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The isomorphism problem for residually torsion-free
nilpotent groups

Gilbert Baumslag and Charles F. Miller III

Abstract. Both the conjugacy and isomorphism problems for finitely generated nilpotent
groups are recursively solvable. In some recent work, the first author, with a tiny modification
of work in the second author’s thesis, proved that the conjugacy problem for finitely presented,
residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algo-
rithmic picture by proving that the isomorphism problem for such groups is also recursively
unsolvable.
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1. Introduction

1.1. The main theorem. The objective of this paper is to prove the following theo-
rem.

Theorem A. There exists a recursive class of presentations of finitely presented resid-
ually torsion-free nilpotent groups with unsolvable isomorphism problem.

More precisely we will prove the

Theorem A0. Let … be the collection of all presentations of extensions of the free
group F D hs1; : : : ; sni by the free group T D hti ; : : : ; tmi with n � m defining
relations of the form

t�1
i sj ti D sj cij where cij 2 ŒF; F �

for i D 1; : : : ; m and j D 1; : : : ; n. Then the isomorphism problem for the groups
presented in … is recursively unsolvable. Each group presented in … has solvable
word problem and is residually torsion-free nilpotent.
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It is worth noting that the class … is indeed recursive. One has only to single
out, as J. Nielsen did (see, e.g., [8]), those presentations in which the images sj cij

of the given generators generate the free group F . Moreover, the residual torsion-
free nilpotence of the groups defined by … follows from the fact that free groups are
residually torsion-free nilpotent [9] once one observes that T acts like the identity on
the abelianization of F (for details, see Lemma 2, p. 302 of [1]).

One of the by-products of the approach that we have taken here is the following
theorem, which does not seem to immediately follow from the usual Adian–Rabin
construction.

Theorem B. If n is chosen sufficiently large, then there is no algorithm to determine
of a finite presentation with n generating symbols whether or not the group presented
is free abelian of rank n.

So it follows that if we consider all finite presentations then there is no algorithm
to decide which of the groups so presented are free abelian on the given generators.

1.2. One of the consequences of TheoremA. The isomorphism problem for finitely
generated nilpotent groups is solvable [5], [6]. It follows then from Theorem A that
there exist infinitely many, finitely presented, residually torsion-free nilpotent groups,
no two of which are isomorphic, with the same nilpotent factor groups. The special
case of the existence of finitely presented, residually nilpotent groups with the same
nilpotent images as a free group, the so-called parafree groups, exist in profusion.
They have been the subject of various papers (see, e.g., [2] and the references there
cited).

1.3. Some general comments. Finitely generated residually nilpotent groups can be
viewed as generalizations of finitely generated nilpotent groups and as such it makes
sense to compare them with these finitely generated nilpotent groups. Finitely gen-
erated nilpotent groups are finitely presented and have solvable word, conjugacy and
isomorphism problem. However there are continuously many finitely generated resid-
ually torsion-free nilpotent groups and so most of them are not finitely presented [1].
It follows from the fact that finitely generated nilpotent groups have solvable word
problem that finitely presented residually nilpotent groups also do. However, as noted
in the abstract, there exist finitely presented residually nilpotent groups with unsolv-
able conjugacy problem. The remaining open algorithmic problem is now settled by
Theorem A.

1.4. A sketch of the proof. The basic idea involved in both the construction of
a finitely presented residually nilpotent group with unsolvable conjugacy problem
and a recursive family of such finitely presented residually nilpotent groups with
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unsolvable isomorphism problem is contained in the thesis of the second author [12].
Miller invented a method whereby a given finite presentation

P D hs1; : : : ; sn j r1; : : : ; rmi
of a group H is transformed, by what we term here a word-conjugacy transforma-
tion !, into a presentation !.P / of a group !.H/. The complexity of the word
problem, as well as the conjugacy problem, in the groupH defined by P is reflected
in the conjugacy problem of the group G D !.H/. So, in particular, if H has an
unsolvable word problem,G has an unsolvable conjugacy problem. This observation
plays a key part in the proof of Theorem A.

In fact the proof of Theorem A is carried out in several stages. We start out with
a finitely presented group with an unsolvable word problem. We then modify it in
order to obtain another finitely presented group H with an unsolvable word problem
all of whose defining relators are commutators. Using this group H we adapt the
Adian–Rabin construction, as in [13], to produce a family Hw of finitely presented
groups parametrized by the words w in the given generators of H . Each of the Hw

is generated by the same number of generators and the given generators ofHw freely
generateHw modulo its derived group. The key fact here is thatHw turns out to be free
abelian if and only ifw DH 1 and hence has a solvable word problem. In the event that
w ¤H 1, thenHw has an unsolvable word problem. We now transform this family of
groups Hw by the word-conjugacy transformation !. Then by Corollary 5 on p. 28
of [12], the conjugacy problem for the group Gw D !.Hw/ is unsolvable whenever
w ¤H 1. The proof of Theorem A is completed by proving that if w DH 1, then the
groups Gw are all isomorphic and have a solvable conjugacy problem; consequently
the class of groupsGw has an unsolvable isomorphism problem. The proof that theGw

have a solvable conjugacy problem when w DH 1 is the most difficult technical part
of the proof and uses the same technology as that employed in [12].

1.5. The word-conjugacy transformation !. The word-conjugacy transforma-
tion ! was introduced in the second author’s thesis [12]. The very nature of !
suggests that it might well have some other uses not only in combinatorial group
theory but also in the study of associative and lie algebras. As already indicated it
plays a key role in the proof of our main theorem.

