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1. Introduction

For a variety of classes of groups, it is a well-known open problem whether the failure
of Gromov hyperbolicity can be detected by the presence of special subgroups, e.g.
rank 2 abelian groups or Baumslag–Solitar groups. This is of interest, for instance,
for CAT.0/-groups (even for the fundamental groups of finite 2-dimensional locally
CAT.0/ square complexes), for 1-relator groups, and 3-dimensional Poincaré duality
groups. We say that a class of groups satisfies the weak hyperbolization conjecture if
every group in the class is either Gromov hyperbolic, or contains a copy of Z2. We
recall that the weak hyperbolization conjecture for 3-manifold groups was a part of
the program for proving the Geometrization Conjecture for closed irreducible aspher-
ical 3-manifolds, the other ingredient in the program being the Cannon conjecture.
Although the work of Perelman has now resolved the full Geometrization Conjec-
ture, the weak hyperbolization conjecture for PD.3/-groups is a potential step in an
approach to the following open question of C. T. C. Wall:

Question 1 (Wall). Is every finitely presented PD.3/-group over Z isomorphic to the
fundamental group of a closed aspherical 3-manifold?

Our main result is that the weak hyperbolization conjecture holds for CAT.0/

3-dimensional Poincaré duality groups over hereditary rings:
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Theorem 2. Let G be a 3-dimensional Poincaré duality group over a commutative
hereditary ring R with a unit. Suppose in addition that G is a CAT.0/-group, i.e.,
a group which admits a cocompact isometric properly discontinuous action G Õ X

on a locally compact CAT.0/ space X .
Then G satisfies the weak hyperbolization conjecture.

We refer the reader to [9] for the definition of a hereditary ring; here we note only
that every PID is hereditary.

We note that special cases of this theorem were proven earlier by various people:
S. Buyalo [8] and V. Schroeder [18] independently have proven that this theorem
holds provided that X is the universal cover zM of a closed 3-manifold M , the CAT.0/

structure on zM is Riemannian and G D �1.M/ acts on X by deck-transformations.
L. Mosher [16] proved that Theorem 2 holds provided that X D zM , G D �1.M/,
and the CAT.0/ metric on X is obtained by lifting a piecewise-Euclidean (locally)
CAT.0/-cubulation from M . M. Bridson and L. Mosher also have an unpublished
proof of Theorem 2 under the assumption that X D zM has an arbitrary G-invariant
CAT.0/ structure. Unlike all these proofs, our proof takes place on the ideal boundary
of X ; this allows us to treat 3-dimensional Poincaré duality groups and relax the
assumptions on the CAT.0/ space.

Outline of the proof of Theorem 2. Assume that G is not Gromov hyperbolic, i.e.,
that X contains a 2-flat. By the work of Bestvina [2], the ideal boundary of X is
homeomorphic to S2. Our proof exploits the geometry of flats and parallel sets in X ,
and the pattern of their boundaries in the 2-sphere @1X . The proof breaks into three
cases.

Case 1. X contains a 3-flat, Section 5.1. This implies that X is at finite Hausdorff
distance from the 3-flat, and we conclude that G is virtually Z3.

Case 2. X contains no 3-flat but some parallel set P � X has full ideal boundary,
i.e. @1P D @1X , Section 5.3. We argue that P splits isometrically as R � Y , where
@1Y is a circle, and G acts as a convergence group on @1Y . We then deduce that a
finite index subgroup of G is isomorphic to the fundamental group of a 3-dimensional
Seifert manifold.

Case 3. X contains no 3-flat and no parallel set with full boundary, Section 5.4. This
is the main case. We show that every parallel set P in X is isometric to a product
R � Y , where Y is Gromov hyperbolic. The ideal boundary of P is a suspension of
the boundary @1Y ; when P contains a 2-flat, we identify certain topological circles
in @1P which we call peripheral, and show that peripheral circles cannot cross one
another in the 2-sphere @1X .

Next, we choose a flat F � X whose boundary @1F � @1X is a peripheral
circle, and consider its orbit fg.F /gg2G . Because the circles fg.@1F /gg2G do not
cross, we may use them to define a pretree T on which G has a natural action. Using
a Plante-type construction, we associate to T an R-tree T , which then inherits a
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nontrivial small stable G-action. By applying Rips’ theory [3], we conclude that G

admits a small nontrivial action on a simplicial tree. Using the fact that G is a PD.3/-
group, we deduce that the edge groups must be virtually Z2.

Acknowledgements. The first author was supported in part by NSF Grants DMS-02-
03045 and DMS-04-05180, the second author was supported in part by NSF Grants
DMS-02-24104 and DMS-05-05610. The authors are grateful to the referee for useful
suggestions.

2. Geometric preliminaries

In this section we briefly review several notions of metric geometry. We refer the
reader to [1], [6] for the detailed discussion.

A geodesic metric space is a metric space .X; d/ such that any two points x; y 2 X

in X are connected by geodesic, i.e., if D ´ d.x; y/ then there exists an isometric
embedding

� W Œ0; D� ! X

so that �.0/ D x, �.D/ D y.

Let X be a metric space and C � X be a subset. The r-neighborhood of C in X

is defined as
Nr.C / ´ fx 2 X W d.x; C / < rg;

where d.x; C / ´ inffd.x; c/ W c 2 C g.
The Hausdorff distance between closed subsets of a metric space X is defined as

dH .C1; C2/ ´ inffr W C1 � Nr.C2/; C2 � Nr.C1/g:
Note that this distance is allowed to take infinite values. If X has finite diameter,
the Hausdorff distance defines the Hausdorff topology on the set C.X/ of closed
subsets of X . More generally, even for unbounded metric spaces X one defines the
Gromov–Hausdorff topology on C.X/ as follows. We say that a sequence Cn 2 C.X/

converges (in the Gromov–Hausdorff topology) to a closed set C 2 C.X/ if for each
closed metric ball B � X the intersections

Cn \ B 2 C.B/

converge to C \B in the Hausdorff topology on C.B/. Equivalently, Cn’s converge to
C if the corresponding distance functions d. � ; Cn/ converge to the distance function
d. � ; C / uniformly on bounded subsets in X .

