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1. Introduction

L?-cohomology for discrete groups I', in its simplicial version, was introduced by
Gromov in Chapter 8 of [Gro93] as a useful group invariant.

Assume first that I admits a classifying space X which is a simplicial complex,
finite in every dimension; let X be the universal cover of X. Denote by ¢2C¥ the
space of p-summable complex k-cochains on X, i.e. the £7-functions on the set C¥
of k-simplices of X. The L? -cohomology of T is the reduced cohomology of the
complex

di: (PCF — Pk,

where dj is the simplicial coboundary operator; we denote it by
A, (T) = Ker di /Im dj ;.

As explained at the beginning of Section 8 of [Gro93], this definition only depends
onT.!

*Supported by the Swiss National Found, request No 20-65060.01.

1Of course, L2-cohomology had been considered much earlier, the use of the von Neumann algebra of
I allowing to define, for k > 0, the k-th L2-Betti number, i.e. the von Neumann dimension of H(kz) )
(see [CG86]).
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For k = 1, one can define H (1p)(I‘) under the mere assumption that I" is finitely
generated. Indeed, denote by Ar the left regular representation of I on functions
on I'. For1 < p < oo, denote by D,(I") the space of functions f on I' such
that Ar(g) f — f € £P (D) for every g € I': this is the space of p-Dirichlet finite
functions on I'. If S is a finite generating subset of I, define a norm on D, (I")/C by
||f||f)p =Y cs IAr(s) f — f|5, and denote by i : £7(I') — D,(T) the inclusion.
The first L?-cohomology of T is then

Hi,y(T) = Dy(T)/i(€P (D)) + C.

The compatibility between this definition and the previous one, was checked e.g. in
[BMVO5].

This paper is mainly devoted to vanishing results for the first L?-cohomology of
a finitely generated group. Among motivations for studying these, we quote:

(1) vanishing of the first L2-Betti number has impact in geometric group theory and
topology (see e.g. Eckmann’s paper [Eck97]);

(2) spaces of L?-cohomology are quasi-isometry invariants for finitely generated
groups (see [BP03], [Pan]);

(3) it was shown in [BMVO05] that, whenever a non-amenable group I acts properly
isometrically on a proper CAT(—1) space X, then for p larger than the critical
exponent e(I") in X, the first L”-cohomology of I' is not zero; on the other hand,
a result of Burger—-Mozes [BM96] states that if X is a proper CAT(—1) space
such that the full isometry group Isom(X) acts co-compactly, then every group
acting properly isometrically on X has finite critical exponent; so a group whose
first L?-cohomology vanishes forevery p > 1, cannot act properly isometrically
on such a CAT(—1)-space X.

The following theorem is our main result (it subsumes Theorems 4.1, 4.2, 4.3, 4.6,
4.7,4.8).

Theorem. Fix p €]1,+oo[. (i) Let T be a finitely generated group acting (without
inversion) on a tree with non-amenable vertex stabilizers and infinite edge stabilizers.
If all vertex stabilizers have vanishing first L? -cohomology, then so does T.

(i1) Let N be a normal, infinite, finitely generated subgroup of a finitely generated
group T'. Assume that N is non-amenable and that its centralizer Zt(N) is infinite.
Then I-_I(lp)(F) =0.

_ (iii) Let I" be a finitely generated group. lIf the centre of ' is infinite, then
H (lp)(l") =0.

(iv) Let H, T' be (non-trivial) finitely generated groups, and let H ¢ T be their
wreath product. If H is non-amenable, then H (11))(H M)y =0.

(v) Let G = G x --- x Gy, be a direct product of non-compact, second countable
locally compact groups (n > 2). Let " be a finitely generated, cocompact lattice in G.
If T is non-amenable (equivalently, if some G; is non-amenable), then H (lp)(l") =0.
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(vi) Fixn > 2. Fori = 1,...,n, let G; be the group of k; -rational points of some
k;-simple, k;-isotropic linear algebraic group, for some local field k;. Let T be an
irreducible lattice in Gy X - -+ X Gy. Then I-_I(lp)(F) =0.

Moreover, for p = 2, the results in (i), (iv), (v) above hold without the non-
amenability assumption.”

Part (iii) of this Theorem extends a result of Gromov (Corollary on p. 221 of
[Gro93]): if the center of I" contains an element of infinite order, then H (lp)(F) =0.
A very short proof of this fact was recently given by Tessera (Proposition 3 in [Tes]).

Part (vi) is amodest contribution to a conjecture of Gromov (see p. 253 in [Gro93]):
if ' is a co-compact lattice of isometries of a Riemannian symmetric space (of non-
compact type) or a Euclidean building X, then one should have H (];) (I') = 0 for
k < rank(X).