We recall the details from [12], not only for later use but also to emphasise its
importance. To this end, let

P D hs1; : : : ; sn j r1.s1; : : : ; sn/; : : : ; rm.s1; : : : ; sn/i .1/

be a given finite presentation. Then we term the presentation !.P / with generators

s1; : : : ; sn; d1; : : : ; dn; t1; : : : ; tm; q
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and defining relations

d�1
1 qd1 D s1qs

�1
1 ; : : : ; d�1

n qdn D snqs
�1
n ;

d�1
i sjdi D sj .1 � i; j � n/;

t�1
1 qt1 D qr1.s1; : : : ; sn/; : : : ; t

�1
m qtm D qrm.s1; : : : ; sn/;

t�1
i sj ti D sj .1 � i � m; 1 � j � n/

the word-conjugacy transform of (1). If J is the group presented by P and ifK is the
group presented by !.P /, then we setK D !.J / and we term it the word-conjugacy
transform of J . It is these word-conjugacy transforms that are used in the proof of
Theorem A.

2. A modification of the Adian–Rabin construction

2.1. Adjusting the presentation of a group with unsolvable word problem. We
start with a finitely presented group

A D ha1; : : : ; an j r1 D 1; : : : rm D 1i
having unsolvable word problem. Of course each ri is a word on the aj and we
sometimes write ri .Ea/ or ri .a1; : : : ; an/ to make this explicit. Let Fa be the free
group on a1; : : : ; an and similarly let Fb be the free group on b1; : : : ; bn. Now the
obvious homomorphisms mapFa andFb ontoA. As observed by Mihaı̆lova [11] (see
also [13] or [8]), the fibre product of these two homomorphisms is the subgroup S of
Fa � Fb generated by the diagonal elements a1b1; a2b2; : : : ; anbn and the elements
ra.Ea/; : : : ; rm.Ea/. (It follows that the ri .Eb/ 2 S as well.) Thus w.Ea/ 2 S if and only
if w.Ea/ DA 1. Since the word problem for A is unsolvable, there is no algorithm to
determine whether or not w.Ea/ 2 S .

Next form the HNN extension H of Fa � Fb by adding a stable letter p which
commutes with S . Then p�1w.Ea/p D w.Ea/ if and only if w.Ea/ 2 S , so the word
problem for H is unsolvable. But we observe that H can be presented as

H D ha1; : : : ; an; b1; : : : ; bn; p j Œai ; bj � D 1 .1 � i; j � n/;

Œp; aibi � D 1 .1 � i � n/; Œp; rj .Ea/� D 1 .1 � j � m/i
where we use the commutator notation Œx; y� D x�1y�1xy. Thus we have established
the following.

Lemma 1. There exists a finitely presented, torsion-free group H with unsolvable
word problem having a presentation in which all the defining relators are commuta-
tors.
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2.2. Modifying the Adian–Rabin construction. In what follows we need only the
weaker result that the relators all lie in the derived group of the free group on the given
generators. This can be established by other methods. For instance, if we embed the
group A with unsolvable word problem in a 2-generator group B using the method
of Higman, Neumann and Neumann [7], then the relators of B all lie in the derived
group of the free group on the generators given there.

TheAdian–Rabin construction [13] yields a recursive family of finite presentations
Jw parametrized by words w from a group J with unsolvable word problem. The
construction is arranged so that Jw is the trivial group if and only ifw DJ 1. Forming
the free productsKw�Zn with a free abelian group, we obtain a family of presentations
which present a free abelian group of rank n if and only if w DJ 1. But we need
a stronger property, namely that when w DJ 1 the group should be free abelian
with basis all of the generating symbols in the presentation. Here is a version of the
construction which yields such a family.

Lemma 2 (Modified Adian–Rabin construction). Let H be a group given by a finite
presentation

H D hx1; : : : ; xn j r1 D 1; : : : ; rm D 1i
where the relators ri all lie in the derived group of the free group on the xj . For any
wordw in the given generators ofH , letHw be the group with presentation obtained
from the given one forH by adding three new generators a, b, c together with defining
relations

a�1 Œb; c� a D Œw; b�;(1)

a�1 c�2bc2 a D c�2bc2;(2)

a�1 c�3b�1cbc3 a D c�3b�1cbc3;(3)

a�1 c�2�5i

Œb; c�c2�5i

a D c�2�5i

Œxi ; b�c
2�5i

; i D 1; : : : ; n;(4)

a�1 c�3�5i

Œb; c�c3�5i

a D c�3�5i

b�1Œxi ; c�bc
3�5i

; i D 1; : : : ; n;(5)

a�1 c�5i

xic
5i

a D c�5i

xic
5i

; i D 1; : : : ; n(6)

a�1 c�2i �3j

bc2i �3j

a D c�2i �3j

Œxi ; xj �bc
2i �3j

; 1 � i < j � n:(7)

Then

(i) if w ¤H 1, H is embedded in Hw by the inclusion map on generators;

(ii) the abelianization Hw=ŒHw ;Hw � is the free abelian group with basis the given
generators x1; : : : ; xn; a; b; c;

(iii) the normal closure of w in Hw is the derived group ŒHw ;Hw �; in particular, if
w DH 1 then Hw is free abelian on the given generators;
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(iv) if H has an unsolvable word problem, then the isomorphism problem for the
family of groups Hw is unsolvable.

Proof. In view of the hypothesis on the defining relators of H , its abelianization
H=ŒH;H� is free abelian with basis the images of the xi .i D 1; : : : ; n/. In particular
the xi have infinite order. Assertion (ii) is routine to check from the given relations
since both sides of each equation have the same exponent sum on each generator.

Suppose now that w ¤H 1. Then in the ordinary free product L D H � hc; b j i
of H with the free group on generators b and c, the element Œw; b� has infinite order.
It is then easy to check that the right hand sides of the equations in (1) through (7)
freely generate a free subgroup D of L. Similarly the central parts of the left hand
sides of (1) through (7) being conjugated by a (that is, Œb; c�, c�2bc2, : : : ) freely
generate a free subgroup C of L. Thus if w ¤H 1 we see that Hw has the structure
of an HNN extension of L with stable letter a which conjugates C to D as indicated
(see Subsection 3.2). So H is embedded in Hw . This proves (i).

