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Denominator bounds in Thompson-like groups and flows

Danny Calegari

Abstract. Let T denote Thompson’s group of piecewise 2-adic linear homeomorphisms of the
circle. Ghys and Sergiescu showed that the rotation number of every element of T is rational,
but their proof is very indirect. We give here a short, direct proof using train tracks, which
generalizes to elements of PLC.S1/ with rational break points and derivatives which are powers
of some fixed integer, and also to certain flows on surfaces which we call Thompson-like. We
also obtain an explicit upper bound on the smallest period of a fixed point in terms of data
which can be read off from the combinatorics of the homeomorphism.
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1. Introduction

In [3], Ghys and Sergiescu studied Thompson’s group T of homeomorphisms of the
circle from a number of points of view. This group was introduced in unpublished
notes by Thompson, and is defined as the subgroup of HomeoC.S1/ consisting of
homeomorphisms taking dyadic rationals to dyadic rationals which are piecewise
linear, where the break points are dyadic rationals (i.e. numbers of the form p2q for
p; q 2 Z), and where the derivatives are all of the form 2q for q 2 Z.

One of the main theorems in [3] is that the rotation number of every element
of T is rational. Recall Poincaré’s definition [8] of rotation number for an element
g 2 HomeoC.S1/. Let Qg be any lift of g to HomeoC.R/, and define

rot. Qg/ D lim
n!1

Qgn.0/

n
:

Then rot.g/ D rot. Qg/ .mod Z/; i.e. rot.g/ 2 S1. Different lifts Qg1, Qg2 of g satisfy

rot. Qg1/ � rot. Qg2/ 2 Z;

so this is well defined.
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In [2], Ghys says “the proof (of rationality) is very indirect and there is a need for
a better proof”. One such argument was given by I. Liousse [6], [7]. We also recently
learned that V. Kleptsyn has an approach to understanding rationality in Thompson’s
group using automata, which is distinct from, but not unrelated to, the approach in
this paper; see [5].

The argument of Ghys–Sergiescu is a proof by contradiction: they show there is a
morphism � W T ! Diffeo1.S1/ which is semi-conjugate to the natural (topological)
action, and which has an exceptional minimal set. Rotation number is invariant
under semi-conjugacy. Therefore the existence of an element of T with irrational
rotation number would contradict Denjoy’s theorem (that every C 2 diffeomorphism
of S1 with an irrational rotation number has dense orbits). Liousse’s proof is more
straightforward, but is still non-constructive, and is still a proof by contradiction (to
Denjoy’s inequalities).

It is well known and easy to show (see e.g. [8]) that an element g 2 HomeoC.S1/

has a periodic point of (least) period q if and only if its rotation number is p=q for some
coprime pair of integers p, q. In this note, we supply a direct proof of rationality of
rotation number for certain PL homeomorphisms by directly finding a periodic point.
In fact, our argument applies more generally than the argument of [3], though not
more generally than the argument of [7]. On the other hand, since it is constructive,
we obtain explicit bounds on the denominator of the rotation number in terms of the
combinatorics of the original map, which are not obtained in either [3] or [7].

The main rationality theorem, proved in Section 2, is as follows:

Theorem A. Let t be an element of PLC.S1/ mapping rationals to rationals, with
rational break points, and with derivatives of the form nq for q 2 Z and some fixed n.
Then the rotation number of t is rational.

This theorem is also proved in [7]. We remark that some hypothesis on t is
necessary, since there are examples of elements of PLC.S1/ mapping rationals to
rationals, with rational break points and rational derivatives, whose rotation numbers
are irrational. However, it is possible that the conditions on t could still be relaxed
further (cf. Question 4.6). See [7] and also [4] or [1].

Given t 2 PLC.S1/ with rational break points and with derivatives of the form nq

for q 2 Z, we define the height of t as follows. Let m be the least integer such that a
subdivision of S1 into m intervals of the form

�
p
m

; pC1
m

�
is Markov for t ; i.e., t either

takes a strip of nk consecutive intervals linearly to a single interval by contraction,
or takes a single interval and stretches it linearly over nk consecutive intervals by
expansion, for various k. Then define height.t/ D m.

