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Automatically presented groups

Anna Erschler

Abstract. We introduce the notions of automatically presented groups and piecewise auto-
matically presented groups. We show that if G is a piecewise automatically presented group
satisfying the property T of Kazhdan, then G is finite. We prove that if G is amenable and
finitely presented, then G is virtually abelian. We give further restrictions for a group to be
piecewise automatically presented and study properties of such groups. We also give examples
of automatically presented groups.
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1. Introduction

We introduce the notion of an automatically presented group and the more general
notion of a piecewise automatically presented group. Such a group is defined in a
natural way by a finite state automaton (or a sequence of finite state automata in
the general case) and admits the group generated by the finite state automaton (or,
respectively, the piecewise automatic group defined by the sequence of automata) as
a quotient. Informally speaking, a word in such a group is equivalent to the identity
if it becomes trivial on some level of the tree on which the corresponding (piecewise)
automatic group acts (see the next section for a formal definition).

Groups similar to automatically presented groups appear implicitly already in [14]
(where Grigorchuk constructs torsion-free groups of intermediate growth). However,
not much is known about this class of groups.

In this paper we provide examples of automatically presented groups. We show
that, on one hand, these groups resemble groups generated by finite state automata in
some aspects, and, on the other hand, these two classes of groups are basically differ-
ent. We show, in particular, that an infinite piecewise automatically presented group
cannot have the property T of Kazhdan and that every finitely presented amenable
group in this class is virtually abelian. This is in contrast with the fact that groups
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generated by finite state automata may have the property T and that there are many
solvable (e.g. nilpotent) finitely presented groups generated by finite state automata.
We recall also that all known restrictions for a group to be generated by a finite state
automaton are related to residual finiteness properties and properties of the word
problem (see the last section of this paper for more details).

Finally, we show that piecewise automatic presentations help in establishing prop-
erties of some groups that were obtained earlier by other constructions.

2. Finite state automata, automatically presented groups and piecewise
automatically presented groups

Definition 1. A finite state automaton over a finite alphabet X consists of a finite set
of states A and a map � W A � X ! A � X .

Given a state a, denote by �a W X ! X the composition of �.a; �/ with the
projection of A � X to X .

If, for every state a 2 A, the map �a is bijective, the automaton is said to be
invertible.

We recall the definition of a piecewise automatic group.

Definition 2. Consider an ascending sequence of sets A1 � A2 � A3 � � � � and
a sequence of finite state invertible automata .An; �n/, 1 � n < 1 defined over
a common alphabet X (an important example is A1 D A2 D A3 : : : , with �i not
necessarily equal to each other).

For every a 2 A1, define a transformation Na of the set of onesided infinite words
X1 (or the set of finite words X�) in the following way. Take x D x1x2x3 : : : in
X1 (or in X�). Set

.a2; y1/ D �1.a; x1/;

and, for all j � 2,
.aj C1; yj / D �j .aj ; xj /:

Finally, define
Na.x/ D y1y2y3 : : : :

Note that if all .An; �n/ are invertible automata then, for every state a 2 A1, Na is
a bijection on X1 (or X�). Hence in this case we can consider the group generated
by the transformations Na, a 2 A1. This group is called piecewise automatic group.

If all automata in the above definition are equal to some automaton � , we obtain
the group generated by the finite state automaton � .
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Piecewise automatic groups were defined in [10] and [29] (in [10] we only con-
sidered the case when there is only a finite number of mutually distinct automata
among �n).

In the sequel we always assume that A � e [ S [ S�1, e 2 A, �.e; x/ D .e; x/

and that �.s�1; y/ D .a�1; x/ whenever s; s�1 2 A and �.s; x/ D .a; y/.
Consider an automaton A; � over the alphabet X and take a word w over A. Note

that w defines a map �w W X ! X . For w D a1a2 : : : ak , ai 2 A,

�w D �a1
B �a2

B � � � B �ak
:

Here, as before, �ai
.x/ is the projection of �.ai ; x/ onto X .

Let � W A � X ! A � X be an invertible automaton and let w be a word over the
alphabet A. Note that, for every x 2 X , w defines a restriction wx , which is again a
word over A: for w D a1a2 : : : ak , ai 2 A,

wx D b1b2 : : : bk;

where the state bi is the projection of �.ai ; �aiC1aiC2:::ak
.x// onto A.