Given a number � 2 R let M� denote the (unique up to isometry) complete
simply-connected surface of the constant curvature �. A geodesic metric space X is
said to be a CAT.�/ space if X is complete as a metric space and geodesic triangles
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in X are “thinner” than triangles in M� . More precisely, consider a geodesic triangle
T D Œx; y; z� � X (with the vertices x, y, z), in case when � > 0 (and M� is a
sphere) we assume that the perimeter of this triangle is less than the circumference of
the great circle in M� . Consider a triangle T 0 D Œx0; y0; z0� � M� whose side-lengths
are equal to the corresponding side-lengths of the triangle T . Let p be a point in the
geodesic side xy of T and let p0 2 x0y0 be such that

d.x0; p0/ D d.x; p/:

Then we require
d.z; p/ � d.z0; p0/:

In this paper we will also need a generalization of the concept of a CAT.1/ space to
metric spaces X which are not geodesic. We assume that X is a disjoint union of
geodesic metric spaces X˛ , ˛ 2 J , where each X˛ is a geodesic CAT.1/ metric space
and if ˛ ¤ ˇ the distance between any x 2 X˛ , y 2 Xˇ equals � . Then X will
be also referred to as a CAT.1/ space. An example of such a space is a space with
discrete metric where distance between any pair of distinct points equals � .

If X is a CAT.1/ space, we call points x; y 2 X antipodal if d.x; y/ D � .
Suppose that X is a CAT.0/ space. Then the distance function on X is convex,

i.e., its restriction to each geodesic in X is convex.
A space X is called CAT.�1/ if it is CAT.�/ for each � 2 R. A metric tree

is a CAT.�1/; in other words, it is a complete geodesic metric space where each
geodesic triangle is isometric to a tripod.

A group G is called a CAT.0/-group if it admits an isometric properly discontin-
uous cocompact action on a locally compact CAT.0/ space.

Suppose that X is a CAT.0/ space and F � X is a k-flat, i.e., an isometrically
embedded copy of a Euclidean space Rk . Then the parallel set PF of F in X is the
union of all k-flats F 0 � X which are within finite distance from F . The parallel set
PF is closed, convex and is isometric to a product

F � Y

where Y is a CAT.0/ space, see for instance [6, Theorem II.2.14].

Remark 3. Theorem II.2.14 in [6] is stated in the case k D 1. The general case
follows, for instance, by induction on the dimension of the flat.

We will say that a parallel set is trivial if k D 1 and Y is bounded.
Given a CAT.0/ space one defines the ideal boundary of X as the collection of

equivalence classes of geodesic rays in X , where rays are equivalent if they are within
finite Hausdorff distance from each other. This boundary has two (typically distinct)
topologies:
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1. the visual topology, in which case the ideal boundary is denoted @1X and is
called the geometric boundary of X ;

2. the Tits topology, which is defined via the Tits angular metric, in which case
the ideal boundary is denoted @TitsX .

The second boundary is called Tits boundary of X ; this boundary is always a
CAT.1/ space.

For instance, in the case when X D H2, @1X is homeomorphic to S1, while
@TitsX has discrete metric: the distance between distinct points equals � . A CAT.0/

space is called a visibility space if any pair of distinct points in @TitsX are antipodal.
A subset C � Z ´ @TitsX is called convex if for any two non-antipodal points

x; y 2 Z, the geodesic segment xy connecting x to y, is entirely contained in C .
Intersection of two convex subsets of Z is also convex. If Y � X is a convex subset
then @TitsY � Z is convex as well.

Let ı 2 Œ0; 1/ and consider a geodesic metric space X . A triangle T � X is
called ı-thin if there exists a point p 2 X which is within distance � ı from all
three sides of T . A complete geodesic metric space X is called ı-hyperbolic if each
geodesic triangle T in X is ı-thin. A space X is called Gromov-hyperbolic if it is
ı-hyperbolic for some ı. A finitely generated group G is called Gromov-hyperbolic if
its Cayley graph is Gromov-hyperbolic. One again defines the ideal boundary @1X

by looking at the equivalence classes of geodesic rays in X .
Suppose that G is a group acting isometrically, properly discontinuously and

cocompactly on a CAT.0/ space X . Then the group G is Gromov-hyperbolic iff X

is a visibility space.
Let X be a Gromov-hyperbolic geodesic metric space which admits a cocompact

isometric group action. We assume that the ideal boundary of X consists of more
than 2 points; it then follows that @1X has the cardinality of the continuum. The
displacement function of an isometry g W X ! X is

dis.g/ W x ! d.x; g.x//; x 2 X:

Lemma 4. Under the above assumptions there exists a constant D D D.X/ such that
for each g 2 Isom.X/ which fixes @1X pointwise, the displacement of g is bounded
from above by D.

