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Virtual endomorphisms of nilpotent groups

Adilson Berlatto and Said Sidki�

Abstract. A virtual endomorphism of a group G is a homomorphism f W H ! G where H

is a subgroup of G of finite index m. The triple .G; H; f / produces a state-closed (or, self-
similar) representation ' of G on the 1-rooted m-ary tree. This paper is a study of properties
of the image G' when G is nilpotent. In particular, it is shown that if G is finitely generated,
torsion-free and nilpotent then G' has solvability degree bounded above by the number of
prime divisors of m.
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1. Introduction

A virtual endomorphism of a group G is a homomorphism f W H ! G where H is
a subgroup of G of finite index m. A recursive construction using f produces a so
called state-closed (or, self-similar) representation of G on a 1-rooted regular m-ary
tree. The kernel of this representation is the maximal subgroup K of H which is both
normal in G and is f -invariant, in the sense that Kf � K; it is called the f -core.H/.

The notion of virtual endomorphisms of groups is not recent. It already appeared in
1969, in M. Shub’s [9], in connection with endomorphisms of compact differentiable
manifolds. State-closed groups were introduced in [10], justified by the fact that the
Grigorchuk 2-group, the Gupta–Sidki p-groups, the affine group Zn GL.n; Z/ [2],
as well as an automata group of Aleshin – claimed to be free in [1] – satisfied such a
condition. State-closed representations of groups on the binary tree were studied in
some depth in [7] and dynamical aspects of these were developed by Nekrashevych
into a far-reaching theory in [6].

The question of existence of finite-state, state-closed representations of certain
groups, especially of free groups, stimulated a number of interesting constructions.

�The second author thanks Laurent Bartholdi for hospitality at École Polytechnique Fédérale – Lausanne
during November 2005 and acknowledges support from the Brazilian CNPq and Finatec.
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Glasner and Mozes [4] used ideas from homogeneous tree lattices to obtain such a
representation of a free group of rank 14 acting on the 6-tree. This was followed by
a construction by Muntyan and Savchuk (see [6], 1.10.3) for the free group of rank 2

on the 6-tree. More recently, M. Vorobets andY. Vorobets [12] have produced a proof
that a group defined on the binary tree, related to the one proposed initially byAleshin,
is indeed free of rank 3.

The present paper extends the results on free abelian state-closed groups in [7] to
finitely generated nilpotent state-closed groups. The main emphasis though is on the
subclass of torsion-free groups – following P. Hall’s notation, these are T -groups, or
Tc-groups when the nilpotency class is c.

We refer to the data fG; H � G; f W H ! G; ŒG W H� D mg as a triple .G; H; f /

of degree m. If the f -core.H/ is the trivial subgroup then f and the triple .G; H; f /

are called simple and when f is a simple epimorphism it is called recurrent. If the
only f -invariant subgroup of G is the trivial subgroup then f and the triple .G; H; f /

are called strongly simple. To give an example of a strongly simple triple, we let G

be the free nilpotent group F.c; d/ of class c, freely generated by xi (1 � i � d ),
H D hxn

i I 1 � i � d i where n is a fixed integer greater than 1 and let f be the
extension of the map xn

i ! xi (1 � i � d ). For another example, consider the

group G of lower triangular matrices
�

1 0 0
a 1 0
c b 1

�
with integer entries, H its subgroup of

index 4, formed by the matrices
�

1 0 0
2a 1 0
2c b 1

�
and define

f W
0
@ 1 0 0

2a 1 0

2c b 1

1
A !

0
@ 1 0 0

b 1 0

�c a 1

1
A :

We review state-closed groups and representations in Section 2 and illustrate how
to produce concretely state-closed nilpotent groups. Moreover, we prove that state-
closed abelian groups are small, in the sense that their centralizers in the group of
automorphisms of the tree coincide with their topological closure in this last group.

If G is an abelian group then naturally, ker.f / � f -core.H/ for any triple
.G; H; f /. The relationship between ker.f / and the f -core.H/ for general nilpotent
groups is established in Section 4.

Theorem 1. Let G be a nilpotent group, H a subgroup of finite index m in G,
f 2 Hom.H; G/ and L D f -core.H/. Then ker.f / � H

p
L, the isolator of L in H .

A group G is said to be to be compressible provided every subgroup H of finite
index in G contains a subgroup K isomorphic to G. It was shown by G. S. Smith
in [11] that Tc-groups are compressible when c � 2. We extend this result to strongly
simple triples in Subsection 5.1 as follows.



Virtual endomorphisms of nilpotent groups 23

Theorem 2. Let G be a Tc-group with c � 2 and let H be a subgroup of finite index
in G. Then there exists a subgroup K of finite index in H , which admits a strongly
simple epimorphism f W K ! G.

More on compressibility and co-Hopfianity questions concerning Tc-groups can
be found in [3].

Given an integer m > 1, let l.m/ be the number of prime divisors of m (counting
multiplicities) and a.m/ the largest exponent of the prime divisors of m. Denote by
c.G/ the nilpotency class of G, by s.G/ the derived length of G and by d.G/ the
minimum number of generators of G.

If G is a finitely generated nilpotent group and H a subgroup of G of index m then
it is well known that xG D G

core.H/
is finite and c. xG/ � a.m/. We find in Subsection 5.2

such limitations for s.G/ and c.G/ with respect to l.m/.

Theorem 3. Let G be a T -group and H a subgroup of finite index m in G. If
f W H ! G is simple then s.G/ � l.m/. If f is strongly simple then c.G/ � l.m/.

The restriction on G is striking, given that Tc-groups have faithful finite-state
representations on the binary tree (that is, m D 2) for any c � 0 (see [7]). To show
that in the first part of the theorem s.G/ cannot be replaced by c.G/, we construct
in Subsection 5.4 an ascending sequence of simple triples .Gn; Hn; fn/ where the
groups Gn are metabelian T -groups with d.Gn/ D 2, c.Gn/ D n, ŒGn W Hn� D 4.
Using another sequence of examples, we show that the limit in the second part of the
theorem is satisfactory.

It is important to observe that no such limitations exist for groups of prime power
order. For let p be a fixed prime number, G be the s-iterated wreath product Ws D
...Cp wr : : : /wr/Cp/ wr Cp , H its base subgroup and �1 the projection of H on its
1st coordinate. Then ŒG W H� D p and .G; H; �1/ is strongly simple, yet G has
nilpotency class ps and derived length s C 1.

In Section 6 we prove the following divisibility relation between indices of sub-
groups.

Theorem 4. Let G be a finitely generated nilpotent group, H a subgroup of G

of finite index ŒG W H� D m, f W H ! G a monomorphism and ŒG W H f � D
m0. Furthermore, let U be a subgroup of H and let V D hU; U f i. Suppose that
ŒV W U � D l and ŒV W U f � D l 0 are finite. Then there exist integers m1 jm, m0

1 jm0
such that lm0

1 D l 0m1.

As an application, we obtain

Theorem 5. Let G be a T -group, H a subgroup of G of finite index m which is a
square-free integer and let f W H ! G be a simple epimorphism. Then G is abelian.
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The combination of conditions a.m/ D 1 and f being a simple epimorphism
(recurrent) in the above theorem produced s.G/ D 1; that is, s.G/ D a.m/. This
raises the question about possible improvements of the bound l.m/ in Theorem 3,
under different types of conditions. Another question concerns the impact of the
combination state-closed and finite-state would have on T -groups. For simple triples
.G; H; f / where G is free abelian group of finite rank and ŒG W H� D m D 2, it was
shown in [7] (see also, [6], Sec. 2.12) that the roots of the characteristic polynomial
of f lie in the interior of the unit circle.

We thank the referee for a very careful reading of our paper, for a number of
positive suggestions and for providing the explicit formula in Section 5.4.