Remark 1.1. Note that m as we have defined it is bounded by the least common
multiple of the denominators of the break points of t and their images. This remark
justifies the existence of m and gives a direct estimate for its size.
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In Section 3 we obtain a straightforward bound on denominator of rotation number
as follows:

Theorem A0. Let t be an element of PLC.S1/ mapping rationals to rationals, with
rational break points, and with derivatives of the form nq for q 2 Z and some fixed n.
Suppose we have

height.t/ D m:

Then t has a periodic point of period at most nm � m.

Of course, Theorem A0 implies Theorem A.
Finally, in Section 4 we construct some examples with periodic points with long

periods, complementing the estimate in Theorem A0.

Acknowledgements. While writing this paper, I was partially supported by a Sloan
Research Fellowship, and NSF grant DMS-0405491. I am grateful for comments
from Étienne Ghys and Collin Bleak, and for some substantial corrections by the
anonymous referee. I am also grateful to Isabelle Liousse for her comments on an
early version of this paper, and to her and Victor Kleptsyn for forwarding me their
relevant preprints.

2. Train tracks

To prove Theorem A, it suffices to show that t as in the statement of the theorem has
a periodic orbit.

Throughout this section, for concreteness and ease of exposition, we will con-
centrate on the case n D 2. This includes (but is more general than) the case of the
classical Thompson group, although our argument goes through essentially verbatim
for general n.

We fix t as in the statement of the theorem with rational break points and all
derivatives powers of 2. Here is a summary of the proof. We associate to t a train
track which carries its dynamics; by analyzing the combinatorics of the train track
we show that we can either split off a circle in which case some power of t is equal to
the identity on some segment, or else we can find an attracting cycle in which case
some (possibly negative) power of t has a periodic orbit which is attracting on at least
one side. This will complete the proof.

Train tracks are introduced in [9] as a combinatorial tool for studying one dimen-
sional dynamics on surfaces (similar objects were introduced earlier by Dehn and
Nielsen). A train track � is a graph with a C 1 combing at every vertex which comes
with an embedding in a surface. The vertices of � are called the switches. We now
show how to associate a train track � in a torus to our element t .



104 D. Calegari

By the defining properties of t , there is a least integer m such that there is a Markov
partition for t of the simple form

S1 D I1 [ I2 [ � � � [ Im;

where each Ii has length 1=m. The element t acts in two ways: by taking a strip of 2k

consecutive intervals and mapping them linearly to a single interval (contraction), or
by taking a single interval and stretching it out linearly over 2k consecutive intervals
(expansion), for various positive integers k. Recall that we are calling m the height
of t .

The mapping torus of t is literally a (two dimensional) torus which we denote by F .
In F we construct an oriented train track � by gluing intervals. We take one oriented
interval ei for each Ii , and we glue the intervals together at their endpoints in a pattern
determined by the dynamics of t . As a convention, we think of the circle S1 as being
embedded “horizontally” in F , and the edges ei as being embedded “vertically”.
If t .Ii / \ Ij has nonempty interior, then we identify the positive endpoint of ei to
the negative endpoint of ej . The orientation on the ei determines the combing at
the vertices. In this way we obtain an orientable train track � , which comes with a
natural embedding in F . We emphasize that a single edge of � might consist of many
intervals. We do not need to keep track of intervals in this section, but they will be
important in Section 3 when we try to estimate periods of periodic points.

At each switch of � we either have 2k incoming edges and one outgoing edge for
each contraction, or one incoming edge and 2k outgoing edges for each expansion.
Notice that k may vary from switch to switch. We remedy this in the following way:
a switch with 2k C 1 incident edges can be split open locally to 2k � 1 switches, each
with 3 incident edges. We say that we are resolving the (high valence) switches by
this process; see Figure 1 for an example.

Figure 1. Split open a 5-valent switch to three 3-valent switches.

We refer to the resolved train track as �0. Note that every switch of �0 is 3-
valent. We remark that �0 could well be disconnected (for that matter, � itself could
be disconnected). Notice that �0 is contained in F in such a way that the edges are all
transverse to a foliation of F by meridians, so that an oriented edge of �0 points in a
well-defined direction around F . Notice too that the (unparameterized) dynamics of t

can be recovered completely from the combinatorics of �0: we associate to each edge
a Euclidean rectangle of width 1 foliated by vertical lines. At each switch we attach
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the (foliated) mapping cylinder of the linear map Œ0; 1� ! Œ0; 2� to the horizontal
boundaries of the edges. This gives a foliated surface with boundary which comes
with an embedding in F , and which can also be arranged so that leaves are transverse
to the foliation of F by meridians; by collapsing complementary regions we get
precisely the (foliated) mapping torus of the homeomorphism t ; call this operation
the realization of the combinatorial train track �0.

