract spaces
in proof mining (see e.g. [14]), uniformly convex spaces can be treated by adding an
additional constant together with a corresponding universal axiom to express that this new
constant represents a modulus of uniform convexity.

In the works [40, 51], the uniform convexity is only assumed to infer the existence of
an (in the case of Xu, uniformly continuous) selection of the projection map onto closed
and convex subsets of X. In fact, the only selection map of a projection ever needed is a
selection of the projection onto the set A~!0 which we as before denote just by P. For that,
the set 4710 is assumed to be non-empty which can be hardwired into the language of the
systems by adding a designated constant pg of type X together with the corresponding
axiom

(NE) 0 € Apo.

In the context of the above systems for the treatment of m-accretive operators and their
extensions, this kind of projection map can be immediately treated by adding a further
constant P of type X(X) together with the axiom scheme

(P1) Vx¥X, pX(0 € A(Px) A (0 € Ap — |x — Px| <r |lx — pID),

characterizing that P is indeed a selection of the projection onto the set A~10. In particu-
lar, note also that these axioms are in particular purely universal as the statement 0 € Ap
in the context of the system V¢ is quantifier-free, being an abbreviation for y4(p,0) =n 0
(see the discussion in [43]). Note also again that in that way, as stressed before, the treat-
ment of the projection does not require it to be unique but only to be a suitable selection
from the potentially multi-valued nearest point projection.

Further, it is immediate from the axioms that P is provably majorizable in V¢ +
(P1) + (NE) as we can prove

[Px]l < llxll + llx = Px|| < [lx]| + llx — poll = 2lIx[| + [l poll
from the axioms (P1) and (NE).
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If extensionality or continuity is needed for the projection P (as is the case in the
context of Xu’s result), the above system needs to be extended with a modulus of uniform
continuity w? of type N — (N — N) together with a corresponding axiom like

VI’N,kN,XX, yX
(P2) < < 1 Px—Py| <2
(Ix = poll. Iy = poll =7 A lx =yl < PEOF [Px—Py| =< k—+1)
In that way, the bound extraction theorems stated in Theorem 5.1 and Theorem 5.2
immediately extend to the system V® + (NE) + (P1) (4+(P2)) where one then addi-

tionally requires n to satisfy n > || po|| (and in the case of (P2), ® additionally depends
P
onw").

5.2. Uniform smoothness and the normalized duality map

Regarding uniformly smooth spaces, we focus on the dual characterization of such spaces
via the requirement of a single-valued duality map J which is norm-to-norm uniformly
continuous on bounded subsets.
As becomes clear through inspection of the analyses presented above, they actually
“only” require a function
J: X —>X*

which selects some point from the duality set and satisfies the following properties:
(1) (y = Px,J(x — Px)) <Oforallx € X andall y € A~10;
2) (u—v,J(x —y)) =0forall (x,u),(y,v) € A.

Both properties are satisfied for the unique selection if X is uniformly smooth and 4 is
m-accretive with
A0 #£0

and where a selection P of the projection onto that set exists as above. But, actually, any
such selection suffices which is in particular suggested by the proof-theoretic perspective.

In that way, our situation is similar to that of [27] where the authors introduced a proof-
theoretic treatment of such duality selection maps in the context of the general framework
introduced in [14,20] and we in the following build on this treatment (and in that way
strongly rely on the background and notation of [27]) to provide further extensions of the
above system to deal with these objects associated with the duality mapping.

In that way, we find that the use of the duality map made in the above extractions can
be formalized in the context of the extension of the above system V* 4 (P1) + (NE)
(+(P2)) by the constants J and w” together with the axioms introduced in [27], i.e.

1) VX yX (Jxx =g [IX[> A [T xy| < (<]
A Val,ﬁl,uX,UX(Jx(om + Bv) =r aJ xu + ﬂJxv)),

VX X X RN () vl <e R
(/2)

Allx =yl <r m — |Jxz—Jyz| <p llli” ),
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as well as two additional axioms expressing the above properties (1) and (2)
(M1) ¥xX, yX(0 € Ay — (y — Px,J(x — Px)) <0),
(M?2) VxX,yX,uX,vX(u € Ax Av € Ay —><u —v,J(x—y)) > 0).