2. State-closed groups and representations

Let Y be a non-empty set, P.Y / the group of permutations of Y and let T .Y /

be 1-rooted tree indexed by the free monoid Y � generated by Y . Then the group
of automorphisms A D Aut.T .Y // of the tree is isomorphic to the semidirect
product of AY by P.Y / and under this identification we have the decomposition
A D .AY /P.Y /. Thus an ˛ 2 A is represented as ˛ D .˛y jy 2 Y /˛� where
˛y 2 A and � 2 Hom.A; P.Y // .

The set of states of ˛ is Q.˛/ D f˛u j u 2 Y �g. For G � A, let stabG.i/ denote
the subgroup of G formed by elements which leave the i th level vertices fixed. The
group A is the inverse limit of its quotients A

stabA.i/
and as such becomes a topological

group. Also, for u 2 Y � of length i , let �u W stabG.i/ ! A be the projection map on
the uth coordinate. A subgroup G of A is state-closed provided that Q.˛/ is a subset
of G for all ˛ 2 G and is finite-state if Q.˛/ is finite for all ˛ 2 G.

On fixing y 2 Y , we obtain the triple .G; stabG.y/; �y/. In the other direction,
given a triple .G; H; f /, we represent the group G on the right cosets of H , keeping
track of the factor sets, as in Schreier’s theorem. Then we use f to repeat this process
down a chain of subgroups. In the limit, this produces a state-closed representation
of G on a rooted tree of degree ŒG W H� as follows.

Theorem 6. Let G be a group, H a subgroup of G, and Y a right transversal of H

in G. Let � be the permutation representation of G on Y ; for g 2 G; y 2 Y , write
g� W Hy ! Hyg D Hy0, y0 2 Y and y0 D .y/g�

. Also let T .Y / be a 1-rooted
tree indexed by the free monoid Y � and let f 2 Hom.H; G/. Then the quadruple
.G; H; Y; f / provides a representation ' of G into the automorphism group of the
tree T .Y / defined by

g' D f.yg:.yg�

/�1/f ' j y 2 Y gg� :

Furthermore, ker.'/ D f -core.H/.
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To dispel difficulties with the notation in the above formula, we offer a simple
example. Let G be the additive group of integers Z, H D 2Z, and Y D f0; 1g; then
� W 0 $ 1. Define f W 2Z ! Z by 2n ! n. Then 1' D .0' ; 1'/� , which is none
other than the binary adding machine.

The proof of the theorem is a direct extension of that of Theorem 3.1 in [7] and
can be found in Section 2.5 of [6].

2.1. Producing nilpotent state-closed groups. We illustrate in this subsection how
certain initial conditions about a simple triple .G; H; f / lead to an understanding of
the properties of its state-closed representations, which in turn can be used to construct
examples of such triples. Consider the following configuration:

ŒG W H� D 4;

z 2 Z.G/; Œhzi W hzi \ H� D 2;

f W H ! G such that f W z2 ! z:

Let Y D fy1; y2; y3; y4g be a right transversal of H in G. Then we may choose
y1 D e, y2 D z and y4 D y3z. We identify yi with its subscript i . Thus z� is the
permutation .1; 2/.3; 4/ and z' D .e; z' ; e; z'/:.1; 2/.3; 4/; we suppress ' from the
notation and thus obtain

z D .e; z; e; z/:.1; 2/.3; 4/:

Let A D Aut.T .Y //; C D CA.z/. We will show that
(i) C is state-closed;
(ii) the commutator equation Œ˛; ˇ� D z has the following particular solution in C :

˛ D .˛; ˛z; ˛; ˛/.1; 2/; ˇ D .z; z; z�1ˇ; z�1ˇ/.1; 3/.2; 4/I
furthermore, the group R D h˛; ˇi is isomorphic to F.2; 2/, is recurrent and is
finite-state;

(iii) there exists � 2 NC .R/ defined by

� D .˛3�2; ˛3�2; ˛�2; ˛�2/

such that the group S D h˛; ˇ; �i is a T3 group and has the presentation

f˛; ˇ; � j Œ˛; ˇ; ˛� D Œ˛; ˇ; ˇ� D Œ˛; ˇ; �� D Œ˛; �� D e; Œˇ; �� D ˛�2g:
Proof. It is straightforward to check that the elements of the centralizer C D CA.z/

in A are of eight types:

x1 D .h1; h1; h2; h2/; x2 D .h1; h1z; h2; h2/.1; 2/;

x3 D .h1; h1; h2; h2z/.3; 4/; x4 D .h1; h1z; h2; h2z/.1; 2/.3; 4/;

x5 D .h1; h1; h2; h2/.1; 3/.2; 4/; x6 D .h1; h1z; h2; h2z/.1; 4/.2; 3/;

x7 D .h1; h1; h2; h2z/.1; 3; 2; 4/; x8 D .h1; h1z; h2; h2/.1; 4; 2; 3/;
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where in each case h1; h2 2 C . Therefore C is also state-closed.
If x; x0 2 C are such that Œx; x0� D z then there exist x2; x5 2 hx; x0i such that

Œx2; x5� D z. Let

x2 D .h1; h1z; h2; h2/.1; 2/; x5 D .k1; k1; k2; k2/.1; 3/.2; 4/:

Then Œx2; x5� D z if and only if

h2 D k�1
1 h1k1; Œh1; k1k2� D z:

One solution is h1 D h2 D x2, k1 D z, k2 D z�1x5. With these choices, rename x2

as ˛ and x5 as ˇ; thus

˛ D .˛; ˛z; ˛; ˛/.1; 2/; ˇ D .z; z; z�1ˇ; z�1ˇ/.1; 3/.2; 4/:

It can be verified directly that ˛, ˇ generate a group R isomorphic to F.2; 2/, that R

is finite-state, and recurrent.
We search in the normalizer of R in C for an element � such that h˛; ˇ; �i is

nilpotent of class 3 . Clearly, we may assume � D .�1; �1; �2; �2/. Since ��1�˛ ,
��1�ˇ stabilize the first level of the tree, there exist integers i , j , k, l , s, t such that

��1�˛ D ˛2iˇ2j zr ; ��1�ˇ D ˛2lˇ2kzs

and thus, modulo R0, we have

˛� D ˛1�2iˇ�2j ; ˇ� D ˛�2lˇ1�2k :

Since the action of � on R=R0 is nilpotent, the matrix
�

1�2i �2j
�2l 1�2k

�
has determinant 1

and trace 2. Thus
k D �i; j l D �i2:

Rather than describing all possible solutions we try

i D j D k D 0; l D 1; r D s D 0:

Then
� D .�1; �1; �2; �2/; �˛ D �; ��1�ˇ D ˛2:

Now we calculate

��1�˛ D .��1
1 �˛

1 ; ��1
1 �˛

1 ; ��1
2 �˛

2 ; ��1
2 �˛

2 /;

��1�ˇ D .��1
1 �

ˇ
2 ; ��1

1 �
ˇ
2 ; ��1

2 �1; ��1
2 �1/;

˛2 D .˛2z; ˛2z; ˛2; ˛2/:
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Thus

��1
1 �˛

1 D ��1
2 �˛

2 D e;

��1
1 �

ˇ
2 D ˛2z; ��1

2 �1 D ˛2;

�1 D �2˛2; ��1
2 �

ˇ
2 D ˛4z

and we find that �2 D ˛�2 is a solution. Thus

� D .˛3�2; ˛3�2; ˛�2; ˛�2/

satisfies all our conditions.
The group S D h˛; ˇ; �i is a T3 group with the presentation

f˛; ˇ; � j Œ˛; ˇ; ˛� D Œ˛; ˇ; ˇ� D Œ˛; ˇ; �� D Œ˛; �� D e; Œˇ; �� D ˛�2g:
The groups R, S are the first two terms of an infinite sequence of nilpotent subgroups
of CA.z/, which we will construct in Section 5.4.

2.2. State-closed abelian groups. Given ˛ 2 A we indicate the diagonal automor-
phism .˛; ˛; : : : ; ˛/ by ˛.1/ and inductively .˛.i/; ˛.i/; : : : ; ˛.i// by ˛.iC1/.

The following theorem shows that recurrent abelian groups (no conditions on type)
are in a sense small.

