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Constructing pseudo-Anosovs from expanding
interval maps

Ethan Farber

Abstract. We investigate a phenomenon observed by Thurston wherein one constructs a pseudo-
Anosov homeomorphism on the limit set of a certain lift of a piecewise linear expanding interval
map. We reconcile this construction with a special subclass of generalized pseudo-Anosovs, first
defined by de Carvalho. From there we classify the circumstances under which this construction
produces a pseudo-Anosov. As an application, we produce for each g � 1, a pseudo-Anosov �g
on the closed surface of genus g that preserves an algebraically primitive translation structure and
whose dilatation is a Salem number.
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1. Introduction

In [14], Thurston investigates the properties of uniform �-expanders, piecewise linear
maps f W I ! I of a compact interval with jf 0j D � > 1 wherever defined. Here � is
sometimes referred to as the growth rate of f . These expanders arise naturally as lin-
ear models for interval endomorphisms of positive entropy (see, e.g., [7]). In many ways,
uniform �-expanders may be seen as one-dimensional analogs of pseudo-Anosov homeo-
morphisms of a surface.
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Recall that a pseudo-Anosov is a homeomorphism �W S ! S of surface S such that
there exist two singular transverse measured foliations .F u; �u/, .F s; �s/ and a constant
�> 1 such that ��.F u;�u/D .F u;��u/ and ��.F s;�s/D .F s;��1�s/. The constant �
is called the dilatation of �, and determines the topological entropy of �, namely h.�/ D
log�. For a uniform �-expander f , we also have h.f / D log�.

In [14], Thurston considers another parallel: it is shown by Fried [5] that the dilatation
of a pseudo-Anosov is a bi-Perron unit, i.e., that � is a real, positive algebraic unit whose
Galois conjugates lie in the annulus A� D ¹zW ��1 < jzj < �º, with the exception of �
and possibly ��1. It is conjectured that this condition is also sufficient for � to be the
dilatation of some pseudo-Anosov on some surface. On the other hand, Thurston argues
in [14] that � is the growth rate of a postcritically finite (PCF, cf. Definition 3.3) uniform
expander if and only if � is a weak Perron number; that is to say, all Galois conjugates are
contained in the disc D� D ¹zW jzj � �º.

Given these and other dynamical similarities between uniform expanders and pseudo-
Anosovs, it is reasonable to ask if one can lift a uniform expander to a pseudo-Anosov on
some surface, or conversely if one can find a projection from a pseudo-Anosov to some
uniform expander. Thurston gives a suggestive example near the end of [14]. Thurston’s
example concerns the tent map for � D .1C

p
5/=2 defined by

f .x/ D

´
�x; 0 � x < ��1;

2 � �x; ��1 � x � 1:
(1.1)

The sole Galois conjugate of � is  D .1�
p
5/=2D ���1, and Thurston defines the

map fG W I �R! I �R by

fG.x; y/ D

´
.�x;  y/; 0 � x < ��1;

.2 � �x; 2 �  y/; ��1 � x � 1:

Note that if � W I � R! I is the projection onto the first coordinate, then � ı fG D
f ı � . The limit set ƒf of fG is defined to be the smallest closed set containing all accu-
mulation points of orbits under fG . In this example, ƒf is a finite union of rectangles in
I � R, and while fG is discontinuous across the line x D ��1, one may find gluings of
the edges of ƒf such that the induced map � is a homeomorphism of a closed surface zƒ.
The definition of fG implies that the foliations of ƒf by horizontal and vertical lines
are each preserved under the transformation, with the one-dimensional measure inherited
from Lebesgue scaling in the horizontal direction by � and in the vertical direction by
j j D ��1. This persists in the quotient zƒ, which is homeomorphic to S2. In zƒ there are
four cone points of angle � , each having a single preimage in ƒ. These preimages have
distinct x-coordinates and so project to four points of dynamical relevance for f : in partic-
ular, there is a correspondence between these points of I and the cone points of zƒ, namely

• Three points lying over the unique postcritical orbit of f (shown in red in Figure 1).

• One point lying over the non-zero fixed point of f (shown in blue in the same figure).
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Figure 1. Thurston’s example. He gives gluings under which the limit set is a sphere with four cone
points, corresponding to the postcritical orbit (red) and a fixed point (blue) of f . (a) A uniform
�-expander f for � D .1C

p
5/=2. (b) The limit set of the Galois lift fG .

Taken together, we see that the Galois lift fG admits a quotient map � which is an
orientation-reversing pseudo-Anosov homeomorphism of the sphere with four marked
points. The dilatation of � is �, and � projects to the �-expander f . It is not clear from
the discussion in [14] whether this process is canonical, or whether it produces pseudo-
Anosovs in greater generality. In this paper, we classify when this construction works
for interval maps of a particular form, and use it to quickly generate pseudo-Anosovs on
surfaces of any genus.

Remark 1.1. The fact that � reverses orientation is because � and  have opposite signs.
Throughout this paper, we will restrict our attention to orientation-preserving pseudo-
Anosovs, but the methods for understanding the orientation-reversing case are similar.

Remark 1.2. In general, we will see that for a pseudo-Anosov � generated by thickening
an interval map f , there is a one-pronged singularity of � for each point in the forward
orbit of a critical point for f . See Theorem 3.14 and the discussion in Section 2. These
singularities lie on the vertical boundary of ƒ, whereas on the horizontal boundary there
exists a unique singularity corresponding to some periodic cycle of f . In Thurston’s exam-
ple this periodic cycle is a fixed point, marked in blue, but in general the cycle is longer,
generating a singularity of higher rank.

The question of how to formalize this construction was also addressed by Baik, Rafiqi,
and Wu in [2]. Their construction concerns a different class of uniform expanders, and
together our work and theirs constitute special cases of a larger phenomenon wherein
interval maps with certain combinatorics can be realized as train track maps.
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Figure 2. The positive (a) and negative (b) zig-zag maps of slope � equal to the Perron root of
x2 � 4x � 1.

Definition 1.3. We say that a PCF map f W I ! I is postcritically periodic (or PCP) if
each critical value f .c/ is periodic. In other words, f acts on the finite set

PC.f / D
[

c critical

¹f n.c/Wn � 1º

by a permutation. It is possible for multiple critical points c1, c2 to have the same critical
value.

As we will see (cf. Theorem 3.14), an interval map f W I ! I being PCP is necessary
for producing a pseudo-Anosov by thickening f .

Definition 1.4. We call a uniform �-expander f W I ! I a zig-zag map (or zig-zag or �-
zig-zag) if the only critical points of f are ci D i � ��1 for i D 1; : : : ; b�c. In other words,
f .0/ 2 @I , and c 2 int.I / is a critical point of f if and only if f .c/ 2 @I . Note that for
a fixed �, there are two distinct �-zig-zags: the positive zig-zag satisfies f .0/ D 0, while
the negative zig-zag satisfies f .0/ D 1. See Figure 2.

Observe that a zig-zag map f is PCP if and only if x D 1 is periodic. Throughout this
paper, we consider primarily the case of a PCP zig-zag map. For the sake of generality,
however, we give the following two definitions for any PCF uniform �-expander with
coefficients in Q.�/, that is, after forming the Markov partition Pf D ¹Pj º for f by
cutting I at the union of the critical points and their forward images (cf. Definition 3.3 and
Remark 3.4), there exist polynomials aj .�/ 2Q.�/ such that the linear map defining f on
the subinterval Pj is given by fj .x/ D aj .�/˙ �x. This assumption is mild, and allows
us to make the following two definitions.

Definition 1.5. Let f W I ! I be a uniform �-expander with linear branches fj .x/ D
aj .�/ ˙ �x. Set zfj .x/ D aj .�

�1/ ˙ ��1x. The Galois lift of f is defined to be the
function fG W I �R! I �R such that

fG.x; y/ D .fj .x/; zfj .y// if x 2 Pj :
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For concreteness, we define each Pj to be closed on the left, so that fG is continuous from
the right. The limit set of fG will be denoted by ƒf .

In this paper, we investigate when ƒf satisfies the following property.

Definition 1.6. Let f WI ! I be a PCF uniform �-expander with canonical Markov parti-
tion Pf D ¹Pj º, and let � Wƒf ! I be projection onto the first coordinate. We say thatƒf
is rectangular if it has connected interior and eachRj D��1.Pj / is a Euclidean rectangle.

Remark 1.7. Note here that, despite the terminology “Galois lift”, we do not explicitly
require � and ��1 to be Galois conjugate. There is, however, a natural integral polynomial
Df .t/ associated to a PCP �-zig-zag f , called the digit polynomial (cf. Definition 1.8
below), and under the condition that fG Wƒf ! ƒf defines a pseudo-Anosov this poly-
nomial has both � and ��1 as roots (cf. Theorem 1). Indeed, in all observed examples �
and ��1 are Galois conjugate.

Definition 1.8. Let f be a PCP �-zig-zag, and let n2N be minimal such that f n.1/2 @I .
Let P D ¹Pj º be the Markov partition for f , and let Pj.k/ be the element of this partition
containing f k.1/ for each k � 0. Let fj.k/ denote the linear branch of f defined on Pj.k/.
For each 0 � k < n, let fk WC2 ! C be the map of the form fk.x; z/ D ck ˙ zx such
that the restriction fkj�Wx 7! fk.x;�/ coincides with the function fj.k/.x/. Then the digit
polynomial of f is the degree n polynomial Df WC ! C defined by

Df .t/ D "Œfn�1jzDt ı � � � ı f0jzDt .1/ � f
n.1/�;

where " D ˙1 is a normalization factor to make Df monic. By definition, Df .�/ D 0.

Example 1.9. Let f W I ! I be the tent map from Thurston’s example defined by (1.1).
Then f 3.1/ D 1, and we have f .1/ D ��2 and f 2.1/ D ��1. Explicitly,

f0.x; t/ D 2 � tx; f1.x; t/ D tx; and f2.x; t/ D 2 � tx:

We compute

"Df .t/ D f2.f1.f0.1; t/; t/; t/ � f
3.1/

D f2.f1.2 � t; t /; t/ � 1

D f2.2t � t
2; t / � 1

D 2 � 2t2 C t3 � 1

D t3 � 2t2 C 1:

Thus in this case " D 1, and we find that

Df .t/ D t
3
� 2t2 C 1 D .t � 1/.t2 � t � 1/

is the digit polynomial of f . In particular, we verify that �D .1C
p
5/=2 is a root ofDf .

We remark that even thoughDf .t/¤ t3Df .t�1/, this does not provide a counterexample
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to Theorem 3, since f is not technically of pseudo-Anosov type: it defines an orientation-
reversing sphere homeomorphism, rather than an orientation-preserving one.

Example 1.10. Let f W I ! I be the (unrestricted negative PCP) zig-zag map defined by

f .x/ D

8̂̂̂̂
<̂
ˆ̂̂:
1 � �x; 0 � x < ��1;

�x � 1; ��1 � x < 2��1;

3 � �x; 2��1 � x < 3��1;

�x � 3; 3��1 � x � 1;

where � > 1 is the largest real root of t4 � 3t3 � 3t2 � 3t C 1. In this case,

f 4.1/D 0; f0.x; t/Df1.x; t/D tx� 3; f2.x; t/D 3� tx; and f3.x; t/D 1� tx:

We compute as before

"Df .t/ D f3.f2.f1.f0.1; t/; t/; t/; t/ � f
4.1/

D f3.f2.f1.t � 3/; t/; t/

D f3.f2.t
2
� 3t � 3; t/; t/

D f3.3C 3t C 3t
2
� t3; 1/

D 1 � 3t � 3t2 � 3t3 C t4:

Here again " D 1, and we obtain the polynomial relation Df .�/ D 0, where Df .t/ D
t4 � 3t3 � 3t2 � 3t C 1 coincides with the minimal polynomial of �.

Remark 1.11. The term “digit” polynomial is chosen to reflect the relation between the
coefficients of Df .t/ and the digits of the f -expansion of x D 1 (cf. Section 7 and The-
orem 3). Since Df .t/ 2 ZŒt �, the minimal polynomial of � divides the digit polynomial.
The definition of Df .t/ resembles that of the Parry polynomial of the �-expander f
(cf. [13]).

Our approach appeals to the machinery of so called generalized pseudo-Anosovs,
defined in [3] by de Carvalho and further investigated in [4] by de Carvalho and Hall.
In brief terms, a generalized pseudo-Anosov is a pseudo-Anosov except that we allow for
infinitely many singularities of the measured foliations, as long as these only accumulate
on finitely many points (cf. Definition 2.10).

The first goal of this paper is Theorem 1, which shows that Thurston’s construction
for PCP zig-zags recovers the generalized pseudo-Anosov of de Carvalho and Hall in the
case when the latter is a pseudo-Anosov.

For a given zig-zag f , there is only one thickening FL of f that can produce a pseudo-
Anosov, which we call the exterior left-veering thick interval map (cf. Definition 3.24 and
Proposition 3.27). We say that f is of pseudo-Anosov type if FL generates a pseudo-
Anosov according to the construction of de Carvalho and Hall (cf. Definition 3.13). In this
case, there is associated to FL an invariant train track �L of a very explicit form (cf.
Theorem 3.14).



Constructing pseudo-Anosovs from expanding interval maps 7

Theorem 1. Let f W I ! I be a PCP �-zig-zag map with � > 2. Then f is of pseudo-
Anosov type if and only if the following conditions are satisfied:

(1) The digit polynomial Df of f has ��1 as a root.

(2) The limit set ƒf of fG is rectangular (cf. Definition 1.6).

In this case, the invariant generalized train track �L of FL is finite, and recovers the
action of fG onƒf in the following way: Let S 0 be the closed topological disc obtained by
performing the gluings indicated by the non-loop infinitesimal edges of �L. Let zf WS 0! S 0

be the map induced by FL. Then there is an isometry i WS 0 ! ƒf such that the following
diagram commutes:

S 0 S 0

ƒf ƒf :

zf

i i

fG

Moreover, i sends the horizontal and vertical foliations of S 0 to those ofƒf . Therefore,
after identifying segments of boundary in each set so as to obtain pseudo-Anosovs

�1W S ! S and �2W zƒf ! zƒf ;

these systems are conjugate via an isometry that sends the (un)stable foliation of �1 to the
(un)stable foliation of �2.

Remark 1.12. The content of Theorem 1 is to reveal that, for PCP zig-zags, Thurston’s
construction of a pseudo-Anosov from a zig-zag is essentially the construction of a gener-
alized pseudo-Anosov following de Carvalho and Hall. Indeed, Thurston’s construction is
more direct: one need only examine ƒf to determine if f is of pseudo-Anosov type, and
if so, then the action of fG on ƒf recovers the pseudo-Anosov action given by applying
the methods of de Carvalho and Hall. The proof of Theorem 1 is given in Section 4.

Remark 1.13. Theorem 3 below strengthens condition (1) of Theorem 1: rather than
merely vanishing at ��1,Df is in fact reciprocal, meaning that for any ˛ 2C�,Df .˛/D 0
if and only if Df .˛�1/ D 0.

The remainder of the paper classifies for each modalitym the PCP zig-zags of pseudo-
Anosov type, i.e., the maps whose Galois lift produces a pseudo-Anosov. These results, in
particular Theorems 2 and 3, are extensions of the work of Hall, who in [6] classifies uni-
modal maps (i.e., tent maps) of pseudo-Anosov type, although not in these terms. In partic-
ular, Hall shows that there is an explicit bijection between the tent maps of pseudo-Anosov
type and Q\ .0; 1=2/, defined dynamically by the action of the tent map on its postcritical
set. Theorem 2 generalizes this to multimodal PCP zig-zags for each modality m � 2.

The key observation is that the outward winding of the exterior left-veering thicken-
ing FL places strong restrictions on how f permutes the periodic orbit of the point x D 1
(cf. Section 5). We prove that these restrictions are also sufficient to determine a PCP zig-
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zag of pseudo-Anosov type. The analysis is carried out in three separate cases, according
to whether the modality m of f satisfies

(a) m � 4 even,

(b) m � 3 odd,

(c) m D 2.

Definition 1.14. For m � 2 and p � 3, define PA.m; p/ to be the set of zig-zags f of
pseudo-Anosov type such that

(1) f has m critical points,

(2) # PC.f / D p.

We also define the set
PA.m/ D

[
p�4

PA.m; p/:

As it turns out, the elements of PA.m; 3/ are relatively uninteresting: the growth rates
of these maps are precisely the positive quadratic units, and all of the resulting pseudo-
Anosovs are defined on the four-punctured sphere (cf. Corollary 5.6). In particular, we
recover hyperbolic automorphisms of the torus for each trace t � 3. The case when p � 4
is more interesting.

Definition 1.15. Let f be a PCP interval map, and let x1 < x2 < � � � < xn D 1 denote
the elements of the forward orbit of x D 1. The permutation type of f is the permutation
�.f / 2 Sn such that f .xi / D x�.f /.i/.