Proof. Let G Õ X be a cocompact isometric group action; pick a metric ball B D
B.o; R/ � X so that the G-orbit of B equals X . It then suffices to prove that there
exists D < 1 such that for each isometry g of X fixing @1X pointwise,

d.o; g.o// � D:

Since the ideal boundary of X contains at least 4 points, there exists a pair of geodesics
�1; �2 � X which have disjoint ideal boundaries. Without loss of generality we may
assume that both �1, �2 pass through the ball B .
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Since X is ı-hyperbolic, there exists a number r D r.ı/ < 1 such that if
geodesics ˛; ˇ � X are within finite Hausdorff distance, then

dH .˛; ˇ/ � r;

see for instance [6]. For every isometry g as above, the geodesics

�i ; g.�i /

are within finite Hausdorff distance from each other; therefore

dH .�i ; g.�i // � r; i D 1; 2:

Then
d.g.o/; g.�i // � R H) d.g.o/; �i / � R C r; i D 1; 2:

However, since the geodesics �1, �2 have disjoint ideal boundaries, the diameter of

S ´ NRCr.�1/ \ NRCr.�2/

is finite. Therefore, if we take D ´ diam.S/=2, the distance between o and g.o/ is
at most D.

Remark 5. An analogue of Lemma 4 holds for quasi-isometries of X with uniformly
bounded quasi-isometry constants.

3. Pretrees

In what follows we will need definitions and basic facts about pretrees; the definitions
which we give follow [5].

A pretree is a set T together with a ternary relation (the betweenness relation)

“y is between x and z”;

to be denoted ˇ.xyz/, satisfying the following axioms:

Axiom 1. ˇ.xyz/ implies that x ¤ y ¤ z.
Axiom 2. ˇ.xyz/ ” ˇ.zyx/.
Axiom 3. ˇ.xyz/ and ˇ.yxz/ cannot hold simultaneously.
Axiom 4. If w ¤ y then ˇ.xyz/ implies that either ˇ.xyw/ or ˇ.wyz/.

Given a pretree T one can define closed, open and half-open intervals in T by

.x; z/ ´ fy 2 T W ˇ.xyz/g; Œx; z� ´ .x; z/ [ fx; zg; etc.
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Given an increasing union of intervals

Œx1; y1� � Œx2; y2� � � � � � Œxi ; yi � � � � �
we will also refer to the union of these intervals as a (possibly infinite) interval in T .

We note that ˇ defines an order on each interval in T .
Define a “triangle” in T with vertices a, b, c to be the union of the segments

(called “sides” of the triangle) Œa; b�, Œb; c�, Œc; a�.

Lemma 6. Each triangle � in T is 0-thin, i.e., each side of � is contained in the
union of the two other sides.

Proof. Follows immediately from Axiom 4.

Suppose that T is a pretree which is given a measure � (without atoms) defined
on closed intervals in T and the � -algebra which these intervals generate. Define a
function d.x; y/ on T by d.x; y/ ´ �.Œx; y�/.

Lemma 7. d is a pseudo-metric on T .

Proof. It is clear that d is symmetric and d.x; x/ D 0 (since � has no atoms). The
triangle inequality follows because for each triangle with the vertices a, b, c we have
(see Lemma 6)

Œa; b� � Œa; c� [ Œb; c�:

We note that if for each interval Œa; b� � T , with a ¤ b, �.a; b/ > 0 then d is
a metric. Moreover, it follows that .a; b/ ¤ ; for each a ¤ b. If the restriction of
the metric d to each interval Œx; y� is complete then Œx; y� is order isomorphic to an
interval in R and moreover, .Œx; y�; d/ is isometric to an interval in R. We thus get:

Lemma 8. Suppose that for each interval Œx; y� � T , with x ¤ y, �Œx; y� > 0, and
that the restriction of the metric d to each interval in T is complete. Then .T; d/ is a
metric tree.

Proof. It is clear from the above discussion that T is a geodesic metric space. Since
each triangle in T is 0-thin, it follows that each triangle in T is isometric to a tripod.
Finally, let us check completeness of T : Suppose that xi ; i � 0; is a Cauchy sequence
in T . Then there exists an increasing sequence of intervals Ii � T such that

lim
i

�.Œx0; xi � \ Ii / D lim
i

d.x0; xi /:

Then completeness of d restricted to the union I of Ii ’s implies that .xi / converges
to a point in the interval I .
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4. Ideal boundaries of CAT(0) Poincaré duality groups

Let G Õ X be a discrete cocompact action of a PD.3/-group G on a CAT.0/ space X .
In this section we show that the ideal boundary of the CAT.0/ space X is homeo-
morphic to S2.

We refer the reader to [4], [7] for the background on the cohomology of groups.
Recall [4] that an n-dimensional Poincaré duality group over a ring R (for short,
PD.n/-group over R), is an FP-group over R such that H i .G; RG/ is isomorphic to
R as an R-module when i D n and is trivial otherwise.

Let Z ´ @1X be the ideal boundary of a locally compact CAT.0/ space.
M. Bestvina in [2] proved that the compactification

xX ´ X [ Z

satisfies the axioms of the Z-set compactification. Instead of listing all the axioms of
the Z-set compactification we mention only several properties:

1. If G Õ X is an isometric group action then this action extends to a topological
action of G on NX .

2. There exists a natural isomorphism

H �
c .X/ ! QH ��1

c .Z/;

which is compatible with inclusions of closed convex subsets X 0 � X .
3. We state the third property as a lemma:

Lemma 9. If G is a PD.3/-group acting isometrically, properly discontinuously and
cocompactly on a CAT.0/ space X , then the ideal boundary Z of X is homeomorphic
to S2.

Proof. Bestvina proves, [2, Theorem 2.8], that if G is a PD.3/-group over R, then Z

is homeomorphic to S2. We note that Bestvina proves the latter theorem under more
restrictive assumptions than we are working with (although, his class of groups G

includes 3-manifold groups):
1. Bestvina assumes that the commutative ring R is a PID. However this as-

sumption is used only to apply the Universal Coefficients Theorem, which works for
hereditary rings as well, see [9].