The bound extraction theorems stated before also here immediately extend to the system
V¢ + (P1) 4+ (NE) + (J1) + (M1) + (M2) (+ (P2) + (J2))

as is immediately clear through the discussion in [27] and the fact that all the new axioms
are universal.

Now, by itself, the existence of a selection functional for the duality map in particular
does not imply that the latter has to be single-valued. However, as shown by Kornlein [31],
the existence of a selection functional with is uniformly norm-to-norm continuous (i.e.
satisfies axioms (J2)) is actually equivalent to uniform smoothness of the space X and
thus actually implies that this selection is the unique selection. As discussed in [27], the
uniform continuity of the selection is already implied by the logical methodology in the
case that the proof relies on the extensionality of it.

However, as the above analysis shows, the proofs of Nevanlinna and Reich as well as
Xu do not rely on uniform continuity or even extensionality of J and, in that way, can
already be formalized in the system V* + (P1) + (NE) + (J1) + (M1) + (M 2) (mod-
ulo the treatment of semigroups from [44] and with (P2) in the case of Xu) which also
explains the absence of any such moduli w” in the analysis. In particular this addition-
ally shows that the results are already valid in the context of the existence of a selection
functional satisfying (1) and (2) which is potentially weaker than uniform smoothness.

This insight that conditions (1) and (2) are sufficient, now here facilitated via a proof-
theoretic method, was essentially already observed in the last section of the work of
Nevanlinna and Reich [40] although it was not clearly stated. Instead, they listed addi-
tional conditions on the operator in order to guarantee that the conditions (1) and (2) are
naturally satisfied. Concretely, they require that the operator then is accretive in the sense
of Browder [4] to enable that the condition (2) is satisfied for any possible selection J and
they require that A=10 is a so-called proximal sun (see [40]) in order to guarantee that a
selection satisfying (1) always exists and they require that the semigroup is differentiable
so that the orbit generated by the Crandall-Liggett formula is actually a solution of the cor-
responding initial valued problem (as shown in [8]). In the vein of the previous logical dis-
cussion, we thus find that our above quantitative results also apply to these generalizations.

5.3. Logical aspects of the convergence condition

The main underlying technical tools of the bound extraction theorems mentioned above
are, on the one hand, the use of a combination of the Dialectica (or functional) inter-
pretation of Godel [15] with (a modified version of) the notion of majorizability due to
Howard [16] together with a negative translation (see [35]). The approach via this com-
bination is due to Kohlenbach [18] and in its modern form, with the additional abstract
types, was introduced in [14,20].
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On the other hand, in the semi-constructive cases, we rely on a combination of the
above mentioned notion of majorizability with the modified realizability interpretation
due to Kreisel [33,34], a combination which is originally due to Kohlenbach [19] and in
its modern form, with the additional abstract types, was introduced in [13].

Besides the quantitative analyses of the results of Nevanlinna and Reich as well as Xu,
the main contribution of this paper is the introduction of the new notions of “moduli for
the convergence condition”. Already in Bishop’s work [2], arguments for the functional
interpretation as the correct numerical interpretation of theorems of the form 3V — 3V are
given and, in modern times, the proof mining program has been very effective in arguing
that the monotone functional interpretation (in combination with a negative translation)
provides the right numerical information in the search for uniform bounds in analysis
(see in particular the detailed discussion in [28]). In the following, we will now see how,
through this lens, these moduli actually arise from the underlying logical methodology
and thus, in various ways, represent the real finitary core of the convergence condition
from both a classical and a constructive perspective.