In Section 6, we show that for m � 2, if f 2 PA.m/, then �.f / has a particular form.
Indeed, there exist integers k, n such that 2 � k � n � 1 and gcd.n � 1; n � k/ D 1 so
that we have

�.f / D

8̂̂<̂
:̂
�e.n; k/ if m � 4 even,

�o.n; k/ if m � 3 odd,

�2.n; k/ if m D 2:

The permutations �e , �o, and �2 are defined in Section 6. We will write �.f / D �m.n; k/
when m is not specified. A consequence of the following theorem is that for each m � 2,
there is a bijection between the permutations �m.n; k/ and the elements of PA.m/.

Theorem 2. Fix m � 2 and let ˆWPA.m/! Q \ .0; 1/ be the map defined by

ˆ.f / D
n � k

n � 1
if �.f / D �m.n; k/:

Then ˆ is a bijection. Moreover, for each p � 4, the image ˆ.PA.m; p// consists of the
set of reduced rationals in .0; 1/ of denominator p � 2.

Theorem 2 classifies PCP zig-zags of pseudo-Anosov type of modality m � 2. As we
mentioned, the proof in the case of unimodal maps of pseudo-Anosov type is due to
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Hall [6]; our results should be interpreted as an extension of his to higher modalities.
Sections 5 and 6 are dedicated to proving Theorem 2, after which we pass to a discussion
of their kneading theoretic implications in Section 7.

We also have the following conjecture.

Conjecture 1.16. Let f1; f2 2 PA.m/ for m � 2. If �i is the growth rate of fi and
ˆ.fi / D qi as in Theorem 2, then �1 < �2, q1 < q2.

We treat this conjecture in a forthcoming paper.

Remark 1.17. There is a certain symmetry in the choice of rational number representing
a zig-zag of pseudo-Anosov type. Given such a zig-zag f , one may choose to defineˆ.f /
to be either .n� k/=.n� 1/ (as in Theorem 2) or else .k � 1/=.n� 1/. One may view this
symmetry as a manifestation of the fact that �.f / D �m.n; k/ is essentially a rotation by
n � k modulo n � 1, which may equivalently be seen as a rotation by �.k � 1/ modulo
n � 1. Making a choice determines whether Conjecture 1.16 posits that the association
�i 7! qi preserves or reverses linear order. Here we have definedˆ.f /D .n� k/=.n� 1/
so that this map is order-preserving. This choice also makes the statement of Theorem 3
more natural.

Theorem 3. Suppose f 2 PA.m/ for m � 2 with ˆ.f / D a=b 2 Q \ .0; 1/ in lowest
terms. Define LW Œ0; b�! R by L.t/ D .a=b/ � t . Then

Df .t/ D t
bC1
C 1 �

bX
iD1

ci t
bC1�i ;

where the ci satisfy

ci D

´
m if L.t/ 2 N for some t 2 Œi � 1; i �;

m � 2 otherwise:

In particular, ci D cb�i , so Df is reciprocal, that is, Df .t/ D tbC1Df .t�1/.

Theorem 3 generalizes [6, Lemmas 2.5 and 2.6].
In Section 8, we consider an infinite family of zig-zags producing an algebraically

primitive translation surface for each positive genus.

Theorem 4. For each g � 1, define fg W I ! I to be the bimodal PCP zig-zag map of
pseudo-Anosov type corresponding to qg D 1=.2g/ 2 Q \ .0; 1/. Let �g be the growth
rate of fg . Then the following are true for each g � 1:

(1) �g is a Salem number of degree 2g.

(2) The pseudo-Anosov �g obtained from fg is defined on a .2g C 2/-punctured
sphere †0;2gC2.

(3) The translation surface .Xg ; !g/ obtained as the hyperelliptic double cover of
†0;2gC2 is of genus g, and hence algebraically primitive.
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To summarize: in Section 2, we review the construction of generalized pseudo-Ano-
sovs, focusing particularly on the concept of a thick interval map. This is followed in
Section 3 by a discussion on the different ways of thickening an interval map to a thick
interval map. Here we prove that, when attempting to construct pseudo-Anosovs, the only
thickening of a zig-zag we need consider is the exterior left-veering map FL (cf. Proposi-
tion 3.27).

In Section 4, we prove Theorem 1, reconciling Thurston’s construction with that of
de Carvalho. Beginning in Section 5, we turn our attention to classifying zig-zag maps
of pseudo-Anosov type, observing several necessary conditions on their postcritical orbit
structure. Section 6 in effect demonstrates that these conditions are also sufficient, proving
Theorem 2.

Section 7 investigates the digit polynomial Df .t/, establishing Theorem 3.
Section 8 turns briefly to considerations of flat geometry, providing a terse introduc-

tion to part of the theory. As an application, we prove Theorem 4, demonstrating the
existence of an infinite family of algebraically primitive translation surfaces arising from
our construction, one for each genus g � 1.

2. Review of generalized pseudo-Anosovs

The purpose of this section is to review the theory of generalized pseudo-Anosovs, fol-
lowing the work of de Carvalho in [3] and de Carvalho and Hall in [4]. A reader who is
already familiar with the theory may skip this section.

2.1. Thick intervals

In this subsection, we introduce thick interval maps and the procedure of thickening an
interval map f W I ! I to a thick interval map F .

A thick interval is a closed topological 2-disc I � S2 consisting of decomposition
elements which come in two types: a leaf, homeomorphic to the interval I D Œ0; 1�, and
a junction, homeomorphic to the closed 2-disc. The intersection of the boundary of a junc-
tion with I may consist of one or two connected components. We allow only finitely many
junctions in a thick interval.

We denote by V the union of the junctions of I, and we refer to the connected com-
ponents of I n V as strips. Each strip is homeomorphic to .0; 1/ � Œ0; 1�, and is a union
of leaves. We put coordinates hs W xs ! Œ0; 1� � Œ0; 1� on the closure of each strip s such
that the leaves of s are precisely the sets h�1s .¹xº � Œ0; 1�/, x 2 .0; 1/. Following [4], we
denote by E the union of the closures of the strips. See Figure 3.

The notation V , E is purposefully suggestive. As we shall see, a thick interval map is
meant as a dynamical blow-up of an unrestricted interval map f W I ! I . The junctions
correspond to elements of the weak postcritical set WPC.f / (cf. Section 3), whereas the
strips correspond to the subintervals between these points. It is for this reason that we
sometimes refer to junctions as fat vertices and the strips as thick edges.
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Junctions

Thick edges

Figure 3. A typical thick interval consists of alternating thick edges and two-sided junctions, book-
ended by a pair of one-sided junctions.

Figure 4. A thick interval map. The images of the junctions have been shaded darker for clarity. The
first junction is mapped into itself, the second into the fifth, the third into the second, the fourth into
the first, and the fifth into the third.

We refer to [4] for the following definition. We write F W .X;A/! .X;A/ to represent
a map F WX ! X of topological spaces such that F.A/ � A for some A � X .

Definition 2.1 (See Figure 4 for an example). A thick interval map is an orientation-
preserving homeomorphism F : .S2; I/! .S2; I/ such that

(1) F.I/ is contained in the interior of I,
(2) if  is a leaf of I, then F./ is contained in a decomposition element, and the

diameter of F n./ with respect to the coordinates hs tends to 0 as n!1,
(3) if J is a junction of I, then F.J / is contained in a junction,
(4) F is linear with respect to the coordinates hs , that is, in each connected compo-

nent of si \ F �1.sj /, where si and sj are strips, F contracts vertical coordinates
uniformly by a factor �j < 1 and expands horizontal coordinates uniformly by
a factor �j > 1,

(5) if J and J 0 are junctions such that F.J / � J 0, then F.@J n @I/ � .@J 0 n @I/,
(6) if J is a junction with F n.J /� J for some n� 1, then J has an attracting periodic

point of period n in its interior whose basin contains the interior of J .

Definition 2.2. We associate to a thick interval map F a transition matrix M D .mi;j /
such that if s1; : : : ; sn are the strips of I, thenmi;j is the number of times F.sj / crosses si .
Note that since strips are separated by junctions and since junctions are mapped by F to
other junctions, mi;j are integers; there are no partial crossings.
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Definition 2.3. A non-negative matrixM is said to be primitive if there exists somem2N
such that Mm is positive, i.e., .Mm/i;j is positive for each i , j .

Definition 2.4. Let F W .S2; I/! .S2; I/ be a thick interval map. Collapse each decom-
position element of I to a point, obtaining an interval zI and an induced map zf W zI ! zI .
If x 2 zI corresponds to a leaf that F maps into a junction, then zf will be constant in
a neighborhood of x. Further collapsing these intervals of constancy produces either a sin-
gle point or a new interval I with an induced map f W I ! I . We say that f is a thinning
of F . Similarly, we say that F is a thickening of f , and thickening f refers to the process
of associating to f a thick interval map F that thins to f .

Proposition 2.5 ([3, Theorem 2]). If F has primitive transition matrix M , then thin-
ning F always produces a non-trivial interval I . Moreover, the induced map f W I ! I

also has transition matrix M .

Remark 2.6. Observe that while there is a unique thinning of a thick interval map, there
are multiple thickenings of an interval map with at least one critical point. In Section 3,
we investigate the proper thickening to choose for a zig-zag map if one hopes to produce
a pseudo-Anosov.

2.2. Train tracks and generalized pseudo-Anosovs

In this subsection, we describe how to associate to a given thick interval map F a branched
1-manifold � invariant under F , up to isotopy. This � is called a generalized invariant
train track (cf. Definition 2.7), and provides the blueprints for constructing a generalized
pseudo-Anosov �WS2 ! S2 (cf. Definition 2.10). In particular, � dictates the structure of
the singular invariant foliations of �.

To a thick interval I we associate the data of a finite set A of points, called punctures.
Each puncture is contained in a junction, and each junction contains at most one puncture.
For a strip s, we define the arc s to be the path s.t/ D h�1s .t; 1=2/. Let RE denote the
set of such paths. The endpoints of each arc s are on the boundary components of s and
are called switches. We denote by L the set of switches.

We again take the following definition from [4].

Definition 2.7. Given a thick interval I � S2 with a set of punctures A, a generalized
train track � � I n A is a graph with vertex set L and countably many edges, each of
which intersects @V only at L, such that

(1) The edges of � which intersect the interior of E are precisely the elements of RE.

(2) No two edges e1, e2 contained in a given junction J are parallel, that is, e1 and e2
may only bound a disc if it contains a point of A or another edge of � .

Two generalized train tracks � and � 0 are equivalent, denoted � � � 0, if they are isotopic
by an isotopy supported on V n A.
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Condition (1) says that the edges of � contained in the strips of I are simple to describe:
they are elements s of RE, which are called real edges. The more complicated edges are
those contained in the junctions, which are called infinitesimal edges. The collection of
infinitesimal edges will be denoted by IE.

The infinitesimal edges will provide extra information not already given by the (finite)
incidence matrix M for some thick interval map F . Indeed, we associate to F a specific
generalized train track as follows. Let �0 denote the (disconnected) generalized train track
given by the real edges s 2 RE. We apply F to �0 and then perform the following series
of pseudo-isotopies:

(1) On each strip s, we define the pseudo-isotopy  s W xs � Œ0; 1�! xs by

 s.x; y; t/ D
�
x; .1 � t /y C

t

2

�
:

(2) Within each junction we define another pseudo-isotopy  e1;e2 for each pair of
infinitesimal edges that are parallel, which homotopes e1 and e2 together.

The effect of the first set of pseudo-isotopies is to collapse all components of F.�0/
contained within E to the real edges s , while the second set homotopes parallel infinites-
imal edges and is only supported on a disc containing the relevant junction. Composing
these pseudo-isotopies produces a new generalized train track, denoted � 01 WD F�.�0/. One
may check that � 01 is isotopic, relative to A, to a generalized train track �1 containing �0.
Continuing in this way, we obtain an increasing sequence �0 � �1 � � � � of train tracks,
and the union � D

S
n�0 �n is F-invariant, i.e., F�.�/ is isotopic to � . See Figure 5.

Definition 2.8. Let  W S2 � I ! S2 denote the composition of the pseudo-isotopies in
steps (1) and (2) above. The generalized train track � D

S
n�0 �n is called the invariant

generalized train track for F . The train track map associated to F is the map �W � ! �

defined by �.x/ D  .F.x/; 1/.

Let I be a thick interval and F W .S2; I;A/! .S2; I;A/ be a thick interval map withA,
a finite invariant set of F . Let � be the associated invariant generalized train track. Then �
has at most countably many edges. Label the finitely many real edges e1; : : : ; en and
then label the possibly infinitely many infinitesimal edges ek for k � nC 1. We form an
extended transition matrix N D .ni;j / by setting

ni;j D the number of times �.ej / crosses ei .

We may write this as the block matrix

N D

�
M 0

B …

�
;

where M is the incidence matrix of F , B records the transitions from real to infinitesimal
edges, and … records the transitions from infinitesimal edges to other infinitesimal edges.
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map map

map map

map

pseudo-
isotopy

pseudo-
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invariant

Figure 5. The process for generating an invariant train track for a given thick interval map. One alternately applies the map to �n and the pseudo-
isotopies to obtain �nC1. In this case, the process terminates with �4, which is invariant. Since the invariant generalized train track is finite, the resulting
surface homeomorphism will be a pseudo-Anosov (cf. Figure 7). In general, however, this process may continue indefinitely, producing a generalized
pseudo-Anosov with infinitely many singularities. See Figures 8 and 9 for such an example.
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We assume from now on that M is primitive. In this case, the Perron–Frobenius the-
orem states that the spectral radius �.M/ > 0 of M is in fact a real eigenvalue of M ,
called the dominant eigenvalue of M . The Perron–Frobenius theorem further states that
the dominant eigenvalue is simple, and that the associated one-dimensional eigenspace is
spanned by a positive eigenvector uD .ui /, while no other eigenspace contains a positive
eigenvector. We normalize this eigenvector to have unit L1-norm, that is,

P
i ui D 1.

If �D �.M/ is the Perron eigenvalue ofM , let x0 D .x1; : : : ; xn/ denote the canonical
positive left �-eigenvector associated toM such that

P
i xi D 1, and let y0 D .y1; : : : ; yn/

denote the positive right �-eigenvector ofM such that
P
i xiyi D 1. One shows that these

can be extended to left and right �-eigenvectors ofN , i.e., that there exist possibly infinite
vectors x and y such that xN D �x and Ny D �y. Moreover, it is not hard to see that
x D .x1; : : : ; xn; 0; 0; : : :/.

For i D 1; : : : ; n, construct rectanglesRi of dimensions xi � yi . These are the building
blocks of the surface on which the generalized pseudo-Anosov will act. The infinitesimal
edges incident to one endpoint of a real edge ei , along with their weights, encode how
to identify segments of the corresponding vertical boundary of Ri . While this process
is visually intuitive, a precise explanation is nonetheless elusive in the literature, so we
describe it here for completeness.

In what follows, we fix a junction J between two adjacent real edges eL and eR.
Denote by vL the endpoint of eL on @J , and similarly define vR.

Definition 2.9. Let e be an infinitesimal edge contained in J , considered as a smooth
parameterized arc eW Œ0; 1�! J . Observe that

e.¹0; 1º/ � ¹vL; vRº:

We define an end of e to be an arc of the form

˛ D e
�h
0;
1

2

i�
or ˛ D e

�h1
2
; 1
i�
:

If ˛ is an end of e, then for 0 < " < 1=2, we define the "-subend of ˛ to be

˛" D

´
e.Œ0; "�/; ˛ D e.Œ0; 1

2
�/;

e.Œ1 � "; 1�/; ˛ D e.Œ1
2
; 1�/:

If e, f are two infinitesimal edges of J , not necessarily distinct, with ends ˛, ˇ incident
to vL, we set

˛ �L ˇ if ˛ı is below ˇı for all ı > 0 sufficiently small:

If instead ˛, ˇ are incident to vR, we set

˛ �R ˇ if ˛ı is below ˇı for all ı > 0 sufficiently small:
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It is not difficult to see that �L is a total order on the set of ends incident to vL. That
is, for any two arcs ˛, ˇ incident to vL, we either have ˛ �L ˇ or ˇ �L ˛. Moreover, if

• ej1 ; ej2 ; : : : are the infinitesimal edges with one end incident to eL,

• ek1 ; ek2 ; : : : are the infinitesimal edges with two ends incident to eL, and

• the rectangle ReL has height y.L/,

then the fact that y is a right-�-eigenvector for N implies that

y.L/ D
X
i

yji C 2 �
X
l

ykl : (2.1)

Equation (2.1) is often referred to as the switch condition.
For an end ˛, denote by e.˛/ the infinitesimal edge of which ˛ is an end, and for

an infinitesimal edge e, let y.e/ denote the entry of the eigenvector y for N such that
y.e/D yi if eD ei . Then equation (2.1) and the fact that�L is a total order together imply
that there is a unique way to partition the right vertical boundary of ReL into segments d˛
of length y.e.˛// such that for two ends ˛, ˇ incident to eL,

d˛ is below dˇ , ˛ �L ˇ:

The same argument shows how to partition the left vertical boundary of ReR . It remains to
describe how to identify these boundary segments. If e is an infinitesimal edge incident to
both eL and eR, and ˛, ˇ are the corresponding ends of e, then y.e.˛//D y.e.ˇ//D y.e/
and we identify d˛ on @VReL with dˇ on @VReR by an orientation-preserving isometry.
If instead both ends ˛, ˇ of e are incident to eL, then we identify the segments d˛ , dˇ on
@VReL by an orientation-reversing isometry, and similarly if both ends ˛, ˇ are incident
to eR. See Figure 6 for an example with finitely many infinitesimal edges, and Figure 9
for an example with infinitely many.

