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Deformation spaces of trees
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Abstract. Let G be a finitely generated group. Two simplicial G-trees are said to be in the
same deformation space if they have the same elliptic subgroups (if H fixes a point in one
tree, it also does in the other). Examples include Culler–Vogtmann’s outer space and spaces
of JSJ decompositions. We discuss what features are common to trees in a given deformation
space, how to pass from one tree to all other trees in its deformation space, and the topology
of deformation spaces. In particular, we prove that all deformation spaces are contractible
complexes.
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Introduction

LetG be a finitely generated group. AG-tree is a simplicial tree with an action ofG.
The notion of a deformation space was introduced by Forester [16]. By definition, two
G-trees are in the same deformation space D if they have the same elliptic subgroups:
ifH � G fixes a point in one tree, it also does in the other. Forester showed that two
trees in the same D may be connected by a finite sequence of elementary deformations,
each associated to a canonical isomorphism A �B B ' A.

Examples of deformation spaces are Culler–Vogtmann’s outer space [12], as well
as spaces constructed by McCullough–Miller [26] and the authors [20] to study
automorphisms of free products, and the canonical set of splittings of generalized
Baumslag–Solitar groups [18], [25].

Deformation spaces are especially relevant to JSJ theory. JSJ decompositions
of finitely presented groups have been constructed by Rips–Sela [30], Dunwoody–
Sageev [15], Fujiwara–Papasoglu [19]. They are G-trees (equivalently, graphs of
groups decompositions ofG) with certain properties. Though canonical they are only
unique up to certain moves (see the above references, as well as [17], [4], [31]).

We shall explain in [22] (see [21]) that, in general, the canonical object is not a
JSJ-tree but a JSJ deformation space, and that a JSJ-tree is just as unique as a tree
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in a general deformation space. We shall also give a general construction of this JSJ
space, valid for any finitely presented group and any class of edge groups (not just
slender ones).

With this in mind, we study here general properties of deformation spaces, focusing
on three main questions:

� Starting with one tree, what moves are needed to generate all trees in its defor-
mation space? Are slide moves sufficient?

� What is common to trees in the same deformation space? In particular, to what
extent do trees in the same space have the same vertex and edge stabilizers?

� What is the topology of a deformation space? Is it contractible? Is it finite
dimensional, or with a finite dimensional spine?

1. Contents of the paper

We fix a finitely generated group G and we consider metric simplicial trees T with
an isometric action of G, up to equivariant isometry. The action is always assumed
to be minimal. In this introduction we also assume irreducibility (it makes several
statements simpler).

A subgroup H � G is elliptic in T if it fixes a point. By definition, two trees
T , T 0 are in the same deformation space D if they have the same elliptic subgroups.
Equivalent characterizations (mainly due to Forester [16]) are the following (see The-
orem 3.8): there exist equivariant maps f W T ! T 0 and f 0 W T 0 ! T ; the trees
are related by a sequence of elementary deformations; their length functions are bi-
Lipschitz equivalent.

We also consider restricted deformation spaces DA, where we only consider trees
with edge stabilizers in a class A of subgroups ofG (such as cyclic subgroups, abelian
subgroups, etc.).

Sections 2 and 3 consist mainly of known facts and definitions. In Section 4, we
discuss what invariants may be extracted from a given deformation space D .

For instance, the first Betti number of the quotient graph � D T=G depends only
on D , not on T . We denote it by b1.D/.

Unfortunately, it is not true that all trees in D have the same vertex or edge
stabilizers. For one thing, one may (almost always) introduce new vertex groups by
using the isomorphismA ' A�BB . This leads us to consider trees which are reduced
(in the sense of [16]): if one collapses to a point all edges in a given orbit, one always
obtains a tree outside of D .

But reduced trees in D do not always have the same vertex groups. A basic
example is the Baumslag–Solitar group BS.1; 6/ D ha; t j tat�1 D a6i [18]. In the
deformation space consisting of trees with all stabilizers cyclic, there exists a reduced
tree with vertex stabilizers conjugate to hai, and another one exists with stabilizers
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conjugate to ha2i. If G D BS.2; 4/, there exist a reduced tree with one orbit of
vertices and another tree with two orbits.

One way to avoid these problems is to consider a restricted deformation space
DA and vertex stabilizers not in A. It is then true that all trees in DA have the same
vertex stabilizers not in A.

In general, the information about vertex stabilizers of trees in D is captured by a
finite set M which we associate to D .

In nice situations, for instance when no group fixing an edge is properly contained
in a conjugate of itself, M is simply the set of conjugacy classes of vertex stabilizers
of reduced trees (see Section 7 for more general statements). In general, an element
of M is a union of conjugacy classes of elliptic subgroups.