Also for a branch of the first level of the form �1 D x1 : : : we say that wx1
is the

restriction of w to the branch �1 and for a branch �m of level m, �m D x1 : : : xm : : : ,
we define by induction on m the restriction of w to �m. This restriction is equal to
the restriction to xm of the restriction of w to the branch �m�1 D x1 : : : xm�1 : : : of
level m � 1.

Definition 3 (Automatically presented group). Let � W A�X ! A�X (A � e [S [
S�1, e 2 A) be an invertible automaton. The automatically presented group G�.�/

over � is the group given by the following presentation. The generating set is S and
a word w over S [ S�1 is in the set of the defining relations if the following holds.
There exists i such that w represents an element from the stabilizer of level i (in the
group generated by the finite state automaton � ) and for every branch � of level i the
restriction of w to � is freely equivalent to the identity in the group freely generated
by S .

It is clear that the group generated by � is a quotient of the automatically presented
group over � . In the next section we see that in some cases these groups are equal
and in some cases they are essentially different.

Given a sequence A1 � A2 � A3 � � � � , a sequence of automata �i W Ai � X !
Ai � X and a word in the alphabet A1, we define the restrictions of w to the branches
of the rooted tree in a similar way as for a single automaton � . For a branch �m of
level m, �m D x1 : : : xm : : : , we define by induction on m the restriction of w to �m.
This restriction is equal to the restriction to xm with respect to the automaton �m of the
restriction of w to the branch �m�1 D x1 : : : xm�1 : : : of level m � 1. By definition,
the restriction of w to a branch of level m is a word over the alphabet Am.
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Definition 4 (Piecewise automatically presented group). Consider an ascending se-
quence of sets A1 � A2 � A3 � � � � and a sequence of finite state invertible automata
An, �n, 1 � n < 1, defined over a common alphabet X (as before, an important case
is A1 D A2 D A3 : : : , with �i not necessarily equal to each other). We assume that
Ai � e [Si [S�1

i and that e 2 Ai for each i . The piecewise automatically presented
group defined by the sequence .An; �n/ is the group generated by A1 in the following
way. A word w over A1 is a defining relation in this group if there exists i such that w

represents an element from the stabilizer of level i (in the piecewise automatic group
defined by �1; �2 : : : ) and for every branch � of level i the restriction of w to � (the
restriction is taken with respect to �1; �2; : : : ; �i ) is freely equivalent to the identity in
the group freely generated by Si .

If all .An; �n/ coincide, then the piecewise automatically presented group defined
above is equal to the automatically presented group over �1.

It is clear that piecewise automatic groups are quotients of the corresponding
piecewise automatically presented groups.

Note that, under the assumption of the previous definition, the piecewise automat-
ically presented group is generated by S1.

3. Examples of automatically presented groups

Example 1. Every finite group is automatically presented.
Indeed, let G be a finite group, set A D X D G, and consider the automaton

� W A � X ! A � X given by �.g1; g2/ D .e; g1g2/. It is clear that the automatically
presented group over � is equal to the group generated by this finite state automaton
and is isomorphic to G.

Example 2. Z is automatically presented. Indeed, take any finite state automaton with
a single non-identity state generating Z. Such automata do exist: consider for example
� W fa; eg � f0; 1g ! fa; eg � f0; 1g defined by �.a; 0/ D .a; 1/, �.a; 1/ D .e; 0/ and
�.e; x/ D .e; x/ for x D 0, 1. It is clear that the automatically presented group over
� is isomorphic to Z.

Note that the class of automatically presented groups is closed under taking direct
products. Indeed, let G1, G2 be automatically presented groups over �1 and �2,
respectively, where �1 W A1 �X1 ! A1 �X1, �2 W A2 �X2 ! A2 �X2, A1 D NA1 te,
A2 D NA2 t e. Put X D X1 t X2, A D NA1 t NA2 [ e and define � W A � X ! A � X

by �.e; x/ D .e; x/, for all x, �.a1; x/ D �1.a1; x/ for a1 2 NA1, x 2 X1, �.a1; x/ D
.e; x/ for a1 2 NA1, x 2 X2 and similarly �.a2; x/ D �2.a2; x/ for a2 2 NA2, x 2 X2,
�.a2; x/ D .e; x/ for a2 2 NA2, x 2 X1. It is clear that the automatically presented
group over � is G1 � G2.

