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On the first Lp-cohomology of discrete groups
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Abstract. For finitely generated groups � , the isomorphism between the first `p-cohomology
H 1

.p/
.�/ and the reduced 1-cohomology with coefficients in `p.�/ is exploited to obtain

vanishing results for H 1
.p/

.�/. The following cases are treated: groups acting on trees, groups
with infinite center, wreath products, and lattices in product groups.
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1. Introduction

Lp-cohomology for discrete groups � , in its simplicial version, was introduced by
Gromov in Chapter 8 of [Gro93] as a useful group invariant.

Assume first that � admits a classifying space X which is a simplicial complex,
finite in every dimension; let zX be the universal cover of X . Denote by `pC k the
space of p-summable complex k-cochains on zX , i.e. the `p-functions on the set C k

of k-simplices of zX . The Lp-cohomology of � is the reduced cohomology of the
complex

dk W `pC k ! `pC kC1;

where dk is the simplicial coboundary operator; we denote it by

xH k
.p/.�/ D Ker dk=Im dk�1:

As explained at the beginning of Section 8 of [Gro93], this definition only depends
on � .1

�Supported by the Swiss National Found, request No 20-65060.01.
1Of course, L2-cohomology had been considered much earlier, the use of the von Neumann algebra of

� allowing to define, for k � 0, the k-th L2-Betti number, i.e. the von Neumann dimension of xH k
.2/

.�/

(see [CG86]).
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For k D 1, one can define xH 1
.p/

.�/ under the mere assumption that � is finitely
generated. Indeed, denote by �� the left regular representation of � on functions
on � . For 1 � p < 1, denote by Dp.�/ the space of functions f on � such
that ��.g/f � f 2 `p.�/ for every g 2 �: this is the space of p-Dirichlet finite
functions on � . If S is a finite generating subset of � , define a norm on Dp.�/=C by
kf kp

Dp
D P

s2S k��.s/f � f kp
p , and denote by i W `p.�/ ! Dp.�/ the inclusion.

The first Lp-cohomology of � is then

xH 1
.p/.�/ D Dp.�/=i.`p.�// C C:

The compatibility between this definition and the previous one, was checked e.g. in
[BMV05].

This paper is mainly devoted to vanishing results for the first Lp-cohomology of
a finitely generated group. Among motivations for studying these, we quote:

(1) vanishing of the first L2-Betti number has impact in geometric group theory and
topology (see e.g. Eckmann’s paper [Eck97]);

(2) spaces of Lp-cohomology are quasi-isometry invariants for finitely generated
groups (see [BP03], [Pan]);

(3) it was shown in [BMV05] that, whenever a non-amenable group � acts properly
isometrically on a proper CAT.�1/ space X , then for p larger than the critical
exponent e.�/ in X , the first Lp-cohomology of � is not zero; on the other hand,
a result of Burger–Mozes [BM96] states that if X is a proper CAT.�1/ space
such that the full isometry group Isom.X/ acts co-compactly, then every group
acting properly isometrically on X has finite critical exponent; so a group whose
first Lp-cohomology vanishes for every p > 1, cannot act properly isometrically
on such a CAT.�1/-space X .

The following theorem is our main result (it subsumes Theorems 4.1, 4.2, 4.3, 4.6,
4.7, 4.8).

Theorem. Fix p 2�1; C1Œ. (i) Let � be a finitely generated group acting .without
inversion/ on a tree with non-amenable vertex stabilizers and infinite edge stabilizers.
If all vertex stabilizers have vanishing first Lp-cohomology, then so does � .

(ii) Let N be a normal, infinite, finitely generated subgroup of a finitely generated
group � . Assume that N is non-amenable and that its centralizer Z�.N / is infinite.
Then xH 1

.p/
.�/ D 0.

(iii) Let � be a finitely generated group. If the centre of � is infinite, then
xH 1

.p/
.�/ D 0.

(iv) Let H , � be .non-trivial/ finitely generated groups, and let H o � be their
wreath product. If H is non-amenable, then xH 1

.p/
.H o �/ D 0.

(v) Let G D G1 � � � � � Gn be a direct product of non-compact, second countable
locally compact groups .n � 2/. Let � be a finitely generated, cocompact lattice in G.
If � is non-amenable .equivalently, if some Gi is non-amenable/, then xH 1

.p/
.�/ D 0.
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(vi) Fix n � 2. For i D 1; : : : ; n, let Gi be the group of ki -rational points of some
ki -simple, ki -isotropic linear algebraic group, for some local field ki . Let � be an
irreducible lattice in G1 � � � � � Gn. Then xH 1

.p/
.�/ D 0.

Moreover, for p D 2, the results in (ii), (iv), (v) above hold without the non-
amenability assumption.2

Part (iii) of this Theorem extends a result of Gromov (Corollary on p. 221 of
[Gro93]): if the center of � contains an element of infinite order, then xH 1

.p/
.�/ D 0.

A very short proof of this fact was recently given by Tessera (Proposition 3 in [Tes]).
Part (vi) is a modest contribution to a conjecture of Gromov (see p. 253 in [Gro93]):

if � is a co-compact lattice of isometries of a Riemannian symmetric space (of non-
compact type) or a Euclidean building X , then one should have xH k

.p/
.�/ D 0 for

k < rank.X/.
We now describe our approach to xH 1

.p/
, which is to appeal on the one hand to

an identification between the first Lp-cohomology and the (reduced) first group co-
homology with coefficients in `p.�/ (the relevant cohomological background being
presented in Section 2), on the other hand to p-harmonic functions: if S is a finite,
symmetric generating subset of � , we say, following [Pul06], that a function f on �

is p-harmonic if

X
s2S

jf .s�1x/ � f .x/jp�2.f .s�1x/ � f .x// D 0

for every x 2 � . We denote by HDp.�/ the set (not a linear space, if p ¤ 2) of
harmonic, p-Dirichlet finite functions on � . It was observed by B. Bekka and the
second author [BV97] for p D 2, and by M. Puls [Pul06] in general, that for � an
infinite, finitely generated group, the following are equivalent:

i) the first Lp-cohomology xH 1
.p/

.�/ is zero;

ii) HDp.�/ D C;

iii) `p.�/ is dense in Dp.�/=C;

iv) SH 1.�; `p.�// D 0, where SH 1.�; `p.�// denotes the reduced 1-cohomology of
� with coefficients in the �-module `p.�/.