Figure 6. The rectangle decomposition of a surface from the invariant train track. The black edges
are real edges, while the blue edges are infinitesimal edges.

The train track map � induces an endomorphism ẑ WR!R which stretches the folia-
tion of R by horizontal lines by a factor of �, and it scales the vertical foliation by a factor
of ��1. This map ẑ is a homeomorphism except on the boundary of R. This boundary is
a topological circle and contains a periodic orbit of ẑ . After identifying adjacent segments
of this circle that eventually map to the same segment, we obtain a homeomorphism ˆ in
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Figure 7. The transformation ẑ WR ! R. Identifying points on the horizontal boundary that are
eventually mapped to the same point produces a homeomorphism of S2. Since there are only finitely
many singularities, this is a pseudo-Anosov.

the quotient. This new quotient surface is homeomorphic to S2, and the periodic orbit
on @R becomes a single point, called the point at infinity. The induced map ˆWS2 ! S2

inherits stable and unstable foliations, and is a generalized pseudo-Anosov.

Definition 2.10. A generalized pseudo-Anosov is a homeomorphism � of a compact sur-
face S such that the following hold:

(1) There exist a real number � > 1, called the stretch factor of �, as well as two
transverse singular measured foliations .Fu; �u/, .Fs; �s/ of S such that

��.Fu; �u/ D .Fu; ��u/; ��.Fs; �s/ D .Fs; �
�1�s/:

(2) The singularities of Fu and Fs , while potentially infinite in number, accumulate
on only finitely many points of S .

Remark 2.11. Observe that in the case that the foliations have only finitely many singu-
larities, � is a pseudo-Anosov.

In what follows, we will investigate closely the construction of generalized pseudo-
Anosovs from thick interval maps, focusing particularly on the circumstances under which
this process produces a pseudo-Anosov. This occurs if and only if the generalized invariant
train track is finite, i.e., has only finitely many edges. In this case, � is simply a train track
on a multiply-punctured sphere.

Example 2.12. It will be instructive to see an example where the invariant generalized
train track has infinitely many edges, so that the resulting homeomorphism ˆ is not
a pseudo-Anosov. Let � D 1C

p
2 and f W I ! I the uniform �-expander defined by

f .x/ D

8̂̂<̂
:̂
�x; 0 � x < ��1;

2 � �x; ��1 � x < 2��1;

�x � 2; 2��1 � x � 1:
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We see that f has two critical points, c1 D ��1 and c2 D 2��1. The first of these is
2-periodic, with f .c1/ D 1 and f .1/ D c1. On the other hand, f .c2/ D 0 is a fixed point.
Thus the weak postcritical set of f is WPC.f / D ¹0; c1; c2; 1º. We thicken this set to
junctions and the intermediate subintervals to thick edges.

Figure 8 shows an example of a thickening F of f . In this case, the generalized
invariant train track for F has infinitely many edges, corresponding to infinitely many
singularities for the resulting sphere homeomorphism. See Figure 9. It is not hard to show
that any orientation-preserving thickening of f will fail to produce a pseudo-Anosov.
Interestingly enough, there does exist an orientation-reversing map that accomplishes this,
and indeed if we define the Galois lift fG of f by replacing all instances of � with its con-
jugate ���1, then the limit set ƒf is rectangular.

1:0

0:8

0:6

0:4

0:2

0:2 0:4 0:6 0:8 1:0

Figure 8. A uniform �-expander for � D 1 C
p
2 and a thickening of it. Note that in the first

junction the tightening pseudo-isotopies will produce non-parallel loops of the generalized invariant
train track.

Figure 9. The action of F on its generalized invariant train track, and the induced map on the
corresponding surface.
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3. First constructions

We turn our attention to the task of constructing a pseudo-Anosov on S2 from a zig-zag
map (cf. Definition 1.4). Our goal in this section is to show that for a zig-zag map, there is
a unique pair of thickenings to consider when attempting to construct a pseudo-Anosov,
that is, no other possible thickenings can give a pseudo-Anosov (cf. Theorem 3.27). More-
over, these thickenings produce conjugate generalized pseudo-Anosovs, so it suffices to
only consider one of them.

Before we proceed to the proof of Theorem 3.27, we must consider how to thicken
zig-zag maps, and whether they can be thickened in the first place. For this we will rely
on Proposition 2.5.

3.1. Some ergodic theory for zig-zag maps

In this subsection, we show that every zig-zag map is weak-mixing. It follows that the
transition matrix for a postcritically finite �-zig-zag with � > 2 is primitive.

Definition 3.1. A critical point of a map f W I ! I is a point x 2 I , where f W I ! I

is not a local homeomorphism. We will say that f is multimodal if it has finitely many
critical points. If c is a critical point, then f .c/ is a critical value. Any point of the form
f n.c/ for n � 1 and c a critical point is a postcritical point.

Definition 3.2. The critical set C.f / will mean the set of critical points of f , and the
union of the postcritical points of f is the postcritical set, denoted PC.f /. Note in par-
ticular that a critical point need not be in the postcritical set, and so we define the weak
postcritical set WPC.f / to be the union of C.f / and PC.f /.

If # WPC.f / is finite, we say f is postcritically finite, or PCF.

Throughout this paper, we will assume that all interval maps f WI ! I are multimodal.
In other words, # C.f / < 1 and f is monotone between each adjacent pair of critical
points.

Definition 3.3. A Markov partition for a map f W I ! I is a decomposition I D I1 [

� � � [ Il into finitely many subintervals such that

(1) int.Ii / \ int.Ij / D ; if i ¤ j ,

(2) for each i , f .Ii / is a union of Ijk ’s,

(3) for each i , the restriction f jint.Ii / is injective.

In particular, if f has a Markov partition, then f is postcritically finite.

Remark 3.4. Since we will always assume that # C.f / < 1, it follows that f has
a Markov partition if and only if f is PCF. Moreover, f has a unique minimal Markov
partition in terms of inclusion: namely, the partition W obtained by cutting the interval
at the points of WPC.f /. Unless otherwise specified, this is the Markov partition we
will use.
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Definition 3.5. Let f W I ! I be a PCF multimodal map with Markov partition P D

¹I1; : : : ; Ilº. The transition matrix of f is the l � l matrix M D .mij / such that

mij D

´
1 if f .Ij / � Ii ;

0 otherwise:

Recall that a multimodal f W I ! I is PCP if each critical value f .c/ is periodic.
Observe that a zig-zag map is PCP if and only if the point x D 1 is periodic.

In [6], Hall classifies the �-zig-zags of pseudo-Anosov type for 1 < �� 2. A unimodal
zig-zag map is called a tent map. Much of our focus will be on PCP �-zig-zags for � > 2.
It is therefore important for the generalized pseudo-Anosov construction that we ensure
such maps have primitive transition matrix M . Theorem 3.6 essentially accomplishes this
goal, and its proof uses a result by Wilkinson [15].

Theorem 3.6. If f W I ! I is a �-zig-zag for some � > 2, then f is weak-mixing with
respect to Lebesgue measure.

Proof. Let b�c D m � 2 be the number of critical points of f and set P0 D Œ0; c1/,
Pm D Œcm; 1�, and Pi D Œci ; ciC1� for i D 1; : : : ; m � 1. Following [15], set

�.j1; : : : ; jn/ D Pj1 \ f
�1Pj2 \ � � � \ f

�.n�1/Pjn :

We say �.j1; : : : ; jn/ is full of rank n if �.f n.�.j1; : : : ; jn/// D 1, where � is
Lebesgue measure; otherwise, �.j1; : : : ; jn/ is said to be non-full.

For the n-tuple .j1; : : : ; jn/, let l.j1; : : : ; jn/ be the number of non-full intervals of
positive measure of the form �.j1; : : : ; jn; i/ for 1 � i � mC 1. Define

ln D sup l.j1; : : : ; jn/;

where the supremum is taken over all n-tuples .j1; : : : ; jn/ such that �.j1; : : : ; jn/ has
positive Lebesgue measure. Wilkinson shows in [15] that f is weak-mixing as long as

l D sup
n

ln < �:

However, note that all Pi are full for i D 0; : : : ;m� 1. The full subsets of�.j1; : : : ; jn/ of
rank nC 1 and positive measure are of the form�.j1; : : : ; jn; j / for 0 � j � J , where J
depends on the ordered n-tuple .j1; : : : ; jn/. If m � 2, the only one of these that can be
non-full is �.j1; : : : ; jn; J /, hence l � 1 < �.

Remark 3.7. If a given zig-zag map f is of pseudo-Anosov type (cf. Definition 3.13
below), then it follows that f is in fact mixing.

Definition 3.8. A subset E � N is said to have density 0 if

lim
n!1

#.E \ ¹1; : : : ; nº/
n

D 0:
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The union of two sets of density 0 also has density 0. It is well known that a mea-
sure-preserving dynamical system .X;B; �; T / is weak-mixing if and only if for every
A;B 2 B, there exists a set E D E.A;B/ � N of density 0 such that

lim
E 63n!1

�.T �nA \ B/ D �.A/�.B/:

Recall that a non-negative matrixM is primitive if there is some k 2N such that every
entry of M k is positive.

Corollary 3.9. If f W I ! I is a PCP �-zig-zag map for some � > 2, then the transition
matrix of f is primitive.

Proof. Let Ij , Ik be two subintervals in the Markov partition for f obtained by cutting at
the points of WPC.f /. Since f is weak-mixing and both Ij and Ik have positive measure,
there exists a subset Ejk � N of density 0 such thatm.Ij \ f �i .Ik// is positive for large
i 62 Ejk . The set E D

S
j;k Ejk also has density 0, so there exists some large i so that

m.Ij \ f
�i .Ik// > 0 for all j , k. In particular, ifM is the transition matrix associated to

the Markov partition, then M i is a positive matrix.

3.2. Passing between intervals and thick intervals

Definition 3.10. Recall that from a thick interval map F W .S2; I/! .S2; I/, we obtain an
interval map f W I ! I by first collapsing all decomposition elements of I to points, and
then further collapsing any subintervals on which the induced map is constant. We call
this composition of quotient maps the thinning projection and denote it by � W I ! I .

Note that by definition, � ı F jI D f ı � .

Lemma 3.11. Let F W .S2; I/ ! .S2; I/ be a thickening of f W I ! I . Then for each
x 2 PC.f /, there exists a junction Jx � I such that �.Jx/ D x. In particular, since thick
intervals have only finitely many junctions, f cannot be thickened unless it is PCF.

Proof. Let � W I ! I denote the thinning projection. Let c be a critical point of f , and
let C D ��1.c/ be the set of decomposition elements projecting to c. Similarly, let C 0 D
��1.f .c//.

We may assume without loss of generality that c is a local maximum of f . Therefore,
there exist points x1, x2 satisfying x1 < c < x2 such that f .x1/ D f .x2/ < f .c/. Let

Xi D �
�1.xi / for i D 1; 2:

Then each F.Xi / lies to the left of C 0, whereas F.C/� C 0. Since F is linear with respect
to the coordinates hs (cf. Definition 2.1), F.I/must pass through a junction J after F.X1/
and before F.X2/. Picking xi arbitrarily close to c shows that in fact F.C/ � J . But now
J \ C 0 ¤ ;, and since C 0 is the collection of all decomposition elements that project
to f .c/, it follows that J � C 0.
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The thickening F maps junctions into junctions, so F n.C 0/ must be contained in
a junction for each n � 1. But �.F n.C 0// D f n.f .c//, so by the same argument as
before, ��1.f n.f .c/// contains a junction for each n. Repeating this procedure for all
critical points shows that ��1.x/ contains a junction for each x 2 PC.f /.

Example 3.12. We revisit Example 2.12, demonstrated in Figure 8. Here PC.f / consists
of the first, second, and fourth heavily drawn points, and the thick interval map F has
a junction for each of these. Note that F also has a junction for the third point c2 D 2��1,
despite the fact that c2 is not a postcritical point. This junction is not strictly necessary,
since no junction maps into it, but it does allow us to identify the transition matrices of F
and f : each is given by

MW D

0@1 1 1

1 1 0

1 1 0

1A :
One checks that �W .t/ D t .t2 � 2t � 1/ has dominant root � D 1C

p
2, the growth rate

of f . Eliminating the extraneous junction over c2 has the effect of combining the second
and third subintervals, producing a new transition matrix

MP D

�
1 2

1 1

�
with characteristic polynomial �P .t/ D t2 � 2t � 1. See Remark 3.16 below.

Definition 3.13. We say that a map f W I ! I is of pseudo-Anosov type if there is a thick-
ening F W I ! I of f whose invariant generalized train track is finite, i.e., is a train track
in the classical sense of Thurston.

Theorem 3.14. Let f W I ! I be a PCF �-expander of pseudo-Anosov type, and let F be
a thickening of f that has finite invariant generalized train track � . Then � has exactly
one loop in each fat vertex corresponding to an element of PC.f /. Moreover, these loops
determine the one-pronged singularities of the pseudo-Anosov �, and f is in fact PCP.

Proof. Each loop of � determines a one-pronged singularity of �. Multiple loops in a sin-
gle vertex V would imply that � has singularities connected by a leaf of its stable (vertical)
foliation. It is well known that such a thing, called a saddle connection, is impossible for
the invariant foliation of a pseudo-Anosov. Thus each vertex V , corresponding to a point
v 2 WPC.f /, contains either 0 or 1 loops of � . We claim that V contains a loop of � if
and only if v is in the subset PC.f /.

To see this, observe that V contains a loop if v is a critical value of f , since in this
case F.�/ makes a turn through V , and after pseudo-isotopy this turn pinches to a loop.
By the invariance of � , it now follows that V contains a loop if v is in the forward orbit
of a critical point, which is to say that v 2 PC.f /. The only other possibility remaining
for v is that it is an element of WPC.f / n PC.f /, i.e., a critical point that is not in the
forward orbit of any critical point. But then no junction of I maps into V , so no loop of �
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maps into V . Furthermore, F.�/ does not make a turn through V , since that would imply
that v is a critical value, which is it not. These are the only ways a loop of � will appear
in V during the process of constructing � , so in fact V does not contain a loop of � if
v 62 PC.f /.

To finish the proof, recall that a pseudo-Anosov permutes its 1-prong singularities.
Hence f acts on the elements of PC.f / by a permutation; in other words, f is PCP.

Definition 3.15. Let f W I ! I be a PCP �-expander of pseudo-Anosov type, and let � be
the invariant train track associated to a thickening F of f . We say an infinitesimal edge
of � is a connecting edge if it is not a loop, i.e., if it joins distinct adjacent real edges.

Remark 3.16. In a sense, Theorem 3.14 demonstrates that the important points of f to
consider are the elements of PC.f /, rather than those of WPC.f /, since these are the
points that correspond to the singularities of any generalized pseudo-Anosov obtained
from a thickening of f . One could define a transition matrix according to the partition
of I given by PC.f /, although this partition would not technically be Markov, since f
might fail to be injective on each subinterval. Since injectivity will be helpful in our argu-
ments, we will resort to using the weak postcritical Markov partition. In any case, there is
a straightforward relationship between the two transition matrices and their characteristic
polynomials. Specifically, the weakly postcritical transition matrixMW is primitive if and
only if the postcritical transition matrix MP is as well, and the relationship between the
characteristic polynomials is �W .t/ D ta�P .t/, where a D #.WPC.f / n PC.f //.

Example 3.17. Let f WI ! I be the positive zig-zag map of growth rate �D .3C
p
5/=2,

the dominant root of x2 � 3x C 1. The orbit of x D 1 is periodic of period 3 and includes
the first critical point c1 D ��1. The other postcritical orbit is the forward orbit of x D c2,
which maps to the fixed point at x D 0. See Figure 10. Thus

C.f / D ¹c1; c2º; PC.f / D ¹0; c1; v; 2º; WPC.f / D ¹0; c1; v; c2; 1º:

1:0

0:8

0:6

0:4

0:2

0:2 0:4 0:6 0:8 1:0

Figure 10. The positive zig-zag map for � D .3C
p
5/=2. Compare with Figures 5 and 11.
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In particular, the map f is postcritically periodic, acting on PC.f / by the permutation
.1/.2; 4; 3/. The postcritical and weak postcritical transition matrices for f are

MP D

0@1 0 2

1 1 1

1 1 0

1A ; MW D

0BB@
1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 0

1CCA
with characteristic polynomials �P .t/D .t C 1/.t2 � 3t C 1/ and �W .t/D t .t C 1/.t2 �
3t C 1/. The matrices MP and MW are each primitive, hence we have

M 2
P D

0@3 2 2

3 2 3

2 1 3

1A ; M 2
W D

0BB@
3 2 1 1

3 2 1 2

2 1 1 2

2 1 1 2

1CCA :
Example 3.18. Here is an example of a tent map, i.e., a zig-zag of growth rate 1 < � < 2.
It is not hard to show that positive tent maps are not ergodic: indeed, x D 0 is a repelling
fixed point with only itself as a preimage. Nonetheless, restricting to the subinterval
Œf .1/; 1� produces an ergodic transformation with the same growth rate.