5.3.1. The convergence condition from a classical perspective. Based on the equival-
ence laid out in Lemma 3.1, any proof that a class of operators satisfies the convergence
condition, written in the immediate formal translation

V()N X ()N X KO (wN(yi € Ax; A x|, |yl <r K)
1
+1

), (1

AVaN 3pN vl (c >N b = |(ye. J(xe — Pxe))| <r ,

1
— VKN, NN 3N (n >N N A |xp — Pxu|| <r P 1)

can be transformed into a proof for satisfying the equivalent statement
‘v’xX,yX,KI\I,kN InN
1 1
e Axnlx|, <R KA|(y,J(x—PXx))|<p — —Px|l<sg——), (@
(vearnbel v <e Knlly. S - o) <o s > lv=Pxl <2 g ) @

however at the expense of using classical logic as well as countable choice. However, this
use of countable choice is in essence only applied to a quantifier-free formula and thus
is an instance of QF-AC. It is clear that (after equivalently writing (2) with <g used in
the conclusion to make the inner matrix existential) the negative translation of (2) is equi-
valent to its original version by the use of Markov’s principle and thus that the negative
translation followed by the monotone functional interpretation, applied to (2), immedi-
ately produces a full modulus (as defined in Definition 3.4) as the suggested finitization of
this variant of the convergence condition.

Thus, a priori, through the application of the classical metatheorem given in The-
orem 5.1, we have the following:
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Proposition 5.3. There are primitive-recursive (in the sense of Godel) translations which
transform any full modulus for the convergence condition into a solution of the negative
translation followed by the monotone functional interpretation of (1), and vice versa.

Therefore, the two variants of the convergence condition and the accompanying mod-
uli can be extracted from proofs and used interchangeably without yielding a far increase
of complexity beyond the principles used in the proof. Thus the bound extraction result
discussed in Theorem 5.1 guarantees the extractability of such moduli even from classical
proofs that A satisfies the convergence condition, provided that the proof can be formal-
izedin V® + (P1) + (P2) + (NE) + (J1) + (M1) + (M2) + A (which we abbreviate
in the following by €¢) for suitable A or any extension/fragment thereof pertaining to
the bound extraction theorems. Even further, as already hinted on in Remark 3.6, this
extraction is already possible from suitable proofs of the much weaker requirement

V(x,y) € A((y.J(x = Px))=0— |x — Px|| =0).

In that way, a formalized version of the argument in Remark 3.6 in fact shows the follow-
ing:

Proposition 5.4. If €% (or any suitable extension or fragment thereof) proves that A
satisfies

V(x,y) € A ((y.J(x — Px)) =0 — ||x — Px|| = 0),
then from the proof one can extract a (potentially bar-recursively) computable full mod-
ulus for the convergence condition. If the proof does not use choice, then the modulus is
even primitive recursive in the sense of Godel.

This in particular also holds if there exists a suitable proof of the convergence condi-
tion itself as this proof can be transformed into a proof of the above property (without any
additional use of classical logic or choice).

However, the modularity of the approach to quantitative information via the mono-
tone functional interpretation further yields that from any proof using the convergence
condition as a premise (formulated in any variant as discussed above) and formalizable in
the respective systems, quantitative information on the conclusion can be extracted which
depends then additionally on such a modulus solving the monotone functional interpreta-
tion of the convergence condition. This is collected in the following derived metatheorem:

Theorem 5.5. Under the assumptions of Theorem 5.1 we have the following: If
€? VxS vy <4 s(x) VZ©
(A satisfies the convergence condition — 3 vN (3 (x,y,z, v)),
then one can extract a bar-recursively computable partial function
®: S5 x Sz x (SNomoN)? XN - N

such that for all x € Sg, z € S, z* € S, Qf we SNoNoN)yand alln e N, ifz* 2 z
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andn >r [|[JO0)|x, || pollx as well as @ 2 o, then

$X EVy <, 5(x) (Qf is a full modulus for the convergence condition for A

—Jv <y O(x,z*, Q7 0,n) C3(x,y,2,v))

holds for all (real) normed spaces (X, ||-||) with y4 interpreted by the characteristic func-
tion of an m-accretive operator A and JX4 by corresponding resolvents J)f1 fory >0
whenever §*X = A.

Moreover, if the proof does not use choice, then the modulus is even primitive recursive
in the sense of Gddel. The result remains true for any suitable extension or fragment of €.

In that way, by Proposition 5.4 and Theorem 5.5, we find that a full modulus is indeed
the right quantitative notion for the convergence condition in the sense that both items (1)
and (2), discussed previously as the central properties before Definition 3.4, are fulfilled.