Now, at each switch v there is a well-defined contracting direction which points
along the edge which is isolated on its side of v. Let e.v/ be this (directed) edge,
and let a.v/ be the other endpoint of e.v/. So e.v/ points from v to a.v/. Suppose
there is some v such that e.a.v// is the same underlying edge as e.v/, but with the
opposite orientation. In this case, if e denotes the underlying (undirected) edge, we
call e a sink. The key point is that sinks can be split open to give a new train track
whose realization still recovers the dynamics of t . There is only one (obvious) way
to do this; see Figure 2 for an illustration.

Figure 2. Sinks can be split open to give a new train track with the same realization.

Let �i be the result of splitting �i�1 open along a sink, if one exists. We split open
all sinks until there are none left. Each splitting reduces the number of vertices by
two, so this process must eventually terminate. We denote the sinkless train track
we ultimately obtain by � 0. Note that the realization of every �i , and therefore of � 0,
still recovers the dynamics of t . After the splitting, some component of � 0 might be
a circle with no switches; in such a case we say we have split off a circle. Evidently
the realization of a circle is foliated by periodic orbits. This happens exactly when
some power of t fixes a nonempty interval in S1.

Otherwise, there is still some switch v. Since � 0 has only finitely many switches,
the sequence v, a.v/, a2.v/, : : : is eventually periodic. Since � 0 is sinkless, the
oriented edges e.ai .v// all point in the same direction around F . It follows that if
v; a.v/; : : : ; an.v/ D v is a periodic sequence, the union

�.v/ ´ e.v/ [ e.a.v// [ � � � [ e.an�1.v//

is an embedded circle in � 0, oriented coherently by the orientation on each edge, and
always pointing in the same direction around F .

We call �.v/ an attracting cycle. Notice that all the way around the realization
of an attracting cycle, the linear map at the switches is contracting, and therefore the
realization of an attracting cycle contains a periodic orbit which is contracting on at
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least one side. Depending on the orientation of �.v/, this corresponds to a periodic
orbit which is attracting on at least one side either for t or for t�1. It follows that t

has a periodic orbit, and therefore the rotation number rot.t/ is rational.
If we replace 2 by n above, then switches in � are nk C 1 valent, and each such

switch can be resolved to a union of nk�1
n�1

switches, each of valence nC1, to produce
�0. The realization of �0 is obtained by gluing foliated Euclidean rectangles associated
to each edge by attaching the mapping cylinder of the linear map Œ0; 1� ! Œ0; n� at
each switch. The only point that needs stressing is that sinks of �i�1 can still be split
open to produce �i , since the two attaching maps in the realization associated to the
endpoints of a sink are still inverse to each other. This proves Theorem A in general.

Remark 2.1. If a general element t 2 PLC.S1/ has derivatives and break points
which are rational, we can still associate a train track to t where at every switch
there are p incoming and 1 outgoing edge, and the realization is obtained by gluing
the mapping cylinder of the linear map Œ0; 1� ! Œ0; p�, for varying p. Note that
multiplication by p=q can be realized as the composition of multiplication by p,
and division by q. The problem is that one might have a sink where the valences
are different at the two endpoints. There is no obvious combinatorial simplification
which can be done in such a case, even when the derivatives are all of the form rk for
some fixed r , where r D p=q is rational but not integral (see Question 4.6).

Remark 2.2. Let S be a closed orientable surface, and let � � S be an orientable train
track with every switch of valence 3. The realization of � gives a possibly singular
foliation on S with orientable leaves, which defines an (unparameterized) flow on S

that we say is Thompson-like. More generally, we call such a flow Thompson-like
if every switch has valence n C 1 with n edges on one side, for some fixed n. The
argument in this section shows that every orbit in a Thompson-like flow is either
periodic, or accumulates on a periodic orbit.