Let gW I ! I be the positive zig-zag of growth rate � D .1C
p
5/=2, the dominant

root of x2 � x � 1. The orbit of x D 1 is periodic of period 3 and includes the lone critical
point c D ��1. See Figure 1 (a). Thus C.f / D ¹cº and PC.f / DWPC.f / D ¹0; u; c; 1º.
The postcritical and weak postcritical transition matrices for g coincide as

M D

0@1 0 0

1 0 1

0 1 1

1A
with characteristic polynomial �M .t/ D .t � 1/.t2 � t � 1/. Note that this is equal to the
digit polynomial Df .t/ of the tent map (cf. Example 1.9). Since the only subinterval that
maps to the first is itself, M cannot be primitive. However, the 2-by-2 minor describing
the transitions between the second two subintervals is primitive:

M 0 D

�
0 1

1 1

�
; .M 0/2 D

�
1 1

1 2

�
:

3.3. The exterior left-veering thickening

In this subsection, we investigate the possible thickenings of a PCP zig-zag, and show that
only two of these have a chance of producing a pseudo-Anosov. These are the exterior left-
and exterior right-veering thickenings FL and FR (cf. Definition 3.24). These thickenings
“swirl” out from the center, turning either always left or always right, respectively. Since
these maps are topologically conjugate, we therefore restrict our analysis to FL in future
sections.
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Let f be a zig-zag map of growth rate � > 2 and critical points ci D i � ��1 for
i D 1; : : : ; b�c. We assume that f is PCP, which is equivalent to the orbit of x D 1 being
periodic. Let 0 � v1 < v2 < � � � < vn D 1 be the orbit of 1. These, along with x D 0

if it is not already among the vi , are precisely the points to which the junctions of our
thick interval I will project. To specify a particular thick interval map F projecting to f ,
however, it remains to determine how F folds I, i.e., how the image F.I/ turns within I.

If F W I ! I is a thickening of f W I ! I with thinning projection � , then for brevity
we will denote by 0 the junction satisfying �.0/D 0. Similarly, 1 will denote the junction
satisfying �.1/ D 1.

Definition 3.19. Let f W I ! I be a PCP �-zig-zag map with b�c Dm � 2. Let F W I ! I
be a thickening of f . The image F.I/ � I is a collection of thick intervals stacked ver-
tically stretching between 0 and 1 with at most a single exception. Orienting I from left
to right, we number these thick subintervals Ij as we travel along F.I/, beginning at 0
if f is a positive zig-zag and at 1 if f is a negative zig-zag. We may also assign a height
to each Ij by determining its vertical order among the other thick subintervals, counting
from bottom to top. The height of Ij is defined to be h.Ij /D i if Ij is the i -th thick subin-
terval in this ordering. The type of the thick interval map F is then the element � of the
permutation group SmC1 such that

�.j / D i , h.Ij / D i:

For an example, see Figure 11.

Example 3.20. Let f be the positive zig-zag map for � D .3 C
p
5/=2 from Exam-

ple 3.17. We have b�c D 2, and f is postcritically periodic of length 3 with PC.f /
given by

0 < c1 D v1 < v2 < c2 < v3 D 1:

More specifically, the orbit of x D 1 is 1 7! v2 7! v1 7! 1. The six possible thickenings
of f are pictured in Figure 11. These are paired according to the topological conjugacy
class of the resulting generalized pseudo-Anosov. Note that the conjugacy classes in this
example are the elements of the orbit space of �3 acting on S3, where �3 is the order-
reversing permutation �3 D .1; 3/.2/. See Definition 3.22 below.

Example 3.21. Not every permutation � 2 SmC1 gives a valid thick interval map. For
example, let f be a PCP �-zig-zag map such that b�c D 3. Then regardless of the orbit of
x D 1, there can be no thickening of f of type � D .1/.2; 3/.4/ since the image of this
thick interval map would necessarily intersect itself.

Definition 3.22. The orientation-reversing permutation �n 2 Sn is the permutation such
that �n.i/ D nC 1 � i for all 1 � i � n.

We will often suppress notation and write �n D � when n is understood from context.
Note that �2 D id, so if we let �n act on Sn on the left then the orbit space is parameterized
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Figure 11. The six possible thickenings of the positive zig-zag for � D .3C
p
5/=2 . The permu-

tation type of each is an element of S3, determined by the heights of the horizontal layers of F.I/.
For example, the top left thick interval map has permutation type �1 D .1; 2; 3/, and the top right
has permutation type �2 D .1/.2; 3/. Each column is an orbit of the action of �3.

by pairs of elements of Sn. In general, �n is not central in Sn, so the orbit space is not
a group. The following proposition says that the elements of the orbit space correspond to
topological conjugacy classes of generalized pseudo-Anosovs.

Proposition 3.23. Let f be a PCP zig-zap map and F1, F2 thickenings of f of types �1,
�2, respectively. If �1 D ��2, then F1 is topologically conjugate to F2 via the orientation-
reversing homeomorphism i W I ! I that reflects through the horizontal midline of I.
Consequently, if �i is the generalized pseudo-Anosov induced by Fi , then �1 is topo-
logically conjugate to �2.

Proof. One immediately checks that if �1 D ��2, then F1 D i ı F2 ı i
�1. Following

through the details of construction given in Section 2, we see that the invariant generalized
train tracks �i of Fi satisfy �1 � i�.�2/, and so the resulting generalized pseudo-Anosovs
are conjugate by the homeomorphism induced by i .

Definition 3.24. The positive exterior left-veering permutation is the element �CL of Sn
defined as follows: if n is even, then

�CL .k/ D

´
nCk
2

if k is even;
nC1�k
2

if k is odd:

If instead n is odd, then we define

�CL .k/ D

´
nC1Ck
2

if k is even;
n�k
2
C 1 if k is odd.
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The negative exterior left-veering permutation ��L 2 Sn is defined by

��L .k/ D nC 1 � �
C

L .k/:

The positive (resp. negative) exterior right-veering permutation is �CR D � ı �CL (resp.
��R D � ı ��L ). If F is a thick interval map of type �˙L , we also say F is exterior left-
veering, and write F D F˙L . Similarly, we denote by F˙R the exterior right-veering thick
interval of permutation type �˙R .

Example 3.25. For S3, �CL and �CR are shown in Figure 11 as the top and bottom of the
leftmost column, respectively. For S4, we have �CL D .1; 2; 3/.4/ and �CR D .1; 3; 4/.2/.

Remark 3.26. Given a PCP zig-zag f , only one pair of thickenings is defined: either FCL
and FCR if f is positive, or F �L and F �R if f is negative. In this case, we will drop the
superscripts from the notation and simply refer to FL and FR.

Proposition 3.27. Let f W I ! I be a PCP zig-zag map of pseudo-Anosov type with
growth rate � > 2, and let F W I ! I be a thickening of f that induces a pseudo-Anosov.
Then F D FL or F D FR.

Proof. Since F induces a pseudo-Anosov, Theorem 3.14 implies that each of 0 and 1
contains a single loop of the invariant generalized train track � . For each of these vertices,
the turns of F that pass through them must be concentric, since otherwise a second loop
would appear. Orienting F.I/ from F.0/ to F.1/, it follows inductively that each turn has
to be in the same direction as the previous one. Thus if the first turn is to the left, all turns
are to the left and F D FL. Similarly, if the first turn is to the right then F D FR.

It is always possible to construct a thick interval map F having permutation type �L
or �R projecting to a given PCP zig-zag map. Indeed, such a thick interval map swirls
out from the center, turning to the left if it has type �L and to the right if it has type �R.
In particular, it follows from Propositions 3.23 and 3.27 that associated to a given PCP
zig-zag map f W I ! I is a canonical thick interval map to consider when investigating
whether f is of pseudo-Anosov type, namely FL.

4. Reconciling two constructions

In this section, we prove Theorem 1, establishing the connection between generalized
pseudo-Anosovs and the Galois lift fG of Thurston (cf. Definition 1.5). We recall the
statement of the theorem.

Theorem 1. Let f W I ! I be a PCP �-zig-zag map with � > 2. Then f is of pseudo-
Anosov type if and only if the following conditions are satisfied:

(1) The digit polynomial Df of f has ��1 as a root.

(2) The limit set ƒf of fG is rectangular.
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In this case, the invariant generalized train track �L of FL is finite, and recovers the
action of fG onƒf in the following way: Let S 0 be the closed topological disc obtained by
performing the gluings indicated by the non-loop infinitesimal edges of �L. Let zf WS 0! S 0

be the map induced by FL. Then there is an isometry i WS 0 ! ƒf such that the following
diagram commutes:

S 0 S 0

ƒf ƒf :

zf

i i

fG

Moreover, i sends the horizontal and vertical foliations of S 0 to those of ƒf . There-
fore, after identifying segments of boundary in each set so as to obtain pseudo-Anosovs
�1WS ! S and �2W zƒf ! zƒf , these systems are conjugate via an isometry that sends the
(un)stable foliation of �1 to the (un)stable foliation of �2.

4.1. The reverse direction

Throughout this subsection, we assume that f W I ! I is a PCP �-zig-zag whose Galois
lift fG has rectangular limit setƒf and whose digit polynomialDf satisfiesDf .��1/D 0.
We prove that the exterior left-veering thickening FL of f has finite invariant generalized
train track, and that the generalized pseudo-Anosov so obtained will recover the action
of fG on ƒf .

Lemma 4.1. Let � be the finite measure on ƒf inherited from Lebesgue measure on R2.
Then fG W .ƒf ; �/! .ƒf ; �/ is measure-preserving.

Proof. For each i , the affine map zfi defining fG on the rectangle Ri is measure-pre-
serving, having Jacobian ˙

�
� 0
0 ��1

�
. Indeed, these maps are invertible with measure-

preserving inverse, so

�. zfi .Ri // D �.Ri /:

Therefore, we have

�.ƒf / D

kX
iD0

�.Ri / D

kX
iD0

�. zfi .Ri // � �.fG.ƒf //:

If the final inequality is strict, then ADƒf n fG.ƒf / has positive measure. But sinceƒf
and fG.ƒf / are each finite unions of rectangles, so is A, hence if �.A/ > 0, then A
has non-empty interior U . No point x 2 U � ƒf can be a limit point of an orbit of fG ,
contradicting the definition of ƒf . Hence in fact �.fG.ƒf // D �.ƒf /, and in particular

kX
iD0

�. zfi .Ri // D �.fG.ƒf //:
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In other words, �. zfi .Ri /\ zfj .Rj // D 0 for all indices i ¤ j , and so for any measurable
B � ƒf , we have

�.f �1G .B// D

kX
iD0

�. zf �1i .B// D

kX
iD0

�.B \Ri / D �.B/:

Thus fG preserves �.

Let M be the transition matrix for an ergodic PCF uniform �-expander g. The map g
has a unique invariant measure that is absolutely continuous, i.e., that is in the equivalence
class of Lebesgue measure. Denote this measure by �0. If M is primitive, then results
of Parry in [10] on subshifts of finite type imply that the Perron eigenvectors of M deter-
mine �0. Namely, let uD .u1; : : : ;un/ denote the left �-eigenvector ofM with

P
i ui D 1,

and let v D .v1; : : : ; vn/ denote the right �-eigenvector of M such that u � v D 1. Then
the density of �0 is (up to a null set) a step function with height vi on a subinterval of
Lebesgue measure ui . Note that in general, if we use the right �-eigenvector v0 D cv for
c > 0, then we obtain the invariant measure �00 D c � �0, which is a probability measure
exactly when c D 1.

Lemma 4.2. Let � Wƒf ! I denote projection onto the first coordinate, and we define
� D ���. Then � D �0.I / � �0.

Proof. Since � is fG-invariant and � ı fG D f ı � , � is invariant with respect to f .
Furthermore, because ƒf is a connected finite union of rectangles of positive measure,
we see that � is equivalent to Lebesgue measure, and in fact has invariant density a step
function whose values are given by the heights of the rectangles of ƒf . The result now
follows from uniqueness of �0. Note in general that �.I / D �.ƒf / ¤ 1.

Lemma 4.3. Let ˛ D ˛0 be a periodic point of f of period p. Set ˛i D f i .˛0/ for
0 � i � p � 1, and let gi WR! R denote the affine map defining f at x D ˛i so that
f .˛i / D gi .˛i / D ci ˙ �˛i D ˛iC1, where the indices are understood modulo p. Define
zgi WR! R by zgi .y/ D ai ˙ ��1y.

Then there is a unique periodic point of fG projecting to ˛0, and it is given by .˛0; y0/
where y0 is the unique solution to the equation zgp�1 ı � � � ı zg0.y/D y. In the case ˛0 D 1,
this periodic point is .1; 1/.

See Figure 12 for a few examples.

Proof. Observe first that zgp�1 ı � � � ı zg0WR! R is a contraction by a factor of ��k < 1.
This map has a unique fixed point y0. By definition,

fG.˛0; y0/ D .g0.˛0/; zg0.y0//:

Indeed, inductively defining yi D zgi�1.yi�1/, we have f iG.˛0; y0/D .˛i ; yi / for 0 � i �
p� 1. Since ˛0 and y0 are periodic of period p, it now follows that f pG .˛0;y0/D .˛0;y0/.
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Figure 12. Below: The graph of the negative �-zig-zag f , for � the Perron root of Df .t/ D t4 �
3t3 � t2 � 3t C 1. Above: The limit set ƒf of the Galois lift of f . In each picture, heavily marked
points of the same color belong to the same periodic orbit, and the points of one color in ƒf are the
unique periodic lifts of the points of I of the same color. This limit set was drawn by plotting the
orbit under fG of a single point with transcendental coordinates, to ensure that it is not eventually
periodic. The same method was used to draw all limit sets in the paper.

Suppose that .˛0; z/ is a periodic point of fG of period p. Then

f iG.˛0; z/ D .˛i ; zgi ı � � � ı zg0.z// for 0 � i � p � 1:

In particular, z is a fixed point of zgk�1 ı � � � ı zg0, hence is equal to y0.
The fact that .1; 1/ is the periodic point of fG projecting to 1 2 I follows immediately

from the assumption that Df .��1/ D 0.

Definition 4.4. Let R D Œa; b� � Œc; d �. The horizontal boundary of R is @HR D Œa; b� �
¹c; dº. The vertical boundary of R is @VR D ¹a; bº � Œc; d �. Two rectangles

R1 D Œa1; b1� � Œc1; d1�; R2 D Œa2; b2� � Œc2; d2�

are lower-aligned (resp. upper-aligned) if c1 D c2 (resp. d1 D d2).

Definition 4.5. Let f WI ! I be a PCP zig-zag whose Galois lift fG has rectangular limit
set ƒf . Let R0; : : : ; Rk be the rectangles defined by the canonical Markov partition of f
which subdivide ƒf . The vertical boundary of ƒf is the set

@Vƒf D

�
@ƒf \

kG
iD0

@VRi

�
n A;
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where A is the set of isolated points of @ƒf \
F
i @VRi . The horizontal boundary of ƒf

is the set

@Hƒf D

kG
iD0

@HRi :

A vertical (horizontal) component of @ƒf is a connected component of @Vƒf (@Hƒf ).

Lemma 4.6. Vertical components of @ƒf project to postcritical points of f .

Proof. If x D a 2 WPC.f / n PC.f /, then a is a critical point of f that is not in the
forward image of any b 2WPC.f /. Therefore, any rectangleR projecting to an element of
the weak postcritical Markov partition of f such that fG.R/ intersects the line x D amust
in fact map across this line. In other words, if Ri and RiC1 are the rectangles bordering
the line x D a, then for any rectangle R, the image fG.R/ crosses Ri if and only if it also
crosses RiC1. Consequently, Ri and RiC1 are both upper- and lower-aligned, and hence
there is no vertical component of @ƒf projecting to a 2 I .

Lemma 4.7. If a 2 PC.f /, then the unique periodic point of fG projecting to a is con-
tained in @Vƒf .

Proof. If a D 1, then the conclusion holds. Since the point x D 1 is periodic under f , its
forward orbit contains a critical point a 2 PC.f / such that f .a/ D 1. Since ��1 is a root
of Df .t/, the periodic point of fG projecting to 1 2 I is .1; 1/ 2 I �R.

Moreover, if fi , fiC1 are the affine maps defining f on either side of a 2 I , then in
fact fi .x/ D ai C �x and fiC1.x/ D �x C 2 � ai for some integer ai . Therefore, the
affine maps defining fG on either side of the line x D a are

zfi .x; y/ D .ai C �x; ai � �
�1y/; zfiC1.x; y/ D .�x C 2 � ai ; �

�1y C 2 � ai /:

If .a; y/ 2 ƒf , then the images zfi .a; y/ D .1; ai � ��1y/ and zfiC1.1; ��1y C 2 � ai /
are on the line x D 1 and are symmetric about the point .1; 1/. In particular, the maps
zfi and zfiC1 agree precisely at the periodic point za of fG projecting to a. It follows that

if za 2 int.Ri [ RiC1/ and U � int.Ri [ RiC1/ is an open rectangle symmetric about za,
then

fG.U \ int.Ri // D fG.U \ int.RiC1//:

This contradicts the fact that fG is measure-preserving, so in fact za 62 int.Ri [ RiC1/.
In other words, za 2 @Vƒf .