2. Bestvina’s definition of an n-dimensional Poincaré duality group is more re-
strictive than the usual one: Instead of the FP-property he assumes that a group G acts
freely, properly discontinuously, cocompactly on a contractible cell complex Y . Note
however that Bestvina in his proof uses only the fact that G Õ Y .i/ is cocompact on
each i -skeleton of Y . Then existence of such an action for the CAT.0/-groups follows
from a general construction described in [14]. Namely, if a group G admits a properly
discontinuous cocompact action on a contractible space X (e.g. the CAT.0/ space in
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our case) then it also admits a free, properly discontinuous action on a contractible cell
complex Y (possibly of infinite dimension) such that Y .i/=G is compact for each i .

3. Bestvina assumes that the image of the orientation character 	 of the Poincaré
duality group G is finite (he then passes to a finite index subgroup in G which is
the kernel of 	). However this assumption can be omitted from his theorem using
twisting of the action G Õ C�.Y / by the character 	 as it is done in [14, Section 5.1].

With the above modifications, Bestvina’s arguments apply in our case and it follows
that @1X is homeomorphic to the 2-sphere.

5. Proof of the main theorem

5.1. Case 1: X contains a 3-flat. The main goal of this section is to show that, in
case X contains a 3-flat, the group G contains a finite index subgroup isomorphic
to Z3.

Lemma 10. Suppose that S is a convex subset in X such that @1S D @1X . Then
S is within finite Hausdorff distance from X .

Proof. Pick a base-point o 2 X . If S is not within finite Hausdorff distance from
X then there exists a sequence of isometries gi 2 G such that d.o; giS/ diverges
to infinity. Consider the functions fi ´ d.x; giS/ � d.o; giS/. Then, according
to Lemma 2.3 in [15], the sequence of functions fi subconverges to a Busemann
function b on X . Clearly, the sublevel sets ffi � 0g subconverge into the horoball
U ´ fb � 0g in X . Since @1ffi � 0g D @1giS D @1X , it follows that
@1X D @1U .

Let F be a 2-flat in X . Then @1F � @1U and the convexity of horoballs in X

imply that for each x 2 F ,

t D f .x/ H) F � fz W b.z/ � tg:

It follows that the restriction bjF is constant and thus F is contained in the horosphere
fx W b.x/ D tg for some t 2 R. Then Lemma 2.2 in [15] implies that X contains a
half-space H ´ RC � F . Then, by taking an appropriate limit of the half-spaces
hj .H/, hj 2 G, we see that X contains the 3-flat F 0 ´ F � R. By Lemma 9,
@1F 0 D @1X . Suppose that F 0 is not within finite Hausdorff distance from X .
Then, by repeating the same argument as above with S replaced with F 0 and then F

replaced with F 0, we see that X contains a 4-flat, which contradicts Lemma 9.
Therefore X is within finite Hausdorff distance from the 3-flat F 0; in particular,

there are no horoballs in X which have the same ideal boundary as X . Contradiction.
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Corollary 11. If X contains a 3-flat then the group G is virtually abelian; in partic-
ular, it contains Z � Z.

Proof. If F is a 3-flat in X then, by Lemma 9, @1F D @1X and, by Lemma 10, F is
within finite Hausdorff distance from X . It follows that the group G is isomorphic to
a lattice in Isom.R3/ and hence it is virtually abelian and contains Z3 as a subgroup
of finite index.

Assumption. From now on we will assume that X contains no 3-flats.

5.2. Metric balls and parallel sets in X . In this section we establish certain geo-
metric properties of X which follow from the above assumption.

Lemma 12. There exists r0 2 R such that the following holds. For each ball
B.x; r/ � X , isometric to a disk of the radius r in R3, we have r � r0.

Proof. If the assertion is false then there exists a sequence of balls B.xi ; ri / with
limi ri D 1. Let gi 2 G be such that gi .xi / is a bounded sequence in X . Then the
balls gi .B.xi ; ri // subconverge to a 3-flat in X . Contradiction.

Corollary 13. The set of 2-flats F 0 � X which are parallel to a flat F is compact in
the Gromov–Hausdorff topology.

Proof. If not then X contains convex subsets isometric to Œ0; r� � R2 for arbitrarily
large r . This contradicts the previous lemma.

Lemma 14. Suppose that Y �R is a parallel set in X . Then Y is Gromov-hyperbolic.

Proof. We repeat the arguments in [6, Theorem 9.33]. If Y is not Gromov-hyperbolic
then there exists a pair of points 
; � 2 @1Y so that the Tits angle between 
 , � is
positive but less than � . Pick a point o 2 Y and consider a sequence of points yi 2 o


which converge to 
 and the geodesic rays yi�. We identify the rays yi
; yi� with
geodesic rays in Y � R � X (that share common point yi ). Then, by applying an
appropriate sequence of elements gi 2 G (for which fgi .yi /g is bounded in X ) to
Y � R and to the rays yi
, yi� and passing to the limit of a subsequence, we get:

1. The sets gi .Y � R/ subconverge to a parallel set Y 0 � R.
2. Y 0 contains two geodesic rays y
 0, y�0 (limits of the sequences of rays gi .yi
/,

gi .yi�/) which bound a flat sector in Y 0.
This contradicts Lemma 12.

5.3. Case 2: X contains a parallel set with the full boundary. In this section we
prove the main theorem under the assumption that X contains a parallel set P whose
ideal boundary is the entire @1X .
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Proposition 15. Suppose that there is a convex product subset P D R � Y such that
@1S D @1X . Then G is commensurable to the fundamental group of a 3-dimen-
sional Seifert manifold. In particular, G contains Z2.