Thus we see that, for every n, Zn is automatically presented.
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Example 3. Let � be the standard automaton generating the first Grigorchuk group.
Recall that this is the finite state automaton .A; �/ over the alphabet X D f0; 1g,
where A D fa; b; c; d; eg and � W A � X ! A � X is defined by

�.e; 0/ D .e; 0/; �.e; 1/ D .e; 1/; �.a; 0/ D .e; 1/; �.a; 1/ D .e; 0/

and

�.b; 0/ D .a; 0/; �.c; 0/ D .a; 0/; �.d; 0/ D .e; 0/;

�.b; 1/ D .c; 1/; �.c; 1/ D .d; 1/; �.d; 1/ D .b; 1/:

Then the automatically presented group over � contains a free non-abelian subgroup.
In particular, this group is not equal to the group generated by the finite state automa-
ton � .

Let us show that the subgroup generated by b, c and d is free. To see this take
any word w in b, c, d representing a non-trivial element in the free group on these
three generators. Observe that for every n that is divisible by 3 the restriction of w

to the branch 11 : : : 1 : : : of level n is again the word w. Therefore, w represents a
non-trivial element in the automatically presented group over � .

Example 4. Let � be the automaton from [17], generating the Basilica group. Recall
that this is the finite state automaton .A; �/ over the alphabet X D f0; 1g, where
A D fa; b; eg and � W A � X ! A � X is defined by

�.a; 0/ D .e; 0/; �.a; 1/ D .b; 1/; �.b; 0/ D .e; 1/; �.b; 1/ D .a; 0/;

(and �.e; x/ D .e; x/ for x D 0; 1). We will prove bellow that the automatically
presented group over � is equal to the group generated by this automaton.

It was shown in [5] that the Basilica group is amenable. Therefore, we see that
the class of automatically presented groups contains amenable groups that are not
virtually abelian.

Lemma 1. (i) Let w be a word of length l , l � 3, in the alphabet a, b, a�1, b�1; e

and let � be a branch of level 2 in the tree, corresponding to X D f0; 1g .that is, � is
equal to 00 : : : , 01 : : : , 10 : : : or 11 : : : /. Then the restriction w� of w to � defined
by � . from Example 4) is freely equivalent to a word of length at most l � 1.

(ii) Let w be a word in the alphabet a, b, a�1, b�1, e of length 2 representing a
trivial word in the group, generated by the finite state automaton � . Then w is freely
equivalent to a trivial word.

Proof. (i) Note that for every automaton the restriction of a word of length m to
any branch has length at most m. Thus it is sufficient to consider the case l D 3.
Moreover, without loss of generality we can assume that w is freely irreducible word
(of length 3).
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First assume that w contains as a subword one of the following words b2, b�2, ba,
ba�1, ab�1, a�1b�1. Note that the restriction of each of these words to any branch
of the first level is freely equivalent to a word of length at most 1. Therefore, the
restriction of w to any branch of the first level, and consequently, to any branch of the
second level has length at most l � 1

Observe also that if w contains as a subword a2 or a�2, then w� has length at
most l � 1, because the restriction of a2 and of a�2 to any branch of level 2 is freely
equivalent to a word of length at most 1.

Therefore, it suffices to consider the case when w is freely irreducible word of
length 3 that does not contain as a subword any of the words a2, a�2, b2, b�2, ba,
ba�1, ab�1, or a�1b�1. Note that in this case w D bab�1 or ba�1b�1. One can
check that the restriction of each of these two words to any branch of the second level
is freely equivalent to a word of length at most 2.

(ii) It is sufficient to consider the case when w is equal to a2, a�2, ae, ea, b2,
b�2; Otherwise w would either be freely equivalent to a trivial word, or its action of
the first level would be non-trivial (and, therefore, w would represent a non-trivial
element in the group generated by the finite state automaton � ). Each of the words
a2, a�2, ae, ea, b2, b�2 acts non-trivially on the second level, and thus w does not
represent the trivial element in the group generated by � .

Note that the lemma above implies that the automatically presented group over �

(from Example 4) is equal to the group generated by this automaton. Indeed, take
a word w representing the identity in the group generated by � . The first part of
the lemma implies that there exists a level l such that each restriction of w to a
branch of this level has length at most two. Since w represents the identity in the
group generated by � , the action on the level l of w is trivial and all the restrictions
represent the identity in the group generated by � . Combining this with the claim of
the second part of the lemma, we see that each of these restrictions is freely equivalent
to the identity word. Therefore, w represents the identity element in the automatically
presented group defined by � .