In Section 3 we add a fifth characterization to this list, giving much flexibility:

Corollary 3.2. For an infinite, finitely generated group � , the above properties are
still equivalent to: SH 1.�; `p.H/j�/ D 0 for every group H containing � as a
subgroup.

2W. Lück informed us that, in the case p D 2, it is possible to prove part (i) of the Theorem without
the non-amenability assumption, using his algebraic version of L2-Betti numbers (see [Lue02]). The case
of amalgamated products is treated in [Lue02], Theorem 7.2 (4), p. 294.
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Section 4 contains our vanishing results for xH 1
.p/

, while Section 5 has a somewhat

different flavor: using the Cheeger–Gromov vanishing result for L2-cohomology of
amenable groups [CG86], we obtain a new characterization of amenability for finitely
generated groups:

Proposition 5.3. Let � be an infinite, finitely generated group. The following are
equivalentW

(i) � is amenable;

(ii) `2.�/ is a dense, proper subspace of D2.�/=C.

This paper can be viewed a sequel to [BMV05], although it can be read indepen-
dently.

Acknowledgment. We thank Bachir Bekka, Marc Bourdon, Damien Gaboriau and
Wolfgang Lück for useful exchanges and for sharing their insights with us, and Yves
de Cornulier and Michael Puls for comments on a preliminary version of the paper.
The referee’s careful reading allowed us to eliminate several imprecisions and typos.

2. 1-cohomology versus reduced 1-cohomology

2.1. 1-cohomology. Let G be a topological group and let V be a topological G-
module, i.e. a real or complex topological vector space endowed with a continuous
linear representation � W G � V ! V ; .g; v/ 7! �.g/v. If H is a closed subgroup
we denote by V jH the space V viewed as an H -module for the restricted action, and
by V H the set of H -fixed points

V H D fv 2 V j �.h/v D v for all h 2 H g:

We say that V is a Banach G-module if V is a Banach space and � is a representation
of G by isometries of V . A G-module is unitary if V is a Hilbert space and � a
unitary representation.

We now introduce the space of 1-cocycles and 1-coboundaries on G, and the
1-cohomology with coefficients in V :

Z1.G; V / D fb W B ! V continuous j b.gh/ D b.g/ C �.g/b.h/ for all g; h 2 Gg;
B1.G; V / D fb 2 Z1.G; V / j there exists v 2 V such that b.g/ D �.g/v � v

for all g 2 Gg;
H 1.G; V / D Z1.G; V /=B1.G; V /:
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If N is a closed normal subgroup of G and V is a G-module, there is a well-known
action of G on H 1.N; V jN /. On Z1.N; V jN /, this action is given by:

.g � b/.n/ D �.g/.b.g�1ng// (1)

(b 2 Z1.N; V jN /, g 2 G; n 2 N ). Clearly this action leaves B1.N; V jN / invariant,
so it defines an action of G on H 1.N; V jN /. We have for m 2 N ,

.m � b/.n/ D b.n/ C .�.n/b.m/ � b.m// (2)

showing that the N -action on H 1.N; V jN / is trivial, hence the action of G on
H 1.N; V jN / factors through G=N . The following result is well known (see e.g. Corol-
lary 6.4 in [Bro82]) and usually proved using the Hochschild–Serre spectral sequence
in group cohomology.3

Proposition 2.1. 1) There is an exact sequence

0 ! H 1.G=N; V N /
i��! H 1.G; V /

RestNG���! H 1.N; V jN /G=N ! � � � (3)

where i W V N ! V denotes the inclusion.
2) If V N D 0 then the restriction map

RestN
G W H 1.G; V / ! H 1.N; V jN /G=N

is an isomorphism.

Let X be a set with a �-action. The space F .X/ of all functions X ! C is
endowed with the permutation representation, i.e. the �-module structure given by
.�f /.x/ D f .��1x/ (f 2 F .X/ for all x 2 X). The following lemma is well
known; the proof is given for completeness.

Lemma 2.2. Let � be a .discrete/ group and let X be a set on which � acts freely.
Then H 1.�; F .X// D 0.

Proof. Let .si /i2I be a set of representatives for �-orbits in X . For x 2 X , there
exists a unique i 2 I and � 2 � such that x D �si . For b 2 Z1.�; F .X//, define
then f .x/ D .b.��1//.si /. It is readily verified that �f �f D b.�/ for every � 2 � .

3For a proof without spectral sequences, see 8.1 in Chapter 1 of [Gui80].
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2.2. Reduced 1-cohomology. Since G is a topological group and V is a topological
G-module, we may endow Z1.G; V / with the topology of uniform convergence
on compact subsets of G. The closure of B1.G; V / for this topology is denoted
by B1.G; V /, and the quotient space Z1.G; V /=B1.G; V /, called the reduced first
cohomology of G with coefficients in V , is denoted by SH 1.G; V /. We will use
the abuse of notation H 1.G; V / D SH 1.G; V / to mean “the canonical epimorphism
H 1.G; V / ! SH 1.G; V / is an isomorphism”. We recall without proof the following
result of Guichardet (Théorème 1 in [Gui72]):

Proposition 2.3. Let G be a locally compact, second countable group and let V be
a Banach module such that V G D 0. The following are equivalentW

(i) H 1.G; V / D SH 1.G; V /I
(ii) V does not have almost invariant vectors .this means that there exists a compact

subset K of G and " > 0 such that supK k�.g/v � vk � "kvk for every v 2 V /.

Let �G denote the left regular representation of G on Lp.G/ (1 � p < 1).
Since �G has almost invariant vectors if and only if G is amenable (see [Eym72]),
we immediately deduce (see Corollaire 1 in [Gui72]):

Corollary 2.4. Fix 1 � p < 1. Let G be a locally compact, non compact, second
countable group. The following are equivalentW

(i) H 1.G; Lp.G// D SH 1.G; Lp.G//I
(ii) G is not amenable.

Reduced 1-cohomology behaves well with respect to inductive limits:

Lemma 2.5. Let G be a locally compact group which is the union of a directed
system of open subgroups .Gi /i2I . Let .V; �/ be a Banach G-module, with b 2
Z1.G; V /. If bjGi

2 SB1.Gi ; V jGi
/ for all i 2 I , then b 2 SB1.G; V /. In particular,

if SH 1.Gi ; V jGi
/ D 0 for all i 2 I , then SH 1.G; V / D 0.

Proof. Let K be a compact subset of G and " > 0. By compactness K is covered by
a finite union Gi1 [ � � � [ Gin ; with i � i1; : : : ; in, we get K � Gi . Since bjGi

2
SB1.Gi ; V jGi

/, we find a vector v 2 V such that supK kb.g/ � .�.g/v � v/k < ",
i.e. b 2 B1.G; V /.