Proof. We will assume that P is a maximal convex product subset in X . Since Y

is Gromov-hyperbolic, it follows that the Tits boundary of S is the suspension of a
discrete metric space which is the ideal boundary of Y . Therefore, since @1P D
@1X , the group G preserves the ideal boundary of the geodesic l D R � fyg. Hence
for each g 2 G the geodesic g.l/ is parallel to l , which (by the maximality assumption)
implies that g.P / D P .

We have an induced isometric action � W G Õ Y . Since the suspension of @1Y is
homeomorphic to the 2-sphere @1X , the ideal boundary of Y is homeomorphic to S1.
Thus the cocompact isometric action � W G Õ Y extends to a uniform (topological)
convergence action G Õ @1Y D S1. Therefore, according to [10], [12], [13], [19],
the action G Õ S1 is topologically conjugate to a Moebius action �0.

Let K denote the kernel of �0.

Lemma 16. K contains an infinite cyclic subgroup of finite index.

Proof. Let D D D.Y / denote the constant given by Lemma 4. Pick a point y 2 Y .
Then for each g 2 K,

d.y; g.y// � D:

Therefore the K-orbit of y is contained in the metric ball B.y; D/. Thus for every
x 2 X , the K-orbit of x is contained in a D-neighborhood of the geodesic l D fyg�R
(passing through x). Therefore K is quasi-isometric to Z and hence is virtually Z.

Lemma 17. The action G Õ S1 is topologically conjugate to an action of a uniform
lattice in Isom.H2/.

Proof. The action �0.G/ Õ H2 is cocompact, therefore we have the following pos-
sibilities:

(a) �0.G/ is a cocompact discrete subgroup in Isom.H2/.
(b) �0.G/ is a solvable subgroup in Isom.H2/, which fixes a point in S1. Then

�0.G/ is not virtually abelian which contradicts the fact that G is a CAT.0/-group.
(c) �0.G/ is dense in PSL.2; R/. Then, the group �0.G/ contains a nontrivial

elliptic element Og and it also contains a sequence of elements Ohi which converge
to 1 2 PSL.2; R/. Let g; hi 2 G be elements which map (via �0) to Og and Ohi

respectively. Clearly, �.g/ 2 Isom.Y / is elliptic as well, let y 2 Y be its fixed point.
By taking conjugates gi ´ high�1

i , we get an infinite collection of distinct elements
fgi W i 2 Ng of G such that for each n 2 Z, gi .y � R/ is contained in NR.y � R/

where R 2 RC is independent of i . We note that since all gi are pairwise conjugate,
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there exists C < 1 such that d.x; gi .x// < C for each x 2 y � R and i 2 N. This
contradicts discreteness of the action of G on X .

The above two lemmas imply that the kernel of � is commensurable to Z and
the quotient �.G/ is commensurable to the fundamental group of a 2-dimensional
hyperbolic surface. Thus, after passing to a finite index subgroup in G we obtain a
short exact sequence

1 ! K ! G ! Q ! 1 (18)

where Q is the fundamental group of a closed oriented surface.

Lemma 19. Suppose that for a group H we have a short exact sequence

1 ! Z=nZ ! H ! Q ! 1:

Then H contains a finite index surface subgroup.

Proof. Let t denote the generator of Z=nZ. Let ai , bi , i D 1; : : : ; n, denote the lifts
to H of the standard generators of Q. It suffices to consider the case when

Œa1; b1� : : : Œan; bn� D t

and t belongs to the center of H . Consider the finite Heisenberg group

Hn ´ ha; b; t W Œa; b� D t; an D bn D tn D 1; Œa; t � D 1; Œb; t � D 1i:
Define the homomorphism  W H ! Hn by

.a1/ D a; .b1/ D b; .ai / D .bi / D 1 for all i � 2:

Then the kernel H 0 of  is a torsion-free subgroup of finite index in H . It follows
that the map H ! Q sends H 0 injectively to a finite index subgroup in Q. Therefore
H 0 is a surface group.

We now return to the exact sequence (18). As in the above lemma we let ai , bi ,
i D 1; : : : ; n, denote the lifts to G of the standard generators of Q. Let H � G

denote the subgroup generated by these elements. If

t ´ Œa1; b1� : : : Œan; bn�

is an infinite order element of K then H is isomorphic to the fundamental group of a
Seifert manifold (whose base is a surface with the fundamental group Q). It is clear
that H has finite index in G.

It t has finite order then, according to Lemma 19, after passing to a finite index
subgroup in Q) we can assume that t D 1. Pick an infinite order element k 2 K

which belongs to the center of G. Then the subgroups H and hki generate the product

Z � Q � G:
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Again, clearly, this subgroup has finite index in G. Thus, in the both cases, G is
commensurable to the fundamental group of a 3-dimensional Seifert manifold.

Thus, the conclusion of Theorem 2 holds provided that X contains a parallel set
with the full boundary.

Assumption. From now on we will assume that the ideal boundary of each parallel
set of X is a proper subset of @1X .

5.4. Case 3: The ideal boundary of every parallel set in X is a proper subset of
@1X . In this section we show that the peripheral circles of the ideal boundaries of
nontrivial parallel sets in X can be used to construct a small stable nontrivial isometric
action of G on an R-tree. Then, by Rips theory, G admits a nontrivial splitting as
an amalgam with virtually abelian edge groups. This, in turn, implies that the edge
groups are virtually Z2.

According to Eberlein’s theorem (see [11] in the smooth case and [6, Theorem 9.33]
in general), the CAT.0/ space X is either a visibility space or it contains a 2-flat F .
Since in the former case, G is Gromov-hyperbolic, we assume that X contains a
2-flat F . In particular, X contains nontrivial parallel sets.