4. Properties of piecewise automatically presented groups

We recall that a finitely generated group � has the property T of Kazhdan if for some
(and hence for all) finite generating set S of � there exists a positive constant ".S/

such that for every unitary representation .�; H/ of � with no invariant vectors and
for every u 2 H there exists s 2 S such that k�.s/u � uk � ".S/kuk. For more on
the property T see, for example, [20].

Theorem 1. Let G be a piecewise automatically presented group.
(i) If G has the property T of Kazhdan, then G is finite.
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(ii) If G is amenable and finitely presented, then G is virtually abelian.
(iii) More generally, if G is a quotient of a finitely presented group J without free

subgroups, then G is virtually abelian.

We recall that a group � is polycyclic if there exists a sequence e D �0 � �1 �
� � � � �M D � such that each �i is a normal subgroup in �iC1 and �iC1=�i is a
(finite or infinite) cyclic group. It is known that every polycyclic group is finitely
presented (see for example [25]). Therefore, the second part of the theorem shows in
particular that every polycyclic piecewise automatically presented group is virtually
abelian.

The theorem is in contrast with the fact that among groups generated by finite state
automata there are groups having the property T (see Mozes and Glasner, [22]) and
there are many amenable finitely presented groups that are not virtually abelian (for
example any nilpotent group admitting an expanding map is generated by some finite
state automaton, [23]).

It is known that the Schreier graph of any contracting action on a regular rooted
tree is of polynomial growth ([2], see also [23]), and thus groups admitting a faithful
contracting action cannot have the property T (unless they are finite). There is a
conjecture that any group admitting a faithful contracting action is amenable. Note
that we cannot replace the assumption in (i) by non-amenability.

Remark. The third part of the theorem implies that if J is a group without free-
subgroups admitting as a quotient the Basilica group from Example 3, then J is
infinitely presented.

Let G be a finitely generated group and S a finite generating set of G. Recall that
the labeled Cayley graph of .G; S/ is the graph whose vertices are the elements of
G and in which two vertices g1 and g2 are joined by an edge whenever there exists
s 2 S such that g1s D g2. In this case this oriented edge is labeled by s.

The Grigorchuk topology (also called the Cayley topology or the Chabauty topol-
ogy) on the space of d -generated groups is the topology in which two groups G1

and G2 generated by S , (#S D d ) are close whenever the labeled Cayley graphs
of .G1; S/ and .G2; S/ coincide in the ball of radius R, for large R. This space is
metrizable and the associated metric is mG..G1; S/; .G2; S// D .1=2/R, where R

is the maximal radius such that the labeled Cayley graphs of .G1; S/ and .G2; S/

coincide in the ball of radius R. It is easy to see that the space of groups generated
by a finite set S is compact in this topology. See [19] for further properties of this
topology.

Lemma 2. Let G be the piecewise automatically presented group defined by the
sequence .A1; �1/, .A2; �2/, : : : : Consider a piecewise automatically presented group
GC, defined by the sequence .A1; �C

1 /, .A2; �C
2 /, : : : , such that, for all i � N , we

have �i D �C
i .
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If N is large enough, then GC is a quotient of some group G0 which is close to G

in the Grigorchuk topology. That is, for every " > 0 there exists N" and a group G0,
generated by S , satisfying mG..G0; S/.G; S// < " and such that GC is a quotient
of G0, whenever N > N". .Here in G and GC we consider the system of generators S

coming from A1/.

Proof. Let R be a finite set of words representing the identity in G. Note that if N

is large enough, then by definition of piecewise automatically presented groups all
words in R represents the identity in GC as well.

Now take L > 0. Put RL to be the set of words of length at most L (in the
alphabet A1) that represent the identity in the group G. Let G0 be the group generated
by A1 with RL as the set of defining relations. By construction, the group G0 is finitely
presented. If L is large enough, then G0 is close to G in the Grigorchuk topology.
Note that there exists NL such that any group GC satisfying the assumption of the
lemma with N > NL is the quotient of the group G0.

Proposition 1. Let G be a piecewise automatically presented group. Suppose that G

is not virtually abelian. Then there exist sequences of groups Gi , Hi , such that, for
every i , Hi is a quotient of Gi , each Hi contains a free non-abelian subgroup and
Gi tends to G in the Grigorchuk topology.

Moreover, the sequences above can be chosen in such a way that Hi admits a
finite index subgroup which is a subgroup in a direct product of free groups.