The next result will be used to characterize vanishing of the first Lp-cohomology
in Corollary 3.2.

Proposition 2.6. Fix 1 � p < 1. Let H be a subgroup of the countable, discrete
group � . Consider the following propertiesW
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(i) SH 1.H; `p.H// D 0;

(ii) SH 1.H; `p.�/jH / D 0;

(i0) H 1.H; `p.H// D 0;

(ii0) H 1.H; `p.�/jH / D 0.

Then .i/ ” .ii/ and (i0) ” (ii0).

Proof. Choosing representatives .sn/n�1 for the right cosets of H in � , we may
identify `p.�/jH , in an H -equivariant way, with the `p-direct sum of Œ� W H� copies
of `p.H/.

(ii) H) (i) and (ii0) H) (i0): The continuous map

Z1.H; `p.H// ! Z1.H; `p.�/jH /; b 7! .b; 0; 0; : : : /

induces inclusions

H 1.H; `p.H// ! H 1.H; `p.�/jH / and SH 1.H; `p.H// ! SH 1.H; `p.�/jH /:

(i) H) (ii): The result is obvious for Œ� W H� < 1, so we assume Œ� W H� D 1.
For b 2 Z1.H; `p.�/jH /, let bn 2 Z1.H; `p.H// be its projection on the n-th factor
`p.Hsn/. So, for h 2 H , one has b.h/ D ˚bn.h/. Fix K a finite subset of H ,
and " > 0. Let N > 0 be such that

P
n>N kbn.h/kp < "

2
for every h 2 K.

For i D 1; : : : ; N , using the assumption we find a function vi 2 `p.H/ such that
kbi .h/ � .�H .h/vi � vi /kp < "

2N
for every h 2 K. Set vn D 0 for n > N , and

define v D ˚vn 2 `p.�/. Then by construction kb.h/ � Œ��.h/v � v�kp < " for
every h 2 K, i.e., b is a limit of 1-coboundaries.

(i0) H) (ii0): We consider two cases:
a) If H is finite then H 1.H; `p.H// D H 1.H; `p.�/jH / D 0.
b) If H is infinite then the assumption H 1.H; `p.H// D 0 implies, by Corol-

lary 2.4, that H is not amenable. By Lemma 2 in [BMV05], this implies that
`p.�/jH does not almost have invariant vectors. By Proposition 2.3, we have
H 1.H; `p.�/jH / D xH 1.H; `p.�/jH /, so that the result follows from the impli-
cation (i) ) (ii).

Remark. Let G be a locally compact second countable group and let V be a Banach
G-module with V G D 0. Fix p 2�1; C1Œ, and denote by 1pV the `p-direct sum of
countably many copies of V . Consider the following properties:

(i) SH 1.G; V / D 0,

(ii) SH 1.G; 1pV / D 0,

(i0) H 1.G; V / D 0,

(ii0) H 1.G; 1pV / D 0.
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Then the same proof as in Proposition 2.6 shows that .i/ ” .ii/ and .ii0/ H) .i0/.
However, the implication (i0) H) (ii0) is not clear in general (as Lemma 2 in [BMV05]
is very special to `p-spaces). A proof of that implication, using a different approach
and assuming that V is a uniformly convex Banach space, has been communicated to
us by N. Monod.

3. First Lp-cohomology

3.1. p-Dirichlet finite functions. Let � be a finitely generated group; fix a finite
generating set S . Let � act on a set X . Denote by �X the permutation representation
of � on F .X/. Fix p 2 Œ1; 1Œ, and denote by k : kp the `p-norm with respect to
counting measure on X .

The space of p-Dirichlet finite functions on X (relative to the �-action) is

Dp.X/ D ff 2 F .X/ j k�X .g/f � f kp < 1 for all g 2 �g
D ff 2 F .X/ j k�X .s/f � f kp < 1 for all s 2 Sg:

Then Dp.X/� is the space of functions on X which are constant on �-orbits of X (it
does not depend on p). Define a semi-norm on Dp.X/ by

kf kDp.X/ D
hX

s2S

k�X .s/f � f kp
p

i 1
p

:

The kernel of this semi-norm is precisely Dp.X/� , and the quotient Dp.X/ D
Dp.X/=Dp.X/� is a Banach space (the norm on Dp.X/ depends on the choice
of S , but the underlying topology does not).

Define a linear map Q̨ W Dp.X/ ! Z1.�; `p.X// by Q̨ .f /.�/ D �X .�/f � f .
The kernel of this map is Dp.X/� , so Q̨ descends to a continuous injection
˛ W Dp.X/ ! Z1.�; `p.X//.

Let Qi W `p.X/ ! Dp.X/ be the canonical inclusion. Clearly `p.X/� is the
space of `p-functions which are constant on �-orbits and zero on infinite orbits. Set
l

p
� .X/ D `p.X/=`p.X/� (so that l

p
� .X/ D `p.X/ if all orbits are infinite). The map

Qi induces a continuous inclusion i W l
p
� .X/ ! Dp.X/. Note that the image of ˛ B i

is exactly the space B1.�; `p.X// of 1-coboundaries. This shows that:

� if i is not onto, then H 1.�; `p.X// 6D 0;

� if the image of i is not dense, then SH 1.�; `p.X// 6D 0.

Theorem 3.1. Let X be a free �-space. Then ˛ W Dp.X/ ! Z1.�; `p.X// is a
topological isomorphism, and consequentlyW
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H 1.�; lp.X// ' Dp.X/=i.l
p
� .X//I

SH 1.�; `p.X// ' Dp.X/=i.l
p
� .X//.

Proof. We already know that ˛ is continuous and injective. Since the �-action on X

is free, we have H 1.�; F .X// D 0 by Lemma 2.2. So for b 2 Z1.�; `p.X// there
exists f 2 F .X/ such that b.g/ D �X .g/f �f for every g 2 � . Clearly f belongs
to Dp.X/, so that Q̨ .f / D b and ˛ is onto. It is then clear that ˛�1 is continuous.

When � is infinite and X D � , we have l
p
� .X/ D `p.�/ and Dp.X/ D

Dp.X/=C. It was already observed (see Lemma 1 in [BMV05]; end of Section
2 in [Pul06]) that:

� H 1.�; `p.�// is isomorphic to Dp.�/=.`p.�/ C C/;

� the first `p-cohomology xH 1
.p/

.�/ is isomorphic to Dp.�/=.`p.�/ C C/.