We now proceed inductively, going through the periodic orbit of .1;1/ in reverse order.
Suppose that za 2 I � R is a point in the orbit of .1; 1/ that is contained in @Vƒf , and
let zb be the periodic point such that fG.zb/ D za. If �.zb/ D b is a critical point of f ,
then we repeat the above argument. Otherwise, fG is defined by a single affine map in
a neighborhood of zb. In particular, if Rj and RjC1 are the rectangles bordering the line
x D b, if zb 2 int.Rj [RjC1/, then fG maps an open rectangular neighborhood of zb to an
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Figure 13. The weak postcritical set of f pulls back to a rectangular decomposition ofƒf . Note that
the vertical components of @ƒf project to the points of PC.f /, in red. Observe that each rectangle
is either upper- or lower-aligned with its neighbors (cf. Lemma 4.8). Moreover, each vertical edge
in this case contains at its metric center the periodic lift of the postcritical point to which it projects
(cf. Figure 12 and Lemma 4.9).

open rectangular neighborhood of fG.zb/D za in R2. This neighborhood cannot be a subset
of ƒf , since za 2 @Vƒf by assumption, but this contradictions the invariance of ƒf .

Therefore, zb 62 int.Rj [RjC1/, hence zb 2 @Vƒf .

Lemma 4.8. There is only one vertical component of @ƒf projecting to a point a 2
PC.f /. Therefore, all adjacent rectangles Ri , RiC1 of ƒf are either upper- or lower-
aligned.

See Figure 13 for an example.

Proof of Lemma 4.8. If a D 0 or a D 1, then the claim follows immediately. Suppose
otherwise. Since f is PCP, there is a unique b 2WPC.f / such that f .b/D a. For each i ,
the connected components of @VRi project to elements of WPC.f /, so if fG maps such
a component into the line x D a, then that component must project to b since � ı fG D
f ı � . In other words, the preimage of any vertical component of @ƒf is contained in the
intersection of ƒf with the line x D b.

Since a¤ 0;1, b is not a critical point of f , and therefore ifRi ,RiC1 are the rectangles
ofƒf intersecting the line x D b, then fG acts onRi andRiC1 by the same affine map zf .
The fact that fG.@VRj / does not intersect the line x D b for any j ¤ i; i C 1 now implies
that the number of vertical components of @ƒf projecting to a 2 PC.f / is equal to the
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number of vertical components of @ƒf projecting to b 2 PC.f /, and fG maps the latter
homeomorphically onto the former.

We proceed inductively backwards through the periodic orbit of a 2 PC.f /. Eventu-
ally, we will arrive at c D f .1/ 2 PC.f /. Since there is only a single vertical component
of @ƒf projecting to 1 2 PC.f /, the above argument shows that there is similarly a single
vertical component projecting to c. Moreover, the same statement now follows for each
point in the periodic orbit of a, including a itself.

That all adjacent rectangles are either upper- or lower-aligned now follows immedi-
ately: if two such rectangles are neither upper- nor lower-aligned, then there would exist
at least two components of @Vƒf along their intersection.

Lemma 4.9. Let a 2 PC.f / and za 2 ƒf be the unique periodic point projecting to it.
Then za is at the metric center of the vertical component of @ƒf containing it.

Proof. We begin by proving the statement for a D 1. By Lemma 4.3, we know that za D
.1; 1/ in this case. If f .c/ D 1, then c is a critical point that either is or is not periodic.

If c is not periodic, then c 62 PC.f / and the two rectangles of ƒf intersecting the
line x D c are both upper- and lower-aligned by Lemma 4.6. Denote these two rectangles
byRi ,RiC1, and let zfi , zfiC1 denote the affine maps by which fG acts on these rectangles,
respectively. Then zfi .Ri \ RiC1/ and zfiC1.Ri \ RiC1/ are vertical line segments of
equal length lying on the line x D 1. Furthermore, these line segments are contained
in ƒf and are symmetric about za.

If c0 is another non-postcritical point satisfying f .c0/ D 1 and Rj , RjC1 are the rect-
angles intersecting the line x D c0, then the images zfj .Rj \RjC1/ and zfjC1.Rj \RjC1/
do not intersect zfi .Ri \ RiC1/ and zfiC1.Ri \ RiC1/ except perhaps at their endpoints:
otherwise two rectangles, say Ri and Rj , would have

fG.intRi / \ fG.intRj / ¤ ;;

contradicting the fact that fG is measure-preserving.
If c is the unique periodic critical point of f , then there is a single vertical compo-

nent of @ƒf projecting to c, and this component contains the periodic lift zc of c. Denote
by Rl , RlC1 the rectangles of ƒf intersecting at x D c. As before, zfl .Rl \ RlC1/ and
zflC1.Rl \RlC1/ are vertical line segments symmetric about za. Furthermore, fG maps

the single vertical component V to a line segment containing za. The union V [ .Rl \
RlC1/ is a connected line segment, hence zfl .V [ .Rl \ RlC1// and zflC1.V [ .Rl \
RlC1// are connected line segments such that

zfl .V [ .Rl \RlC1// \ zflC1.V [ .Rl \RlC1// D fG.V /:

It now follows that fG.V / is symmetric about za, and consequently, so is the entire com-
ponent of @Vƒf containing za.

We now prove the claim for all points in the forward orbit of 1 2 PC.f /, proceeding
inductively. As we argued in the proof of Lemma 4.8, fG maps the component of @Vƒf
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projecting to a2 PC.f / homeomorphically onto the component projecting to f .a/. In par-
ticular, if the unique periodic lift za of a lies at the metric center of the vertical component
containing it, then so does fG.za/, since fG contracts the vertical direction uniform-
ly by ��1.

If f is a negative zig-zag, then it has a single postcritical orbit and so the proof is
complete. If, however, f is a positive zig-zag, then we must still prove the claim for the
fixed point 0 2 PC.f /. The exact argument used for a D 1 applies here, after observing
that the unique periodic lift of a D 0 is the point za D .0; 0/.

Lemma 4.10. The action of fG on ƒf can be recovered via the de Carvalho–Hall con-
struction in the sense of Theorem 1. In particular, f is of pseudo-Anosov type.

Proof. We reverse engineer the invariant train track � for the exterior left-veering thick
interval map F projecting to f . Construct � to be the train track with a real edge ej for
each rectangle Rj , a connecting infinitesimal edge between the real edges ej , ejC1 for
adjacent rectangles Rj , RjC1, and an infinitesimal loop for each ej corresponding to a pi .
The loop is on the left (resp. right) of ej if pi is on the left (resp. right) vertical boundary
of Rj , and if the loop is on the same side of ej as a connecting infinitesimal edge, then the
loop is above (resp. below) the connecting edge if the vertical boundary component of L
that contains pi is above (resp. below) the adjacent rectangle. See Figure 14.

The map induced by fG on � leaves � invariant under the pseudo-isotopies defined
in Section 2, hence � is the invariant train track for a thick interval map projecting to f .
By Proposition 3.27, this thick interval map must be either FL or FR. One easily checks
that the Galois conjugate coordinates imply that it must be FL.

To complete the proof, observe that by Lemma 4.2, we may choose a right �-eigen-
vector of the transition matrix M of f such that the rectangles obtained from � have the
exact dimensions of those in the rectangle decomposition of L. Therefore, we may define
an isometry i WS 0! ƒf taking the horizontal (resp. vertical) foliation of S 0 to that of ƒf .
By construction, the map induced on ƒf is fG .

4.2. The forward direction

Lemma 4.10 completes the proof of the reverse direction of Theorem 1. Now it remains
to prove the forward direction.

We consider the case when f W I ! I a positive �-zig-zag of pseudo-Anosov type,
the case when f negative being essentially identical. Let F be the exterior left-veering
thickening of f . Let S 0 be as in the statement of the theorem. The thickening F induces
a map zf W S 0 ! S 0. Let p 2 S 0 be the unique fixed point of zf projecting to x D 0 2 I ,
and let q 2 S 0 be the unique periodic point projecting to x D 1 2 I .

We wish to define a map i WS 0! I �R such that i ı zf D fG ı i and such that i sends
the horizontal and vertical foliations of S 0 to those of I � R in an orientation-preserving
way. Fix s; t 2 R distinct and define i.p/ D .0; s/ and i.q/ D .1; t/. Observe that these
two choices determine i , and moreover the number d D t � s controls the area of i.S 0/:
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Figure 14. Reverse-engineering the invariant train track � for the exterior left-veering thickening of
a zig-zag f with rectangular limit set ƒf . On the top left is the rectangular decomposition of ƒf
projecting to WPC.f /, and on the top right is a train track with junctions corresponding to the
vertical boundaries of the rectangles. From left to right, each junction corresponds to a vertical
boundary of the same color. Moreover, a junction contains a loop if and only if it corresponds to
a line projecting to an element of PC.f /. In this case, the loop is above (resp. below) the spine of �
if the rectangles adjoining the line are lower-aligned (resp. upper-aligned), and is on the left (resp.
right) of the junction if the rectangle intersecting @Vƒf is on the left (resp. right) of the line.

if Ad is the Lebesgue measure of i.S 0/ for any choice of i satisfying t � s D d , then
Ad D jd j � A1.

By construction, there is a piecewise affine mapGWI �R! I �R satisfying i ı zf D
G ı i . In particular, if f0; : : : ; fk denote the linear maps defining the original zig-zag f ,
then G is of the form

G.x; y/ D .fi .x/; gi .y// if f .x/ D fi .x/;

where gi .y/ D ai .s; t/C .�1/i � ��1y. This follows from the fact that zf is a piecewise
affine orientation-preserving map projecting to f . The remainder of the proof is an anal-
ysis of the constants ai .s; t/.
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Note that i.p/ D .0; s/ is a fixed point for G, and hence y D s is fixed by g0.y/ D
a0.s; t/C �

�1y. We thus have a0.s; t/ D .1 � ��1/s. To compute the remaining ai , we
require the following lemma.

Lemma 4.11. Let ci D i � ��1 be a critical point of f , and set gi�1, gi to be the defining
y-coordinate maps of G on either side of the line x D ci . Then gi�1.yi / D gi .yi / for
a unique number yi , and moreover this number satisfies G.ci ; yi / D s or G.ci ; yi / D t
depending on whether i is even or odd, respectively.

Proof. Since gi�1 and gi are affine with slopes of opposite signs they agree at a unique
point yi . To understand this number yi , we consider what happens for zf WS 0 ! S 0.

If ci is not a postcritical point of f , then the line x D ci partitions a rectangle of S 0.
Depending on the parity of i , the affine maps defining zf 0 on either side of the vertical line
send the line to either x D 0 or x D 1, with opposite orientations. The fact that the unique
periodic lifts of x D 0 and x D 1 are points of cone angle � lying in the center of the
corresponding vertical sides of S 0 implies that these two affine maps would send the same
point of ci �R to the singularity if their domains were extended to include this point.

If ci is a postcritical point, then the unique periodic lift of ci lies on the vertical bound-
ary of exactly one of the corresponding rectangles of S 0, and moreover it lies in the center
of this boundary component. Since the image of this singularity is the sole singularity of zf
on the corresponding vertical leaf of S 0, the two affine maps defining zf on either side of
x D ci must map each point of this line to points on x D 0 or x D 1 that are at equal
distances from the singularity. Because all vertical distances are scaled by the same factor,
it now follows that both maps agree on the singularity projecting to ci .

In either case, the same is true for the maps gi�1 and gi after mapping into I �R.

We return to computing the ai .s; t/, thereby completing the proof of Theorem 1.

Proof of Theorem 1. By Lemma 4.11, g1.y/ D 2t � g0.y/, and in particular

a1.s; t/ D 2t � a0.s; t/ D 2t � .1 � �
�1/s:

Similarly, we have g2.y/D 2s � g1.y/, hence a2.s; t/D 2s � a1.s; t/, and in general we
have

ai .s; t/ D

´
.i C 1 � ��1/s � i t if i is even;

.��1 � i/s C .i C 1/t if i is odd:

Setting s D 0 and t D 1 (and hence d D 1), we specialize to the case

ai .s; t/ D

´
�i if i is even;

i C 1 if i is odd:

In other words, each affine piece of GW I �R! I �R is of the form

Gi .x; y/ D

´
.�x � i; ��1y � i/ if i is even;

.i C 1 � �x; i C 1 � ��1y/ if i is odd:
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Thus G is precisely the Galois lift fG of Thurston. Condition (2) of the theorem is
immediately verified, so it remains to argue that the digit polynomial Df has ��1 as
a root. We can define a “vertical” digit polynomial using the orbit of y D 1 under the gi .
Observe that this new polynomial is precisely Df , and is necessarily satisfied by ��1.
This completes the proof of Theorem 1.

Remark 4.12. One quickly verifies that

�
k

1 � ��1
a0.s; t/C

kX
iD1

ai .s; t/ D 0;

and hence the map .s; t/ 7! .a0.s; t/; : : : ; ak.s; t// is a linear map of R2 n� into RkC1

whose image is a plane minus the line corresponding to d D 0. This missing line is the
image of the diagonal � � R2, and we can foliate the image plane with lines parallel
to this one, each such line corresponding to a different value of d D t � s. The area of
the limit set id .S 0/ of Gd scales linearly with jd j, i.e., if Ad is the area of id .S 0/, then
Ad D jd j �A1. In this way, we can interpret the prohibited case d D 0 as a degenerate limit
set of area zero. Moreover, the two half-planes defined by d > 0 and d < 0 correspond to
the underlying train track map � being left- or right-veering, respectively.

5. The postcritical orbit of a zig-zag of pseudo-Anosov type

In light of Theorem 1, it is natural to ask when an exterior left-veering thickening FL
has a finite generalized invariant train track. This section obtains necessary conditions on
the structure of the thick interval map FL associated to a PCP zig-zag of pseudo-Anosov
type. In particular, Proposition 5.10 will be instrumental to our proof of Theorem 2 in
Section 6.

Recall that if FLW .S2; I/ ! .S2; I/ is a thickening of a PCF interval map f , then
we denote by 0 the junction projecting to 0 2 I , and similarly we denote by 1 the vertex
projecting to 1 2 I .

Definition 5.1. Let f WI ! I be a �-zig-zag map and ci D i � ��1 the critical points of f ,
for i D 1; : : : ; b�c. Let FLW .S2; I/! .S2; I/ be the exterior left-veering thickening of f .
For each i , we denote by Ci the junction projecting to ci .

Definition 5.2. Let � be the generalized invariant train track for the left-veering thick-
ening FL of the PCP zig-zag map f . By a connecting infinitesimal edge we will mean
an infinitesimal edge of � connecting two distinct real edges. The remaining infinitesimal
edges of � , namely those that connect a real edge to itself, are called loops.

We define the spine � 0 of � to be the union of all real edges and connecting infinitesimal
edges of � . We orient � 0 from 0 to 1. A loop  � � contained in an intermediate vertex
of I is called interior if  is to the left of � 0 and exterior otherwise. See Figure 15.
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e1

e2 e3

FL

Figure 15. A (finite) generalized train track � and an exterior left-veering thick interval map preserv-
ing it. Here the spine of � is the union of the black edges. Of the intermediate loops, e1 is interior
while e2 and e3 are exterior. Observe that under the action of FL, the image of an interior loop
points in toward the horizontal midline of I, hence will be enclosed by arcs after pseudo-isotopy
unless it maps into 0 or 1.

FL pseudo-

isotopy

Figure 16. An exterior loop in Ci produces two non-parallel loops in 1.

Remark 5.3. The interior loops  of � are precisely the loops whose image F./ points
toward the horizontal midline of I. One can see this by noting that F is exterior left-
veering and preserves orientation. It is for this reason that we refer to such loops as
“interior”. In the arguments of this section, we will see that interior loops are rare, and
the existence of more than one for � is an obstruction to the finiteness of � .

Recall (cf. Definition 1.4) that a zig-zag f is positive if f .0/ D 0, and negative if
f .0/ D 1.

Proposition 5.4. Let f W I ! I be a PCP zig-zag map of growth rate � > 2. If f is of
pseudo-Anosov type, then c1 D ��1 is in the forward orbit of x D 1. Moreover, the loop
in the vertex C1 projecting to c1 must be interior.

Proof. Suppose first that f is positive, so that f .0/ D 0. Since f is PCP, some ci D
i � ��1 is in the forward orbit of x D 1. By Theorem 3.14, the corresponding junction Ci
contains an edge " and a loop  of the invariant train track � . If  is exterior, then after
pseudo-isotopy, the images F."/ and F./ will be non-parallel loops in 1, contradicting
Theorem 3.14. See Figure 16. Thus  must be interior.
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FL pseudo-

isotopy
C1 Ci

Figure 17. The image of all edges in C1 is further interior than that of any other Ci mapping into 1,
so any loop in Ci generates a loop in 1 that persists after pseudo-isotopy.