5.3.2. The convergence condition from a constructive perspective. From the semi-
constructive perspective of the monotone modified realizability interpretation and the
associated systems V> + I' and their extensions, the quantitative version of the con-
vergence condition is exactly what is captured by the notion of the “simple” modulus
introduced in Definition 3.3. Concretely, applying the monotone modified realizability
interpretation to the formal statement (1) considered previously, we get that it asks for a
functional € which transforms K and majorants for (x,), (y,) (which w.l.0.g. are assumed
to coincide with the constant K-function and are in that way represented by the input K)
and a majorant of a realizer for the premise

1
Ya3b Ve (c >b— |(yc»J(xc _PXC)) = m)

i.e. of a ¢ of type 1 such that

1
Va,c (C = p(a) = |(ye, J(xe = Pxe))| = a+ 1)

into a majorant of a realizer for the conclusion
Vk,N 3 >NA| Px,| < !
, nin=> Xp— Pxp|| < —— ).
n n k + 1
i.e. into an Q(K, ¢) of type

N - (N - N)

such that

1
Yk, N3n = Q(K.¢)(k, N) (n 2 N A flen = Poxal < 1‘)'

Thus, this is exactly what is represented by a “simple” modulus for the convergence con-
dition. An immediate application of the bound extraction result contained in Theorem 5.2
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yields the following result, similarly to the previous Proposition 5.4. For this, we now
work over the semi-constructive variant of the previous theories. Concretely, we abbrevi-
ate with € in the following V{* + (P1) + (P2) + (NE) + (J1) + (M1) + (M2) + I'-
for suitable I'-.

Proposition 5.6. If € (or any suitable extension or fragment thereof) proves that A
satisfies

V(x,y)e A ((y J(x — Px)) =0—|x—Px| = 0),
then from the proof one can extract a primitive-recursive full modulus for the convergence
condition.

As discussed before, this in particular also holds if there exists a suitable proof of the
convergence condition.

Note that in the presence of the previous Proposition 5.4, the above result is neverthe-
less not void. While an intuitionistic proof is especially a classical proof, Proposition 5.4 of
course guarantees already the extractability of a full modulus. However, this only applies
in the case that the additional axioms I'- potentially contained in the above system €;”
are essentially of type A as required by Proposition 5.4. So if the real strength of ' is
used while restricting to intuitionistic logic, then the above result nevertheless guarantees
the existence and extractability of a primitive recursive full modulus.

Now, in similarity to Theorem 5.5, we obtain a macro for the logical metatheorem
contained in Theorem 5.2 which guarantees that now from a semi-constructive proof of
a result using the convergence condition as a premise, one can extract a transformation
which transforms any modulus for the convergence condition into information on the con-
clusion, even in the presence of the axioms I'-.

Theorem 5.7. Under the assumptions of Theorem 5.2 we have the following: If
€Y+ vx? Vy =5 s(x) Vz°© (A satisfies the convergence condition — 3u™ C(x, y, z, u))
one can extract a

® : S5 X 53 X SN (N> N)>(N—>N-N)) X SNo>N->N) X N = N

with is primitive recursive in the sense of Godel such that for any x € Sg, any y € Sy with
Y =g 8(x), any z € S¢ and z* € Sz with z* 2 z'%, any Q € SNo(N>N)—>(N—>(N-N)))
andanyn € N, w € SN (N-N) Withn >R 1J20)|Ix, | pollx and w = w, we have that

$OX =3y < d(x,z*,Q, w.n)
(Q is a modulus for the convergence condition for A — C(x, y, z, u))

holds for all (real) normed spaces (X, ||-||) with y 4 interpreted by the characteristic func-
tion of an m-accretive operator A and J*4 by corresponding resolvents J)j‘1 fory >0
whenever $®X =T,

2Here, > denotes (not necessarily strong) majorization interpreted in the model $©-X, as before.
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Note lastly that it is also this result which a priori guaranteed the dependence of the

quantitative versions of the result of Nevanlinna and Reich as well as Xu on our “simple”
modulus instead of on the full modulus and which in that way lies behind the extraction.
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