We now describe our approach to H! ., which is to appeal on the one hand to
an identification between the first L?-cohomology and the (reduced) first group co-
homology with coefficients in £7(I") (the relevant cohomological background being
presented in Section 2), on the other hand to p-harmonic functions: if S is a finite,
symmetric generating subset of ", we say, following [Pul06], that a function f on I’
is p-harmonic if

D) = FOOIPT2 (ST — f(x) =0

sES

for every x € I'. We denote by HD,(I") the set (not a linear space, if p # 2) of
harmonic, p-Dirichlet finite functions on I'. It was observed by B. Bekka and the
second author [BV97] for p = 2, and by M. Puls [Pul06] in general, that for " an
infinite, finitely generated group, the following are equivalent:

i) the first L?-cohomology H (1p)(F) is zero;
ii) HD,(I") = C;
iii) £7(I") is dense in D, (I")/C;

iv) H(T,£?(T')) = 0, where H (T, £7(T")) denotes the reduced 1-cohomology of
I" with coefficients in the I"-module £7 (I").

In Section 3 we add a fifth characterization to this list, giving much flexibility:
Corollary 3.2. For an infinite, finitely generated group T', the above properties are

still equivalent to: HY(T,£P(H)|r) = O for every group H containing T as a
subgroup.

2W. Liick informed us that, in the case p = 2, it is possible to prove part (i) of the Theorem without
the non-amenability assumption, using his algebraic version of L2-Betti numbers (see [Lue02]). The case
of amalgamated products is treated in [Lue02], Theorem 7.2 (4), p. 294.
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Section 4 contains our vanishing results for H (lp), while Section 5 has a somewhat
different flavor: using the Cheeger—-Gromov vanishing result for L2-cohomology of
amenable groups [CG86], we obtain a new characterization of amenability for finitely
generated groups:

Proposition 5.3. Let T" be an infinite, finitely generated group. The following are
equivalent:

(i) I is amenable;

(ii) €*(T) is a dense, proper subspace of D,(I')/C.

This paper can be viewed a sequel to [BMVO05], although it can be read indepen-
dently.

Acknowledgment. We thank Bachir Bekka, Marc Bourdon, Damien Gaboriau and
Wolfgang Liick for useful exchanges and for sharing their insights with us, and Yves
de Cornulier and Michael Puls for comments on a preliminary version of the paper.
The referee’s careful reading allowed us to eliminate several imprecisions and typos.

2. 1-cohomology versus reduced 1-cohomology

2.1. 1-cohomology. Let G be a topological group and let V' be a topological G-
module, i.e. a real or complex topological vector space endowed with a continuous
linear representation 7: G X V — V; (g,v) — m(g)v. If H is a closed subgroup
we denote by V' |y the space V' viewed as an H-module for the restricted action, and
by VH the set of H-fixed points

VH —fveV|n(hyv=vforallh € H}.

We say that V' is a Banach G-module if V' is a Banach space and 7 is a representation
of G by isometries of V. A G-module is unitary if V is a Hilbert space and 7 a
unitary representation.

We now introduce the space of 1-cocycles and 1-coboundaries on G, and the
1-cohomology with coefficients in V':

ZY(G,V) = {b: B — V continuous | h(gh) = b(g) + n(g)b(h) forall g,h € G},
BYG,V)=1{b e Z (G,V) | there exists v € V such that b(g) = n(g)v —v

forall g € G},
HYG,V)=Z7ZYG,V)/BY(G,V).
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If N is a closed normal subgroup of G and V' is a G-module, there is a well-known
action of G on HY(N, V|y). On Z1(N, V|y), this action is given by:

(g-b)(n) = 7(g)(b(g™'ng)) (1)

(b e ZY(N,V|n), g € G, n € N). Clearly this action leaves B!(N, V|y) invariant,
so it defines an action of G on H(N, V|n). We have form € N,

(m - b)(n) = b(n) + (w(n)b(m) — b(m)) 2)

showing that the N-action on H'(N,V|y) is trivial, hence the action of G on
H'(N, V|y) factors through G/ N . The following resultis well known (see e.g. Corol-
lary 6.4 in [Bro82]) and usually proved using the Hochschild—Serre spectral sequence
in group cohomology.?

Proposition 2.1. 1) There is an exact sequence

[ % RestN
0— HYG/N,VN) 5 HYG, V) —% HY(N,VIN)SN > .. @3)

wherei: VN — V denotes the inclusion.
2) If VN = 0 then the restriction map

Rest : H'(G.V) — H'(N.V|y)%/¥
is an isomorphism.

Let X be a set with a I'-action. The space ¥ (X) of all functions X — C is
endowed with the permutation representation, i.e. the I'-module structure given by
yf)(x) = f(y™'x) (f € F(X) forall x € X). The following lemma is well
known; the proof is given for completeness.

Lemma 2.2. Let I" be a (discrete) group and let X be a set on which T acts freely.
Then H'(T', ¥ (X)) = 0.

Proof. Let (s;)ier be a set of representatives for ['-orbits in X. For x € X, there
exists a unique i € I and y € T such that x = ys;. Forb € Z (T, ¥ (X)), define
then f(x) = (b(y~1))(s;). Itis readily verified that yf — f = b(y) forevery y € T'.