Theorem 7. Let Y D f1; 2; : : : ; mg, A D Aut.T .Y //.
(i) Let G be an abelian recurrent subgroup of A and CA.G/ be the centralizer of

G in A. Let yG the topological closure of G in A. Then CA.G/ D yG.
(ii) Let m be a prime number and G an infinite abelian state-closed subgroup of

A which acts transitively on the first level of the tree. Then CA.G/ D yG.

Proof. (i) Let the vertices of T .Y / be indexed by sequences from Y D f1; 2; : : : ; mg.
Let G induce the permutation group P on the set Y . Then P is an abelian transitive
permutation group of degree m and is therefore regular; it follows that the stabilizer in
G of any y 2 Y is the same as the stabilizer of the first level of the tree H D stabG.1/.
Since the representation of G is recurrent, the projection �v of stabG.k/ on any of its
coordinates v produces the group G.

For every � 2 P , choose a0.�/ D .a0.�/1; : : : ; a0.�/m/� 2 G which induces �

on Y . Let h D .h1; h2; : : : ; hm/ 2 H . Then

ha0.�/ D ..h1/a0.�/1 ; .h2/a0.�/2 ; : : : ; .hm/a0.�/m/� D .h1; h2; : : : ; hm/�

since hi ; a0.�/i 2 G which is abelian. On varying � 2 P we find that h D
.h1; h1; : : : ; h1/.
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Now for every � 2 P , there exists a1.�/ D .a0.�/; : : : ; a0.�// 2 H , which
induces � .1/ modulo stabA.2/. Thus we produce a sequence ai .�/ 2 stabG.i/ of
elements in G such that ai .�/ D � .i/ modulo stabA.i C 1/.

Let � 2 C D CA.G/. Then

� D .�1; : : : ; �m/�;

� 0 D �:a0.�/�1 D .� 0
1; : : : ; � 0

m/ 2 stabC .1/

and � 0
1 D � � � D � 0

m; say � 0
1 induces a permutation � 0 on Y . Thus

�:a0.�/�1:a1.� 0/�1 2 stabC .2/:

We produce in this manner a sequence

a0.�/; a1.� 0/; a2.� 00/; : : :

of elements of G such that � is equal to the infinite product

a0.�/a1.� 0/a2.� 00/ : : : :

Hence, CA.G/ D yG.
(ii) Let m D p, a prime number. The permutation group P induced on Y D

f1; : : : ; pg is cyclic, say generated by � . Since G is infinite, there exists an h D
.h1; h1; : : : ; h1/ 2 H such that h1 62 H and therefore we may assume h1 induces �

on Y . We produce elements ai 2 G such that ai D � .i/ modulo stabA.i C 1/ and
the proof continues as previously.

The group G in part (ii) need not be recurrent. For example, let Y D f1; 2g and
G be the cyclic subgroup of Aut.T .Y // generated by ˛ D .e; ˛3/� where � is the
transposition .1; 2/.

Proposition 1. Let G be a finitely generated abelian group, H a normal subgroup
of G such that G

H
is cyclic of prime power order. Suppose .G; H; f / is a simple triple.

Then either G is finite or free abelian.

Proof. Let Tor.G/ be the torsion subgroup of G. Then we have the decompositions

G D Tor.G/ ˚ K; H D Tor.H/ ˚ M

where Tor.H/ � Tor.G/ and we may assume that M � K. Suppose G is a mixed
group. Then the first possibility is that K D M and Tor.G/

Tor.H/
is cyclic. Let n be the

exponent of Tor.G/. Then we have .M n/f D .M f /n � Gn D M n, a contradiction.
The other possibility is that Tor.G/ D Tor.H/ and K

M
is finite cyclic; but as Tor.H/

is f -invariant, Tor.G/ D Tor.H/ D feg, and again we have a contradiction.



Virtual endomorphisms of nilpotent groups 29

3. Sub-triples and quotient triples

A subgroup K of G is called semi-invariant under the action of f provided that
.K \ H/f � K. If K � H and Kf � K then K is f -invariant. Given a
triple .G; H; f / and G1 � G, H1 � H \ G1 such that .H1/f � G1, we call
.G1; H1; f jH1

/ a sub-triple. If N is a normal semi-invariant subgroup of G then
Nf W HN

N
! G

N
given by Nf W N ha ! N hf is well defined and

�
G
N

; HN
N

; Nf
�

is a
quotient triple.

Given a triple .G; H; f /, we produce a sequence of subtriples .G.i/; H.i/; fi /

defined as follows:

G.0/ D G; H.0/ D H; f0 D f;

and for i � 1

G.i/ D H.i � 1/f ; H.i/ D H.i � 1/ \ G.i/; fi D fi�1jH.i/:

Clearly, if f is an epimorphism, then the sequence stops at i D 0.

Example 1. The following group G of automorphisms of the binary tree provides an
example for which the sequence G.i/ is infinite,

G D h˛ D .1; ˛ˇ2/�; ˇ D .˛; ˛/i:
It is straightforward to check that G is free abelian of rank 2, the subgroup
H D h˛2; ˇi is of index 2 and the projection of H on the second coordinate is
an extension of

f W ˛2 ! ˛ˇ2; ˇ ! ˛:

We claim that for i � 1

G.i/ D h˛2i�1

; ˛ri ˇ2i
where

r1 D r2 D 1 and ri D 1 C 4ti such that tiri�1 � 1 .mod 2i�2/ for i � 3:

The assertion is true for i D 1; 2:

G.0/ D G D h˛; ˇi; H.0/ D H D h˛2; ˇiI
G.1/ D H.0/f D h˛ˇ2; ˛i D h˛; ˇ2i;
H.1/ D h˛2; ˇ2iI
G.2/ D H.1/f D h˛ˇ2; ˛2i D h˛2; ˛ˇ2i:

Now suppose

G.i/ D h˛2i�1

; ˛ri ˇ2i:



30 A. Berlatto and S. Sidki

Then

H.i/ D h.˛ri ˇ2/2; ˛2i�1i;
G.i C 1/ D h.˛ˇ2/ri ˛4; .˛ˇ2/2i�2i:

Viewing G as an additive group with basis ˛; ˇ, the generators of G.i C 1/ are the

rows of the matrix M D
�

4Cri 2ri

2i�2 2i�1

�
.

Let m, k be integers such that mri C k2i�2 D 1 and let S D
�

2i�2 �ri

m k

�
. Then

det.S/ D 1 and

SM D
�

2i 0

m.4 C ri / C k2i�2 2

�
:

Since m.4 C ri / C k2i�2 D 4m C mri C k2i�2 D 4m C 1, we have

G.i C 1/ D h˛2i

; ˛1C4mˇ2i:
Clearly, ŒG W G.i/� D 2i and therefore G.i/ 6D G.j / for i < j .

Proposition 2. Let G be group, H a subgroup G and suppose that .G; H; f / is a
simple triple such that G D Z.G/H f H . Define

G.1/ D H f ; H.1/ D H \ H f ; f1 D f jH.1/:

Then .G.1/; H.1/; f1/ is a simple triple.

Proof. Let Y be a right transversal of H in G such that Y is contained in Z.G/H f .
Let K be a subgroup of H.1/, normal in G.1/, with Kf � K. Then K � Kf �1

and
Kf �1

is normal in H . Thus

K D Ky � .Kf �1

/y D .Kf �1

/hy

for all y 2 Y and all h 2 H ; that is, K � .Kf �1
/g for all g 2 G. Let M DT

g2G.Kf �1
/g . Then M � Kf �1 � H , and M is normal in G such that

K � M � Kf �1

; M f � K � M I
hence M D feg D K.

The above result is a generalization of Lemma 3.2 in [7].

Lemma 1. Let .G; H; f / be a triple. Suppose B is semi-invariant and G
p

B is a
group. Then G

p
B is semi-invariant.