Proof. Let Ai � e [ Si [ S�1
i . Let �i be some automaton, such that the set of states

of this automaton contains Si [ S�1
i and the subgroup generated by Si in the group

generated by �i (and hence in the automatically presented group over �i as well) is
free. (Such automata do exist, see e.g. [23], [24] or [28].)

Let Hi be the piecewise automatically presented group defined at each level j < i

by the automaton for the level j in the definition of G and by �i for j � i . Let us
show that each Hi contains a free group on two generators as a subgroup.

Indeed, for any level i there are two words w1 and w2 over S1 such that the action
on this level defined by these words is trivial and such that for some branch � of level i

the restriction to this branch w
�
1 and w

�
2 represent two non-commuting words in the

free group over Si . (Otherwise the stabilizer of the level i in G would be abelian and
G would be virtually abelian.) We see that w1 and w2 freely generate a free subgroup
in Hi .

Now, we apply Lemma 2 and see that there exists a sequence of groups Gi , such
that, for every i , Hi is a quotient of Gi and Gi tends to G in Grigorchuk topology.
(In this special case one can take G0 D GC and it is not necessary to take a quotient,
but we do not need it for the proof).

To prove the second claim of the proposition observe that the stabilizer of the
level i in Hi is a subgroup in the direct product of free groups. Indeed, observe that
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a word in this stabilizer represents the identity in Hi if and only if it represents the
identity in the corresponding piecewise automatic group.

Proof of Theorem 1. To prove (i) we assume the contrary and suppose that G is infinite
and has the property T . Then G is not virtually abelian. Therefore, we can apply
Proposition 1 and conclude that there exist a sequence of groups Gi , tending to G in
the Grigorchuk topology, and a sequence of groups Hi such that each Hi is an infinite
quotient of Gi , admitting a finite index subgroup H 0

i , which is a subgroup in a direct
product of free groups.

We know that Gi tends to G and that G has the property T . Recall that if G has
the property T and G0 is close enough to H in the Grigorchuk topology, then G0 also
has the property T ([26]). Therefore, there exists N such that, for all i � N , Gi has
the property T . The property T of Kazhdan is stable with respect to taking quotients,
and therefore, for every i � N , the group Hi has the property T . The property T is
also stable with respect to taking finite index subgroups, and so, for every i � N , H 0

i

has the property T .
On the other hand, free groups have the Haagerup property, which is stable with

respect to taking direct products and subgroups (see e.g. [7]). Thus, for every i , the
group H 0

i has the Haagerup property.
In particular, H 0

N is an infinite group that satisfies both the property T and
Haagerup property. We have arrived at a contradiction.

(ii) Since any group admitting a free non-abelian subgroup is non-amenable, (ii)
is a particular case of (iii).

Now we prove (iii). We assume the contrary and suppose that J is finitely presented
group without free non-abelian subgroups and G is a quotient of J . We suppose also
that G is not virtually abelian.

By Proposition 1 we know that there exists a sequence of groups Gi , tending to G

in the Grigorchuk topology, and a sequence of groups Hi such that each Hi contains
a free non-abelian subgroup and such that Hi is a quotient of Gi , for all i .

We know that Gi tends to G and that G is a quotient of a finitely presented group J .
Hence there exists N such that, for every i � N , the group Gi is a quotient of J .
Since J contains no free non-abelian subgroup and since this property is stable by
taking a quotient, this implies that, for all i � N , Gi contains no free non-abelian
subgroups. Since each Hi is a quotient of Gi , this shows that, for all i � N , Hi

contains no free non-abelian subgroups.
In particular, HN is a quotient of a group without free non-abelian subgroups, but

HN itself contains a free non-abelian subgroup. We arrived at a contradiction.
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5. Word problem

The proof of the first part of the following proposition represents a well-known al-
gorithm that solves the word problem in groups generated by finite state automata.
The proof of the second part represents an algorithm that solves the word problem in
automatically presented groups.

Proposition 2. (i) Every group G generated by a finite state automaton is recursively
presented and the word problem in such a group is solvable in exponential time: there
exists an algorithm which, for a word w of word length l , performs exp.C l/ steps
and decides whether w represents the identity element in G.

(ii) Every automatically presented group G .defined by a finite state automaton/

is recursively presented and, moreover, the word problem in such a group is solvable
in exponential time.