To verify assertion (iii) we supposew DH 1. Then Œw; b� D 1 inL and by relation
(1) it follows that Œb; c� D 1, so b and c commute. Consequently, relation (2) implies
a�1ba D b and relation (3) implies a�1ca D c so that a, b, c all commute with each
other. The relations of type (4) and (5) then imply that Œxi ; b� D 1 and Œxi ; c� D 1 for
i D 1; : : : ; n. Hence by (6) it follows that a�1xia D xi for i D 1; : : : ; n. Finally the
relations (7) imply that Œxi ; xj � D 1 for 1 � i; j � n. So all the generators of Hw

commute with each other and Hw is free abelian on the given generators.
Finally to prove (iv), we observe thatHw is free abelian of rank nC 3 if and only

if w DH 1. Since H has an unsolvable word problem, we have proved (iv).
This completes the proof.

It follows immediately from Lemma 2, once we chooseH to be a finitely presented
group with unsolvable word problem in which all the relators lie in the derived group
of the ambient free group, that we have proved the following theorem.

Theorem B. If n is chosen sufficiently large, then there is no algorithm to determine
of a finite presentation with n generating symbols whether or not the group presented
is free abelian of rank n.

2.3. A second look at Lemma 2. Lemma 2 will play a crucial role in the sequel.
In order to formulate what we will require of Lemma 2 we adopt here the hypothesis
and notation employed in its formulation. In addition we will assume that the word
problem for H is recursively unsolvable. As already noted, if w DH 1, then Hw

is free abelian on the given generators and so has a solvable word problem. Hence
there is no algorithm to determine for an arbitrary word w whether or notHw Š H1.
Finally we note that w D 1 (in the free group freely generated by given generators
of H ) if and only if Œw; b� D 1 in Hw . Moreover, if w D 1, then Œw; b� D 1 is a
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consequence of the given relations r1 D 1; : : : ; rm D 1 without using relations (1)
through (7) in Lemma 2. Now observe that the parameter w appears in exactly one
relation ofHw which can be rewritten as Œw; b�a�1Œc; b�a D 1 or as ua�1Œc; b�a D 1

where u D Œw; b�. Completely revising our notation we can summarize our results
as follows:

Lemma 3. There is a recursive collection of finite presentations of groupsH1;H2; : : : ;

parametrised by the words u1; u2; : : : ; ui ; : : : ; of the form

Hi D hs1; : : : ; sn j R1.ui / D 1;R2 D 1; : : : ; Rm D 1i

with the following properties.

(1) EachRi lies in the derived group ŒFS ; FS � of the free groupFS on the generators
s1; : : : ; sn. Hence the groups Hi=ŒHi ;Hi � are all free abelian on the listed
generators.

(2) The first relation R1.ui / D 1 depends on the parameter ui and has the form
uiu0 D 1 where ui is a word depending on i and u0 is a fixed word.

(3) The relators R2; : : : ; Rm are fixed words, that is, they are the same for eachHi .

(4) u1 is the empty word and H1 is the free abelian group on the given generators.

(5) Hi is isomorphic to H1 if and only if ui D 1 in Hi .

(6) Ifui D 1 inHi , then this is a consequence of the relationsR2 D 1; : : : ; Rm D 1.

(7) If Hi is not isomorphic to H1, then ui ¤ 1 in Hi and Hi has an unsolvable
word problem.

(8) There is no algorithm to determine for an arbitrary i � 1 whether or not Hi

and H1 are isomorphic.

We remark that the properties of theHi listed in the above statement are analogous
to those of a corresponding class of groups for which triviality is undecidable that was
used in [12] to prove that the isomorphism problem for finitely presented, residually
finite groups is unsolvable.

Although not strictly necessary for what follows, it is useful to re-arrange the
above presentations. We begin by transforming each of the relations (1) through (7)
of Lemma 2. First we invert both sides of relations (2), (3) and (6). Then we insert



8 G. Baumslag and C. F. Miller III

inverse pairs and conjugate to bring them into the following forms.

aŒb; w�a�1 Œb; c� D 1;(10)
Œb; c2�a�1Œc2; b�a Œa; b� D 1;(20)

Œc; bc3�a�1Œbc3; c�a Œa; c� D 1;(30)

c2�5i

a�1c�2�5i

Œc; b�c2�5i

ac�2�5i

Œxi ; b� D 1; i D 1; : : : ; n;(40)

bc3�5i

a�1c�3�5i

Œc; b�c3�5i

ac�3�5i

b�1 Œxi ; c� D 1; i D 1; : : : ; n;(50)

Œxi ; c
5i

�a�1Œc5i

; xi �a Œa; xi � D 1; i D 1; : : : ; n;(60)

bc2i �3j

a�1c�2i �3j

b�1c2i �3j

ac�2i �3j

Œxi ; xj � D 1; 1 � i < j � n:(70)

Each of these relations (10) through (70) is equivalent to the corresponding relation in
Lemma 2 in the sense that each has the same normal closure.

Observe that as the proof of Lemma 2, if w DH 1 then relation (10) implies
Œb; c� D 1. Relations (20) through (50) have the forms v2Œa; b� D 1, v3Œa; c� D 1,
v4Œxi ; b� D 1 and v5; Œxi ; c� D 1 where each vj D 1 is a consequence of Œb; c� D 1.
Thus Œa; b� D Œa; c� D 1 and Œxib; � D Œxi ; c� D 1. Then relations (60) and (70) have
the form v6Œa; xi � D 1 and v7Œxi ; xj � D 1where v6 D 1 and v7 D 1 are consequences
of relations Œb; c� D 1 and (20) through (50). Finally the relations r1 D 1; : : : ; rm D 1

are consequences of Œb; c� D 1 and (20) through (70).