O

3For a proof without spectral sequences, see 8.1 in Chapter 1 of [Gui80].
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2.2. Reduced 1-cohomology. Since G is a topological group and V is a topological
G-module, we may endow Z!(G, V) with the topology of uniform convergence
on compact subsets of G. The closure of B!(G, V) for this topology is denoted
by B1(G, V), and the quotient space Z!(G, V)/B(G, V), called the reduced first
cohomology of G with coefficients in V, is denoted by H1(G,V). We will use
the abuse of notation H!(G,V) = H'(G, V) to mean “the canonical epimorphism
HY(G,V) — H(G, V) is an isomorphism”. We recall without proof the following
result of Guichardet (Théoréme 1 in [Gui72]):

Proposition 2.3. Let G be a locally compact, second countable group and let V be
a Banach module such that V¢ = 0. The following are equivalent:

() H'(G,V) = H'(G,V);

(ii) V does not have almost invariant vectors (this means that there exists a compact
subset K of G and & > 0 such that supg ||w(g)v —v| > ¢||v| for everyv € V).

Let Ag denote the left regular representation of G on L?(G) (1 < p < 00).
Since Ag has almost invariant vectors if and only if G is amenable (see [Eym72]),
we immediately deduce (see Corollaire 1 in [Gui72]):

Corollary 2.4. Fix 1 < p < 0o. Let G be a locally compact, non compact, second
countable group. The following are equivalent:

() H'(G.L?(G)) = HY(G.L?(G));
(i1) G is not amenable.
Reduced 1-cohomology behaves well with respect to inductive limits:
Lemma 2.5. Let G be a locally compact group which is the union of a directed
system of open subgroups (G;)ier. Let (V, 1) be a Banach G-module, with b €

ZILG, V). Ifblg, € BY(G;,V|g;) foralli € I, then b € B (G, V). In particular,
if HY(G;,V|g,) =0foralli € I, then H'(G,V) = 0.

Proof. Let K be a compact subset of G and ¢ > 0. By compactness K is covered by

a finite union G;; U --- U G;,; with i > iy,...,i,, we get K C G;. Since b|g, €
BY(G;,V]g,), we find a vector v € V such that supg [|b(g) — (w(g)v —v)|| < &,
ie.b e BI(G,V). O

The next result will be used to characterize vanishing of the first L?-cohomology
in Corollary 3.2.

Proposition 2.6. Fix 1 < p < oo. Let H be a subgroup of the countable, discrete
group I'. Consider the following properties:
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() H'(H.?(H)) =0,
(i) H'(H.(P(I)|g) =0,
(") H'(H.tP(H)) =0,
(i) H'(H. tP(T)|g) = 0.
Then (i) < (ii) and (") < (ii’).

Proof. Choosing representatives (s,),>1 for the right cosets of H in I', we may
identify £ (T")| g, in an H -equivariant way, with the £?-direct sum of [T" : H] copies
of £7(H).

(i) = (i) and (ii’) = (i’): The continuous map

ZYH (P(H)) — ZY(H tP(D)|g), b (b,0,0,...)
induces inclusions
H'(H,tP(H)) - H'(H.¢?(T)|g) and H(H,{P(H)) — H'(H. L?(T)|n).

(1) = (ii): The result is obvious for [[" : H] < o0, so we assume [[" : H] = oco.
Forb € ZY(H, (P(T)|g),letb, € Z'(H, {P(H)) be its projection on the n-th factor
LP(Hsy). So, for h € H, one has b(h) = @b, (h). Fix K a finite subset of H,
and ¢ > 0. Let N > 0 be such that ), _n [bx(h)[”? < £ forevery h € K.
Fori = 1,..., N, using the assumption we find a function v; € £7(H) such that
1bi(h) — (A (h)v; —v;)||? < 5% forevery h € K. Setv, = 0forn > N, and
define v = ®v, € £P(I"). Then by construction ||b(h) — [Ar(h)v —v]||? < & for
every h € K, i.e., b is a limit of 1-coboundaries.

(i") = (ii’): We consider two cases:

a) If H is finite then H'(H,(?(H)) = H'(H,£?(T)|g) = 0.

b) If H is infinite then the assumption H'(H, {?(H)) = 0 implies, by Corol-
lary 2.4, that H is not amenable. By Lemma 2 in [BMVO05], this implies that
£P(T)|g does not almost have invariant vectors. By Proposition 2.3, we have
HY(H (?(T)|g) = H'(H,£(T)|g), so that the result follows from the impli-
cation (i) = (ii). O

Remark. Let G be a locally compact second countable group and let I be a Banach
G-module with VG = 0. Fix p €]1, +ool, and denote by oo, V' the £7-direct sum of
countably many copies of V. Consider the following properties:

(i) H'(G,V) =0,
(i) H(G,o00,V) =0,
(i) H'(G.V) =0,
(ii') H'(G,o0,V) = 0.



88 F. Martin and A. Valette

Then the same proof as in Proposition 2.6 shows that (i) <= (ii) and (ii'’) = (i’).
However, the implication (i") = (ii’) is not clear in general (as Lemma 2 in [BMV05]
is very special to £7-spaces). A proof of that implication, using a different approach
and assuming that V' is a uniformly convex Banach space, has been communicated to
us by N. Monod.

3. First L?-cohomology

3.1. p-Dirichlet finite functions. Let I" be a finitely generated group; fix a finite
generating set S. Let " act on a set X. Denote by Ay the permutation representation
of I' on ¥ (X). Fix p € [1,00][, and denote by | .|, the £”-norm with respect to
counting measure on X .