So we get, using Proposition 2.6:

Corollary 3.2. Let � be an infinite, finitely generated group. The following are
equivalentW

(i) xH 1
.p/

.�/ D 0I
(ii) `p.�/ is dense in Dp.�/=CI

(iii) SH 1.�; `p.�// D 0I
(iv) SH 1.�; `p.H/j�/ D 0 for every group H containing � as a subgroup.

From this and Corollary 2.4, we get immediately:

Corollary 3.3. Let � be an infinite, finitely generated group. The following are
equivalentW

(i) H 1.�; `p.�// D 0I
(ii) xH 1

.p/
.�/ D 0 and � is non-amenable.

3.2. p-harmonic functions (after M. Puls). This section is essentially borrowed
from Section 3 in Puls’ paper [Pul06]. We chose to include it mainly for the sake
of completeness, but also to make sure that Puls’ results hold for any �-action (not
only for simply transitive ones). Our presentation, emphasizing the role of Gâteaux-
differentials, is slightly different from the one in [Pul06].

So we come back to the general setting of a finitely generated group � (with a
given, finite, symmetric, generating set S ) acting on a countable set X . For f 2 F .X/

and p > 1, define

.�pf /.x/ D
X
s2S

jf .s�1x/ � f .x/jp�2.f .s�1x/ � f .x//
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with the convention, if p < 2, that jf .s�1x/ � f .x/jp�2.f .s�1x/ � f .x// D 0 if
f .s�1x/ D f .x/. Say that f is p-harmonic if �pf D 0, and denote by HDp.X/

the set of p-harmonic functions in Dp.X/. For p ¤ 2, the set HDp.X/ is not
necessarily a linear subspace in Dp.X/. Note however that it contains the linear
subspace Dp.X/� .

For f 2 Dp.�/, define a linear form on Dp.X/ by

df .g/ D
X
x2X

X
s2S

jf .s�1x/ � f .x/jp�2.f .s�1x/ � f .x//.g.s�1x/ � g.x//

(where g 2 Dp.X/; but clearly df .g/ only depends on the image of g in Dp.X/, and
df only depends on the image of f in Dp.X/). Let q be the conjugate exponent of
p (so that 1

p
C 1

q
D 1); by Hölder’s inequality, we get

jdf .g/j �
h X

x2X

X
s2S

jf .s�1x/ � f .x/j.p�1/q
i 1

q
h X

x2X

X
s2S

jg.s�1x/ � g.x/jp
i 1

p

� kf kp�1

Dp.X/
kgkDp.X/;

proving continuity of df as a linear form on Dp.X/.
This linear form df can be understood as follows. Let us identify a function

f 2 Dp.X/ with its image in Dp.X/. Consider the strictly convex, continuous,
non-linear functional on Dp.X/ given by

F.f / D kf kp

Dp.X/
:

The Gâteaux-differential of F at f 2 Dp.X/ (see [ET74], Def. 5.2 in Chapter I) is
given by

F 0
f .g/ D lim

t!0C

F.f C tg/ � F.f /

t

(g 2 Dp.X/). An easy computation shows that

F 0
f D p df :

The following lemma extends Lemma 3.1 in [Pul06].

Lemma 3.4. For f1; f2 2 Dp.X/, the following are equivalentW
(i) f1 � f2 2 Dp.X/� I

(ii) df1
.f1 � f2/ D df2

.f1 � f2/.
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Proof. If f1 � f2 2 Dp.X/� , then df .f1 � f2/ D 0 for every f 2 Dp.X/, in
particular df1

.f1 � f2/ D 0 D df2
.f1 � f2/.

Conversely, if f1 �f2 … Dp.X/� , then f1; f2 define distinct elements in Dp.X/.
As F is strictly convex on Dp.X/, by Proposition 5.4 in Chapter I of [ET74], we have

F.f1/ > F.f2/ C F 0
f2

.f1 � f2/ D F.f2/ C p df2
.f1 � f2/:

Similarly

F.f2/ > F.f1/ C F 0
f1

.f2 � f1/ D F.f1/ � p df1
.f1 � f2/:

So df1
.f1 � f2/ > df2

.f1 � f2/.

The next lemma generalizes Lemma 3.2 and Proposition 3.4 in [Pul06].

Lemma 3.5. For f 2 Dp.X/, the following are equivalentW
(i) f is p-harmonicI

(ii) df .ıy/ D 0 for every y 2 X .where ıy denotes the characteristic function of
fyg/I

(iii) df .g/ D 0 for every g 2 i.l
p
� .X// .where the closure is in Dp.X//.

Proof. (i) ” (ii): We compute

df .ıy/ D
X
s2S

jf .y/ � f .sy/jp�2.f .y/ � f .sy//

�
X
s2S

jf .s�1y/ � f .y/jp�2.f .s�1y/ � f .y//

D �2.�pf /.y/;

as S is symmetric.
(ii) ” (iii): The linear span of the ıy’s (y 2 X) is dense in `p.X/. By continuity

of i W l
p
� .X/ ! Dp.X/, the linear span of the ıy’s is dense in i.l

p
� .X//. This shows

the desired equivalence.

The following result extends Theorem 3.5 in [Pul06].

Theorem 3.6. Every f 2 Dp.X/ can be decomposed as f D g C h, where g 2
Qi.`p.X// and h 2 HDp.X/. This decomposition is unique, up to an element of
Dp.X/� .
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Proof. We start with uniqueness. So assume that f D g1 C h1 D g2 C h2. Then
dh1

.h1 � h2/ D dh1
.g2 � g1/ D 0 by appealing to Lemma 3.5 (since h1 is p-

harmonic). Similarly dh2
.h1 � h2/ D 0. By Lemma 3.4, it follows that h1 � h2 is in

Dp.X/� .
To prove existence, we denote by g the projection of f on the closed convex

subset i.lp.X// in Dp.X/ (this projection is well-defined by uniform convexity and
reflexivity of Dp.X/, see Theorem 2.8 in [BL00] or Lemma 6.2 in [BFGM]). Setting
h D f � g, we must show that h is p-harmonic. For every j 2 i.lp.X//, consider
the smooth function

Gj W R ! R; t 7! kf � g C tj kp

Dp.X/
:

Since g minimizes the distance between f and i.lp.X//, the function Gj .t/ assumes
its minimal value at t D 0, hence G0

j .0/ D 0. The same computation as for the
Gâteaux-differential of F shows that G0

j .0/ D p dh.j / D 0. Since this holds for
every j 2 i.lp.X//, we conclude, by Lemma 3.5, that h is harmonic.