Proof. Let x 2 H
p

B . Then x 2 H and xn 2 B \ H for some n. Therefore,

.xn/f D .xf /n 2 .B \ H/f

and so xf 2 G
p

.B \ H/f � G
p

B .
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3.1. Facts about nilpotent groups. We list below some facts about nilpotent groups
which are either well known (see [5],[8]) or have direct proofs. Let

Zi .G/ and �i .G/ .1 � i � c/

denote the upper and lower central series of G, respectively.

I. Let G be a nilpotent group of class c.

1. For all 1 � i; j � c:

Œ�i .G/; �j .G/� � �iCj .G/;

ŒZi .G/; �j .G/� � Zi�j .G/:

2. If G D Zi .G/H for some i , then for all 1 � j � c:

�j .G/ � Zi�j C1.G/�j .H/;

�iC1.H/ D �iC1.G/:

3. The subset Tor.G/ of G of elements of finite order is a subgroup of G.
4. If Z.G/ � Tor.G/ then G D Tor.G/.
5. Suppose that N is a normal torsion-free subgroup of G. Let x 2 G, y 2 N

and n a positive integer. Then

Œxn; y� D e H) Œx; y� D e:

6. Suppose that Tor.G/ has finite exponent s. If G D Tor.G/K for some
K � G then Gs D Ks .

II. Let G be torsion-free nilpotent.

1. Let K be a subgroup of G. Then the isolator of K in G,

G
p

K D fx 2 G j xn 2 K for some positive integer ng;
is a subgroup of G. If furthermore G is finitely generated then Œ

G
p

K W K�

is finite.
2. Let H be a subgroup of finite index m in G. Then H \ Zi .G/ D Zi .H/

for all i . Also, ŒZi .G/ W Zi .H/� D qi is finite for all i and qi divides qj for
i � j .

III. Let G be finitely generated nilpotent group of class c.

1. Then G is Hopfian and has a finite Hirsch length denoted by h.G/. Also, a
subgroup H has finite index in G if and only if h.H/ D h.G/.

2. Let H be subgroup of finite index in G. Then Z.G/ and Z.H/ have the
same Hirsch length. Moreover, Œ�i .G/ W �i .H/� is finite.
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3.2. Triples for nilpotent groups

Lemma 2. Let G be a nilpotent group, .G; H; f / a triple, xG D G
Tor.G/

and xH D
H Tor.G/

Tor.G/
. Then .Tor.G/; Tor.H/; f /, . xG; xH; Nf / are triples. Furthermore, if G is

finitely generated and .G; H; f / is simple then . xG; xH; Nf / is simple.

Proof. The first assertion follows from Tor.G/ \ H D Tor.H/. Let L
Tor.G/

� xH be

the Nf -core. xH/. Then

L D Tor.G/.L \ H/ D Tor.L/.L \ H/

and .L \ H/f � L. By Subsection 3.1, item I.6, there exists s � 1 such that
Ls D .L \ H/s . Therefore, Ls is f -invariant. As f is simple, we have Ls D feg,
L D Tor.G/.

Lemma 3. Let G be a T -group, let H be a subgroup of G of finite index in G and
let f W H ! G be a monomorphism. Then H f has finite index in G. If U is an
f -invariant normal subgroup of H then U \Z.H/ is an f -invariant normal subgroup
of G. If .G; H; f / is simple then .hH; H f i; H; f / is simple.

Proof. The groups H and G have equal Hirsch lengths, by Subsection 3.1, item I.4.
Since H f Š H , it has the same Hirsch length as G and so H f has finite index in G.
Therefore, Z.H/; Z.H/f � Z.G/. Let W D U \ Z.H/. Then

W f � U f \ Z.H/f � U \ Z.G/ D W:

The last assertion follows directly.

Proposition 3. Let G be a Tc-group, let H be a subgroup of finite index in G,
let f 2 Hom.H; G/ be a simple monomorphism and let L � G be defined by

L
Z.G/

D Nf -core
�

HZ.G/
Z.G/

�
. Then the following holdsW

(i) Nf W HZ.G/
Z.G/

! G
Z.G/

induced by f is a monomorphism.

(ii) L, G
p

L are abelian, semi-invariant and the corresponding quotient triples�
G
L

; HL
L

; Nf
�
,
�

G
G
p

L
; H

G
p

L
G
p

L
; Nf
�

are simple.

(iii) If HL D H
G
p

L then L D G
p

L.

(iv) If G D H
G
p

L then G is abelian.

Proof. Let h 2 H such that Z.G/h 2 ker. Nf /. Then hf 2 Z.G/. As Z.H/f D
Z.H f / � Z.G/ and ker.f / D feg, it follows that h 2 Z.H/ � Z.G/.
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We have Z.G/ � L � Z.G/H . Let M D L\H . Then M is a normal subgroup
of H , L D Z.G/ C M and L0 D M 0. Also .Z.G/x/

Nf D Z.G/xf 2 Z.G/M for
all x 2 M ; that is, M f � Z.G/M . Therefore .M 0/f � M 0 . Since f is simple, M

and L are abelian and so G
p

L is abelian.
Write xG D G

Z.G/
and xL D L

Z.G/
. Since G

p
L is abelian, it follows easily that

xG
pxL D G

p
L

Z.G/
. If x 2 H

p
L then there exists n such that xn 2 L \ H D M ; therefore

.xn/f D .xf /n 2 L and xf 2 G
p

L. The assertion that
�

G
G
p

L
; H

G
p

L
G
p

L
; Nf
�

is simple
is now clear.

Let xG D G
L

and xH D HL
L

. Then
G
p

L
L

D Tor. xG/ and it follows that from Lemma 2

that
�

G
G
p

L
; H

G
p

L
G
p

L
; Nf
�

is simple. Suppose that HL D H
G
p

L. Then xH D xH Tor. xG/

and the equalities Tor. xH/ D Tor. xG/ D fLg follow; that is, L D G
p

L.
Suppose G D G

p
LH . Then working modulo L, we have G

p
L D T .G/ and so

there exists s � 1 such that Gs D H s . In other words, going back to G, we have
GsL D H sL. It follows from L D Z.G/M that

ŒL; Gs� D ŒL; H s� D ŒM; Gs� D ŒM; H s�;

hence ŒM; H s� is an f -invariant subgroup. Therefore,

ŒM; H s� D ŒM; Gs� D feg; M � Z.G/;

and
L D Z.G/ D G

p
L; G D Z.G/H; G0 D H 0 D feg:

We show in the next example that G
p

L can be different from L.

Example 2. Let G D F.2; 2/ freely generated by x1, x2. Let n > 1 and let H D
hxn

1 ; xn
2 i. Then Z.H/ D hŒx2; x1�n

2i. The map f W xn
1 ! xn

1 , xn
2 ! x2 extends to

a monomorphism from H into G where f W Œx2; x1�n
2 ! Œx2; x1�n. It is then clear

that f is simple, L D Z.G/hxn
1 i and G

p
L D Z.G/hx1i.

4. Kernel versus core

Proposition 4. Let K, P be groups, P a transitive permutation group on the set
Y D f1; : : : ; mg and P1 the stabilizer of 1 in P . Furthermore, let W be the wreath
product K wrY P and let W act on Y as P . Let B D KY and W1 D BP1. Consider
a nilpotent subgroup G of W which induces a transitive group on Y . Let x D
.x1; x2; : : : ; xm/� 2 G1 D G \W1. If x1 has finite order then x also has finite order.

Proof. Suppose that there exists an x D .x1; x2; : : : ; xm/� where � 2 P1 such that
x1 has finite order, yet o.x/ is infinite. Then x0 D .xo.x1//o.�/ 2 BG D G \ B
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and x0 D .e; x0
2; : : : ; x0

m/ has infinite order. Let X be the set of non-trivial x 2 BG

such that each xi D e or o.xi / is infinite. Choose x 2 X such that first, x has a
maximum number of trivial entries and second, x 2 �j .G/ for a maximum j . Let
g D .g1; g2; : : : ; gm/� 2 G where � 2 P and o.�/ D r . Then Œx; gr � 2 BG has
at least the same number of trivial entries as x and Œx; gr � 2 �j C1.G/. Therefore
Œx; gr � has finite order. Hence in the torsion-free nilpotent group xG D G

Tor.G/
, we

have Œ Nx; Sgr � D Ne and so Œ Nx; Ng� D Ne; that is, Œx; g� has finite order. We may assume that
x1 D e and let i be such xi has infinite order. Now let g D .g1; g2; : : : ; gm/� 2 G

be such that .i/� D 1. Then

Œx; g� D x�1xg D .e; x�1
2 ; : : : ; x�1

m /.e; x
g2

2 ; : : : ; xgm
m /� D .x

gi

i ; �; : : : ; �/;

which has infinite order; a contradiction is reached.