The space of p-Dirichlet finite functions on X (relative to the I"-action) is

Dp(X)={f € FX) | Ax (@) f — flp <ocoforallg €T}
={f e F(X)|IAx()f — fl, < coforalls € S}.

Then D, (X )T is the space of functions on X which are constant on I'-orbits of X (it
does not depend on p). Define a semi-norm on D, (X) by

1£1p,00 = [ X Iax @) f = £15] "

seS

The kernel of this semi-norm is precisely D,(X)T, and the quotient D,(X) =
D,(X)/D,(X)¥ is a Banach space (the norm on D, (X) depends on the choice
of S, but the underlying topology does not).

Define a linear map @: D,(X) — Z(I, 47 (X)) by a(f)(y) = Ax () f — f.
The kernel of this map is D,(X ), so @ descends to a continuous injection
a: Dy(X) - ZY(T,LP(X)).

Let i: £P(X) — D,(X) be the canonical inclusion. Clearly ¢7(X)! is the
space of £7-functions which are constant on I"-orbits and zero on infinite orbits. Set
IE(X) = €7 (X) /P (X)T (so that I£(X) = £7(X) if all orbits are infinite). The map
i induces a continuous inclusion i : llf (X) = D,(X). Note that the image of & o i
is exactly the space B (T, £7 (X)) of 1-coboundaries. This shows that:

e if i is not onto, then H (T, {?(X)) # 0;
* if the image of i is not dense, then H! (I', P (X)) # 0.

Theorem 3.1. Let X be a free T-space. Then a: Dp(X) — ZY(T,€P(X)) is a
topological isomorphism, and consequently:
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HY(L,17(X)) =~ Dp(X)/i(IE(X));
HY(T 0P (X)) = Dp(X) /i (IE(X)).

Proof. We already know that « is continuous and injective. Since the I"-action on X
is free, we have H!(I", # (X)) = 0 by Lemma 2.2. So for b € Z! (T, £? (X)) there
exists f € F(X)suchthatb(g) = Ax(g)f — f forevery g € I. Clearly f belongs
to D,(X), so that &(f) = b and « is onto. It is then clear that @ ™! is continuous.

O

When T is infinite and X = T, we have [£(X) = (P(T) and D,(X) =
D,(X)/C. It was already observed (see Lemma 1 in [BMVO05]; end of Section
2 in [Pul06]) that:

e H(T,£P(T)) is isomorphic to D,(T")/(¢?(T) + C);

e the first £7-cohomology I-_I(lp)(F) is isomorphic to D, (I")/(£7(T") 4+ C).

So we get, using Proposition 2.6:

Corollary 3.2. Let I' be an infinite, finitely generated group. The following are
equivalent:
) A, (T) = 0;
(ii) £P(T") is dense in D,(I")/C:;
(iii)y H1(T,£7(I)) = 0;
(iv) H! (T, €2 (H)|r) = 0 for every group H containing I as a subgroup.

From this and Corollary 2.4, we get immediately:

Corollary 3.3. Let " be an infinite, finitely generated group. The following are
equivalent:

(i) H'(T,£7(1)) = 0;
(ii) H(lp) (') = 0 and T is non-amenable.

3.2. p-harmonic functions (after M. Puls). This section is essentially borrowed
from Section 3 in Puls’ paper [Pul06]. We chose to include it mainly for the sake
of completeness, but also to make sure that Puls’ results hold for any I'-action (not
only for simply transitive ones). Our presentation, emphasizing the role of Gateaux-
differentials, is slightly different from the one in [Pul06].

So we come back to the general setting of a finitely generated group I' (with a
given, finite, symmetric, generating set S') acting on a countable set X. For f € £ (X)
and p > 1, define

(Ap N)X) = D 1F 67 %) = FEIP2(f (7 ) = f(x))

seS
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with the convention, if p < 2, that | f(s™'x) — f(x)[?2(f(s"'x) — f(x)) = 0if
f(s7ix) = f(x). Say that f is p-harmonic if A, f = 0, and denote by HD,(X)
the set of p-harmonic functions in D,(X). For p # 2, the set HD,(X) is not
necessarily a linear subspace in D,(X). Note however that it contains the linear
subspace D), (X)T.

For f € D,(I), define a linear form on D, (X) by

dr(g) =D Y 16 0) = FOIP2(f(s7 %) — f(0))(g(s ™ x) — g(x))

xeX seS

(where g € D,(X); but clearly dr(g) only depends on the image of g in D,(X), and
dr only depends on the image of f in £, (X)). Let g be the conjugate exponent of
p (so that % + é = 1); by Holder’s inequality, we get

@I = [ 2 Y160 = f@IP ™) [ 30N Jel7hx) - g7 |

xeX seS xeX seS

S =

—1
<1715 e gD, .

proving continuity of d¢ as a linear form on D, (X).

This linear form dy can be understood as follows. Let us identify a function
f € Dp(X) with its image in D,(X). Consider the strictly convex, continuous,
non-linear functional on £, (X) given by

F(f)= ”f”f@p(x)'

The Gateaux-differential of F' at f € D,(X) (see [ET74], Def. 5.2 in Chapter I) is
given by

, - F(f +19)—F(f)
Ff(g):tl—l>l(1)l+ 14

(g € Dp(X)). An easy computation shows that
F f/ =p d f-

The following lemma extends Lemma 3.1 in [Pul06].