Lemma 4. The relations R1; : : : ; Rm of theHi in Lemma 3 can be taken to have the
following additional properties where p D n2�n

2
W

(1) u0 is Œs1; s2� and the relator R1 of Hi is ui Œs1; s2�;

(2) for each j D 2; : : : ; p, the relation Rj D 1 has the form vj Œsk; s`� D 1

where the word vj is a consequence of u0 D 1 and the earlier relations
R2 D 1; : : : ; Rj �1 D 1;

(3) for each j D p C 1; : : : ; m, the relator Rj is a consequence of u0 D 1 and the
earlier relations R2 D 1; : : : ; Rp D 1.

In addition the first relation of the group parametrized by the identity word u1 is
R1 D 1, that is, u0u1 D u0 D Œs1; s2� D 1.

3. Construction of the residually nilpotent groups

3.1. The groups !.Hi /. We adopt now the notation and conclusions reached in the
formulation of Lemma 4. Thus we have a family of groups

Hi D hs1; : : : ; sn j R1.ui / D 1;R2 D 1; : : : ; Rm D 1i .i D 1; 2; : : : /
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satisfying the conditions described in Lemma 4. We now apply the word-conjugacy
transformation ! introduced in Section 1.5, to each of these groups. We need to
describe the resultant groups in a little more detail. To this end, we observe that each
!.Hi / is a semi-direct product of the free group F on the generators

q; s1; : : : ; sn

by the free group T on the generators

d1; : : : ; dn; t1; : : : ; tm:

The action of T on F is described as follows:

t�1
i qti D qRi ; 1 � i � m;

t�1
i sj ti D sj ; 1 � j � n;

d�1
k qdk D skqs

�1
k ; 1 � k � n;

d�1
k sjdk D sj ; 1 � j � n:

Notice that only the relation t�1
1 qt1 D qR1.ui / depends on the parameter i , or

equivalently ui , and it has the form t�1
1 qt1 D quiu0 as noted in Lemma 4.

We emphasize, as we observed earlier, the

Lemma 5. Each Gi D !.Hi / is the split extension of the finitely generated free
group F by the finitely generated free group T . Hence each Gi has solvable word
problem and is residually finite.

Since each Ri belongs to ŒFS ; FS �, it follows that the action of each of the gen-
erators of T on F induces the trivial map on F=ŒF; F �. So, as noted already, on
appealing to Lemma 2, p. 302 of [1] we find that

Lemma 6. Gi is residually torsion-free nilpotent for i D 1; 2; : : : .

3.2. HNN extensions and the lemmas of Britton and Collins. We will need to
look at theGi as HNN extensions (see [8] or [12] for discussions of HNN extensions
and some relevant terminology). To this end observe that, because of the relations
not involving q, the group FS � T is a subgroup of Gi and the presentation of Gi

can be obtained from one for FS � T by adding the new generator q and the defining
relations

q�1tiq D tiR
�1
i ; 1 � i � m;

q�1dkskq D dksk; 1 � k � n:
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Since the subgroups generated by the left and right sides of these equations are free
on the listed generators, it follows that Gi is also an HNN extension of FS � T with
stable letter q.

We can also view, somewhat trivially, the Gi as HNN extensions with base group
F , stable letters t1; : : : ; tm; d1; : : : ; dn and associated subgroups all coinciding with
the base group F itself.

We remind the reader of some word and conjugacy terminology concerning
HNN extensions (again, see [8] or [12]). Let J D hS j Di be a group and sup-
pose that ' W A ! B is an isomorphism between the subgroups A and B of J .
Then the corresponding HNN extension E with stable letter p is presented as
E D hS; p j D;p�1ap D '.a/; a 2 Ai. If w is a word of E of the form
w D w1p

�1apw2 with a 2 A then, using the defining relations, the subword p�1ap

can be replaced by b D '.a/ to obtain w1bw2 DG w. Similarly a subword of the
form pbp�1 with b 2 B can be replaced by a D '�1.b/. In both cases the resulting
word has 2 fewer occurrences of p or p�1. A subword of either of these forms is
called a p-pinch and the process of replacing them using the defining relations as in-
dicated is called pinching or p-reduction. A word is p-reduced if it does not contain
a p-pinch. Britton’s Lemma [3] says that if w is a word of E which contains p or
p�1 and if w DE 1 then w contains a p-pinch. Recognizing p-pinches is equivalent
to determining membership in the subgroups A and B . So Britton’s Lemma reduces
the word problem for E to the join of the word problem for J and the membership
problems for A and B .

A word w is cyclically p-reduced if every cyclic permutation of w is p-reduced.
Collins’ Lemma [4] asserts that if u; v 2 E are cyclically p-reduced which are
conjugate inE and if u begins with p, then there is a cyclic permutation Nv of v which
also begins with p and an element a 2 A such that a�1ua DE Nv. Moreover u
and Nv are p-parallel meaning they have the same sequence of p˙1’s appearing in
them. Under similar hypotheses, in case u begins with p�1 then for some b 2 B and
cyclic permutation Nv of v which also begins with p�1 we have b�1ub DE Nv. Similar
versions of Britton’s and Collins’ lemmas apply when there are several stable letters.

We are now in a position to discuss the groups Gi in more detail.

3.3. Relating conjugacy in !.Hi / to equality in Hi . The following result relates
conjugacy in Gi to equality in Hi and partly explains the terminology that we have
introduced here. Again the arguments given here are modeled on those in [12].

Lemma 7. If w is any word on fs1; : : : ; sng, then qw is conjugate in Gi to q if and
only if w DHi

1. Thus if Hi has unsolvable word problem, then Gi has unsolvable
conjugacy problem. Moreover, w DHi

1 if and only if Y �1qY DGi
qw for some

word Y 2 T .