Lemma 20. Suppose that P D Y � R is a nontrivial parallel set in X . Then @1P

contains a topological circle S which is geodesic in the Tits metric so that S bounds
a disk in @1X n @1P .

Proof. Let 
; � 2 @1P be the ideal points of a geodesic y � R � Y � R D P . Then
the Tits boundary @TitsP is the metric join S0 ? @TitsY , which is the union of geodesic
segments L� of length � connecting � and 
 and passing through � 2 @TitsY � @TitsX .
Clearly, if � ¤ �0 then S ´ L� [ L�0 is a topological circle which is geodesic in
the Tits metric.

Let D be a component of @1X n@1P . Then there is a point � 2 @D which belongs
to L� n f
; �g for some � 2 @TitsY . Clearly, @D is not contained in L�, therefore
there exists a point �0 2 @D which belongs to L�0 n f
; �g for some �0 2 @TitsY n f�g.
The reader will verify that the circle S D L� [ L�0 bounds D.

We will refer to these circles S as in Lemma 20, as peripheral circles of @1P . A
flat in X whose boundary is a peripheral circle will be called a peripheral flat.

It follows from the properties of the Tits metric (discussed in Section 2) that if
F; F 0 � X are 2-flats then the intersection @TitsF \ @TitsF

0 � @TitsX is convex and
either consists of two antipodal points or is a circular arc in @TitsF of the length � � .

Definition 21. We say that totally-geodesic circles S; S 0 � Z cross if S contains
points from each component of Z n S 0 (in the visual topology). Note that crossing is
a symmetric relation. We will say that the ideal boundaries of two parallel sets P; P 0
cross if at least one circle in @TitsP crosses a circle in @TitsP

0.
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Observe that if S and S 0 cross, the intersection S \S 0 consists of a pair of antipodal
points.

�

x

y

z

� � x

� � y
� � z

��

S

Figure 1

Lemma 22. Suppose that P D l � Y � X is a parallel set for which @1Y consists
of at least 3 points .i.e., P is not within finite Hausdorff distance from a flat/ and
F � X is a 2-flat which is not contained in P . Then @1P and S D @1F do not
cross.

Proof. Suppose to the contrary that @1P and S D @1F do cross. Recall that @1P

is the metric join of f�; ��g D @1l and @1Y . If S were to pass through � then, by
convexity, S passes through �� as well and hence F would be contained in the parallel
set P . Therefore, S does not pass through @1l and the configuration f@1P; Sg has
to look like the one in Figure 1, where x, y, z denote the distances from � to the
points of intersection between @1P and S . It follows that x C y D � , y C z D � ,
x C z D � and thus

x D y D z D �=2:

This implies that the circle S is contained in @1Y , thus Y cannot be Gromov-
hyperbolic. This contradicts Lemma 14.

We observe that, since G Õ X is properly discontinuous, the stabilizer of each
flat F � X in the group G is virtually abelian. We assume that this stabilizer is
virtually cyclic (possibly finite) – otherwise G contains Z2.

Suppose that we have three flats F; F 0; F 00 � X with pairwise distinct ideal
boundaries. We will say that F 0 separates F from F 00 if the following holds:

@1F � xD; @1F 00 � xD00;
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where D t D00 D Z n @1F 0. We set the ternary relation ˇ by: ˇ.FF 0F 00/ if F 0
separates F from F 00.

We leave it to the reader to verify that with this ternary relation the set P of all
peripheral flats in X satisfies the axioms of a pretree.

Lemma 23. If U0 is a horoball in X then W ´ @1U0 does not separate @1X .

Proof. Let 
 2 @1X and consider the horoballs Ut D fb�.x/ � tg, t 2 R, where
b� is the appropriately normalized Busemann function at 
 . Clearly @1Ut D W for
each t . Property (2) of the Z-set compactification applied to the pairs .Ut ; W / means
that we have natural isomorphisms

H i
c .Ut / ! zH i�1.W /: (24)

Suppose that Œ�� 2 H i
c .Ut /. Then there exists s < t such that Us is disjoint from

the support set of the cocycle �. Therefore Œ�� maps trivially to H i
c .Us/ and hence,

by naturality of (24), it maps trivially to zH i�1.W /. We conclude that zH �.W / D 0.
Therefore, by the Alexander duality on @1X , the subset W D @1U0 cannot sepa-
rate @1X .

Proposition 25. Let F; F 00 be flats in X . Then the set S.F; F 00/ of flats F 0 separating
F from F 00 is compact with respect to the Gromov–Hausdorff topology.

Proof. If @1F D @1F 00 then for each flat F 0 separating F and F 00 we have: @1F 0 D
@1F . Therefore, S.F; F 00/ is compact by Corollary 13.

Whence we can assume that @1F 0 ¤ @1F 00. Suppose that Fi is a sequence of
2-flats in X which diverge to infinity, i.e.,

lim
i

d.o; Fi / D 1

where o 2 X is a base-point. Then, as in the proof of Lemma 10, the limit of the
distance functions to Fi (normalized at o) subconverge to a Busemann function b�

in X . Let U be the horoball fx W b�.x/ � 0g.
If, say, @1F � @1U then the flat F is contained in the sublevel set of the

Busemann function b� and therefore X would contain a flat half-space R3C, which
contradicts Lemma 12. Thus both complements

@1F n @1U; @1F 00 n @1U

are nonempty.

Lemma 26. 1. In the Hausdorff topology on the set of closed subsets of X [ @1X ,
the sets Fi [ @1Fi subconverge into @1U .