Lemma 3.4. For fi, f» € D,(X), the following are equivalent:
(i) fi— f2 e Dp(X)T;
(i) dp (1 — f2) = dp(f1 = f2)
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Proof. If f1 — f» € DP(X)F, then dy(f1 — f2) = O for every f € D,(X), in

particular dy, (f1 — f2) =0 =dg, (f1 — f2).
Conversely, if f1 — f2 ¢ D,(X)', then fi, f, define distinct elements in D, (X).
As F is strictly convex on D, (X)), by Proposition 5.4 in Chapter I of [ET74], we have

F(fi) > F(f2) + F,(fi = f2) = F(f2) + pdp,(fi = fo).

Similarly

F(f2) > F(fi) + Fp (fa— /i) = F(f1) = pdy, (/i = f2).
Sody, (f1 — f2) > dp, (f1 — f2). [

The next lemma generalizes Lemma 3.2 and Proposition 3.4 in [Pul06].

Lemma 3.5. For f € D,(X), the following are equivalent:
(1) f is p-harmonic;

(i) dr(8y) = O for every y € X (where §, denotes the characteristic function of

h:
(iii) dr(g) = 0 forevery g € i(llg (X)) (where the closure is in Dp(X)).

Proof. (1) <= (ii): We compute

dr(8y) =D 1f ) = fEIP () — f(s9))

seS

=TI = fFOIPTASETTY) = FO)

sES

==2(8p 1)),

as S is symmetric.

(ii) <= (iii): The linear span of the §,’s (y € X)is densein {”(X). By continuity
of i : IZ(X) — Dp(X), the linear span of the §,’s is dense in i (/% (X)). This shows
the desired equivalence. O

The following result extends Theorem 3.5 in [Pul06].

Theorem 3.6. Every f € D,(X) can be decomposed as f = g + h, where g €

i(¢P(X)) and h € HD,(X). This decomposition is unique, up to an element of
D,(X)T.



92 F. Martin and A. Valette

Proof. We start with uniqueness. So assume that f = gy + hy = g2 + ha. Then
dp,(h1 — hy) = dp, (g2 — g1) = 0 by appealing to Lemma 3.5 (since h; is p-
harmonic). Similarly dj, (hy — h3) = 0. By Lemma 3.4, it follows that 1; — A5 is in
Dp(X)T.

To prove existence, we denote by g the projection of f on the closed convex
subset i (/2(X)) in O, (X) (this projection is well-defined by uniform convexity and
reflexivity of D, (X), see Theorem 2.8 in [BLOO] or Lemma 6.2 in [BFGM]). Setting
h = f — g, we must show that & is p-harmonic. For every j € i({? (X)), consider
the smooth function

Gi:R—>R, 1t ||f—g+fj||§)p(x)-

Since g minimizes the distance between f and i (/? (X)), the function G, (¢) assumes
its minimal value at t = 0, hence GJ’- (0) = 0. The same computation as for the
Gateaux-differential of F' shows that G.;- (0) = pdy(j) = 0. Since this holds for
every j € i(I?(X)), we conclude, by Lemma 3.5, that / is harmonic. O

Comparing Theorem 3.6 with Theorem 3.1, we immediately get:

Corollary 3.7. Let X be a free I'-space. Then H\(T, (7 (X)) identifies with
HD,(X)/ D, (X)T (where two functions in HD, (X) are identified if and only if they
differ by an element in D,(X)").

4. Vanishing of first L”-cohomology

4.1. Groups acting on trees

Theorem 4.1. Fix p € [1, 4+00[. Let G be a finitely generated group acting (without
inversion) on a tree with non-amenable vertex stabilizers and infinite edge stabilizers.
If all vertex stabilizers have vanishing first L? -cohomology, then so does G.

Proof. By Bass—Serre theory (see [Ser77]), G is the fundamental group of a graph
of groups (¥,Y). So Y is a graph and § is a system of groups attached to edges and
vertices of ¥ in such a way that the edge groups are infinite and the vertex groups
are non-amenable and have vanishing first L?-cohomology. Consider the following
cases:

1) If Y is a segment, then G is an amalgamated product G = I'y x4 ['; with A4
infinite and I'y, I'; non-amenable. The first cohomology of a G-module V' is computed
by means of the Mayer—Vietoris sequence (see [Bro82], formula (9.1), p. 81):

0->VG syhigylz 5 p4

Rest# —Restd

T
— HYG.V) > H'T1.V|r,) ® H (T2.V|r,) —— H' (A, V]4) — ---
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We apply this to V = {?(G). By Corollary 3.3, we have H!(G, {(?(G)) = 0.
Therefore I-_I(lp)(G) = 0.

2)If Y is aloop, then G is a HNN-extension G = HNN(T, 4, ), with A infinite
and I" non-amenable. The first cohomology of a G-module V' is computed by means
of the Mayer—Vietoris sequence (see [Bro82], formula (9.2)):

0>V >Vl > VA HYG, V) > H'(T, V) » H' (A, V]) > --- .