Proof. In one direction this claim is easy. For observe that the mapping which sends
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each si in Gi to the corresponding si in Hi and all other generators to the identity,
defines a homomorphism � from Gi to Hi . Then if Y �1qY DGi

qw it follows that
�.Y /�1�.Y / DHi

w and hence w DHi
1.

For the converse, suppose w DHi
1. First observe that t�1

j qtj D qRj and hence
tj qt

�1
j D qR�1

j . Also observe that d�1
k
qskdk D skq. So if x D x.si / is any word in

the si andX.di / is the corresponding word in the di thenX�1qxX D xq. Similarly,
XqX�1 D x�1qx and X�1qX D xqx�1. Combining these observations we have

.Xt�j X
�1/�1q.Xt�j X

�1/ D Xt��
j X�1qXt�j X

�1 D Xt��
j xqx�1t�j X

�1

D XxqR�
jx

�1X�1 D qxR�
jx

�1:

Since w DHi
1,

w DFS
x1.si /R

�k

j1
x1.si /

�1 : : : xk.si /R
�k

jk
xk.si /

�1

for suitable words xk in the given generators. So if we set

Y D Xk.di /t
�k

jk
Xk.si /

�1 : : : X1.di /t
�k

j1
X1.si /

�1

(note that the order has been reversed) it follows that Y �1qY DGi
qw and of course

Y 2 T as desired.

Corollary 8. If ui is the parameter in the first relation of Hi and if ui ¤ 1 in Hi ,
then Gi has an unsolvable conjugacy problem.

Actually the conjugacy problem for Gi is at least as difficult as the conjugacy
problem for Hi as we see from the following lemma.

Lemma 9. If u, v, x are any words on fs1; : : : ; sng, then qu is conjugate in Gi to qv
if and only if u and v are conjugate in Hi . Moreover, x�1ux DHi

v if and only if
Y �1x�1quxY DGi

qv for some word Y 2 T .

Proof. SinceHi is a quotient ofGi via�, qu conjugate inGi to qv clearly implies that
u and v are conjugate inHi . For the converse suppose that x�1ux DHi

v. InGi qu is
conjugate to x�1qux. Since x is a word in the fs1; : : : ; sng we can conjugate x�1qux

by a word in the dj ’s to qx�1ux. Now set w D v.x�1ux/�1. Then w DHi
1. It

follows from Lemma 7 that there is a word Y 2 T with Y �1qY D qw. So we have
Y �1qx�1uxY D qwx�1ux D qv. This proves the result.

A useful variant of Lemma 7 is the following:

Lemma 10. If x; y are any words on fs1; : : : ; sng, then xy DGi
1 if and only if there

is a word Y 2 T with Y �1qY D xqy. In this case Y.tj ; di /x D Y.tj ; disi / and
Y.tj ; disi /

�1qY.tj ; disi / D qyx.
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Proof. If Y �1qY D xqy with Y 2 T , then applying the quotient map from Gi

to Hi shows xy DHi
1. Conversely, if xy DHi

1 then by Lemma 7 for some
Y0 2 T we have Y �1

0 qY0 D qxy. Now d�1
i qsidi D siq so if x D x.si / and

X D x.di / is the corresponding word indi thenX�1qxX D xq. So lettingY D Y0X

we have Y �1qY D X�1Y �1
0 qY0X D X�1qxyX D xqy. This equation can be

rewritten as Y �1q�1Yxqy D 1 and then by Britton’s Lemma there is a q-pinch and
so Yx D Y.tj ; disi /. This completes the proof.

We now proceed as in the proof of Theorem 26, pp. 74–77 of [12].

Lemma 11. If ui is the parameter in the first relation ofHi and if ui D 1 inHi , then
the corresponding group Gi is isomorphic to G1.

Proof. Fix i > 1 and suppose that ui DHi
1. Then ui D 1 is a consequence

of the relations R2; : : : ; Rm by the properties of Hi . It follows from the proof of
Lemma 7 that there is a word Y on the generators d1; : : : ; dn; t2; : : : ; tm such that
Y �1qY D qui . Notice that t1 is not included in the generators needed to express Y .
Now Y �1qY D qui holds in every one of the groups Gj with j > 1 since only the
first relation t�1

1 qt1 D quju0 is different. Note that since Y commutes with FS , we
have YqY �1 D qu�1

i .
We now define a map ' W Gi ! G1 which sends t1 to t1Y and which fixes all of

the other generating symbols. Note that ' induces an automorphism of T since Y
does not contain t1. In G1 we calculate

'.t�1
1 qt1/ D .t1Y /

�1q.t1Y / D Y �1t�1
1 qt1Y D Y �1qu0Y

D Y �1qYu0 D quiu0 D '.quiu0/:

Since Y commutes with FS , all the other relations are preserved and so ' is a homo-
morphism.

Next we define a map  W G1/ ! Gi by  .t1/ D t1Y
�1 and  fixes all the other

generating symbols. This time we compute in Gi that

 .t�1
1 qt1/ D .t1Y

�1/�1q.t1Y
�1/ D Y t�1

1 qt1Y
�1 D Yquiu0Y

�1

D YqY �1uiu0 D qu�1
i uiu0 D qu0 D  .qu0/:

Again all the other relations are preserved and so defines a homomorphism. Clearly
' and  are mutually inverse and so Gi is isomorphic to G1.

It would seem that we have nearly finished the proof of Theorem A. But it is still
conceivable thatG1 is by “accident” isomorphic to one of theGj with uj ¤ 1 inHj .
If that were the case, then G1 would also have unsolvable conjugacy problem by
Corollary 8. So to complete the proof of Theorem A it suffices to show that G1 has a
solvable conjugacy problem.
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Of course conjugacy in G1 is modelled on H1 which is the free abelian group on
the given generators. In fact, by using the technique of the previous lemma and some
additional properties of the presentation for H1 it is possible to prove the following

Lemma 12. G1 is isomorphic to an analogous groupG0 in which all the t�1
i qti D qRi

relations have the very simple form t�1
i qti D qŒsj ; sk� or t�1

i qti D q.