Theorem 8. Let G be a nilpotent group, H a subgroup of finite index m in G,
f 2 Hom.H; G/ and L D f -core.H/. Then

(i) ker.f / � H
p

L;

(ii) Tor.H/f � Tor.H f / � .
H
p

L/f ;

(iii) if L D feg then Tor.H/f D Tor.H f /;

(iv) if G is finitely generated and f an epimorphism, then G
p

L D L.

Proof. The triple .G; H; f / provides us with a state-closed representation
' W G

L
! Aut.T .Y // for Y D f1; : : : ; mg and where for h 2 H we have

h' D .hf ' ; �; : : : ; �/�

and .1/� D 1.
(i) If h 2 ker.f / then h' D .e; �; : : : ; �/� , and by the previous proposition h'

has finite order. As L D ker.'/, we have h 2 H
p

L and we are done.
(ii) The first inclusion is clear. Now suppose x 2 Tor.H f / ; that is, x D hf and

xn D e for some n. Then

e D .hf /n D .hn/f ; hn 2 ker.f /; h 2 H
p

ker.f / � H
p

L; x 2 .
H
p

L/f :

If L D feg then H
p

L D Tor.H/ and the result follows from Tor.H/f � Tor.H f / �
Tor.H/f .

(iii) follows immediately from (ii).
(iv) Since G is finitely generated, Tor.G/ is a finite group. Suppose initially that

L is trivial. Then G
p

L D Tor.G/ and by item (ii), Tor.H/f � Tor.G/ � Tor.H/f ;
thus Tor.H/f D Tor.G/. As Tor.H/ � Tor.G/, we have Tor.H/ D Tor.G/ and as
f is simple, we conclude that Tor.G/ is trivial.

In the general case we consider the triple
�

G
L

; H
L

; Nf
�
. Then Nf is a simple epimor-

phism and therefore Tor
�

G
L

� D fLg; that is, G
p

L D L.
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Corollary 1. Let G be a torsion-free nilpotent group, H a subgroup of finite index
m and f W H ! G a homomorphism. Then

f simple H) ker.f / D feg:
Suppose that ker.f / D feg. Then

f simple ” f W Z.H/ ! Z.G/ simple.

Proof. The first assertion is a direct application of part (i) of the theorem. Suppose
G is finitely generated; then Z.H/ � Z.G/. It follows easily that f simple implies
that f jZ.H/ W Z.H/ ! Z.G/ simple. On the other hand, suppose that f W Z.H/ !
Z.G/ is simple and let K be a nontrivial subgroup of H , normal in G and f -invariant.
Then K \ Z.H/ D feg and

.K \ Z.H//f � K \ Z.H/f D K \ Z.H f /

� K \ Z.G/ D K \ H \ Z.G/ D K \ Z.H/: �

Example 3. (1) A simple triple.G; H; f / where G is finite and ker.f / 6D feg.
Let p be a prime number, Y D f1; 2; : : : ; pg and � the permutation .1; 2; : : : ; p/.

Let Ws be the group of automorphisms of the p-adic tree T .Y / generated by

�0 D �; �1 D .e; : : : ; e; �0/; : : : ; �s D .e; : : : ; e; �s�1/;

The Ws is the s-iterated wreath product ...Cp wr : : : /wr/Cp/ wr Cp.D Ws�1 wr Cp/.
Let H D stabWs

.1/ and �1 W H ! Ws . Then ŒWs W H� D p, �1.H/ Š Ws�1 and
ker.f / D feg � Ws�1 � � � � � Ws�1.

(2) A simple triple .G; H; f / where G is of mixed type and ker.f / 6D feg.
Let G D .C wr D/hxi where C D hci, D D hd i each of order p, and x of

infinite order inducing conjugation by d on C wr D. Therefore, G is a nilpotent
group with Z.G/ D hz; dx�1i where z D ccd : : : cdp�1

. Let H D hC D; xpi D
hc; cd ; : : : ; cdp�2

; z; xpi and M D hd; xi an abelian group of type Zp � Z . Then
H is abelian of type .Zp/p � Z, ŒG W H� D p2, Z.H/ D hz; xpi. The extension of
the map

c ! 1; cd ! 1; : : : ; cdp�2 ! 1; z ! d; xp ! x

produces an epimorphism f W H ! M . Then ker.f / D hc; cd ; : : : ; cdp�2i. Note
that the only subgroup of ker.f / which is normal in hc; d i is the trivial subgroup.
Let K be an f -invariant subgroup of H normal in G. Then

Kf � K \ M � H \ M D hxpi:
Therefore Kf D feg, K � ker.f / and so K D feg.

(3) A triple .G; H; f / where G is a T -group and f -core.H/ D Z.H/.
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Let G D F.2; 2/ freely generated by a, b. Let H be the subgroup generated
by a3, b2. Then ŒG W H� D 36. Define the endomorphism f W H ! G extended
from f W a3 ! a2, b2 ! b3. Then f W Œa3; b2� ! Œa2; b3�. Thus f -core.H/ D
hŒa; b�6i D Z.H/.

5. Simple triples for T -groups

5.1. Nilpotent groups: 2-generated or of class 2

Lemma 4. Let G be a T2-group. Then there exists a subgroup K of G such that
G D Z.G/K, K 0 D Z.K/.

Proof. As Z.G/ is isolated in G, then Z.G/
G0 has a complement K

G0 in G
G0 . Therefore

G D Z.G/K; G0 D K 0;
G0 D Z.G/ \ K D Z.K/: �

Theorem 9. Let G be a Tc-group with c � 2 and let H be a subgroup of finite index
in G. Then there exists a subgroup K of finite index in H , which admits a strongly
simple epimorphism f W K ! G.

Proof. The case G abelian is obvious; so let G have nilpotency class 2. Choose
fZ.G/a1; : : : ; Z.G/ad g, a free generating set of G

Z.G/
, and let A D ha1; a2; : : : ; ad i.

Then, by the previous lemma, Z.A/ D A0 and Z.G/ D U0 ˚ U1 where U1 D
G
p

Z.A/. It follows that G D U0 ˚ U1A.
There exists a generating set fx1; x2; : : : ; xd g of A such that modulo Z.G/ we

have H D hxk1

1 ; x
k2

2 ; : : : ; x
kd

d
i where ki � 1. Thus there exist ci 2 Z.G/ such that

bi D cix
ki

i 2 H (1 � i � d ). Define B D hb1; b2; : : : ; bd i. Then

H D BZ.H/;

Z.B/ D B 0 D hŒxi ; xj �ki kj ji < j i;
B 0 � A0 D hŒxi ; xj �ji < j i:

Let V1 D H
p

Z.B/. Then V1 � U1 and ŒU1 W V1� D r1 is finite. Now we prove that
we may choose U0 such that H D V0 ˚ V1B where V0 � U0. We argue in Z.G/

V1
.