FL pseudo-

isotopy

Figure 18. The image of an interior loop points inward, and because all horizontal layers of F.�/
span the full length of I except for the last, the image of an interior loop will be trapped by other
edges after pseudo-isotopy unless it maps into 0 or 1, where it can be absorbed into the parallel loop
formed by the turn.

If i ¤ 1, then F will map the connecting edge "0 of � that is within C1 into 1 further
interior than the images of " and  , and thus after pseudo-isotopy, we will obtain two
non-parallel loops enclosed by a third, again contradicting Lemma 3.14. See Figure 17.
On the other hand, if i D 1, then the images of " and  will be the furthest interior in 1
and all other edges that map into 1 will pinch to parallel loops, which then combine under
pseudo-isotopy.

Now suppose that f is negative, so that f .0/D 1. The same argument applies, except
that the role of 1 is taken by 0, which maps into 1.

Proposition 5.5. Let f W I ! I be a PCP zig-zag map of growth rate � > 2. If f is of
pseudo-Anosov type, then the invariant train track � D �L has exactly one interior loop,
namely the loop contained in the vertex C1.

Proof. Proposition 5.4 tells us that C1 contains an interior loop, so it remains to show
that � has no other interior loops. Furthermore, our argument in the proof of Proposi-
tion 5.4 demonstrates that no other critical vertex Ci can contain an interior loop, so
if � contains another interior loop  , then F./ cannot lie in 0 or in 1. In other words,
F./ lies in some intermediate vertex V . However, since  is interior, the image F./
faces toward the center of I. See Figure 18. Thus after pseudo-isotopy, F./ will be
enclosed by multiple connecting edges, contradicting the structure of � described in The-
orem 3.14.
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Corollary 5.6. Let f W I ! I be a PCP zig-zag map of growth rate � > 2, and suppose f
is of pseudo-Anosov type.

(1) If f is positive and b�c D m is odd, then the orbit of x D 1 under f is 1 7!
��1 7! 1.

(2) If f is negative and b�c D m is even, then the orbit of x D 1 under f is 1 7!
��1 7! 0 7! 1.

In either case, � has minimal polynomial p.x/ D x2 � .mC 1/x C 1.

Proof. First suppose f is positive and m is odd. The image FL./ of the loop  � �
contained in 1 is above the other strands of FL.�/, and so after pseudo-isotopy it will be
an interior loop  0. This interior loop must necessarily be contained in C1 and must map
into 1 by Proposition 5.5. It follows that x D 1 has period 2. The linear branch of f that
applies to x D 1 is x 7! .mC 1/ � �x, hence we have ��1 D mC 1 � �.

The case when f is negative and m is even is similar. The image FL./ is again an
interior loop after pseudo-isotopy, and so must be contained in C1. Since the linear branch
of f that applies to x D 1 is x 7! .mC 1/ � �x, it follows that ��1 D mC 1 � �.

Remark 5.7. The examples described in Corollary 5.6 are the simplest examples of uni-
form expanders of pseudo-Anosov type. The corresponding pseudo-Anosovs all live on
the four-punctured sphere †0;4 and lift via a branched double cover to hyperbolic auto-
morphisms of the torus. To avoid these simple cases, we make the following definition
(see Remark 5.9 below).

Definition 5.8. For m � 2 and p � 3, define PA.m; p/ to be the set of zig-zags f of
pseudo-Anosov type such that

(1) f has m critical points,

(2) # PC.f / D p.

We also define the set

PA.m/ D
[
p�4

PA.m; p/:

Remark 5.9. An element f 2 PA.m; p/ defines a pseudo-Anosov on the .p C 1/-punc-
tured sphere, where the point at infinity is fixed. Ripping open this point to a boundary
component, we may also think about this pseudo-Anosov as a braid on the p-punctured
disc, up to multiplication by a full twist �2 around the boundary. The simple examples
described in Corollary 5.6 are precisely the maps f 2 PA.m; 3/, and the definition of
PA.m/ allows us to avoid these examples in the future.

Recall that we use the notation ci D i � ��1. For a �-zig-zag map f , we have the
subintervals of definition

Ij D Œcj ; cjC1/ for 0 � j � m � 1; and Im D Œcm; 1�:
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Figure 19. The positive zig-zag for � the Perron root of t4 � 4t3 � 2t2 � 4t C 1. The map f is
of pseudo-Anosov type, as demonstrated by Figure 15, and the orbit of x D 1 is shown in red. In
particular, PC.f / has points of types E, C , R, and Pm�2.

Proposition 5.10. Suppose f 2 PA.m/ with slope �. Then PC.f / always contains the
following three types of points:

.E/ The extremal points x D 0 and x D 1.

.C / The critical point c1 D ��1.

.R/ Exactly one point in the interior of Im�1.

If PC.f / contains other points, then they are of the following two types:

(Pm�2) Points in the interior of Im�2.

(Pm) Points in the interior of Im.

Proof. The existence of type E points is obvious, and the existence of type C points
follows from Proposition 5.4. The single point of type R is precisely the postcritical point
that maps to c1. Since the loop of � in C1 must be interior, it follows that the image of
the loop of � that maps into C1 must be interior, hence lies over a postcritical point at
which f is orientation-reversing. Since there is only one interior loop of � , this is the only
postcritical point at which f reverses orientation.

To finish the proof, suppose f has another critical point x D p other than type E, C ,
and R. Then the loop of � over this critical point must have an image that is exterior so
that F.�/ does not trap the loop after tightening. Since F is exterior veering, it follows
that the image of this loop must come after the third-to-last turn of F , hence p is in the
interior of Im�2 [ Im�1 [ Im. Moreover, since p is not of typeR, f preserves orientation
at p, hence p 62 Im�1.

Example 5.11. Consider the thick interval map in Figure 15. This is the exterior left-
veering thickening of the positive � zig-zag f , where � is the Perron root of Df .t/ D
t4 � 4t3 � 2t2 � 4t C 1. The graph of f is shown in Figure 19.

Corollary 5.12. Suppose f 2 PA.m/ has slope �. If PC.f / contains no points of type
Pm�2 or Pm, then � is a quadratic integer.



E. Farber 42

Proof. If f is positive and has no postcritical points of type Pi , then the orbit of x D 1 is

1 7! � �m 7! mCm� � �2 7! 2 �m� �m�2 C �3 D 1;

hence � satisfies the relation

0 D �3 �m�2 �m�C 1 D .�C 1/.�2 � .mC 1/�C 1/:

Since � > 1 and x2 � .mC 1/x C 1 is irreducible over Q, we see that � is a quadratic
integer. Similarly, if f is negative and has no postcritical points of type Pi , then from the
orbit of x D 1, we obtain the relation

0 D �.�C 1/.�2 � .mC 1/�C 1/:

Hence � is again a quadratic integer.

6. Classifying zig-zags of pseudo-Anosov type

In this section, we consider the set PA.m/ of zig-zags of pseudo-Anosov type with modal-
ity m � 2. The case m D 1 was considered by Hall in [6, Theorem 2.1], in which he
gave an explicit bijection between PA.1/ and Q \ .0; 1=2/. We give an explicit bijection
between PA.m/ and Q \ .0; 1/ for each m � 2.

The proof of Theorem 2 naturally breaks into three cases: (1) m � 4 even, (2) m � 3
odd, and (3) m D 2. In preparation for the proof, we investigate each of these cases sepa-
rately. We treat case (1) first since it is essential to understanding cases (2) and (3).

Throughout this section, f is a PCP �-zig-zag map with modality m D b�c. More-
over, we always assume that PC.f / � 4, so that it is possible for f to belong to PA.m/
(cf. Definition 5.8).

6.1. The casem � 4 even

Definition 6.1. Given n� 3 and 2� k � n� 1, define �e.n;k/ 2 Sn to be the permutation
such that

�e.n; k/.i/ D

8̂̂<̂
:̂
n; i D 1;

i C .n � k/; 2 � i � k � 1;

i � .k � 1/; k � i � n:

Example 6.2. Here are some examples of �e.n; k/ for n D 7:

�e.7; 2/ D .7; 6; 5; 4; 3; 2; 1/;

�e.7; 3/ D .7; 5; 3; 1/.6; 4; 2/;

�e.7; 6/ D .7; 2; 3; 4; 5; 6; 1/:

Note that �e.7; 2/ and �e.7; 6/ are full 7-cycles, whereas �e.7; 3/ is not. As we will see,
�e.n; k/ is an n-cycle if and only if n � k and k � 1 are coprime (cf. Proposition 6.7).
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L1

L0

L2

Figure 20. The layers of F.�/ for the exterior left-veering thickening of a bimodal zig-zag.

Definition 6.3. Let F be a thickening of a PCF map f , and let � denote the invariant gen-
eralized train track of F . As usual, denote by 0 and 1 the junctions projecting to 0; 1 2 I ,
respectively, and let � 0 be the spine of � . We define a layer of the image F.�/ to be a con-
nected component of the complement of 0 [ 1 in F.� 0/. See Figure 20.

Remark 6.4. If f is an m-modal zig-zag and F is any thickening of f , then F.�/ has
mC 1 layers. Indeed, if L is a layer of F.�/, then F �1.L/ projects to one of the mC 1
different intervals of monotonicity Ij for f .

Definition 6.5. Let f be an m-modal zig-zag and F the exterior left-veering thickening
of f . For each 0 � j � m, the j -th layer of F.�/ is the layer Lj such that

�.F �1.Lj // D Ij :

Recall (cf. Definition 1.15) that the permutation type of a PCP interval map f is the
permutation �.f / such that f .xi / D x�.f /.i/.

Proposition 6.6. Let f W I ! I be a PCP �-zig-zag map with b�c D m � 4 even. Then
f 2 PA.m/ if and only if the following hold:

(1) Under the ordering x1 < x2 < � � �< xn D 1 of the orbit of x D 1, we have �.f /D
�e.n; k/ for some k.

(2) The ¹xiº satisfy the conclusion of Proposition 5.10, with x1 being the sole point
of type C and xk being the sole point of type R.

Proof. We begin first by assuming that f is of pseudo-Anosov type. Let � be the invari-
ant train track for the exterior left-veering thick interval map F . By Proposition 5.4, the
junction C1 over c1 D ��1 contains the sole interior loop  of � , and this loop must map
into 1. Moreover, since b�c � 4, the layers L0, L1, and L2 stretch fully between 0 and 1,
with L1 above L3 and below L2. In particular, there can be no intermediate loops of �
before  , since otherwise these would be trapped byL2 orL3. Thus if � is the permutation
describing the action of f on the orbit of x D 1, we must have �.1/ D n.
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Now set ��1.1/ D k. By Proposition 5.5, all loops in � corresponding to i ¤ k must
have exterior image, so their images must lie in Lm�2 or Lm. In particular, if k D 2,
then the remaining n � k loops must be sent in order to the remaining k � 2 junctions
containing a loop. In particular, we have

� D .1; n; n � 1; n � 2; : : : ; 3; 2/ D �e.n; 2/:

If k > 2, then the loops labeled 2 through k � 1 must map to the last k � 3 loops not
in 1, in order. This is again because these loops must all have exterior images, and so in
particular, cannot be covered from below by loops on Lm. Now the loops labeled k C 1
through nmust map to the remaining loops labeled 2 through n� k C 1 in order, and thus
we see that � D �e.n; k/.

Suppose instead that f satisfies properties (1) and (2) above. Let F be the exterior
left-veering thickening of f . We construct the invariant generalized train track � of F
as described in Section 2. We begin with �0, the (disconnected) union of real edges, and
after the tightening pseudo-isotopies, �1 D F�.�0/ contains a loop  projecting to xn D 1.
Consider the successive images F j� ./, which by conditions (1) and (2) are exterior until
some minimal index j D a. Moreover, each of these initial forward images is guaranteed
to be uncovered from below by layers of F.�j�1/, and so are the only infinitesimal edges
within the corresponding junctions aside from a single connecting edge between the two
adjacent real edges.

The image F a� ./ is an interior loop, and by assumption must project to x1 D ��1,
since xk is the sole postcritical point of typeR and �e.n;k/.k/D 1. In particular,F aC1� ./

is a loop over xn and since x1 D ��1, this loop is interior to every turn of F�.�a/. Hence
after tightening, we recover a single loop over xn and the resulting generalized train track
�aC1 D � is invariant. It follows that � is finite and that f is of pseudo-Anosov type.

In order to completely characterize positive PCP zig-zags with modality m � 4 even,
it remains to determine when �e.n; k/ is an n-cycle.

Proposition 6.7. The permutation �e.n; k/ 2 Sn is an n-cycle if and only if

.n � k; n � 1/ D 1:

Proof. Set � D �e.n; k/, and let �0 be the permutation on ¹2; : : : ; nº defined by

�0.i/ D

´
�.i/; 2 � i ¤ k;

n; i D k:

Thus �0 is the element of Sn�1 obtained by deleting the symbol 1 from the cycle decom-
position of �. Observe that, since 1 is in the orbit of n, � is an n-cycle if and only if �0 is
an .n � 1/-cycle. Shifting all labels down by 1, we have

�0.i/ D

´
i C .n � k/; 1 � i � k � 1;

i � .k � 1/; k � i � n � 1:
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Interpreting this modulo n � 1, we see that �0 acts via addition by n � k: indeed, sub-
traction by k � 1 .mod n � 1/ is equivalent to addition by n � 1 � .k � 1/ � n � k

.mod n � 1/. Thus this action is transitive if and only if .n � k; n � 1/ D 1.

6.2. The casem � 3 odd

We next consider the case when f is a PCP zig-zag of modality m � 3 odd. In this case,
we observe that the orbit of x D 1 ends with c1 7! 0 7! 1.

Definition 6.8. Given n � 3 and 2 � k � n� 1, define �o.n; k/ 2 SnC1 to be the permu-
tation such that

�o.n; k/.i/ D

8̂̂̂̂
<̂
ˆ̂̂:
n; i D 0;

0; i D 1;

i C .n � k/; 2 � i � k � 1;

i � .k � 1/; k � i � n:

Remark 6.9. Note that if we define �0 2 Sn to be the permutation obtained from � D

�o.n; k/ by deleting 0 from the orbit of n, then �0 is an n-cycle if and only if � is
an .nC 1/-cycle. Since �0 D �e.n; k/, we see that this is again the case if and only if
.n � k; n � 1/ D 1. We have therefore proven the following statement.

Proposition 6.10. The permutation �o.n; k/ 2 SnC1 is an .n C 1/-cycle if and only if
.n � k; n � 1/ D 1.

A nearly identical argument to that of Proposition 6.6 proves the following analog.

Proposition 6.11. Let f W I ! I be a PCP �-zig-zag map with b�c D m � 3 odd. Then
f 2 PA.m/ if and only if the following hold:

(1) Under the ordering 0 D x0 < x1 < � � � < xn D 1 of the orbit of x D 1, we have
�.f / D �o.n; k/ for some k.

(2) The ¹xiº satisfy the conclusion of Proposition 5.10, with x1 being the sole point
of type C and xk being the sole point of type R.

6.3. The casem D 2

It remains to consider the case of unrestricted PCP zig-zags of modality m D 2.

Definition 6.12. Let n � 3. For 2 � k � n � 1, set

�.n; k/ D .1; 2; : : : ; k � 1/.k/ � � � .n/ 2 Sn

and define

�2.n; k/ D Œ�.n; k/�
�1
ı �e.n; k/ ı �.n; k/
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Lemma 6.13. Fix n � 3 and 2 � k � n � 1 and set �2 D �2.n; k/. Then the following
conditions hold:

(1) �2.k/ D k � 1.

(2) �2.k � 1/ D n.

(3) If i � j < k, then �2.i/ � �2.j /.

(4) If k < i � j , then �2.i/ � �2.j /.

(5) If i < k < j , then �2.j / < �2.i/.

Moreover, �2.n; k/ is the only element of Sn to satisfy these conditions. Finally, �2.n; k/
is a full n-cycle if and only if .n � k; n � 1/ D 1.

Proof. Set � D �e.n; k/ and � D �.n; k/ so that �2 D ��1��. Using this relation, one
readily verifies conditions (1) and (2). Now suppose i � j < k. Then we have �2.i/ D
��1.i C 1C .n � k// and �2.j / D ��1.j C 1C .n � k//. Since i � j and � preserves
this ordering except at k, we see that �2.i/ � �2.j / unless i C 1C .n � k/ D 1, which
is impossible. Similarly, if k < i � j , then �2.i/ D ��1.i � .k � 1//, and �2.j / D
��1.j � .k � 1//. Again, we see that �2.i/ � �2.j / unless i � .k � 1/ D 1, i.e., that
i D k. This is also impossible.

To prove condition (5), it is enough by (4) to argue that if i < k, then �2.n/ < �2.i/.
In this direction, note that �2.i/ D ��1.i C 1C .n � k//, whereas �2.n/ D ��1�.n/ D
��1.n � k C 1/. Again, by the fact that � preserves ordering except at k, it follows that
�2.n/ < �2.i/.