This is applied to V = £7(G). By Corollary 3.3, we have H'(G,{?(G)) = 0,
so again I-_I(lp)(G) =0.

3) If Y 1s finite, we can argue by induction on the number n of edges. If n = 1,
the result follows from the first two cases. For arbitrary n, we choose an edge and
contract it. If this edge is a segment with vertex groups I'y, I'; and edge group A,
we replace it by a vertex whose group is 'y x4 ['2; if the edge is a loop with vertex
group I' and edge group A, we replace it by a vertex whose group is HNN(T', 4, 6).
This operation does not change the fundamental group and we obtain a graph with
n — 1 edges, so the induction assumption applies.

4) In the general case, Y is the increasing union of finite subgraphs, so we may
apply Lemma 2.5. O

The converse of Theorem 4.1 fails. We give two examples for p = 2, one for
amalgamated products, one for HNN-extensions.

Example 1. Let g be a prime, and consider I' = SL, (Z[é]). It follows from Exam-

ple 4 below that H(lz)(r) = 0. But (see [Ser77])

= SLz(Z) * A SLz(Z)

(with A = {(g 2) € SLy(Z) | ¢ = 0 mod ¢} and ﬁ(lz)(SLz(Z)) # 0 (see Exam-
ple 5.1.1 in [Pan96]).

Example 2. Let M be a closed, hyperbolic 3-manifold fibering over S!; the fiber is a
hyperbolic surface X4. Then I' = 71 (M) is a semi-direct product (hence a particular
case of an HNN-extension):

I'=m((Zg) X Z;

then H(lz) (') =0, but I-_I(lz) (m1(Zg)) # 0 (see Example 5.1.2 in [Pan96]).

4.2. Normal subgroups with large commutant

Theorem 4.2. Let N be a normal, infinite, finitely generated subgroup of a finitely
generated group T'. Assume that N is non-amenable and its centralizer Z(N) is
infinite. Then H(lp)(F) = 0forl < p < 4+oo. If p = 2 this holds without the
non-amenability assumption on N.
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Proof. We consider I' as a free N-space. Let D, (I") be the space of p-Dirichlet finite
functions with respect to N on I' and D, (I") = D,(I')/D,, (T as in the previous
section. Itis clear that 9, (I") is a Banach Zr (N )-module, where Zr (N ) acts by left
translations.

Claim: D,(T)?T™) =0,

Indeed, letaclass [ f] € D,(T)%T @) be represented by the function f € D,(T);
then Ar(g) f — f € Dp(T)" forevery g € Zr(N). This means that foreveryn € N:

Ar(m)(Ar(@)f = f) =Ar(@)f = f

or else (using gn = ng)

Ar(@@Ar(m) f — f) =Ar(n) f - f.
Since f € D,(I"), we have Ar(n) f — f € £P(T"), hence

Ar(n)f — f e P (I)#r@),

As Zr(N) is infinite, this shows that Ar(n) f — f vanishes identically, so that f €
D, (TN, hence [ f] = 0. This proves the claim.

Consider themapa: D, (') — Z(N, £P(T')|y) from Theorem 3.1. Let I" actby
translations on D, (T"), and let it act on Z* (N, £7(T")| ') by the action of formula (1)
in Section 2.1. A simple computation shows that « is '-equivariant. In view of
Corollary 3.7, & induces a Zr (N )-equivariant bijection between HD,(I")/ D, (I")"
and H1(N, £P(T")|n). We now separate two cases: _

i) NN Zr(N) is infinite. Since we know that the action of N on H1(N, £?(T")|n)
is trivial (by equation (2)), every element of H1(N, £P(T")|n) is (N N Zp(N))-fixed.
So every element of HD,(I")/D,(T")" is (N N Zr(N))-fixed. Now by the claim
(noticing that we may replace there Zr (N ) by N N Zp(N) since the latter is infinite),
the only (N N Zp(N))-fixed point in Dp(I") is 0. So HD,(T')/D,(TMN = {0},
hence H1(N,{?P(T")|xy) = 0. By Corollary 3.2, we get that I-_I(lp)(N) = 0. By
Theorem 1 in [BMVO05] (in which the non-amenability of N is used) we conclude
that A/, (T') = 0.

ii) N N Zr(N) is finite. Since N is non-amenable, we have H (N, P (I)|y) =
H'(N, (P (T')|y). By the claim, there is no fixed point in HD,(I")/D,(I")" under
Zr(N)/(N N Zr(N)). So we have HY(N,£P(T)|y)2rW/(NNZr(N) = 0. In
particular HY(N, £7(T')|x)T/¥ = 0. By equation (3), we have H' (T, £?(T")) = 0,
so |, (') = 0 by Corollary 3.2.