Since U1

V1
D Tor.Z.G/

V1
/, there exists W0 � Z.G/ such that Z.G/

V1
D W0˚V1

V1
˚ U1

V1

and Z.H/
V1

� W0˚V1

V1
. It follows from V1 � Z.H/ � W0 ˚ V1 that Z.H/ D

.Z.H/ \ W0/ ˚ V1. Let ŒU0 W V0� D r0.
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Now let r D lcm.r0; r1/, k D lcmfki j1 � i � dg. Define the subgroups

B0 D h.cix
ki

i /
r k

ki j 1 � i � d i and K D Z.G/r2k2

B0:

Then K is a subgroup of finite index in H and

K D U r2k2

0 ˚ U r2k2

1 B0:

Now consider the map

� W z ! zr2k2

; xi ! .cix
ki

i /
r k

ki :

We note that if the map � extends to an endomorphism from G onto K then

� W U0 ! U r2k2

0 ; U1 ! U r2k2

1 ;

Œxi ; xj � ! Œxi ; xj �r
2k2

.1 � i � d/:

To prove that � extends to an endomorphism, it is sufficient to observe that if for
some u1 2 U1 and integer s we have that us

1 is a word w.Œxi ; xj �/ in the commutators

Œxi ; xj �, then we have in the extension � W us
1 ! .ur2k2

1 /s D .us
1/r2k2

on the one hand

and � W w.Œxi ; xj �/ ! w.Œxi ; xj �r
2k2

/ D w.Œxi ; xj �/r2k2
on the other, and the two

images coincide.

Example 4. Given a simple triple .G; H; f / where G is a T -group, a question
may be posed as to whether assuming f jZ.H/ W Z.H/ ! Z.G/ is an epimorphism
implies that f itself is an epimorphism. The following is a counterexample: let
G D F.2; 2/ freely generated by a; b. Write Œa; b� D z and let H1 D ha4; b4; z4i,
H2 D ha2; b2; zi. Then f W a4 ! a2, b4 ! b2, z4 ! z extends to an isomorphism
from H1 onto H2 and f is simple. Therefore Z.H1/f D Z.G/, yet f is not an
epimorphism.

Lemma 5. Let G is be a 2-generated Tc-group. Then G0 D Zc�1.G/.

Proof. We have G0 � Zc�1.G/, and G
G0 , G

Zc�1.G/
are 2-generated non-cyclic abelian

groups. Since G
Zc�1.G/

is a is torsion-free quotient of G
G0 , the result follows.

Theorem 10. Let G be 2-generated Tc-group. Suppose that H is a proper normal
subgroup of G of finite index m which is isomorphic to G. Then G is abelian.

Proof. Let G be generated by a1; a2 and suppose c � 2.
First, we will argue the case c D 2 . Then G is isomorphic to F.2; 2/ and

G0 D Z.G/ D hŒa1; a2�i. We may choose the generators a1, a2 such that HZ.G/ D
ham1

1 ; a
m2

2 iZ.G/. Thus

H 0 D Z.H/ D hŒa1; a2�m1m2i:
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We have from ŒHZ.G/; ai � (i D 1; 2)

Œa
m1

1 ; a2� D Œa1; a2�m1 ; Œa1; a
m2

2 � D Œa1; a2�m2 ,

Œa1; a2�m1 ; Œa1; a2�m2 2 H \ Z.G/ D Z.H/:

Therefore, m1m2 D ˙1. Hence HG0 D G D H .
Let c � 2 and f W H ! G be an epimorphism. Then f induces an epimorphism

Nf W HZc�2.G/
Zc�2.G/

! G
Zc�2.G/

, as H \ Zc�2.G/ D Zc�2.H/. The class 2 case leads to
G D HZc�2.G/. Therefore

G

Zc�2.H/
D H

Zc�2.H/
˚ Zc�2.G/

Zc�2.H/
:

Also, since G
Zc�2.H/

and H
Zc�2.H/

are 2-generated, we reach Zc�2.G/ D Zc�2.H/

and thus, G D H ; again, a contradiction.

5.2. Derived length and nilpotency class

Theorem 11. Let G be a T -group, let H be a subgroup of finite index m > 1 and let
f W H ! G be simple. Then s.G/ � l.m/.

Proof. We may suppose that G is non-abelian. By Corollary 1, f is a monomorphism.
As H f is a subgroup of finite index in G, we have Z.H/; Z.H/f � Z.G/. Clearly,
Z.G/ is not contained in H ; for otherwise Z.G/ D Z.H/ is f -invariant.

Consider the triple
�

G
Z.G/

; HZ.G/
Z.G/

; Nf
�
. Then the index

�
G

Z.G/
W HZ.G/

Z.G/

	
is a proper

divisor of m. Define L � G by L
Z.G/

D Nf -core
�

HZ.G/
Z.G/

�
. By Proposition 3, both L,

G
p

L are abelian and the triples
�

G
L

; HL
L

; Nf
�
,
�

G
G
p

L
; H

G
p

L
G
p

L
; Nf
�

are simple.

Now we consider the chain of subgroups

H � HL � H
G
p

L � G:

Since HZ.G/ � HL and Z.G/ 6� H , we have that H is a proper subgroup of
HL. By Proposition 3, if HL D H

G
p

L then L D G
p

L and since G is non-abelian,
H

G
p

L 6D G.
We apply induction on l.m/. If L D G

p
L then G

L
is torsion-free,

�
G
L

W HL
L

	 D m0
and l.m0/ < l.m/; therefore s

�
G
L

� � l.m0/ and since L is abelian, s.G/ � l.m0/C1 �
l.m/. If L 6D G

p
L then HL 6D H

G
p

L and therefore
�

G
G
p

L
W H

G
p

L
G
p

L

	 D m00,
l.m00/ < l.m/, and the argument proceeds as in the previous case.

Corollary 2. Let G be a finitely generated nilpotent group. Suppose that ŒG W H� D p

is a prime number and .G; H; f / a simple triple. Then G is a finite p-group .no
restriction on the nilpotency class or derived length/ or is free abelian.
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Proof. Proceed by induction on the order of Tor.G/. If G is torsion-free then by the
previous theorem, G is abelian.

If Tor.G/ ¤ feg then Tor.G/ is not contained in H . Since H is a maximal
subgroup of G, by Proposition 2 .H f ; H \ H f ; f / is a simple triple of degree p.
Since j Tor.H f /j < j Tor.G/j we conclude that H f is finite or torsion-free. In the
first case, it follows that G is finite. In the second case, ker.f / D Tor.H/ is normal
in G and f -invariant; therefore, ker.f / D feg and G is torsion-free, contrary to the
assumption.

To justify that neither s.G/ nor c.G/ can be bounded in case G is finite, we recall
Ws , the iterated wreath product of cyclic groups of order p in Example 3 (1).

Theorem 12. Let G be a T -group, H a subgroup of finite index m. Suppose that
f W H ! G is strongly simple. Then Nf W HZ.G/

Z.G/
! G

Z.G/
is also strongly simple.

Furthermore, c.G/ � l.m/.

Proof. Let G be non-abelian. Suppose that there exists a nontrivial subgroup L
Z.G/

of
Z.G/H
Z.G/

which is Nf -invariant; then there exists K � H such that L D Z.G/K; thus
L0 D K 0 is f -invariant. Since f is strongly simple, L is free abelian of finite rank
and we may assume that L D Z.G/ ˚ K, as Z.G/ is isolated. The decomposition
of L provides us with uniquely defined homomorphisms

� 2 Hom.K; Z.G//; � 2 Hom.K; K/

defined by kf D k� C k� for all k 2 K. We note that � is a monomorphism whose
characteristic polynomial 	 is non-constant.

Since ŒL W Z.H/ ˚ K� is finite, f extends to an automorphism yf of Q˝L, say
having characteristic polynomial �; clearly, 	 is a factor of �. However, since f

is simple, � does not have monic integral polynomial factors of positive degree; a
contradiction.

Induction on c.G/ leads directly to a proof of the last assertion.

The following natural example shows that the above limit is satisfactory.

Example 5. Let Vn be the additive free Z-module of rank n generated by vi

(1 � i � n) and let xn 2 GL.Vn/ be defined by

xn W vi ! vi C viC1; vn ! vn .1 � i � n � 1/:

Also, let Gn be the semidirect product Gn D Vnhxni. Then Gn is a Tn-group. Let p

be a prime number, Wn D pVn, x0 D vnx and Hn D Wnhx0
ni. Then ŒGn W Hn� D pn

and
fn W pvi ! vi ; x0

n ! xn .1 � i � n/

extends to a strongly simple epimorphism f W H ! G.