Comparing Theorem 3.6 with Theorem 3.1, we immediately get:

Corollary 3.7. Let X be a free �-space. Then SH 1.�; `p.X// identifies with
HDp.X/=Dp.X/� .where two functions in HDp.X/ are identified if and only if they
differ by an element in Dp.X/�/.

4. Vanishing of first Lp-cohomology

4.1. Groups acting on trees

Theorem 4.1. Fix p 2 Œ1; C1Œ. Let G be a finitely generated group acting .without
inversion/ on a tree with non-amenable vertex stabilizers and infinite edge stabilizers.
If all vertex stabilizers have vanishing first Lp-cohomology, then so does G.

Proof. By Bass–Serre theory (see [Ser77]), G is the fundamental group of a graph
of groups .G ; Y /. So Y is a graph and G is a system of groups attached to edges and
vertices of Y in such a way that the edge groups are infinite and the vertex groups
are non-amenable and have vanishing first Lp-cohomology. Consider the following
cases:

1) If Y is a segment, then G is an amalgamated product G D �1 ?A �2 with A

infinite and �1, �2 non-amenable. The first cohomology of a G-module V is computed
by means of the Mayer–Vietoris sequence (see [Bro82], formula (9.1), p. 81):

0 ! V G ! V �1 ˚ V �2 ! V A

! H 1.G; V / ! H 1.�1; V j�1
/ ˚ H 1.�2; V j�2

/
RestA

�1
�RestA

�2��������! H 1.A; V jA/ ! � � �
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We apply this to V D `p.G/. By Corollary 3.3, we have H 1.G; `p.G// D 0.
Therefore xH 1

.p/
.G/ D 0.

2) If Y is a loop, then G is a HNN-extension G D HNN.�; A; �/, with A infinite
and � non-amenable. The first cohomology of a G-module V is computed by means
of the Mayer–Vietoris sequence (see [Bro82], formula (9.2)):

0 ! V G ! V � ! V A ! H 1.G; V / ! H 1.�; V j�/ ! H 1.A; V jA/ ! � � � :

This is applied to V D `p.G/. By Corollary 3.3, we have H 1.G; `p.G// D 0,
so again xH 1

.p/
.G/ D 0.

3) If Y is finite, we can argue by induction on the number n of edges. If n D 1,
the result follows from the first two cases. For arbitrary n, we choose an edge and
contract it. If this edge is a segment with vertex groups �1, �2 and edge group A,
we replace it by a vertex whose group is �1 �A �2; if the edge is a loop with vertex
group � and edge group A, we replace it by a vertex whose group is HNN.�; A; �/.
This operation does not change the fundamental group and we obtain a graph with
n � 1 edges, so the induction assumption applies.

4) In the general case, Y is the increasing union of finite subgraphs, so we may
apply Lemma 2.5.

The converse of Theorem 4.1 fails. We give two examples for p D 2, one for
amalgamated products, one for HNN-extensions.

Example 1. Let q be a prime, and consider � D SL2.ZŒ 1
q
�/. It follows from Exam-

ple 4 below that xH 1
.2/

.�/ D 0. But (see [Ser77])

� D SL2.Z/ ?A SL2.Z/

(with A D f� a b
c d

� 2 SL2.Z/ j c 	 0 mod qg and xH 1
.2/

.SL2.Z// ¤ 0 (see Exam-
ple 5.1.1 in [Pan96]).

Example 2. Let M be a closed, hyperbolic 3-manifold fibering over S1; the fiber is a
hyperbolic surface †g . Then � D �1.M/ is a semi-direct product (hence a particular
case of an HNN-extension):

� D �1.†g/ Ì ZI
then xH 1

.2/
.�/ D 0, but xH 1

.2/
.�1.†g// ¤ 0 (see Example 5.1.2 in [Pan96]).

4.2. Normal subgroups with large commutant

Theorem 4.2. Let N be a normal, infinite, finitely generated subgroup of a finitely
generated group � . Assume that N is non-amenable and its centralizer Z�.N / is
infinite. Then xH 1

.p/
.�/ D 0 for 1 < p < C1. If p D 2 this holds without the

non-amenability assumption on N .
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Proof. We consider � as a free N -space. Let Dp.�/ be the space of p-Dirichlet finite
functions with respect to N on � and Dp.�/ D Dp.�/=Dp.�/N as in the previous
section. It is clear that Dp.�/ is a Banach Z�.N /-module, where Z�.N / acts by left
translations.

Claim: Dp.�/Z� .N / D 0.
Indeed, let a class Œf � 2 Dp.�/Z� .N / be represented by the function f 2 Dp.�/;

then ��.g/f �f 2 Dp.�/N for every g 2 Z�.N /. This means that for every n 2 N :

��.n/.��.g/f � f / D ��.g/f � f

or else (using gn D ng)

��.g/.��.n/f � f / D ��.n/f � f:

Since f 2 Dp.�/, we have ��.n/f � f 2 `p.�/, hence

��.n/f � f 2 `p.�/Z� .N /:

As Z�.N / is infinite, this shows that ��.n/f � f vanishes identically, so that f 2
Dp.�/N , hence Œf � D 0. This proves the claim.

Consider the map ˛ W Dp.�/ ! Z1.N; `p.�/jN / from Theorem 3.1. Let � act by
translations on Dp.�/, and let it act on Z1.N; `p.�/jN / by the action of formula (1)
in Section 2.1. A simple computation shows that ˛ is �-equivariant. In view of
Corollary 3.7, ˛ induces a Z�.N /-equivariant bijection between HDp.�/=Dp.�/N

and SH 1.N; `p.�/jN /. We now separate two cases:
i) N \Z�.N / is infinite. Since we know that the action of N on SH 1.N; `p.�/jN /

is trivial (by equation (2)), every element of SH 1.N; `p.�/jN / is .N \Z�.N //-fixed.
So every element of HDp.�/=Dp.�/N is .N \ Z�.N //-fixed. Now by the claim
(noticing that we may replace there Z�.N / by N \Z�.N / since the latter is infinite),
the only .N \ Z�.N //-fixed point in Dp.�/ is 0. So HDp.�/=Dp.�/N D f0g,
hence SH 1.N; `p.�/jN / D 0. By Corollary 3.2, we get that xH 1

.p/
.N / D 0. By

Theorem 1 in [BMV05] (in which the non-amenability of N is used) we conclude
that xH 1

.p/
.�/ D 0.

ii) N \ Z�.N / is finite. Since N is non-amenable, we have SH 1.N; `p.�/jN / D
H 1.N; `p.�/jN /. By the claim, there is no fixed point in HDp.�/=Dp.�/N under
Z�.N /=.N \ Z�.N //. So we have H 1.N; `p.�/jN /Z� .N /=.N \Z� .N // D 0. In
particular H 1.N; `p.�/jN /�=N D 0. By equation (3), we have H 1.�; `p.�// D 0,
so xH 1

.p/
.�/ D 0 by Corollary 3.2.