Since we will not use this presentation here, we omit the proof. However we
note that the presentation of G0 has only relations which say either that two symbols
commute or, for the relations

q�1t�1
i qti D Œs˛; sˇ � and q�1d�1

k qdk D q�1s�1
k qsk;

that the commutator of two symbols is equal to the commutator of two other symbols.
It would be astounding if such a group had an unsolvable conjugacy problem. One
could hope to show there are no “accidental” isomorphisms with G1 by some more
direct technique. For instance, in each Gi adding the relation q D 1 maps Gi onto
Hi � T . Now Hi � T has solvable word problem if and only ui D 1 in Hi . So
if the normal closure of q were characteristic, one could rule out an “accidental”
isomorphism, but it is not clear whether this is true.

4. Some elementary equations in free groups

4.1. The equation xkuyk D v. In order to solve the conjugacy problem for the
group G1 we need a number of preliminary results. We recall first the theorem of
Nielsen and Schreier [8], [10] that subgroups of free groups are free. Moreover
Nielsen gave an algorithm for solving the generalized word problem in a free group.
That is, if FS D hs1; : : : ; sn j i is a free group, there is an algorithm to decide for
words w; h1; : : : ; hk on the si whether or not w belongs to the subgroup generated
by h1; : : : ; hm. An easy graphical algorithm suitable for computer use is described
in [15].

If 1 ¤ u 2 FS and we write u D zm for m 2 Z maximal, then it follows that z
generates the centralizer of u in FS . We call z a primitive root of u and note that z�1

is the only other generator of the centralizer of u. Suppose that 1 ¤ u; v 2 FS are
two reduced words. If uv D vu, then v belongs to the centralizer of u and so v D zk

for some k. In particular, u and v are powers of a common element and they have the
same primitive root (up to inverses).

On the other hand ifuv ¤ vu thenu and v generate a non-abelian free subgroupE
and, since it has rank 2, fu; vg is a free basis for E. Thus if w 2 FS and w 2 H

then w is uniquely expressible as a word in u and v.
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Lemma 13. There is an algorithm to determine of any four given words x; y; u; v 2
FS whether or not there exists an integer k 2 Z such that

xkuyk D v

in FS , and if so, to find k. If such a k exists, it is unique except when u D v and
y D u�1x�1u .and then the equation holds for all k/.

Proof. Note that xkuyk D v if and only if xkuyku�1 D vu�1, so if the equation
has a solution for some k, then vu�1 belongs to the subgroup E0 generated by x and
uyu�1. We now apply the algorithm to decide membership in E0. If vu�1 does not
lie in E0, k does not exist. So we may assume that vu�1 does lie in E0 and that we
have expressed vu�1 as a word in the generators x and uyu�1.

In case x and uyu�1 do not commute, this representation of vu�1 as a word in
the generators is unique. By inspection we can see whether it has the correct form
and if so determine k. In case x D 1 or y D 1 (but not both) then vu�1 is a power
of the non-trivial generator of E0 and again k is unique and can be determined by
inspection.

Next suppose x and uyu�1 commute and neither is trivial. Let z be a primitive
root of x. Then for some i; j we have x D zi and uyu�1 D zj . To solve the desired
equation we must have zikzjk D zk.iCj / D vu�1. First suppose vu�1 ¤ 1. Then
once again, if such a k exists, it is unique and has absolute value at most the length of
vu�1. This can easily be checked. Finally suppose vu�1 D 1, that is, u D v. Then
j D �i , and the original equation is xku.u�1x�1u/k D u which holds for every k.
This completes the proof.

4.2. Solving a “simultaneous” conjugacy problem. Recall that an elementu 2 FS

is said to be cyclically reduced if every cyclic permutation of u is freely reduced. Two
cyclically reduced words are conjugate if and only if one is a cyclic permutation of
the other. Of course this solves the conjugacy problem for FS . In more detail, if
u; v 2 FS are conjugate, then we can write u D u0u1u

�1
0 and v D v0v1v

�1
0 where

the products are freely reduced as written and u1 and v1 are cyclically reduced. Also
u1 D u2u3 and v1 D u3u2 where the products are freely reduced as written and we
choose u2 to be the shortest initial segment of u1 with the indicated properties. We
define the initial conjugator of u to v to be the word x0 D u0u2v

�1
0 and note the

calculation

x�1
0 ux0 D .v0u

�1
2 u�1

0 /.u0u2u3u
�1
0 /.u0u2v

�1
0 / D v0u3u2v

�1
0 D v:

Observe that the length of x0 is at most the maximum of the lengths of u and v. Now
if x is any solution of the equation x�1ux D v and we write x D x0.x

�1
0 x/ D x0y,

then x�1ux D y�1vy D v. Thus y commutes with v and hence y D zk for some
k 2 Z where z is a primitive root of v. We record these observations as follows:
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Lemma 14. If the two non-trivial elements u; v 2 FS are conjugate, then every
solution x of the equation x�1ux D v has the form x D x0z

k where x0 is the initial
conjugator and z is a primitive root of v

Using these observations we can now solve the “simultaneous” conjugacy prob-
lem.

Lemma 15. There is an algorithm to determine of any two sequences u1; : : : ; um and
v1; : : : ; vm of m elements of FS whether or not there exists an element x 2 FS such
that the equations

x�1u1x D v1; x
�1u2x D v2; : : : ; x

�1umx D vm

hold simultaneously. If such an x exists and v1 ¤ 1, then either .1/ x is unique
or .2/ the initial conjugator x0 for the equation x�1u1x D v1 is a solution for the
simultaneous system and the vi ’s are all powers of the primitive root z of v1.