Proof. (i) Take � W A�X ! A�X over an alphabet X of cardinality d , and consider
a word w of length l over the alphabet A in the group G generated by this finite state
automaton.

Consider the action of w on the first level of the tree. If it is non-trivial, the
algorithm stops and answers that w represents a non-identity element in G. If the
action is trivial, consider the restrictions of w to the branches of the first level. We
denote these restrictions by w1; w2; : : : ; wd .

Observe that the length of each wi is at most l . Apply recursively the same
procedure to w1; : : : ; wd , having in mind that if, at some point, we get as a restriction a
word w that has already appeared, then we do not apply the algorithm to this additional
occurrence of w. If at some point the algorithm stops producing new words (all
restrictions of all considered words already appeared before) and all obtained words
act trivially on the first level of the tree, then the algorithm stops and answers that
w represents the identity in G. Note that the algorithm makes at most vG;A.l/ steps
(where vG;A.l/ is the growth function of G with respect to the generating set A). At
each step one performs at most Kl operations, where K is some positive constant.
Therefore, the total number of operations is at most exp.C l/, where C is some positive
constant.

(ii) Let � W A � X ! A � X , A � S [ S�1 [ e, be an automaton which gives
an automatic presentation of G. Consider the set W of non-empty freely irreducible
words over the alphabet S of length at most l . Consider the oriented graph �W whose
vertices are the words in W and in which two words w1 and w2 are joined by an edge
in the direction from w1 to w2 if the restriction of w1 to some branch of the first level
is freely equivalent to w2. In addition, draw a loop at every vertex w that acts as a
non-trivial permutation on the first level of the tree.

Observe that a word w represents a non-identical element in the group G if and
only if there is an oriented path starting at w and ending in a vertex which belongs to
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an oriented cycle of the graph �W (to see this we use again the fact that the restriction
to a branch does not increase the length of the word).

For an oriented graph of bounded valency and of cardinality s this problem can
be solved in time, which is polynomial in s. Indeed, first we observe that we can
determine in polynomial time which of the vertices belong to an oriented cycle. If
a vertex belongs to some cycle, then it belongs to a cycle of length at most s. For
every m with 1 � m � s and for all pairs of vertices w1 and w2, we can determine
whether there exists an oriented path of length m joining these two vertices, and this
can be done in polynomial time in s. To see this we apply an inductive argument and
observe, that if we can do this for some m < s, then we can do it also for m C 1.
Indeed, w1 and w2 are joined by an oriented path of length m C 1 if and only if there
exists w3 such that there is an oriented path of length m from w1 to w3 and there is
an oriented edge from w3 to w2. This shows, that we can determine which vertices
belong to some oriented cycle in polynomial time in s. After this we take the vertex w

in our graph and for each vertex u belonging to some oriented cycle we check whether
there exists an oriented path of length at most s from w to u.

Now we return to the proof of (ii). Note that the cardinality of �W is at most
exp.C l/ and the valency of each vertex is bounded by the cardinality of X . Therefore,
in time exp.Kl/ (K is a positive constant not depending on l) we can determine which
vertices correspond to a word, representing a non-identity element in G.

1) For a given automaton, it seems interesting to understand the structure of the
graphs described in the proof of the second part of the proposition. In particular,
additional information about these graphs can lead to better estimates for the word
problem in the corresponding groups.

2) If the sequence of automata �n is recursive, then the piecewise automatically
presented group defined by this sequence is recursively presented.
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[17] R. I. Grigorchuk and A. Żuk, On a torsion-free weakly branch group defined by a
three state automaton. Internat. J. Algebra Comput. 12 (2002), 223–246. Zbl 1070.20031
MR 1902367

[18] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci.
Publ. Math. 53 (1981), 53–73. Zbl 0474.20018 MR 0623534

[19] P. de la Harpe, Topics in geometric group theory. The University of Chicago Press, Chicago
2000. Zbl 0965.20025 MR 1786869