Suppose that ! 2 Sn satisfies conditions (1)–(5) above. We wish to show that ! D
�2.n; k/. Condition (1) implies that this second set has image including n, and condi-
tion (2) determines the image of the last remaining index. The monotonicity conditions (3)
and (4) impose a strict ordering on the two subsets ¹1; : : : ; k � 1º and ¹k C 1; : : : ; nº of
remaining indices, and condition (5) implies that the image of the second subset must be
completely below that of the first. It follows that !.i/ is determined for each i , and hence
! D �2.n; k/.

Finally, since �2 is conjugate to �, the two share the same cycle type, and hence by
Proposition 6.7, �2 is an n-cycle if and only if .n � k; n � 1/ D 1.

Proposition 6.14. Let f W I ! I be a PCP �-zig-zag map with b�c D 2. Then f 2 PA.2/
if and only if the following hold:

(1) Under the ordering x1 < x2 < � � �< xn D 1 of the orbit of x D 1, we have �.f /D
�2.n; k/ for some k.

(2) The ¹xiº satisfy the conclusion of Proposition 5.10, with xk�1 being the sole point
of type C and xk being the sole point of type R.

Proof. Suppose that f is of pseudo-Anosov type. By Proposition 5.10, f has exactly
one postcritical point in the interior of I1, as well as another at x D ��1. Let � 2 Sn
describe the action of f on the periodic orbit of x D 1. Let F be the exterior left-veering
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thick interval map projecting to f and let � be the invariant generalized train track for F .
Since f is of pseudo-Anosov type, � is finite and has structure described by Lemma 3.14
and Proposition 5.5. In particular, � has a single interior loop, and hence there is a single
loop  of � whose image is this interior loop. Let xk be the postcritical point of f to
which this loops projects. Since the single interior loop of � necessarily maps to the loop
projecting to xn D 1, we have �2.k/ D n.

Since  maps to the unique interior loop of � ,  is the unique loop such that F./2L2.
Moreover, since �2.k/D n, we see that F.F�.// is after L1 and before L2. In particular,
there are no loops of � after F�./ and before  . Therefore, F�./ projects to xk�1, and
so �.k/ D k � 1. Since �2.k/ D n, it now follows that �.k � 1/ D n. It is now readily
checked that � satisfies the five conditions of Lemma 6.13, and hence � D �2.n; k/.

Suppose on the other hand that conditions (1) and (2) above hold. Let F be the exterior
left-veering thick interval map projecting to f , and let � be the invariant generalized train
track of F . Note that � has a loop  projecting to x D 1. Let F a be the first iterate that
sends  to an interior loop. All forward images of  before this must be exterior loops, by
the definition of �2 and the fact that F is exterior left-veering. Note that a � 2 and that
F a�1./ is a loop projecting to xk since its image is an interior loop.

We claim that F aC1./D  . Indeed, x D ��1 must be the .k � 1/-st postcritical point
of f from left to right, since �2.n; k/.k � 1/ D n. Moreover, since f has a single post-
critical point in I1, this point must be the k-th postcritical point, immediately proceeding
x D ��1, and since �2.n; k/.k � 1/ D n, we see that this point maps to x D ��1. Thus
the single interior loop of � is mapped into the fat vertex over x D 1, and hence after
isotopy becomes simply  . In particular, � is finite, and hence f is of pseudo-Anosov
type.

Remark 6.15. Propositions 6.6, 6.11, and 6.14 imply that if f 2 PA.m/, then

�.f / D

8̂̂<̂
:̂
�e.n; k/ if m � 4 even;

�o.n; k/ if m � 3 odd;

�2.n; k/ if m D 2:

Therefore, when m is unspecified, we will write �.f / D �m.n; k/.

6.4. The proof of Theorem 2

We are now ready to prove Theorem 2, which we restate here for convenience.

Theorem 2. Fix m � 2 and let ˆWPA.m/! Q \ .0; 1/ be the map defined by

ˆ.f / D
n � k

n � 1
if �.f / D �m.n; k/:

Then ˆ is a bijection. Moreover, for each p � 4 the image ˆ.PA.m; p// consists of the
set of reduced rationals in .0; 1/ of denominator p � 2.
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Proof. To fix ideas, let m D 2. Suppose f and g are two bimodal unrestricted PCP zig-
zags of pseudo-Anosov type, and that �.f / D �.g/ D �2.n; k/ for some n, k satisfying
.n � k; n � 1/ D 1. We claim that f D g. Indeed, �2.n; k/ and bimodality determine
the transition matrix M of f , by Proposition 6.14. In particular, f and g are uniform
expanders with the same topological entropy, and hence the same slope. It follows that
f D g, and so the map is injective.

To prove surjectivity, it is enough to show that for every �2.n; k/ with .n � k; n � 1/,
there is a bimodal unrestricted PCP zig-zag f of pseudo-Anosov type that acts on the orbit
of xD 1 as �2.n;k/. We do this by constructing the exterior left-veering thick interval map
and then projecting onto the horizontal coordinate to obtain a zig-zag with the necessary
combinatorics. Indeed, fix some �2.n; k/ satisfying .n� k; n� 1/D 1 and let � be a train
track consisting of real edges e1; : : : ; en and infinitesimal edges f1; : : : ; fn�1, with fj
joining ej to ejC1. Further, adorn � with infinitesimal loops as follows:

(1) Loops 0 and n on the left of e1 and the right of en, respectively.

(2) An upward-pointing loop k�1 attached to the left of ek .

(3) Downward-pointing loops j attached to the right of ej for j D 1; : : : ; n � 1,
except for j D k � 1.

Define F to be the exterior left-veering train track map permuting the k according
to �2.n; k/, while also fixing 0. It is not hard to see by the construction of F and the
structure of �2.n; k/ that F preserves � .

We claim that the transition matrix M of the ej is irreducible, i.e., for every pair of
edges ej1 , ej2 some iterate of F maps ej1 across ej2 . Since each j for j � 1 maps to n,
every ej eventually maps across en, and so it is enough to prove that each ej is eventually
covered by some forward image of en. Since n is on the right of en and n maps to j for
each j � 1, it follows that en must map across the edge to the left of j for each positive
j ¤ k, that is, en eventually maps across ej for each j ¤ k � 1.

It remains to prove that en eventually maps across ek�1. But some ej does this, and
since en already maps to every edge besides ek�1, we will be done unless ek�1 is the only
edge that maps across ek�1. This is impossible: the image of ek�1 is entirely before the
first turn of � , since k�1 maps to n, and so the image of some other ej covers ek�1
between the first and second turns. Thus M is irreducible.

Let � be the spectral radius of M . By the Perron–Frobenius theorem, � is a sim-
ple eigenvalue for M , and M has positive left- and right-eigenvectors for �. Let u D
.u1; : : : ; un/ be the unique left eigenvector such that

P
i ui D 1. Then assigning each ej

the length uj (and declaring each infinitesimal edge to be length 0), we obtain a uniform
�-expander f by projecting the action of F onto the horizontal coordinate. Since u is
positive, none of the ej are collapsed, and so f is a PCP zig-zag having the necessary
combinatorics: x D 1 is periodic and f acts on this orbit by �2.n; k/. Thus the map is
surjective for m D 2.

Finally, consider the image ˆ.PA.2; p//. For a map f 2 PA.2; p/, the fraction ˆ.f /
is reduced and has denominator p � 2 since �.f / D �2.p � 1; k/ for some k such that
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k � 1 is coprime to p � 2. The fact that ˆ.PA.2; p// contains all such fractions follows
because ˆ is a bijection onto Q \ .0; 1/.

A similar argument works for m � 3 odd and m � 4 even. In this case, the placement
of infinitesimal loops as in steps (1)–(3) above is chosen accordingly to ensure that � is
invariant under the exterior left-veering thickening.

7. The digit polynomialDf

In this section, we prove Theorem 3, restated below for convenience. This theorem gen-
eralizes [6, Lemma 2.5], which treats the unimodal case. In [6], the result is phrased in
terms of the kneading sequence of the unique critical point.

Theorem 3. Suppose f 2 PA.m/ for m � 2 with ˆ.f / D a=b 2 Q \ .0; 1/ in lowest
terms. Define LW Œ0; b�! R by L.t/ D .a=b/ � t . Then

Df .t/ D t
bC1
C 1 �

bX
iD1

ci t
bC1�i ;

where the ci satisfy

ci D

´
m if L.t/ 2 N for some t 2 Œi � 1; i �;

m � 2 otherwise:

In particular, ci D cb�i , so Df is reciprocal, that is,

Df .t/ D t
bC1Df .t

�1/:

Example 7.1. Let f; g 2 PA.2/ be the zig-zags such that ˆ.f / D 1=7 and ˆ.g/ D 6=7.
According to Theorem 3 and Figure 21, we have

Df .t/ D t
8
� 2t7 � 0t6 � 0t5 � 0t4 � 0t3 � 0t2 � 2t C 1;

Dg.t/ D t
8
� 2t7 � 2t6 � 2t5 � 2t4 � 2t3 � 2t2 � 2t C 1:

Example 7.2. Let p;q 2 PA.7/ be the zig-zags such thatˆ.p/D 4=13 andˆ.q/D 9=13.
According to Theorem 3 and Figure 22, we have

Dp.t/ D t
14
� 7t13 � 5t12 � 5t11 � 7t10 � 5t9 � 5t8 � 7t7 � 5t6 � 5t5

� 7t4 � 5t3 � 5t2 � 7t C 1;

Dq.t/ D t
14
� 7t13 � 7t12 � 7t11 � 5t10 � 7t9 � 7t8 � 5t7 � 7t6 � 7t5

� 5t4 � 7t3 � 7t2 � 7t C 1:

We first prove Theorem 3 for the case that f has modalitym� 4 even. This case being
completed, we will then use it to deduce the cases for m � 3 odd and m D 2. We proceed
via a sequence of lemmas.
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Figure 21. Computing the digit polynomials of bimodal maps using Theorem 3. (a) Computing the
coefficients ofDf for the unique f 2 PA.2/ such that ˆ.f / D 1=7. (b) Computing the coefficients
of Dg for the unique g 2 PA.2/ such that ˆ.g/ D 6=7.

(a) (b)

Figure 22. Computing the digit polynomials of 7-modal maps using Theorem 3. (a) Computing the
coefficients ofDp for the unique p 2 PA.7/ such thatˆ.p/D 4=13. (b) Computing the coefficients
of Dq for the unique q 2 PA.7/ such that ˆ.q/ D 9=13.

Lemma 7.3. Suppose f 2 PA.m/ form � 4 even. Let n be minimal such that f n.1/D 1,
and let fi .x/ be the defining linear branch of f at f i�1.1/, that is, f i .1/D fi .f i�1.1//.
Then there exist constants ci for i D 1; : : : ; n � 2 such that

fi .x/ D

8̂̂<̂
:̂
�x � ci ; i D 1; : : : ; n � 2;

m � �x; i D n � 1;

2 � �x; i D n:

Proof. The sole point of typeR (cf. Proposition 5.10) in the orbit of xD 1must map to the
point of type C , by Proposition 5.5, and this latter point is precisely x D ��1, and hence
maps to x D 1 by fn.x/ D 2 � �x. At the point of type R, we have fn�1.x/ D m � �x.

All other points in the orbit of x D 1 are of type P1 or P2, and the corresponding fi
are fi .x/ D �x � .m � 2/ and fi .x/ D �x �m, respectively.
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Lemma 7.4. Suppose f 2 PA.m/ form� 4 even. LetDf .t/ be the digit polynomial of f .
Then

Df .t/ D t
n
C 1 �

n�1X
iD1

ci t
n�i ;

where, as in Lemma 7.3, the ci are defined by fi .x/ D �x � ci for 1 � i � n � 2 and
fn�1.x/ D cn�1 � �x. In particular, c1 D cn�1 D m.

Proof. For i D 0; : : : ; n, define gi .t/ 2 ZŒt � by gi .�/ D f i .�/. Thus, for example,
g0.�/ D 1 and g1.�/ D � � m. Here it is important that we are treating � as a formal
variable, rather than an algebraic integer satisfying a polynomial relation.

Observe that giC1.�/ D fiC1.gi .�// by definition. In particular, by Lemma 7.3 for
i D 0; : : : ; n � 3 we have giC1.�/ D �gi .�/ � ci , and so inductively we see that

gi .�/ D �
i
� c1�

i�1
� � � � � ci�1� � ci for 0 � i � n � 2:

We therefore have the equalities

gn�1.�/ D cn�1 � �
n�1
C c1�

n�2
C � � � C cn�3�

2
C cn�2�

and
gn.�/ D 2 � cn�1� � cn�2�

2
� � � � � c1�

n�1
C �n:

By the definition of Df .t/ and the fact that gn.�/ D f n.1/ D 1, we have

Df .�/ D gn.�/ � 1:

Lemma 7.5. Suppose f 2 PA.m/ form � 4 even. Let n be minimal such that f n.1/ D 1
and suppose that f acts on the orbit of x D 1 by the permutation �.f / D �e.n; k/ with
gcd.n � k; k � 1/ D 1. Let Df .t/ D tn C 1 �

Pn�1
iD1 ci t

n�i . Then for i D 1; : : : ; n � 1,
we have

ci D

´
m if �.f /i�1.n/ � k;

m � 2 if 2 � �.f /i�1.n/ � k � 1:

Proof. The permutation �.f / is defined such that postcritical points corresponding to
symbols i satisfying k C 1 � i � n are of type P2, whereas those corresponding to i
satisfying 2 � i � k � 1 are of type P1. Finally, the point corresponding to the symbol k
is of type R, specifically f n�2.1/. The result follows from Lemmas 7.3 and 7.4.

Lemma 7.6. Theorem 3 holds for f 2 PA.m/ with m � 4 even.

Proof. We have already shown that c0 D cn D 1 and that ci 2 ¹m � 2; mº for 1 � i �
n � 1. By Lemma 7.5, it is enough to understand when �i .n/ � k. Let �0 2 Sn�1 be
the permutation obtained by deleting the symbol 1 from the cycle decomposition of �
and decreasing all remaining labels by 1, as in the proof of Proposition 6.7. As observed
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previously, �0 acts on ¹1; : : : ; n � 1º as addition by n � k modulo n � 1. Therefore, if we
set q D .n � k/=.n � 1/, the values Lq.t/ D qt for t D 1; : : : ; n � 1 satisfy

Lq.t/ � bLq.t/c D
.�0/t .n � 1/

n � 1
:

To see why this is true, observe first that the left-hand side is the fractional part
of Lq.t/. This quantity is a rational number with denominator n � 1, and the numerator
increases by n � k modulo n � 1. Since .�0/t .n � 1/ also changes in this way, it remains
to note that

Lq.1/ D
n � k

n � 1
D
.�0/.n � 1/

n � 1
:

Now we observe that

ci D m , �i�1.n/ � k

, .�0/i�1.n � 1/ � k � 1

, Lq.i � 1/ � bLq.i � 1/c �
k � 1

n � 1

, Lq.t/ 2 N for some t 2 Œi � 1; i �.

The last equivalence holds because Lq.t/ D qt is a line of slope .n � k/=.k � 1/. The
proof is complete.

It remains to prove Theorem 3 for the case when the modality of f ismD 2 orm � 3
odd. Recall that

�2.n; k/ D �
�1.n; k/ ı �e.n; k/ ı �.n; k/;

where �.n; k/ D .1; 2; : : : ; k � 1/ 2 Sn.

Lemma 7.7. For any l � 0, �l2.n/ � k if and only if �le.n/ � k, and in this case,
�l2.n/ D �

l
e.n/.

Proof. Suppose �le.n/ � k. Then �l2.n/ D ��1�le�.n/ D �le.n/, since �.j / D j for all
j � k. Similarly, if �l2.n/ � k, then it follows that �le.n/ � k as well.

We now complete the proof of Theorem 3.

Proof of Theorem 3. One quickly verifies that Lemmas 7.3 through 7.5 hold for f an
m-modal zig-zag of pseudo-Anosov type for m D 2 and m � 3 odd, after replacing all
instances of �e.n; k/ with either �2.n; k/ or �o.n; k/. Lemmas 7.5 and 7.7 now imply the
Theorem for m D 2.

For m � 3 odd, recall that if we delete the symbol 0 from the cycle type of �o.n; k/,
we obtain the permutation �e.n; k/. Deleting this symbol corresponds to ignoring the
linear map fnC1.x/ D 1 � �x. This linear branch is not used to compute Df , since the
fact that f 2 PA.m/ for m � 3 odd implies that f n.1/ D 0, terminating the process of
constructing Df before the .nC 1/-st step (cf. Definition 1.8).