2. @1F \ @1F 00 � @1U .
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Proof. 1. Suppose that the assertion is false. Then there exists a sequence of points
xi 2 @1Fi such that

� D lim
i

xi … @1U:

Clearly, � 2 @1X . Consider a parametrization �.t/, t 2 RC of the geodesic ray o�.
Then, since � … @1U , there exists T � 0 such that

b�.�.t// � 1 for all t � T: (27)

The Busemann function b� is the limit of the normalized distance functions

di .x/ D d.x; Fi / � d.o; Fi /:

Then di .o/ D 0, di .xi / � 0 for all i and hence, by convexity,

di .yi / � 0 for all yi 2 oxi :

This, together with the inequality (27), contradicts the assumption that the geodesics
oxi converge to the geodesic ray o�.

2. Observe that @1F \ @1F 00 � @1Fi for each i . Thus (2) follows from (1).

We continue the proof of Proposition 25. Pick points

� 2 @1F n @1U; �00 2 @1F 00 n @1U:

The previous lemma implies that

�; �00 … @1F \ @1F 00

and that (since @1U does not separate @1X ) for large i the points �, �00 belong to the
same connected component of @1X n @1Fi . This contradicts the assumption that Fi

is between F , F 00 for all i .

Now, let us pick a peripheral 2-flat F0 2 P , consider the set fgF0; g 2 Gg and
its closure F in the Gromov–Hausdorff topology. The elements of F are peripheral
2-flats in X and the group G acts naturally on F . We note that since no flat in F

has cocompact stabilizer, F contains no isolated points. After passing to a smaller
G-invariant subset in F we may assume that the action G Õ F is minimal. The
union

zL ´ [F 2F F

equipped with the Gromov–Hausdorff topology becomes a locally compact 2-dimen-
sional lamination, the topological action G Õ zL is properly discontinuous and
cocompact. The lamination zL has a continuous G-invariant leafwise flat metric.
Therefore, since each leaf of zL is amenable, Plante’s construction (see [17]) implies
existence of a transversal G-invariant measure � on zL; minimality of G Õ F implies
that this measure has full support.
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Lemma 28. Suppose that F 2 F , gn 2 G is a sequence such that limn!1 gnF D
F1 2 F . Then there exist x�; xC 2 F such that for all sufficiently large n, gnF 2
Œx�; xC� and F1 2 Œx�; xC�.

Proof. Since limn!1 gnF D F1, the circles @Tits.gnF / converge to the circle
@TitsF1 in the Chabauty topology (we again are using here the visual topology on Z).
The circles in the collection

f@Tits.gnF /; @TitsF1; n 2 Ng
are all peripheral and hence do not cross each other (by Lemma 22). This implies
that for all large n, m either @Tits.gnF / separates @Tits.gmF / from @TitsF1 or @TitsF1
separates @Tits.gnF / from @Tits.gmF /.

The above lemma implies that the natural projection p W zL ! F is continuous,
where we give F the order topology, whose basis consists of the open intervals .a; b/.
It is also clear that p is a proper map in the sense that for each interval Œa; b� the inverse
image p�1.Œa; b�/ consists of leaves of zL which intersect a certain compact subset
in X : If a sequence of flats Fj leaves every compact subset in X then this sequence
subconverges to a point in @1X , but a point cannot separate one circle in @TitsX from
another.

The measure � on the pretree F has no atoms and (since the measure � transversal
to zL has full support) for each pair of distinct points x; x0 2 F , �.Œx; x0�/ D 0 iff
the corresponding flats F , F 0 in X are not separated by any flat in F . We let T be
the quotient of F by the equivalence relation: Points x; x0 2 F are equivalent iff
�.Œx; x0�/ D 0. The G-action, the pretree structure, and the measure � project to T

(we retain the notation � for the projection of the measure). As it was explained in
Section 3, the measure � yields a metric d on T . Local compactness of zL implies
that the restriction of d to each interval in T is a complete metric. It is clear that the
group G acts isometrically on T .

Remark 29. The map F ! T has at most countable multiplicity. Moreover, all but
countably many points in T have a unique preimage in F .

Lemma 30. 1. T is an uncountable metric tree.
2. Stabilizers of nondegenerate arcs in T are virtually cyclic and the action

G Õ T is stable.
3. G does not have a global fixed point in T .

Proof. 1. Follows from Lemma 8.
2. By our hypothesis, for each point F 2 F its G-stabilizer is virtually cyclic.

Since F is prefect, it is uncountable; hence, by Remark 29, uncountably many points
in each nondegenerate arc Œx; y� � T have a virtually cyclic stabilizer. Thus the
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action G Õ T is small. Since G is a CAT.0/-group, each virtually cyclic subgroup
of G is contained in a maximal virtually cyclic subgroup. Therefore, if I1 � I2 � � � �
is a descending chain of arcs in T , then the sequence of their stabilizers in the group G

GI1
� GI2

� � � �
is eventually constant. Thus the action G Õ T is stable.

3. The action G Õ F is minimal, hence the action G Õ T is minimal as well.
Since T is not a point it follows that G cannot fix a point in T .

Since G acts properly discontinuously and cocompactly on the contractible space
X , this group is finitely-presented. Therefore, by Lemma 30, we can apply [3]
to conclude that the group G splits as an amalgam with a virtually solvable edge
subgroup A. Since G is a CAT.0/-group, the subgroup A is virtually abelian and
finitely generated; let A0 � A be a finite index free abelian subgroup. Since G splits
over A, the pair .G; A/ has at least two ends, and hence the same is true for the pair
.G; A0/. Since G is a 3-dimensional Poincaré duality group over R this implies that
A0 has rank at least 2. This proves the main theorem.