40 A. Berlatto and S. Sidki

5.3. Triples with degree a product of two primes. Let .G; H; f / be a simple triple
of degree m D pq, a product of two primes. In contrast to the prime degree, here we
have a greater variety of groups. However, we do not know of examples of simple
.G; H; f / where G is a non-abelian T -group, m D pq and p, q distinct primes. We
show below that G can be a mixed non-abelian group.

Example 6. (1) A mixed nilpotent group G of class 2, with ŒG W H� D p2.
Let G D ha; u; v j up D vp D Œu; v� D e; ua D uv; va D vi of type

.Zp�Zp/Z. Let H D hu; api and K D hv; ai. Then ŒG W H� D p2 and H , K are
abelian of type Zp�Z.

Define f W H ! K by f W u ! v, ap ! a. Then f is a simple homomorphism;
for

uap D uvp D u; f W uap

.D u/ ! va.D v/:

(2) A mixed nilpotent group G of class 2, with ŒG W H� D pq where p is a prime,
q D 1 C tp and .G; H; f / simple.

Let D D ha; b j ap2 D bp D e; ab D a1Cpi, a group of order p3. Let
G D D:hxi where x is of infinite order and acts on D as conjugation by b. Then

Z.G/ D hap; b�1xi:
We observe that .b�1x/p D xp . Let q D 1 C tp and let

H D hap; b; xqi; K D hb; xi.
Then H is abelian, has index pq in G, has type Zp�Zp�Z, and K is abelian of type
Zp�Z. Moreover,

H \ Z.G/ D hap; b�1xqi
since b�1x:.xp/t D b�1xq . Now the map

f W ap ! b; b ! e; xq ! x

extends to an epimorphism f W H ! K. To prove that f is simple, we observe that

f W H \ Z.G/ ! hb; xi; H \ hb; xi D hb; xqi; f W hb; xqi ! hxi:

Theorem 13. Let G be a Tc-group, .G; H; f / a simple triple of degree pq where
p, q are .not necessarily distinct/ prime numbers and let L

Z.G/
D Nf -core.HZ.G/

Z.G/
/.

Then

(i) L and G
L

are free abelian groups ;
(ii) G D HH f ;

(iii) Zc�1.G/ � L;
(iv) Z.G/ D G

p
�c.G/.
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Proof. Suppose that G is non-abelian. Since Z.H/ 6D Z.G/, we may suppose
that ŒG W HZ.G/� D p, ŒHZ.G/ W H� D q. Then ŒZ.G/ W Z.H/� D q and
HZ.G/ D HL.

The subgroups HZ.G/, .HZ.G//0 D H 0 are normal in G. Since
�

G
L

; HL
L

; Nf
�

is a simple triple of degree a prime, by Corollary 2, G
L

is either free abelian or finite.
We know that L and G

p
L are abelian. Therefore, G

L
is free abelian.

As Z.H/f 6� Z.H/ and ŒZ.G/ W Z.H/� D q, we obtain Z.G/ D Z.H/Z.H/f .
It follows from .HZ.G//H f D HH f that HH f is a subgroup of G and HH f D
HZ.G/ or G. Suppose the first alternative holds. Then .HH f /0 D H 0, a normal
subgroup of G and .H f /0 D .H 0/f � H 0. Therefore, H is abelian and hence central;
this leads to ŒG W Z.G/� D p, which is absurd.

Consider the first index j such that Zj .G/ 6� L and define K D Zj .G/L. We
assert that �i .K/ � Zj �iC1.G/ for i � 2:

�2.K/ D Zj .G/0ŒL; Zj .G/� � Zj �1.G/ � L;

if �i .K/ � Zj �iC1.G/ for some i then

�iC1.K/ � ŒZj �iC1.G/; Zj .G/L�

� ŒZj �iC1.G/; Zj .G/�ŒZj �iC1.G/; L�

� Zj �iC2.G/:

Since .L \ H/f � L, and .Zj .G/; Zj .H/; f / is a triple, we have the corre-

sponding triple
�

K
L

;
LZj .H/

L
; Nf
�
. Furthermore, as G

L
is free abelian and

�
G
L

; LH
L

; Nf
�

is simple of degree p, it follows that K
L

is of finite index in G
L

and therefore K and G

have the same nilpotency class; that is, G has class j D c. Hence, G D Zc.G/ D K

and Zc�1.G/ � L.
Since .Z.G/; Z.H/; f / is a simple triple of prime degree and .�c.G/; �c.H/; f /

is a sub-triple, it follows that ŒZ.G/ W �c.G/� is finite; hence Z.G/ D G
p

�c.G/.

5.4. A sequence of simple triples of degree 4. The groups R, S produced in Sub-
section 3.2 will be shown to be part of an ascending sequence of simple triples
.Gn; Hn; fn/ where ŒGn W Hn� D 22, d.Gn/ D 2, s.G/ D 2 and c.Gn/ D n.
This will prove that the nilpotency class of groups in Theorem 12 cannot have a fixed
upper limit.

Let Vn be the free Z module Zn and f"i j 1 � i � ng its canonical basis. Define
inductively xn 2 GL.Vn/:

x2 D
�

1 1

0 1

�
; xn D

�
1 
n

0 xn�1

�
; 
n D .2n�2; 0; : : : ; 0/

for n � 3. Then xn acts nilpotently and uniserially on Vn. We note that x2
n

leaves invariant the submodule Wn D h"1; : : : ; "n�2; "n�1 C "n; 2"ni, where clearly
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ŒVn W Wn� D 2. Define the semidirect product Gn D Vnhxni and its subgroup Hn D
Wnhx2

ni. Then Gn is nilpotent of class n and Z.Gn/ D h"ni. Also ŒGn W Hn� D 22

and Z.Hn/ D h2"ni. Furthermore, G2 Š R, G3 Š S .
We construct inductively simple endomorphisms fn W Wn ! Vn:

f2 D
�

1 1
2

0 1
2

�
; fn D

�
2n�2 �n

0 fn�1

�
; �n D .�n;1; : : : ; �n;n�1/

for n � 3.
We extend fn, first by stipulating that fn W x2

n ! xn. Then fn extends to a
homomorphism Hn ! Gn if and only if x2

nfn D fnxn. It is easy to see that f2

satisfies this equation. For n � 3, x2
nfn D fnxn is equivalent to

�n.1 � xn�1/ D 
n.2n�2 � .1 C xn�1/fn�1/:

This last equation provides a unique solution �n where

�n;1 D 22�n�1;1 C 22n�6;

�n;i D 2iC1.�n�1;i C 2n�4�n�2;i�1/ .2 � i � �
n
2

	
/

D 0 .



nC1
2

˘ � i � n � 1/:

The referee provided the following explicit solution

�n;i D n

i

 
n � i � 1

i � 1

!
2.n� i

2 �3/.iC1/C1:

The first few vectors are

�3 D .3; 0/; �4 D .24; 22; 0/; �5 D .245; 245; 0; 0/; �6 D .273; 2732; 28; 0; 0/:

Finally, the resulting fn is simple. For otherwise, if K is a non-trivial subgroup of
Hn which is normal in Gn and is invariant under fn, then feg 6D Z.Hn/ \ K would
also be fn-invariant.

6. Index theorem and an application

Let G be a Tc-group, H a subgroup of finite index m and f W H ! G simple. Then
ŒG W H f � D m0, Œ�c.G/ W �c.H/� D l , Œ�c.G/ W �c.H f /� D l 0 are finite. The
following general result establishes a simple arithmetic relation between m, m0, l , l 0.

Theorem 14. Let G be finitely generated nilpotent group, let H be a subgroup of G

with ŒG W H� D m finite and let f W H ! G be a monomorphism. Let ŒG W H f � D
m0. Furthermore, let U be a subgroup of H and write V D hU; U f i. Suppose that
ŒV W U � D l , ŒV W U f � D l 0 are finite. Then there exist integers m1 jm, m0

1 jm0 such
that lm0

1 D l 0m1.
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Before giving the proof, we note that the theorem is clearly true for finite groups,
since jH j D jH f j, jU j D jU f j. However, the following example shows that the
theorem is not valid for the class of 2-generated metabelian groups.