If p D 2 we may assume that N is amenable. Then � contains an infinite,
amenable, normal subgroup, so by the Cheeger–Gromov vanishing theorem [CG86],
all the L2-cohomology of � does vanish.

Remarks. a) It was observed by Marc Bourdon that part ii) in the above proof can be
obtained differently in case Z�.N / contains an element z of infinite order. Indeed let
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H be the subgroup generated by N [ fzg. Then z is central in H , so xH 1
.p/

.H/ D 0

by the Corollary on p. 221 in [Gro93]. The result then follows from Theorem 1
in [BMV05].

b) Among the recent vanishing results for L2-cohomology, the most striking is
probably Gaboriau’s (Théorème 6.8 in [Gab02]): assume that � contains a normal
subgroup N which is infinite, has infinite index, and is finitely generated (as a group):
then xH 1

.2/
.�/ D 0. To prove this, Gaboriau needs a substantial part of his theory

of L2-Betti numbers for measured equivalence relations and group actions. It is
very tempting to try to get a simpler proof of that result, and this is what motivated
this section. More precisely, one possible line of attack for Gaboriau’s result is the
following: if the normal subgroup N is amenable, then all of the L2-cohomology of �

does vanish by the Cheeger–Gromov vanishing theorem [CG86]. So we may assume
that N , hence also � , is non-amenable. We must then prove that H 1.�; `2.�// D 0;
by the exact sequence (3), this is still equivalent to H 1.N; `2.�/jN /�=N D 0.

Although a proof of Gaboriau’s result along these lines remains elusive so far, this
line of attack opened the possibility of replacing L2-cohomology by Lp-cohomology,
which resulted in Theorem 4.2 above.

Theorem 4.3. Let � be a finitely generated group. If the centre of � is infinite, then
xH 1

.p/
.�/ D 0 for 1 < p < 1.

Proof. We apply the first case of the proof of Theorem 4.2, with N D � . It yields
xH 1

.p/
.�/ D 0, in full generality (i.e. without appealing to non-amenabilility).

The following example, kindly provided by M. Bourdon, shows that the previous
Theorem 4.3 does not hold for p D 1.

Example 3. One has xH 1
.1/

.Z/ ¤ 0. To see this, first observe that every function
f 2 D1.Z/ admits a limit at C1 and �1. Indeed, the sequence .f .n//n�1 is a
Cauchy sequence since for n > m,

jf .n/ � f .m/j D j
n�1X
kDm

.f .k C 1/ � f .k//j �
n�1X
kDm

j.f .k C 1/ � f .k//j

and the RHS goes to zero for m; n ! C1 as f 2 D1.Z/. Similarly, the sequence
.f .�n//n�1 is Cauchy.

Next consider the linear form 	 on D1.Z/ defined by

	.f / D . lim
n!C1 f .n// � . lim

n!�1 f .n//

(f 2 D1.Z/). For 
 the characteristic function of N, we get 
 2 D1.Z/ and
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	.
/ D 1. The form 	 is continuous on D1.Z/ because

j	.f /j D j lim
n!C1.f .n/�f .�n//j D j lim

n!C1

n�1X
kD�n

.f .kC1/�f .k//j � kf kD1.Z/:

Since 	 is a continuous non-zero linear form on D1.Z/ which vanishes on C C`1.Z/,
we conclude that xH 1

.1/
.Z/ ¤ 0.

4.3. Wreath products

Lemma 4.4. Let G1, G2 be non-compact, locally compact groups. Let N C G1 �G2

be a closed normal subgroup such that N \ .G1 � f1g/ .resp. N \ .f1g � G2// is not
co-compact in G1 � f1g .resp. f1g � G2/. Set G D .G1 � G2/=N . Then

1) SH 1.G; L2.G// D 0I
2) if moreover G is non-amenable, then H 1.G; Lp.G// D 0 for 1 < p < 1.

Proof. 1) We appeal to a result of Shalom ([Sha00], Theorem 3.1): if .V; �/ is a
unitary .G1 � G2/-module, and b 2 Z1.G1 � G2; V /, then b is cohomologous
in SH 1.G1 � G2; V / to a sum b0 C b1 C b2, where b0 takes values in V G1�G2

and, for i D 1, 2, bi factors through Gi and takes values in a .G1 � G2/-invariant
subspace on which � factors through Gi . This implies the following alternative:
either SH 1.G1 � G2; V / D 0, or there exists in V a non-zero vector fixed by some
restriction �jGi

.
We apply this to the regular representation �G , viewed as a representation of

G1 � G2. The assumption ensures that the restriction �G jGi
.i D 1; 2/ does not

have non-zero invariant vectors. Therefore, SH 1.G1 � G2; L2.G// D 0, hence alsoSH 1.G; L2.G// D 0.
2) We replace Shalom’s result by a recent result of Bader–Furman–Gelander–

Monod ([BFGM], Theorem 7.1): let .V; �/ be a Banach .G1 � G2/- module, with V

uniformly convex, such that � does not almost have invariant vectors, and
H 1.G1 � G2; V / ¤ 0; then for some i 2 f1; 2g, there exists a non-zero �.Gi /-
fixed vector.

We apply this to the regular representation �G on Lp.G/, viewed as a representa-
tion of G1 � G2. Our assumptions ensures that the restriction �G jGi

.i D 1; 2/ does
not have non-zero invariant vectors and �G does not almost have invariant vectors.
So H 1.G1 � G2; Lp.G// D 0, hence also H 1.G; Lp.G// D 0.

Lemma 4.5. Fix n � 2. Let G1; : : : ; Gn be non-compact, locally compact groups.
Assume that at least one Gi is non-amenable. Set G D G1 � � � � � Gn. Then
H 1.G; Lp.G// D 0 for 1 < p < 1.
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Proof. Renumbering the groups if necessary, we may assume that G1 is non-amenable.
The result then follows from Lemma 4.4 by induction over n (the case n D 2 being
Lemma 4.4, with N D f1g).