If p = 2 we may assume that N is amenable. Then I' contains an infinite,
amenable, normal subgroup, so by the Cheeger—-Gromov vanishing theorem [CG86],
all the L2-cohomology of I" does vanish. O

Remarks. a) It was observed by Marc Bourdon that part ii) in the above proof can be
obtained differently in case Z(N) contains an element z of infinite order. Indeed let
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H be the subgroup generated by N U {z}. Then z is central in H, so ﬁ(lp)(H )=20
by the Corollary on p. 221 in [Gro93]. The result then follows from Theorem 1
in [BMVO5].

b) Among the recent vanishing results for L2-cohomology, the most striking is
probably Gaboriau’s (Théoreme 6.8 in [Gab02]): assume that I" contains a normal
subgroup N which is infinite, has infinite index, and is finitely generated (as a group):
then H(lz)(F) = 0. To prove this, Gaboriau needs a substantial part of his theory
of L2-Betti numbers for measured equivalence relations and group actions. It is
very tempting to try to get a simpler proof of that result, and this is what motivated
this section. More precisely, one possible line of attack for Gaboriau’s result is the
following: if the normal subgroup N is amenable, then all of the L2-cohomology of I’
does vanish by the Cheeger—Gromov vanishing theorem [CG86]. So we may assume
that N, hence also I', is non-amenable. We must then prove that H !(T", £2(I")) = 0;
by the exact sequence (3), this is still equivalent to H (N, £2(I')|x)"/N = 0.

Although a proof of Gaboriau’s result along these lines remains elusive so far, this
line of attack opened the possibility of replacing L2-cohomology by L?-cohomology,
which resulted in Theorem 4.2 above.

Theorem 4.3. Let I be a finitely generated group. If the centre of T is infinite, then
H(lp)(F) =0forl < p < oo.

Proof. We apply the first case of the proof of Theorem 4.2, with N = T'. It yields
H (11)) (I'") = 0, in full generality (i.e. without appealing to non-amenabilility). O

The following example, kindly provided by M. Bourdon, shows that the previous
Theorem 4.3 does not hold for p = 1.

Example 3. One has ﬁ(ll)(Z) =# 0. To see this, first observe that every function
f € D1(Z) admits a limit at +o00 and —oo. Indeed, the sequence (f()),>1 is a
Cauchy sequence since for n > m,

|f(n) = fm)| = | Z(f(k + 1= fk)l = Z [(f(k +1) = f(k))]

k=m k=m

and the RHS goes to zero for m,n — 400 as f € D1(Z). Similarly, the sequence

(f(=n))n>1 is Cauchy.
Next consider the linear form 7 on D;(Z) defined by

T(f) = ( lim _f(n)=( lim_f()

(f € D1(Z)). For x the characteristic function of N, we get y € D1(Z) and
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7(y) = 1. The form t is continuous on D;(Z) because

n—1

(N =1 tim (fo)=fm)l =] lim 3" (fle+D=fE)] = IS pyca.
k=—n

Since 7 is a continuous non-zero linear form on D1 (Z) which vanishes on C + IAVAN
we conclude that H (11)(2) #£ 0.

4.3. Wreath products

Lemma 4.4. Let G, G, be non-compact, locally compact groups. Let N <1 G1 X G
be a closed normal subgroup such that N N (G1 x {1}) (resp. N N ({1} x G3)) is not
co-compact in Gy X {1} (resp. {1} x G3). Set G = (G1 x G3)/N. Then

1) HY(G,L*(G)) = 0;
2) if moreover G is non-amenable, then H' (G, L?(G)) = Ofor 1 < p < oo.

Proof. 1) We appeal to a result of Shalom ([Sha00], Theorem 3.1): if (V, ) is a
unitary (G; x Gz)-module, and b € Z'(G; x G3, V), then b is cohomologous
in HY(Gy x G, V) to a sum by + by + by, where by takes values in V 91XG2
and, for i = 1,2, b; factors through G; and takes values in a (G; x Gy)-invariant
subspace on which m factors through G;. This implies the following alternative:
either H1(G1 x G, V) = 0, or there exists in V' a non-zero vector fixed by some
restriction 7 |g, .

We apply this to the regular representation Ag, viewed as a representation of
G1 x G,. The assumption ensures that the restriction Ag|g; (i = 1,2) does not
have non-zero invariant vectors. Therefore, H!(G; x G2, L?(G)) = 0, hence also
HY(G,L*(G)) =0.

2) We replace Shalom’s result by a recent result of Bader—Furman—Gelander—
Monod ([BFGM], Theorem 7.1): let (V, ) be a Banach (G x G;)- module, with V
uniformly convex, such that m does not almost have invariant vectors, and
HY (G, x G5,V) # 0; then for some i € {1,2}, there exists a non-zero 7(G;)-
fixed vector.

We apply this to the regular representation Ag on L?(G), viewed as a representa-
tion of G; X G,. Our assumptions ensures that the restriction Ag|g, (i = 1,2) does
not have non-zero invariant vectors and Ag does not almost have invariant vectors.

So H'(Gy x G5, LP(G)) = 0, hence also H'(G, L?(G)) = 0. O
Lemma 4.5. Fixn > 2. Let Gy,..., Gy, be non-compact, locally compact groups.
Assume that at least one G; is non-amenable. Set G = G1 X --- x G,. Then

HY(G,L?(G)) = 0for1 < p < oo.
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Proof. Renumbering the groups if necessary, we may assume that G is non-amenable.
The result then follows from Lemma 4.4 by induction over n (the case n = 2 being
Lemma 4.4, with N = {1}). O

As an application, we show the vanishing of the first L?-cohomology for wreath
products. For p = 2, that fact can also be deduced from Theorem 7.2 (2) in [Lue02].