Example 7. Let p be a prime number and P be the subgroup of the additive rationals
generated by fpi j i 2 Zg. Then P admits the automorphism f W pi ! pi�1.
Define G to be the extension of P by hf i; then G is generated by f1; f g. Now let
H D G and U D hpi � P . Then U f D h1i D V . Moreover, the indices are
ŒG W H� D 1 D ŒG W H f �, ŒV W U � D p, ŒV W U f � D 1.

Proof. I. Suppose G is a free additive abelian group.
Then

G
p

V D G
p

U D G
p

U f

and Œ
G
p

U W U � D t , Œ
G
p

U f W U f � D t 0 are finite. Indeed, t D t 0 since f induces an

isomorphism between the quotient groups
H
p

U
U

,
Hfp

U f

U f .
Define the indices

ŒH C G
p

V W H� D m1; ŒH f C G
p

V W H f � D m0
1

where m1 jm and m0
1 jm0. Since

H \ G
p

V D H
p

U ; H f \ G
p

V D Hfp
U f

we conclude that

Œ
G
p

V W H
p

U � D m1; Œ
G
p

V W Hfp
U f � D m0

1:

Now we calculate the index

Œ
G
p

V W U \ U f � D Œ
G
p

V W H
p

U �Œ
H
p

U W U �ŒU W U \ U f �

D Œ
G
p

V W Hfp
U f �Œ

Hfp
U f W U f �ŒU f W U \ U f �:

Thus m1t l 0 D m0
1t l and we reach m1l 0 D m0

1l .

We have Tor.H/f D Tor.H f / � Tor.G/. The map Nf W Tor.G/H
Tor.G/

! G
Tor.G/

where

Tor.G/h ! Tor.G/hf is a well-defined monomorphism. Since G
Tor.G/

is torsion-free

nilpotent, it follows that
�

G
Tor.G/

W Tor.G/H f

Tor.G/

	
is finite and therefore ŒG W H f � D m0 is

finite.
II. Suppose that Tor.G/ D feg. We proceed by induction on the nilpotency class

of G. The case where G is free-abelian was done in part I.
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We introduce the following notation:

ZH D H \ Z.G/; ZH f D H f \ Z.G/;

ŒG W HZ� D m2; ŒHZ W H� D m1; ŒG W H f Z� D m0
2; ŒH f Z W H f � D m0

1:

Then

Z.H/f D .H \ Z.G//f D .ZH /f ;

ŒZ W ZH � D m1; ŒZ W ZH f � D m0
1; m D m2m1; m0 D m0

2m0
1:

Similarly, with respect to V , denote

ZV D V \ Z; ZU D U \ Z; ZU f D U f \ Z;
and

ŒV W UZV � D l2; ŒUZV W U � D l1; ŒV W U f ZV � D l 0
2; ŒU f ZV W U f � D l 0

1:

Then
ŒZV ; ZU � D l1; ŒZV ; ZU f � D l 0

1; l D l2l1; l 0 D l 0
2l 0

1:

We claim that .ZU /f D ZU f . This follows from

.ZU /f � Z.H f / � Z.G/; .ZU /f � U f \ Z.G/ D ZU f

and from

ZU f � Z.H f / D Z.H/f D .Z.G/ \ H/f ;

ZU f � .Z.G/ \ H/f \ U f D .Z.G/ \ U /f D .ZU /f :

From the configuration

Z � ZH ; ZH f ; ZV � ZU ; ZU f

we obtain that there exist m11 jm1, m0
11 jm0

1 such that l1m0
11 D l 0

1m11.
Next we apply induction to the nilpotency class of G.
We have that Z.H/ � Z.G/ and Z.H/f D Z.H f / � Z.G/. Moreover,

Nf W Z.G/H
Z.G/

! G
Z.G/

defined by Z.G/h ! Z.G/hf is a monomorphism and�
Z.G/U
Z.G/

� Nf D Z.G/U f

Z.G/
. By applying induction to the class of G

Z.G/
, we obtain that

there exist m21 jm2, m0
21 jm0

2 such that l2m0
21 D l 0

2m21. Hence, putting together the
two equations l1m0

11 D l 0
1m11, l2m0

21 D l 0
2m21, we obtain

m0
1 D m0

11m0
21 jm0; m1 D m11m21 jm;

l1m0
11l2m0

21 D l 0
1m11l 0

2m21; lm0
1 D l 0m1:

III. Now we argue the general case where T D Tor.G/ is not necessarily trivial.
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Similar to the work done in part II, we define TH D T \H and likewise we define
TH f , TV , TU , TU f , all finite groups. We note also that .TU /f D TU f and therefore
TU , TU f have equal orders. Then it follows that

ŒV W U TV � D ŒTV W TU � D ŒTV W TU f � D ŒV W U f TV �:

Finally, the argument continues as in part II with T substituting Z.

A special case of the above result is

Corollary 3. Maintain the hypotheses of the theorem.
(i) If U f � U then l D ŒU W U f � is finite and l jm.
(ii) If U � U f then l 0 D ŒU f W U � is finite and l 0 jm0.

Proof. Suppose U f � U . Then as U f is isomorphic to U , we conclude that ŒU W U f �

is finite. The remaining assertions are direct.

We use the above divisibility criterion to prove

Theorem 15. Let G be a Tc-group, let H be a subgroup of finite index m in G and
f W H ! G be an epimorphism. Let ŒG W HZc�1.G/� D k, ŒZ.G/ W Z.H/� D q.
Then Œ�c.G/ W �c.H/� is a k-number which divides q. If f is simple and m a square-
free integer then G is abelian.

Proof. We may assume c � 2. By Subsection 3.1, item I.2, if G D HZc�1.G/ then
�c.G/ D �c.H/ . So suppose that G 6D HZc�1.G/ and consider the free abelian
group xG D G

Zc�1.G/
. There exist a1; a2; : : : ; as 2 G such that

Zc�1.G/a1; Zc�1.G/a2; : : : ; Zc�1.G/as

freely generate xG and integers k1 jk2 j : : : jkr , k D k1k2 : : : kr such that

Zc�1.G/a
k1

1 ; Zc�1.G/a
k2

2 ; : : : ; Zc�1.G/akr
r ; Zc�1.G/arC1; : : : ; Zc�1.G/as

freely generate xH D HZc�1.G/
Zc�1.G/

. Thus there exist c1; c2; : : : ; cs 2 Zc�1.G/ with

H D hc1a
k1

1 ; c2a
k2

2 ; : : : ; crakr
r ; crC1arC1; : : : ; csasiZc�1.H/:

Now �c.G/ � Z.G/ is generated by simple commutators Œai1 ; ai2 ; : : : ; aic � of
weight c where the indices ij are from f1; 2; : : : ; sg. Whereas, �c.H/ is generated
by Œai1 ; ai2 ; : : : ; aic ��.i1;:::;ic/ where �.i1; : : : ; ic/ D k

u1

1 : : : k
ut
t 6D 1 and uz is the

number of ij D z 2 f1; : : : ; rg. Therefore, j �c.G/
�c.H/

j is a k-number.
As f induces epimorphisms �c.H/ ! �c.G/, Z.H/ ! Z.G/, we apply Corol-

lary 3 to obtain j �c.G/
�c.H/

j divides j Z.G/
Z.H/

j D q.
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Now suppose that f is simple, m is square-free and G is non-abelian. Since f is
simple, we have Zc�1.G/ 6� H . Let

ŒG; HZc�1.G/� D m1; ŒHZc�1.G/; H� D m2I
then gcd.m1; m2/ D 1. Since ŒZ.G/ W Z.H/� divides m2, we conclude that �c.G/ D
�c.H/ and hence �c.G/ D feg, a contradiction.
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