As an application, we show the vanishing of the first Lp-cohomology for wreath
products. For p D 2, that fact can also be deduced from Theorem 7.2 (2) in [Lue02].

Theorem 4.6. Let H , � be .non-trivial/ finitely generated groups. Then

(i) xH 1
.2/

.H o �/ D 0I
(ii) if H is non-amenable, then xH 1

.p/
.H o �/ D 0 for 1 < p < 1.

Proof. Let N D L
� H . Note that N is amenable exactly when H is. We separate

two cases:
1) Proof of (i) when N is amenable. If N is finite, then so are H , � , H o � and

the result is clear. If N is infinite, then the result follows from the Cheeger–Gromov
vanishing theorem [CG86].

2) Proof of (i) and (ii) when N is non-amenable. Then N can be written as
the direct product of two non-amenable groups, e.g., N D H � .

L
��f1g H/. By

Lemma 4.5, we have H 1.N; `p.N // D 0, hence also H 1.N; `p.H o �/jN / D 0 by
Proposition 2.6. The result then follows from equation (3).

4.4. Lattices in products

Theorem 4.7. Let G D G1 � � � � � Gn be a direct product of non-compact, second
countable locally compact groups .n � 2/. Let � be a finitely generated, cocompact
lattice in G. Then

(i) xH 1
.2/

.�/ D 0I
(ii) if � is non-amenable .equivalently, if some Gi is non-amenable/, then xH 1

.p/
.�/ D

0 for 1 < p < 1.

Proof. By the version of Shapiro’s lemma proved in Proposition 4.5 of [Gui80],
since � is cocompact, there exists a topological isomorphism H 1.�; `p.�// '
H 1.G;pIndG

� `p.�//, where pIndG
� V denotes the induced module in the Lp-sense,

i.e., pIndG
� V D .Lp.G; V //� . But pIndG

� `p.�/ is G-isomorphic to Lp.G/, so we
get SH 1.�; `p.�// ' SH 1.G; Lp.G// D 0 by Lemma 4.4.

Theorem 4.8. Fix n � 2. For i D 1; : : : ; n, let Gi be the group of ki -rational points
of some ki -simple, ki -isotropic linear algebraic group for some local field ki . Let �

be an irreducible lattice in G1 � � � � � Gn. Then xH 1
.p/

.�/ D 0 for 1 < p < 1.
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Proof. We need some terminology. A lattice ƒ in a locally compact group G is
p-integrable if either it is cocompact, or it is finitely generated and for some finite
generating set S � ƒ, there is a Borel fundamental domain D � G such that

Z
D

j
.g�1h/jpS dh < 1

for every g 2 G; here j � jS denotes word length, and 
 W G ! � is defined by

.�g/ D � for � 2 � , g 2 D.

We then appeal to a result of Bader–Furman–Gelander–Monod (see Section 8.2
in [BFGM], especially the few lines preceding Proposition 8.7): if ƒ is a p-integrable
lattice in G and V is a Banach ƒ-module, then there is a topological isomorphism

H 1.ƒ; V / ' H 1.G;pIndG
ƒ V /:

In our case, set G D G1 � � � � � Gn. Then � is p-integrable for every p � 1 by a
result of Shalom (Section 2 in [Sha00]; this is where irreducibility of � is used). With
V D `p.�/, we get pIndG

� V ' Lp.G/, so, using Lemma 4.5, the result follows.4

Example 4. Let q be a prime; � D SL2.ZŒ 1
q
�/ is an irreducible non-uniform lattice

in SL2.R/ � SL2.Qq/. Theorem 4.8 applies to give xH 1
.p/

.�/ D 0.

5. Application to amenable groups

Proposition 5.1. Let � be a finitely generated group. If � has an infinite amenable
normal subgroup .in particular if � is infinite amenable/, then SH 1.�; `2.�// D 0.

Proof. By the Cheeger–Gromov vanishing result [CG86], the assumptions imply that
xH 1

.2/
.�/ D 0. So the result follows from Corollary 3.2.

When � is itself amenable, the finite generation assumption can be removed:

Corollary 5.2. Let � be an amenable discrete group. Then SH 1.�; `2.�// D 0.

Proof. Let .�i /i2I be the directed system of finitely generated subgroups of � (so
that � D S

i2I �i ). By Proposition 5.1, we have SH 1.�i ; `2.�i // D 0 for every
i 2 I . By Proposition 2.6, this implies that SH 1.�i ; `2.�/j�i

/ D 0 for every i 2 I .
The conclusion then follows from Lemma 2.5.

4To apply Section 8.2 in [BFGM], only the p-integrability condition is needed. Our vanishing result forxH 1
.p/

.�/ is therefore valid in more general situations; it holds, for example, for the Kac–Moody lattices
studied by B. Rémy in [Rem05].



On the first Lp-cohomology of discrete groups 99

We also get a new characterization of amenability for finitely generated, infinite
groups.

Proposition 5.3. Let � be an infinite, finitely generated group. The following are
equivalent:

(i) � is amenable ;

(ii) `2.�/ is a dense, proper subspace of D2.�/=C.

Proof. In view of Theorem 3.1, `2.�/ is a dense, proper subspace of D2.�/=C if and
only if H 1.�; `2.�// ¤ 0 and SH 1.�; `2.�// D 0. If this happens, then � is amenable
by Corollary 3.3. Conversely, if � is amenable, then H 1.�; `2.�// ¤ SH 1.�; `2.�//

by the converse of Corollary 3.3, and the latter space is zero by Proposition 5.1.

References

[BFGM] U. Bader, A. Furman, T. Gelander, and N. Monod, Property (T) and rigidity for
actions on Banach spaces. Acta Math., to appear.