Proof. First check to see that each pair ui ; vi is conjugate. We can assume they are
conjugate and are non-trivial. By Lemma 14, every solution of the first equation
x�1u1x D v1 has the form x D x0z

k where x0 is the initial conjugator of u1 to v1

and z is a primitive root of v1. So if we put Nui D x�1
0 uix0 for i D 2; : : : ; m, then

solving the original system is equivalent to finding a k 2 Z such that

z�k Nu2z
k D v2; : : : ; z

�k Numz
k D vm:

The elements z, Nui and vi are all fixed and so we can apply Lemma 13 to determine
whether there is a k such that the equation z�k Nu2z

k D v2 has a solution. We can
assume that such a k exists. Also by Lemma 13 this k is unique except when Nu2 D v2

and z D Nu�1
2 z Nu2, that is, except when Nu2 and v2 are both powers of z (and then the

equation holds for all k). In the first instance we just check whether zk satisfies the
remaining equations. Otherwise, we apply Lemma 13 successively to the remaining
equations. Then at some stage we will either find a unique k which does or does not
yield a solution to the remaining equations or else we find that Nui D vi and that the vi

are all powers of z. In the event that the remaining vi are all powers of z, then x
conjugates the ui to the vi for all i . This completes the proof.

5. Solution of the conjugacy problem for G1

5.1. Setting the stage for the proof. Our objective now is to find a solution of the
conjugacy problem for the groupG1. This will complete the proof of our main result,
Theorem A. For simplicity of notation we put G D G1 and H D H1. (We could use
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the even simpler presentation G0 for G1, but curiously that does not seem to be of
much advantage and so we have not utilized it here.)

We recall that the group H is modeled on the free abelian group on the si . The
arguments given below work under the somewhat more general circumstances thatH
is abelian. So the proof that G has a solvable conjugacy problem will apply both
in the case where H is free abelian and in the case where it is trivial, which was
the situation envisaged in the remark on p. 77 of [12]. So for the remainder of this
section we will assume without further mention that H is abelian. Consequently if
w 2 ŒFS ; FS � then w DH 1; also u and v are conjugate in H if and only if u DH v.
Now we can restate part of Lemma 9 as follows.

Lemma 16. Let u, v be two words of FS . Then qu is conjugate inG to qv if and only
if u DH v. Moreover, u DH v if and only if Y �1quY D qv for some word Y 2 T .

5.2. Solving the conjugacy problem for G1. We now apply these considerations
to our group G D G1 modeled on H D H1 which we are viewing as an HNN
extension in two different ways as discussed already in Subsection 3.2. We note that
the relations involving the ti and dj acting on F define T -pinches which preserve the
number of q symbols. On the other hand the relations for the stable letter q acting
on subgroups of FS � T preserve the number of ti and dj symbols. We also note
that there is an algorithm to recognize q-pinches since the associated subgroup is
completely determined by the T portion of the word. Hence for any word w of G
we can effectively find a .T; q/-reduced word xw with w DG xw, that is, xw is both
q-reduced and reduced with respect to the stable letters that generate T . Similarly we
can find a cyclically .T; q/-reduced word conjugate to w in G.

We are now in a position to begin the proof of the last part of the proof ofTheoremA.

Theorem 17. If the finitely presented group H is abelian, then G has solvable con-
jugacy problem.

Proof. Suppose we are given two wordsU , V ofG and we want to determine whether
or not they are conjugate. By the above discussion we can assume they are both
cyclically .T; q/-reduced. There are several cases to consider, which we will deal
with in turn.

5.3. Case (1): U is .T; q/-free. So here we are assuming that U does not contain
any q or T symbols, so it is an element of FS . Then V is also .T; q/-free by Collins’
Lemma. Now any element W of G can be written as AY where A 2 F and Y 2 T .
But WUW �1 D AYUY �1A�1 D AUA�1 since the T symbols commute with
the si ’s. So if U and V are conjugate inG, they are already conjugate in F and hence
in FS . Hence we can decide whether U and V are conjugate in this case.
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5.4. Case (2): U is q-free and involves at least one T symbol. So here U does
not involve q but does involves some ti or dj . Then V is also q-free and involves a T
symbol. After cyclically permuting V and taking inverses of both if necessary, we can
assume U is YA and V is YB where Y D Y.ti ; dk/ 2 T and A;B 2 FS . It suffices
to test for this arrangement whether there is an elementW 2 F withW �1UW D V .
We can easily check whether U and V are conjugate in FS � T , and so can assume
they are not. HenceW must involve a q symbol. We can supposeW is freely reduced
and of the form Cq�W1 where C 2 FS and � D ˙1. Now if

W �1UW D W �1
1 q��C�1YACq�W1 D V

then q��C�1YACq� is a q-pinch by Britton’s Lemma. Hence, if � D C1, then we
must have C�1YAC D Y.ti ; dksk/ and q�1C�1YACq D Y.tiR

�1
i ; dksk/ because

of the form of the relations for q as a stable letter. Similarly if � D �1, then we must
have C�1YAC D Y.tiR

�1
i ; dksk/ and qC�1YACq�1 D Y.ti ; dksk/. But similar

considerations apply to V D YB . So in order for U D YA and V D YB to be
conjugate inG, one of them must be conjugate in FS �T to Y.ti ; dksk/ and the other
to Y.tiR�1

i ; dksk/, and then the conjugation can be done by q or q�1. Hence we can
decide whether U and V are conjugate.

5.5. Case (3): U is T -free but involves q. Then the same is true of V , and by taking
inverses and cyclic permutations as necessary we may suppose they have the forms

U D qu1q
�2u2 : : : q

�j uj ;

V D qv1q
�2v2 : : : q

�j vj

where ui ; vi 2 FS . Moreover we can arrange that, if circularly U contains two
consecutive q symbols with the same sign, then �2 D C1. Otherwise either there is
only one q or the signs alternate.