References

[1] W. Ballmann, Lectures on spaces of nonpositive curvature. DMV Sem. 25, Birkhäuser,
Basel 1995. Zbl 0834.53003 MR 1377265

[2] M. Bestvina, Local homology properties of boundaries of groups. Michigan Math. J. 43
(1996), 123–139. Zbl 0872.57005 MR 1381603

[3] M. Bestvina and M. Feighn, Stable actions of groups on real trees. Invent. Math. 121
(1995), 287–321. Zbl 0837.20047 MR 1346208

[4] R. Bieri, Homological dimension of discrete groups. Queen Mary College Mathematics
Notes, London 1976. Zbl 0357.20027 MR 0466344

[5] B. H. Bowditch and J. Crisp, Archimedean actions on median pretrees. Math. Proc.
Cambridge Philos. Soc. 130 (2001), 383–400. Zbl 1034.20022 MR 1816800

[6] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren
Math. Wiss. 319, Springer-Verlag, Berlin 1999. Zbl 0988.53001 MR 1744486

[7] K. Brown, Cohomology of groups. Grad. Texts in Math. 87, Springer-Verlag, New York
1982. Zbl 0584.20036 MR 0672956

[8] S. Buyalo, Euclidean planes in three-dimensional manifolds of nonpositive curvature.
Mat. Zametki 43 (1988), 103–114; Math. Notes (1988) 43, 60–66. Zbl 0644.53035
MR 0932905

[9] H. Cartan and S. Eilenberg, Homological algebra. Princeton University Press, Princeton
1999. Zbl 0933.18001 MR 1731415

[10] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds. Invent.
Math. 118 (1994), 441–456. Zbl 0840.57005 MR 1296353

http://www.emis.de/MATH-item?0834.53003
http://www.ams.org/mathscinet-getitem?mr=1377265
http://www.emis.de/MATH-item?0872.57005
http://www.ams.org/mathscinet-getitem?mr=1381603
http://www.emis.de/MATH-item?0837.20047
http://www.ams.org/mathscinet-getitem?mr=1346208
http://www.emis.de/MATH-item?0357.20027
http://www.ams.org/mathscinet-getitem?mr=0466344
http://www.emis.de/MATH-item?1034.20022
http://www.ams.org/mathscinet-getitem?mr=1816800
http://www.emis.de/MATH-item?0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.emis.de/MATH-item?0584.20036
http://www.ams.org/mathscinet-getitem?mr=0672956
http://www.emis.de/MATH-item?0644.53035
http://www.ams.org/mathscinet-getitem?mr=0932905
http://www.emis.de/MATH-item?0933.18001
http://www.ams.org/mathscinet-getitem?mr=1731415
http://www.emis.de/MATH-item?0840.57005
http://www.ams.org/mathscinet-getitem?mr=1296353


The weak hyperbolization conjecture for 3-dimensional CAT.0/-groups 79

[11] P. Eberlein, Geodesic flow on certain manifolds without conjugate points. Trans. Amer.
Math. Soc. 167 (1972),151–170. Zbl 0209.53304 MR 0295387

[12] D. Gabai, Convergence groups are Fuchsian groups. Ann. of Math. (2) 136 (1992),
447–510. Zbl 0785.57004 MR 1189862

[13] A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle. Trans. Amer.
Math. Soc. 318 (1990), 87–121. Zbl 0699.30017 MR 1000145

[14] M. Kapovich and B. Kleiner, Geometry of quasi-planes. Preprint 2004.

[15] M. Kapovich and B. Leeb, Quasi-isometries preserve the geometric decomposition of
Haken manifolds. Invent. Math. 128 (1997), 393–416. Zbl 0866.20033 MR 1440310

[16] L. Mosher, Geometry of cubulated 3-manifolds. Topology 34 (1995), 789–814.
Zbl 0869.57015 MR 1362788

[17] J. Plante, Foliations with measure preserving holonomy. Ann. of Math. (2) 102 (1975),
327–361. Zbl 0314.57018 MR 0391125

[18] V. Schroeder, Codimension one tori in manifolds of nonpositive curvature. Geom. Dedi-
cata 33 (1990), 251– 265. Zbl 0698.53026 MR 1050413

[19] P. Tukia, Homeomorphic conjugates of Fuchsian groups. J. Reine Angew. Math. 391
(1988), 1–54. Zbl 0644.30027 MR 0961162

Received May 11, 2006; revised September 15, 2006

Department of Mathematics, University of California, Davis, CA 95616, U.S.A.

E-mail: kapovich@math.ucdavis.edu

Department of Mathematics, Yale University, New Haven, CT 06520-8283, U.S.A.

E-mail: bruce.kleiner@yale.edu

http://www.emis.de/MATH-item?0209.53304
http://www.ams.org/mathscinet-getitem?mr=0295387
http://www.emis.de/MATH-item?0785.57004
http://www.ams.org/mathscinet-getitem?mr=1189862
http://www.emis.de/MATH-item?0699.30017
http://www.ams.org/mathscinet-getitem?mr=1000145
http://www.emis.de/MATH-item?0866.20033
http://www.ams.org/mathscinet-getitem?mr=1440310
http://www.emis.de/MATH-item?0869.57015
http://www.ams.org/mathscinet-getitem?mr=1362788
http://www.emis.de/MATH-item?0314.57018
http://www.ams.org/mathscinet-getitem?mr=0391125
http://www.emis.de/MATH-item?0698.53026
http://www.ams.org/mathscinet-getitem?mr=1050413
http://www.emis.de/MATH-item?0644.30027
http://www.ams.org/mathscinet-getitem?mr=0961162

	Introduction
	Geometric preliminaries
	Pretrees
	Ideal boundaries of CAT(0) Poincaré duality groups
	Proof of the main theorem
	Case 1: X contains a 3-flat
	Metric balls and parallel sets in X
	Case 2: X contains a parallel set with the full boundary
	Case 3: The ideal boundary of every parallel set in X is a proper subset of _X

	References