Theorem 4.6. Let H, I" be (non-trivial) finitely generated groups. Then

@) Fl(lz)(H :T) =0;

(1) if H is non-amenable, then I-_I(lp)(H :T)=0forl < p < oc.

Proof. Let N = Py H. Note that N is amenable exactly when H is. We separate
two cases:

1) Proof of (i) when N is amenable. If N is finite, then so are H, I', H : T" and
the result is clear. If N is infinite, then the result follows from the Cheeger—Gromov
vanishing theorem [CG86].

2) Proof of (i) and (ii) when N is non-amenable. Then N can be written as
the direct product of two non-amenable groups, e.g., N = H X (@F_{l} H). By
Lemma 4.5, we have H'(N, £”(N)) = 0, hence also H'(N,¢?(H :T)|y) = 0 by
Proposition 2.6. The result then follows from equation (3). O

4.4. Lattices in products

Theorem 4.7. Let G = G X --- X Gy, be a direct product of non-compact, second
countable locally compact groups (n > 2). Let I be a finitely generated, cocompact
lattice in G. Then

(i) I‘_I(IZ)(F) =0;

(i) ifT isnon-amenable (equivalently, if some G; is non-amenable), then H (lp)(r) =
Oforl < p < 0.

Proof. By the version of Shapiro’s lemma proved in Proposition 4.5 of [Gui80],
since I' is cocompact, there exists a topological isomorphism H (T, £?(T")) ~
H 1(G,I,,Indlg £P(I')), where pIndg V denotes the induced module in the L?-sense,
ie., pIndlq V = (LP(G,V))L. But pIndg £2(T") is G-isomorphic to L?(G), so we
get HY(T',£P(I")) ~ HY(G, L?(G)) = 0 by Lemma 4 4. O

Theorem 4.8. Fixn > 2. Fori = 1,...,n, let G; be the group of k;-rational points
of some k;-simple, k;-isotropic linear algebraic group for some local field k;. Let T
be an irreducible lattice in G1 X -+ X Gy,. Then H(lp)(F) =0forl < p < oo.
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Proof. We need some terminology. A lattice A in a locally compact group G is
p-integrable if either it is cocompact, or it is finitely generated and for some finite
generating set S C A, there is a Borel fundamental domain D C G such that

/D x(g M2 dh < 00

for every g € G; here | - |g denotes word length, and y: G — T is defined by

x(yg) =yforyerl,geD.
We then appeal to a result of Bader—-Furman—Gelander—Monod (see Section 8.2

in [BFGM], especially the few lines preceding Proposition 8.7): if A is a p-integrable
lattice in G and V' is a Banach A-module, then there is a topological isomorphism

HY(A,V) ~ HY(G,,Ind§ V).

In our case, set G = G x :-- X G,. Then I is p-integrable for every p > 1 by a
result of Shalom (Section 2 in [Sha00]; this is where irreducibility of T" is used). With
V = 1£P(T), we get pIndlcf V ~ LP(G), so, using Lemma 4.5, the result follows.*

O

Example 4. Let g be a prime; I' = SL, (Z[é]) is an irreducible non-uniform lattice
in SL>(R) x SL»(Qg). Theorem 4.8 applies to give P_I(lp)(F) = 0.

5. Application to amenable groups

Proposition 5.1. Let I' be a finitely generated group. If I has an infinite amenable
normal subgroup (in particular if T is infinite amenable), then H1(T, £>(T")) = 0.

Proof. By the Cheeger—Gromov vanishing result [CG86], the assumptions imply that
H (12) (I') = 0. So the result follows from Corollary 3.2. O

When T is itself amenable, the finite generation assumption can be removed:
Corollary 5.2. Let I' be an amenable discrete group. Then H! (T, £2(T")) = 0.

Proof. Let (I';);er be the directed system of finitely generated subgroups of I" (so
that ' = (J,¢; I'}). By Proposition 5.1, we have H(T;,€2%(T;)) = 0 for every
i € I. By Proposition 2.6, this implies that H! (T, €*(T)|r,) = O forevery i € I.
The conclusion then follows from Lemma 2.5. O

_ “To apply Section 8.2 in [BFGM], only the p-integrability condition is needed. Our vanishing result for
H (lp) (T) is therefore valid in more general situations; it holds, for example, for the Kac—-Moody lattices
studied by B. Rémy in [RemO05].
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We also get a new characterization of amenability for finitely generated, infinite
groups.

Proposition 5.3. Let I' be an infinite, finitely generated group. The following are
equivalent:

(1) T is amenable;

(ii) €*(T) is a dense, proper subspace of D,(I")/C.

Proof. In view of Theorem 3.1, £2(T) is a dense, proper subspace of D,(T")/C if and
onlyif H(T,¢*(T")) # 0and H'(T, ¢*(T")) = 0. If this happens, then [ is amenable
by Corollary 3.3. Conversely, if I' is amenable, then H (T, £2(T")) # H(T, £*>(I"))
by the converse of Corollary 3.3, and the latter space is zero by Proposition 5.1. [
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