[20] P. de la Harpe and A. Valette, La propriété (T ) de Kazhdan pour les groupes localement
compacts (avec un appendice de Marc Burger). Astérisque 175 (1989). Zbl 0759.22001
MR 1023471

http://www.emis.de/MATH-item?05004322
http://www.ams.org/mathscinet-getitem?mr=2176547
http://www.emis.de/MATH-item?0968.43002
http://www.ams.org/mathscinet-getitem?mr=1721355
http://www.emis.de/MATH-item?1030.43002
http://www.ams.org/mathscinet-getitem?mr=1852148
http://www.emis.de/MATH-item?1089.20025
http://www.ams.org/mathscinet-getitem?mr=2144977
http://www.ams.org/mathscinet-getitem?mr=2197519
http://www.emis.de/MATH-item?0067.01203
http://www.ams.org/mathscinet-getitem?mr=0079220
http://www.emis.de/MATH-item?0595.20029
http://www.ams.org/mathscinet-getitem?mr=0565099
http://www.emis.de/MATH-item?0583.20023
http://www.ams.org/mathscinet-getitem?mr=0764305
http://www.emis.de/MATH-item?0583.20024
http://www.ams.org/mathscinet-getitem?mr=0784354
http://www.emis.de/MATH-item?0781.20023
http://www.ams.org/mathscinet-getitem?mr=1265271
http://www.emis.de/MATH-item?1070.20031
http://www.ams.org/mathscinet-getitem?mr=1902367
http://www.emis.de/MATH-item?0474.20018
http://www.ams.org/mathscinet-getitem?mr=0623534
http://www.emis.de/MATH-item?0965.20025
http://www.ams.org/mathscinet-getitem?mr=1786869
http://www.emis.de/MATH-item?0759.22001
http://www.ams.org/mathscinet-getitem?mr=1023471


Automatically presented groups 59

[21] V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and
entropy. Ann. Probab. 11 (1983), 457–490. Zbl 0641.60009 MR 0704539

[22] Ya. Glasner and Sh. Mozes,Automata and square complexes. Geom. Dedicata 111 (2005),
43–64. Zbl 1088.20037 MR 2155175

[23] V. Nekrashevych, Self-similar groups. Math. Surveys Monogr. 117, Amer. Math. Soc.,
Providence, RI, 2005. Zbl 1087.20032 MR 2162164

[24] A. S. Oliı̆nyk, Free products of finite groups and groups of finitely automatic permutations.
Trudy Mat. Inst. Steklova 231 (2000), 323–331; Proc. Steklov Inst. Math. 231 (2000),
308–315. Zbl 1005.20023 MR 1841761

[25] D. Segal, Polycyclic groups. Cambridge Tracts in Math. 82, Cambridge University Press,
Cambridge 1983. Zbl 0516.20001 MR 0713786

[26] Y. Shalom, Rigidity of commensurators and irreducible lattices. Invent. Math. 141 (2000),
1–54. Zbl 0978.22010 MR 1767270

[27] A. M. Vershik, Amenability and approximation of infinite groups. Selecta Math. Soviet. 2
(1982), 311–330. Zbl 0533.22007 MR 0721030

[28] M.Vorobets andYa.Vorobets, On a free group of transformations defined by an automaton.
arXive:math.GR/0601231

[29] A. Woryna, On permutation groups generated by time-varying Mealy automata. Publ.
Math. Debrecen 67 (2005), 115–130. Zbl 1081.20042 MR 2163119

Received April 10, 2006; revised October 8, 2006

Laboratoire de Mathématiques d’Orsay, UMR 8628 du C.N.R.S, Université Paris XI,
91405 Orsay, France

E-mail: anna.erschler@math.u-psud.fr; erschler@pdmi.ras.ru

http://www.emis.de/MATH-item?0641.60009
http://www.ams.org/mathscinet-getitem?mr=0704539
http://www.emis.de/MATH-item?1088.20037
http://www.ams.org/mathscinet-getitem?mr=2155175
http://www.emis.de/MATH-item?1087.20032
http://www.ams.org/mathscinet-getitem?mr=2162164
http://www.emis.de/MATH-item?1005.20023
http://www.ams.org/mathscinet-getitem?mr=1841761
http://www.emis.de/MATH-item?0516.20001
http://www.ams.org/mathscinet-getitem?mr=0713786
http://www.emis.de/MATH-item?0978.22010
http://www.ams.org/mathscinet-getitem?mr=1767270
http://www.emis.de/MATH-item?0533.22007
http://www.ams.org/mathscinet-getitem?mr=0721030
http://arxiv.org/abs/math.GR/0601231
http://www.emis.de/MATH-item?1081.20042
http://www.ams.org/mathscinet-getitem?mr=2163119

	Introduction
	Finite state automata, automatically presented groups and piecewise automatically presented groups
	Examples of automatically presented groups
	Properties of piecewise automatically presented groups
	Word problem
	References