[BL00] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis.
Vol. 1, Amer. Math. Soc. Coll. Publ. 48, Amer. Math. Soc., Providence, RI, 2000.
Zbl 0946.46002 MR 1727673

[BM96] M. Burger and S. Mozes, CAT.�1/ spaces, divergence groups and their commen-
surators. J. Amer. Math. Soc. 9 (1996), 57–93. Zbl 0847.22004 MR 1325797

[BMV05] M. Bourdon, F. Martin, andA.Valette,Vanishing and non-vanishing for the first Lp-
cohomology of groups. Comment. Math. Helv. 80 (2005), 377–389. Zbl 02190260
MR 2142247

[BP03] M. Bourdon and H. Pajot, Cohomologie `p et espaces de Besov. J. Reine Angew.
Math. 558 (2003), 85–108. Zbl 1044.20026 MR 1979183

[Bro82] K. S. Brown, Cohomology of groups. Grad. Texts in Math. 87, Springer-Verlag,
New York 1982. Zbl 0584.20036 MR 0672956

[BV97] B. Bekka and A. Valette, Group cohomology, harmonic functions and the first l2-
Betti number. Potential Anal. 6 (1997), 313–326. Zbl 0882.22013 MR 1452785

[CG86] J. Cheeger and M. Gromov, L2-cohomology and group cohomology. Topology 25
(1986), 189–215. Zbl 0597.57020 MR 0837621

[Eck97] B. Eckmann, 4-manifolds, group invariants, and `2-Betti numbers. Enseign. Math.
(2) 43 (1997), 271–279. Zbl 0894.57002 MR 1489886

[ET74] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod and
Gauthier-Villars, Paris 1974. Zbl 0281.49001 MR 0463993

[Eym72] P. Eymard, Moyennes invariantes et représentations unitaires. Lecture Notes in
Math. 300, Springer-Verlag, Berlin 1972. Zbl 0249.43004 MR 447969

http://www.emis.de/MATH-item?0946.46002 
http://www.ams.org/mathscinet-getitem?mr=1727673
http://www.emis.de/MATH-item?0847.22004
http://www.ams.org/mathscinet-getitem?mr=1325797
http://www.emis.de/MATH-item?02190260
http://www.ams.org/mathscinet-getitem?mr=2142247
http://www.emis.de/MATH-item?1044.20026
http://www.ams.org/mathscinet-getitem?mr=1979183
http://www.emis.de/MATH-item?0584.20036
http://www.ams.org/mathscinet-getitem?mr=0672956
http://www.emis.de/MATH-item?0882.22013
http://www.ams.org/mathscinet-getitem?mr=1452785
http://www.emis.de/MATH-item?0597.57020
http://www.ams.org/mathscinet-getitem?mr=0837621
http://www.emis.de/MATH-item?0894.57002
http://www.ams.org/mathscinet-getitem?mr=1489886
http://www.emis.de/MATH-item?0281.49001
http://www.ams.org/mathscinet-getitem?mr=0463993
http://www.emis.de/MATH-item?0249.43004
http://www.ams.org/mathscinet-getitem?mr=447969


100 F. Martin and A. Valette

[Gab02] D. Gaboriau, Invariants `2 de relations d’équivalence et de groupes. Inst. Hautes
Études Sci. Publ. Math. 95 (2002), 93–150. Zbl 1022.37002 MR 1953191

[Gro93] M. Gromov, Geometric group theory (Sussex, 1991), vol. 2: Asymptotic invariants
of infinite groups. London Math. Soc. Lecture Note Ser. 182, Cambridge University
Press, Cambridge 1993. Zbl 0841.20039 MR 1253544

[Gui72] A. Guichardet, Sur la cohomologie des groupes topologiques II. Bull. Sci. Math. (2)
96 (1972), 305–332. Zbl 0243.57024 MR 0340464

[Gui80] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie.
Cedic/F. Nathan, Paris 1980. Zbl 0464.22001 MR 0644979

[Lue02] W. Lück, L2-invariants: theory and applications to geometry and K-theory.
Ergeb. Math. Grenzgeb. (3) 44, Springer-Verlag, Berlin 2002. Zbl 1009.55001
MR 1926649

[Pan96] P. Pansu, Introduction to L2-Betti numbers. In Riemannian geometry (Waterloo,
ON, 1993), Fields Inst. Monogr. 4, Amer. Math. Soc., Providence, RI, 1996, 53–86.
Zbl 0848.53025 MR 1377309

[Pan] P. Pansu, Cohomologie Lp: invariance sous quasiisométries. Preprint, Aug. 2004.

[Pul06] M. J. Puls, The first Lp-cohomology of some finitely generated groups and p-har-
monic functions. J. Funct. Anal. 237 (2006), 391–401. Zbl 1094.43003
MR 2230342

[Rem05] B. Rémy, Integrability of induction cocycles for Kac-Moody groups. Math. Ann.
333 (2005), 29–43. Zbl 1076.22018 MR 2169827

[Ser77] J.-P. Serre, Arbres, amalgames, SL2. Astérisque 46 (1977). Zbl 0369.20013
MR 0476875

[Sha00] Y. Shalom, Rigidity of commensurators and irreducible lattices. Invent. Math. 141
(2000), 1–54. Zbl 0978.22010 MR 1767270

[Tes] R. Tessera, Vanishing of the first reduced cohomology with values in superreflexive
Banach spaces. Preprint, Jan. 2006.

Received May 24, 2006; revised September 30, 2006

Philip Morris International, R&D Department, 2000 Neuchâtel, Switzerland

E-mail: florian.martin@pmintl.com

Institut de Mathématiques, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland

E-mail: alain.valette@unine.ch

http://www.emis.de/MATH-item?1022.37002
http://www.ams.org/mathscinet-getitem?mr=1953191
http://www.emis.de/MATH-item?0841.20039
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.emis.de/MATH-item?0243.57024
http://www.ams.org/mathscinet-getitem?mr=0340464
http://www.emis.de/MATH-item?0464.22001
http://www.ams.org/mathscinet-getitem?mr=0644979
http://www.emis.de/MATH-item?1009.55001
http://www.ams.org/mathscinet-getitem?mr=1926649
http://www.emis.de/MATH-item?0848.53025
http://www.ams.org/mathscinet-getitem?mr=1377309
http://www.emis.de/MATH-item?1094.43003
http://www.ams.org/mathscinet-getitem?mr=2230342
http://www.emis.de/MATH-item?1076.22018
http://www.ams.org/mathscinet-getitem?mr=2169827
http://www.emis.de/MATH-item?0369.20013
http://www.ams.org/mathscinet-getitem?mr=0476875
http://www.emis.de/MATH-item?0978.22010
http://www.ams.org/mathscinet-getitem?mr=1767270

	Introduction
	 1-cohomology versus reduced 1-cohomology
	1-cohomology
	Reduced 1-cohomology

	First L^p-cohomology
	p-Dirichlet finite functions
	p-harmonic functions (after M. Puls)

	Vanishing of first L^cp-cohomology
	Groups acting on trees
	Normal subgroups with large commutant
	Wreath products
	Lattices in products

	Application to amenable groups
	References