3. Bounding denominators

To prove the stronger Theorem A0 we must analyze the complexity of a split off circle
or an attracting cycle. To do this, we must relate the complexity of the sinkless train
track obtained by the argument of Section 2 to the original train track.

Let � denote the original train track. We distinguish between edges of � and
intervals which correspond to the original ei , and which each wrap exactly once
around the mapping torus. By definition, an edge of the train track has both vertices
at switches; a single edge may be composed of many intervals. The period of the
periodic cycle we finally identify will be equal to the number of intervals that it
contains.
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The train track � has exactly m intervals, and has switches of valence nk C 1 for
various k.

We resolve a switch of valence nk C 1 to nk�1
n�1

switches of valence n C 1, thereby

creating nk�n
n�1

new edges. We refer to these new edges as infinitesimal edges; since
the resolution is performed locally, we assume the infinitesimal edges are as short
as we like, and no consecutive sequence of them is long enough to wrap around the
mapping torus. So we can still measure the period of a periodic cycle by counting
the number of intervals it contains, and ignoring the infinitesimal edges. Observe
that after this resolution we obtain a train track which we call �0 with every switch of
valence n, in which there are at most 2m switches, and exactly m intervals.

Splitting open a sink produces a new train track with n � 1 new edges and 2 fewer
switches. Each edge is a concatenation of intervals and infinitesimal edges, each of
which is replaced by n�1 parallel copies after splitting open. If we let �i be obtained
from �i�1 by splitting open a single sink, then if there are mi�1 intervals in �i�1, the
edge which is split open contains at most mi�1 intervals, and there will be at most
n � mi�1 intervals in �i . Since m0 D m, and we split open a total of at most m sinks,
it follows that if � 0 is the ultimate sinkless train track, the number of intervals in � 0 is
at most nm � m.

Since � 0 is sinkless, it contains an embedded circle or attracting cycle, and we are
done.

4. Examples

In this section we give some examples. Note that the arguments in Section 3 do not
use the embedding of � in a torus F . Some of the examples in this section can be
realized in a torus, and some cannot.

Example 4.1. The map t might be a rotation of order m. The train track � is a circle
made up of m intervals.

Example 4.2. Fix some k. Let m D 2k C s C 2 and define t to be linear on the
following intervals:
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The associated train track has two switches of valence 2k C 1 bounding a sink of
length s C 1 (except when s D 0; k D 1). The two bushy sides of the switches are
glued together with a “twist”. When � is completely split open, the result � 0 is a single
circle containing 2k C 2k � .s C 1/ C 1 intervals, so the period is 2k � .s C 2/ C 1. If
we choose s D 2k � 2, then t is actually contained in Thompson’s group T , and the
order of the periodic point is O.m2/.

Example 4.3. We now describe a Thompson-like flow with very long periodic orbits.

a3

a3

a2

a2

a1

a1

e

sC

s�

We define a train track � depending on three
parameters. A typical example is illustrated in
the figure. There is a middle edge e containing
r1 intervals. There are a nested sequence of
r2 switches on either side of e, each 3-valent.
The ai on the top left are glued to the ai on the
bottom right of the figure. Finally, there are two
“bushy” switches s˙ each of which is r3 C 1

valent. The extreme points of these switches
are glued with a twist. Note m D r1 C3r2 Cr3.
Each time we split open a sink, the length of the
innermost edge doubles. We do this r2 times,
giving an edge of length r1 �2r2 . When we split
open s˙, the result is a single circle of length
r1r3 � 2r2 . If we set r2 D O.m/ then the length
of the periodic orbit is at least exponential in m.

The train track in Example 4.3 can be embedded in a surface of genus O.m/. Its
existence means that one cannot improve the bound in Theorem A0 very much without
using more detailed information about the embedding of the train track in a torus.

This suggests some obvious questions:

Question 4.4. Is there a polynomial bound (in m) for the denominator of rotation
number for an element in a (generalized) Thompson’s circle group? What about a
quadratic bound?

Question 4.5. How does the length of the smallest periodic orbit in a Thompson-like
flow depend on genus?

Finally, the following question seems to be open, and hard to address directly with
our methods:

Question 4.6. Let r D p=q be a non-integral rational number. Let t be an ele-
ment of PLC.S1/ mapping rationals to rationals, with rational break points, and with
derivatives of the form rs for s 2 Z. Is the rotation number of t rational?
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