By Collins’ Lemma it suffices to determine whether these words are conjugate by
a word of the formW.ti ; dksk/. Now for any such word we can writeW.ti ; dksk/ D
W.ti ; dk/x where x D W.1; sk/ 2 FS andW.ti ; dk/

�1qW.ti ; dk/ D xqy. Note that
xy DH 1.

Subcase (3.1): j D 1 and so U D qu1. Then V is just qv1 and, by Lemma 16, U
and V are conjugate if and only if u1 DH v1 which is decidable since H is abelian.

Subcase (3.2): There is more than one q symbol and �2 D C1. If hypothetically
W.ti ; dksk/ conjugates U to V then

V D W.ti ; dksk/
�1UW.ti ; dksk/ D qyu1xqyu2 : : : .xqy/

�j ujx

and hencev1 DFS
yu1x. Thenu1 DH v1 sincexy DH 1. Hence we can assume that

u1 DH v1 and hence by Lemma 16 find a word Y 2 T such that Y �1qu1Y D qv1.
Now we conjugate U by Y to obtain

xU D Y �1UY D qv1q Nu2q
�3 : : : q�j Nuj
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where Nui 2 FS are determined by the ui and the action of Y on q. So we are reduced
to determining whether xU is conjugate to V by a W of the desired form.

If now hypothetically W.ti ; dksk/ conjugates xU to V then

V D W.ti ; dksk/
�1 xUW.ti ; dksk/ D qyv1xqy Nu2.xqy/

�3 : : : .xqy/�j Nujx

and hence v1 DFS
yv1x or equivalently y D v1x

�1v�1
1 . So this equation becomes

V D qv1qv1x
�1v�1

1 Nu2.xqv1x
�1v�1

1 /�3 : : : .xqv1x
�1v�1

1 /�j Nujx:

Comparing the right hand side with V gives a series of equations depending on
the signs �i . For instance if �3 D �1 we would have v2 D v1x

�1v�1
1 Nu2v1xv

�1
1

while if �3 D C1 we would have v2 D v1x
�1v�1

1 Nu2x. But for any sequence
of signs �i these observations give a sequence of equations over FS of the form
Ovi D x�1 Ouix for i D 2; : : : ; j . By Lemma 15 we can determine whether a solution
x 2 FS to this system exists and if so find one. If no such solution exists, then U
and V are not conjugate in G. On the other hand if x is a solution, we also know
xv1x

�1v�1
1 DH 1 sinceH is abelian an so by Lemma 10 we can find aW 2 T such

that W �1qW D xqv1x
�1v�1

1 and hence W.ti ; dksk/ conjugates U to V . Thus we
can decided conjugacy in this subcase.

Subcase (3.3): There are an even number of q’s with alternating signs. If now
hypothetically W.ti ; dksk/ conjugates xU to V then

V D W.ti ; dksk/
�1UW.ti ; dksk/ D qyu1y

�1q�1x�1u2xqy : : : q
�1x�1u2jx:

This gives two systems of conjugacy equations: for odd indices yuiy
�1 D vi and

for even indices x�1uix D vi . Notice than none of the ui or vi can be equal to 1
since U and V are q-reduced.

Applying Lemma 15 we can decide whether solutions x; y 2 FS to these systems
exist. Hence we may assume we have found such solutions. If they are both unique,
then U and V are conjugate if and only if xy DH 1 which is decidable.

If one, say y, is unique but x is not then the initial conjugator x0 for the equation
x�1u2x D v2 solves the x-system and all the v2i are powers of the primitive root z2

of v2. So U and V are conjugate if and only if x0z
k
2y DH 1 hold for some k, that

is, if and only if x0y belongs to the subgroup of H generated by z2. Since H is a
finitely generated abelian group, there is an algorithm to determine whether such a k
exists. Similar considerations apply if x is unique but y is not unique.

We are left with the possibility that neither solution x or y is unique. In this case,
the initial conjugators x0; y0 solve the respective systems and the v2i are powers of
the primitive root z2 of v2 and the v2iC1 are powers of the primitive root z1 of v1.
Then U and V are conjugate if and only if x0z

k
2 z

`
1y0 DH 1, that is, if and only if

x0y0 belongs to the subgroup of H generated by z1 and z2. Again this is decidable
since H is finitely generated and abelian. This complete this subcase.
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5.6. Case (4): U involves both q and T symbols. Then the same is true of V and
by taking inverses and cyclic permutations as necessary we may suppose they have
the forms

U D qu1q
�2u2 : : : q

�j ujY;

V D qv1q
�2v2 : : : q

�j vjY

where ui ; vi 2 FS and Y 2 T is cyclically reduced. By Collins’ Lemma it suffices
to determine whether these words are conjugate by a word of the form W.ti ; dksk/.

Now if we hypothetically suppose thatW.ti ; dksk/
�1UW.ti ; dksk/ D V then we

have W.ti ; dk/
�1YW.ti ; dk/ D Y and so W is a power of the primitive root Z 2 T

of Y . Thus U and V are conjugate if and only

Z.ti ; dksk/
�kU.ti ; dksk/

k D V

for some k 2 Z. HereZ 2 T is fixed andZ�1qZ D xqy for fixed words x; y 2 FS .
Also Z�kqZk D xkqyk . So U and V are conjugate if and only if the equation

qv1q
�2v2 : : : q

�j vj DFS
qyku1.x

kqyk/�2u2 : : : .x
kqyk/�j ujx

k

has a solution k 2 Z (x and y are known). Now this gives a system of equations
of the form ykuix

k D vi or ykuiy
�k D vi or x�kuiy

�k D vi or x�kuix
k D vi

depending on the signs of the ei . By Lemma 13, there is an algorithm to determine
for each of these whether such a k exists. For each equation the k is unique or it holds
for all k. Hence there is an algorithm to determine whether there is a k for which all
hold simultaneously, and then U and V will be conjugate. Either it is unique or the
equations holds for all k, and then U D V . This completes the proof in this case and
hence the proof of the theorem.
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