The arguments of Lemmas 7.3 through 7.6 now prove the theorem in this case.
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8. A family of pseudo-Anosovs with Salem dilatation

In this section, we provide an application of the theory developed over the course of this
paper. Recall that a Salem number, introduced in [11], is a real algebraic integer �> 1 such
that all Galois conjugates of � are contained within the closed unit disc, with at least one
of these conjugate lying on the unit circle. It is not hard to show that ��1 must be among
the Galois conjugates of � in this case, and that all other conjugates lie on the unit circle.
In particular, a Salem number is a Perron number of even degree d D 2g. If p.x/ 2 ZŒx�
is the minimal polynomial of a Salem number, then p.x/ is reciprocal, i.e.,

p�.x/ WD x
deg.p/p.x�1/ D p.x/:

It is well known that if f .x/ 2 ZŒx� is a reciprocal polynomial of degree d D 2g,
then f .x/ D xgq.x C x�1/ for some integral polynomial q. We call q.x/ the companion
polynomial to f .x/. If deg.f /D 2gC 1, then f .x/D .xC 1/f1.x/ for f1.x/ reciprocal
of even degree, and therefore f .x/ D .x C 1/xgq.x C x�1/ for some q.x/ 2 ZŒx�. In
this case, we again call q the companion polynomial of f .

Note that there is a bijection between roots of q and pairs of roots of f : if �, ��1 are
roots of f , then �C ��1 is a root of q. Moreover, if j�j D 1, then ��1 D x�, and so the root
�C ��1 of q is a real number contained in the interval Œ�2; 2�. We refer to this interval,
with or without its endpoints, as the critical interval.

In the case of a Salem number � of degree 2g, the companion polynomial is irreducible
of degree g with dominant root �C ��1 > 2 and the remaining g � 1 roots in the critical
interval. In particular, the companion polynomial has all real roots, so �C ��1 is a totally
real algebraic integer of degree g.

Recall that a translation surface is a pair .X; !/ of a Riemann surface X equipped
with a non-zero abelian differential !, i.e., a holomorphic one-form. If X is of genus g,
then ! has 2g � 2 zeros, counting multiplicity. Let † be the collection of these zeros.
Then away from †, X has a Euclidean structure: in other words, X n† admits an atlas of
charts to C whose transition functions are translations. In the neighborhood of a zero p of
order k, X has the structure of 2.k C 1/ metric half-discs glued together, so that the total
angle about p is 2�.k C 1/.

Fixing g > 1, let� be a positive integer partition of 2g� 2. We think of� as describing
the multiplicities of the zeros of an abelian differential ! on X . The stratum H .�/ is the
collection of genus g translations surfaces with zero orders specified by �.

Given some .X; !/ 2 H .�/ and A 2 SL2.R/, define A � .X; !/ to be the translation
surface obtained by post-composing the charts of .X; !/ into R2 Š C by A.

The Veech group of a translation surface .X; !/, denoted SL.X; !/, is the stabilizer
of .X; !/ under the action by SL2.R/. The trace field of .X; !/ is the field K obtained
by adjoining to Q the traces of all elements of SL.X; !/. By a result of Möller in [9], the
degree of the trace field satisfies

ŒK W Q� � g.X/:
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If the degree of this extension is maximal, i.e., is equal to the genus of X , then we
say that .X; !/ is algebraically primitive. One remarks that such surfaces cannot arise as
covers of translation surfaces of lower genus: if � W .X; !/! .Y; �/ is a translation cover,
then the trace fields of X and Y coincide, and the result of Möller mentioned above now
shows that if X is algebraically primitive, then g.X/ D g.Y /.

A translation surface is called Veech if its Veech group is a lattice in SL2.R/, i.e.,
as large as possible. The GL2.R/-orbit of a Veech surface is called a Teichmüller curve.
By results of Möller [8] and Apisa [1], there are only finitely many algebraically primitive
Teichmüller curves in any genus g � 3. Therefore, it is interesting to find algebraically
primitive surfaces with non-trivial Veech group of arbitrarily high genus.

We now restate our last main result.

Theorem 4. For each g � 1, define fg W I ! I to be the bimodal PCP zig-zag map of
pseudo-Anosov type corresponding to rg D 1=.2g/ 2 Q \ .0; 1/. Let �g be the growth
rate of fg . Then the following are true for each g � 1:

(1) �g is a Salem number of degree 2g.

(2) The pseudo-Anosov �g obtained from fg is defined on a .2g C 2/-punctured
sphere †0;2gC2.

(3) The translation surface .Xg ; !g/ obtained as the hyperelliptic double cover of
†0;2gC2 is of genus g, and hence algebraically primitive.

Remark 8.1. One might reasonably object that there is no such thing as a Salem number
of degree two. Indeed, Salem numbers are normally defined to have at least one Galois
conjugate on the unit circle, in which case all Salem numbers must be of degree at least
four: if � is a Salem number and ˛ 2 S1 a Galois conjugate, then x̨ D ˛�1 is also a con-
jugate of �, and hence so is ��1. However, one may think of the quadratic units � > 1 as
degenerate Salem numbers. That is what we choose to do here.

8.1. �g is Salem of degree 2g

As before, the proof of Theorem 4 will proceed in a sequence of lemmas. The bulk of our
efforts will be focused on establishing statement (1) of Theorem 4.

Lemma 8.2. Let Dg.t/ be the digit polynomial of fg . Then for all g � 1, we have

Dg.t/ D t
2gC1

� 2t2g � 2t C 1 D .t C 1/dg.t/;

where

dg.t/ D t
2g
C 1C 3

2g�1X
iD1

.�1/i t i :

Thus, for example,

D1.t/ D .t C 1/.t
2
� 3t C 1/ and D2.t/ D .t C 1/.t

4
� 3t3 C 3t2 � 3t C 1/:
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Proof of Lemma 8.2. The fact that Dg.t/ D t2gC1 � 2tg � 2t C 1 follows from Theo-
rem 3. One readily checks that .t C 1/dg.t/ D Dg.t/.

We wish to show that dg.t/ is the minimal polynomial of a Salem number. To do this,
we must prove that dg.t/ has 2g � 2 roots on the unit circle, and also that the polynomial
is irreducible. As we have seen, to accomplish the first task it will be enough to show that
the companion polynomial qg.t/, defined by dg.t/ D tgqg.t C t�1/, has g � 1 roots in
the critical interval. This is the content of the next two lemmas.

Lemma 8.3. The companion polynomials qg.w/ satisfy the following properties:

(1) For all g � 4, we have the recurrence relation

qgC2.w/ D wqgC1.w/ � qg.w/: (8.1)

(2) qg.2/ D �1 for all n.

(3) Each qg has a real root ˛g > 2.

(4) For all g � 2, we have .�1/gqg.�2/ > 0. In particular, qg.�2/ and qgC1.�2/
have opposite signs.

The first few companion polynomials qg are the following:

q2.w/ D w
2
� 3w C 1;

q3.w/ D w
3
� 3w2 C 3;

q4.w/ D w
4
� 3w3 � w2 C 6w � 1;

q5.w/ D w
5
� 3w4 � 2w3 C 9w2 � w � 3:

Proof of Lemma 8.3. By definition, qg satisfies qg.t C t�1/D t�gdg.t/, so relation (8.1)
is equivalent to the recurrence

dgC2.t/ D t
2ŒdgC1.t/ � dg.t/�C dgC1.t/:

This formula is a straightforward consequence of the pattern of the coefficients of dg ,
proving statement (1). Statement (2) follows inductively after noting that it holds for q2
and q3. Now note q2 and q3 are monic, so by equation (8.1) qg is monic for all g. In partic-
ular, limw!1 qg.w/ D 1 for all g, so the intermediate value theorem and statement (2)
together imply statement (3).

Finally, to prove statement (4), observe that

dg.�1/ D 1C 3.2g � 1/C 1 D 6g � 1 > 0

for all g � 2. Since dg.�1/ D .�1/gqg.�2/, the result follows.

Lemma 8.4. For each g � 2, the polynomial qg has g � 1 roots in .�2; 2/. Moreover, if
these roots are denoted �2 < a1 < � � � < ag�1 < 2, then the g roots of qgC1 in .�2; 2/,
denoted b1; : : : ; bg , satisfy the ordering

�2 < b1 < a1 < b2 < a2 < � � � < bg�1 < ag�1 < bg < 2:
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Figure 23. The interlacing property of the roots of the companion polynomials qg .

Thus, the roots of qgC1 “interlace” the roots of qg . See Figure 23.

Proof of Lemma 8.4. We proceed inductively. The quadratic polynomial q2 has a single
root a1 D .3 �

p
5/=2 in .�2; 2/. By Lemma 8.3 (3), this is in fact the only root of q2

in the critical interval. Since q3.�1/ D �1, q3.0/ D 3, q3.1/ D 1, and q3.2/ D �1, we
see that q3 has two roots b1; b2 2 .�2; 2/ satisfying �1 < b2 < 0 and 1 < b2 < 2. Since
0 < a1 < 1, the claim is satisfied in this case.

Suppose now that the claim holds for all n � g C 1. We may assume without loss
of generality that qgC1.�2/ < 0: the other case is essentially identical. Lemma 8.3 (4)
implies that both qg and qgC2 are positive at w D �2. Let b1 < � � � < bg be the roots
of qgC1 in the critical interval. Then we have

qgC2.b1/ D b1qgC1.b1/ � qg.b1/ D �qg.b1/:

By assumption, the smallest root a1 of qg in .�2; 2/ is greater than b1. Since qg.�2/ > 0,
it follows that qg.b1/ > 0 and thus qgC2.b1/ < 0. Therefore, qgC2 has a root c1 2 .�2;b1/.
Next we observe that

qgC2.b2/ D b2qgC1.b2/ � qg.b2/ D �qg.b2/:

Since a1 < b2 < a2, we see that qg.b2/ < 0, so qgC2.b2/ > 0, implying that qgC2 has
a root c2 2 .b1; b2/. Continuing in this fashion, we find roots ci 2 .bi�1; bi / for 2� i � g.
Finally, note that since qg.2/D�1, we have qg.w/ < 0 for allw 2 .ag�1;�2�. Therefore,
since ag�1 < bg < 2, we have

qgC2.bg/ D �qg.bg/ > 0:

Since qgC2.2/D�1, it follows that qgC2 has a root cgC1 2 .bg ; 2/. Lemma 8.3 (4) implies
that qgC2 has another root ˛gC2 >2, so there cannot be any other roots of qgC2. The proof
is complete.
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Lemma 8.4 implies that dg has g � 1 pairs of roots on the unit circle in addition to
a pair of positive real roots �g and ��1g . This is already enough to conclude that �g is
a Salem number. Indeed, �g must be Galois conjugate to ��1g , since otherwise the conju-
gates of ��1g would be contained in the closed unit disc, implying that they are all roots of
unity, by Kronecker’s theorem. This last is impossible, since ��1g < 1. Hence �g and ��1g
are Galois conjugate and �g is a Salem number. It remains to determine whether dg is
irreducible.

We follow a similar proof given by Shin in [12]. Interestingly, this proof shows that
the “dual” Perron roots  g corresponding to the fraction

zrg D 1 � rg D
2g � 1

2g

are also Salem of degree 2g.

Lemma 8.5. Each dg.t/ is irreducible over ZŒt �. Consequently, �g is a Salem number of
degree 2g for all g � 1.

Proof. Since �g is necessarily Galois conjugate to ��1g , any factor of dg.t/ other than
the minimal polynomial of �g must have all roots on the unit circle, and therefore must
be cyclotomic by Kronecker’s theorem. Suppose therefore that e2�i=m is a root of dg.t/.
Then we have

Dg.e
2�i=m/ D e.2gC1/�2�i=m � 2e2g �2�i=m � 2e2�i=m C 1 D 0:

We take real and imaginary parts to obtain the system of equations8̂̂<̂
:̂

cos
� .2g C 1/2�

m

�
� 2 cos

�2g � 2�
m

�
� 2 cos

�2�
m

�
C 1 D 0;

sin
� .2g C 1/2�

m

�
� 2 sin

�2g � 2�
m

�
� 2 sin

�2�
m

�
D 0:

(8.2)

For the first equation, we use the formula cos.2x/ D 2 cos2.x/ � 1 for the first cosine
term and the formula cos.a/C cos.b/ D 2 cos..a C b/=2/ cos..a � b/=2/ for the latter
two terms to obtain

cos
� .2g C 1/�

m

�h
cos

� .2g C 1/�
m

�
� 2 cos

� .2g � 1/�
m

�i
D 0:

Similarly, for the second equation in (8.2), we use the formula sin.2x/ D 2 sin.x/ cos.x/
and the formula sin.a/C sin.b/ D 2 sin..aC b/=2/ cos..a � b/=2/ to find

sin
� .2g C 1/�

m

�h
cos

� .2g C 1/�
m

�
� 2 cos

� .2g � 1/�
m

�i
D 0:

Since sin.x/ and cos.x/ do not have any common roots, it must be the case that

cos
� .2g C 1/�

m

�
� 2 cos

� .2g � 1/�
m

�
D 0:
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Setting ' D .2g � 1/�=m, we rewrite this as

cos
�
' C

2�

m

�
� 2 cos.'/ D 0: (8.3)

It follows that�1=2� cos.'/� 1=2. In other words, as cos.�=3/D 1=2 and cos.2�=3/D
�1=2, we must have

�
2�

3
� ' � �

�

3
or

�

3
� ' �

2�

3
:

Moreover, by equation (8.3), ' and ' C 2�=m are angles on the same side of the y-axis,
since their cosines have the same sign. We claim that ' must be in either the second or
fourth quadrant. Suppose for contradiction that ' is in the first quadrant, so that �=3 �
' � �=2. We may assume m � 3, since x D ˙1 are clearly not roots of dg , and thus
2�=m < � . In particular, ' C 2�=m < �=2C � D 3�=2, hence cannot be in the fourth
quadrant.

Since both ' and ' C 2�=m are on the same side of the y-axis and we assumed '
is in the first quadrant, it follows that �=3 � ' C 2�=m � �=2 as well. Since cos.x/ is
decreasing on this interval, we have

cos.'/ > cos
�
' C

2�

m

�
> 0) 2 cos.'/ > cos

�
' C

2�

m

�
;

contradicting equation (8.3). A similar argument shows that ' cannot be in the third quad-
rant. Thus we revise the restrictions on ' to be

�
�

2
< ' � �

�

3
or

�

2
< ' �

2�

3
:

Appealing to the formula cos.�/D sin.� C �=2/, we may equivalently consider the equa-
tion sin. C 2�=m/ � 2 sin. / D 0 with

0 <  �
�

6
or � <  �

7�

6
:

Suppose  is in the first quadrant and write

 D ' C
�

2
D
.2g � 1/�

m
C
�

2
�
j�

2m
.mod 2�/

for some positive integer j � 2m� 1 such that 0 < j�=.2m/ � �=6. Using the subaddi-
tivity of sin.x/ on Œ0; �� now gives

sin
�
 C

2�

m

�
� 2 sin. / � sin. /C sin

�2�
m

�
� 2 sin. / D sin

�2�
m

�
� sin

� j�
2m

�
:

This expression cannot be zero unless j D 4 because of the restriction on j . In this case,

sin
�
 C

2�

m

�
� 2 sin. / D sin

�4�
m

�
� 2 sin

�2�
m

�
D 2 sin

�2�
m

�
cos

�2�
m

�
� 2 sin

�2�
m

�
D 2 sin

�2�
m

�h
cos

�2�
m

�
� 1

i
:
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This quantity can only be zero if m D 1, which we quickly rule out after observing that
dg.1/ D 6g � 1. The same argument works if we assume  is in the third quadrant.
Therefore, dg.t/ has no cyclotomic factor, and hence is irreducible.

8.2. Completing the proof of Theorem 4

Proof of Theorem 4. Lemma 8.5 proves statement (1). Since the �g -uniform expander fg
corresponds to the fraction qg D 1=.2g/, the point xD 1 is periodic of length 2g C 1. Each
of these points lifts to a one-pronged singularity of the pseudo-Anosov �g on a punctured
sphere, as does the fixed postcritical point xD 0. There are no other one-pronged singular-
ities, so taking the double cover of the surface by branching at each of these 2gC 2 points
produces a surface on which the lift of each point is a flat point, i.e., has cone angle 2� .
The only other cone point downstairs is the fixed point at infinity, with cone angle 2g � � .
This point lifts to two points of angle g � 2� .

The derivative of the lifted pseudo-Anosov is

Df�g D ��g 0

0 ��1g

�
;

an element of the Veech group SL.Xg ; !g/. The trace of this matrix is �g C ��1g , con-
tained in the trace field Kg by definition. But now

g � ŒKg W Q� � ŒQ.�g C �
�1
g / W Q� D g;

so in fact we have ŒKg W Q� D g, implying that .Xg ; !g/ is algebraically primitive.

Figures 24, 25, and 26 display the limit sets for the Galois lifts of the zig-zags f1, f2,
and f3, respectively.

Figure 24. The limit set of the Galois lift of f1. This glues to a sphere with 4 marked points, which
then lifts to a torus. The lift of the pseudo-Anosov �1 is a linear Anosov diffeomorphism of the torus
with stretch factor �1 D .3C

p
5/=2, hence is conjugate to Arnold’s cat map.
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Figure 25. The limit set of the Galois lift of f2. This glues to a sphere with 6 cone points of angle � ,
one at the center of each vertical edge. Taking the double cover of this sphere branched at the 6 cone
points produces a genus 2 surface.

Figure 26. The limit set of the Galois lift of f3. This glues to a sphere with 8 marked points, which
then lifts to a genus 3 surface.
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