If T 2 D is reduced, we show that the number s of vertices of the quotient graph
satisfies jMj � s � 2jMj C 2b1.D/ � 2. This upper bound on s can be viewed as a
simple accessibility result, holding within a fixed deformation space (note that G is
not assumed to be finitely presented).

Similarly, it is not always true that reduced trees in D have the same edge groups.
But they have the same bi-elliptic groups and the same generalized edge groups, where
a group is bi-elliptic if it fixes two distinct points of T , is a generalized edge group if
it is bi-elliptic and furthermore it contains some edge stabilizer.

In JSJ theory, one encounters quadratically hanging subgroups. The important
information about such a subgroup is not its isomorphism type (it is often a free
group), but the way it is attached to the rest of the group (the topological picture being
a compact surface attached along its boundary components). It is therefore desirable
to attach a peripheral structure to vertex stabilizers of trees in D .

We explain how to define such a structure, given D and a maximal elliptic sub-
group G0. All trees in D have a vertex v with stabilizer G0, and the peripheral
structure contains information about incident edge groups. In nice situations, it is
simply the set of conjugacy classes of stabilizers of edges incident to v.

In Section 5, we discuss topologies on a deformation space D . There are two
natural topologies on D . The first topology is the equivariant Gromov–Hausdorff
topology (or simply Gromov topology), also called the axes topology because it may
be described in terms of length functions. The second topology is the weak topology,
associated to the natural structure of a cell complex on D .

As pointed out in [26], these topologies may be different. We show, however, that
they always agree on any subset of D which is contained in a finite union of cells, and
also show that they agree on the whole of D when D consists of locally finite trees with
finitely generated stabilizers. (As mentioned above, we assume in this introduction
that trees are irreducible. When D consists of G-trees with a G-fixed end, we have
to show the non-obvious fact that D is Hausdorff in the Gromov topology).

In Section 6, we discuss contractibility. Skora [35] introduced the idea of deform-
ing morphisms to prove that Culler–Vogtmann space and its closure are contractible.
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Using his technique, we show that a deformation space D is always contractible in
the weak topology. When D contains a tree with finitely generated vertex groups, we
show that it is contractible in the Gromov topology (this was proved independently
by Clay [7]) and the closure of D is contractible.

Here is a sketch of the argument for proving contractibility. It is relatively easy to
construct a mapF W D �Œ0; 1� ! D contracting D to a point (this requires choosing a
basepoint in trees of D in a continuous way; we give a direct geometric construction,
different from Skora’s minimization argument). The problem is to show that F is
continuous. We consider its restriction to S � Œ0; 1�, where S is a closed cell. It is
continuous in the Gromov topology. We show that the image of this restriction is a
subset of D meeting only finitely many cells (Finiteness Lemma 6.4). Since the two
topologies agree on such a subset, F is continuous in the weak topology on S � Œ0; 1�,
hence on the whole of D � Œ0; 1� by definition of the weak topology. As in [7], proving
continuity in the Gromov topology requires a finiteness hypothesis.

We also use Skora’s technique to give a direct proof of Forester’s deformation
theorem [16].

In Section 7, we study a “nice” class of deformation spaces, the non-ascending
ones. Without giving the definition here, let us mention two special cases. First,
spaces containing a tree which is weakly acylindrical in the following sense: if g 2 G
is non-trivial, its fixed point set contains no infinite ray. Also, spaces consisting of
trees such that no edge stabilizer properly contains a conjugate of itself. This applies
in particular to splittings over finite subgroups and to cyclic splittings of groups
containing no solvable Baumslag–Solitar group BS.1; n/ with n � 2.

Generalizing a result of Forester, we show that any two reduced trees in a non-
ascending deformation space are related by slide moves. In particular, they have
exactly the same vertex and edge stabilizers. We also show that a non-ascending
deformation space has a natural deformation retraction onto a finite-dimensional sub-
complex.

In Section 8, we consider a finitely generated subgroup F of Out.G/ leaving a
deformation space D invariant (see [5], [8], [23], [36] for related results). We show
that the fixed point set of F in D is empty or contractible, using the fact that this
fixed point set is a deformation space of yG-trees for some extension yG ofG. If F is a
solvable finite group and D is non-ascending, we show that F does have a fixed point
in D . We conclude the paper by a few facts about automorphisms leaving invariant
a deformation space consisting of locally finite trees.

2. Trees

LetG be a finitely generated group. Unless otherwise indicated (in Sections 5 and 6),
all trees will be simplicialG-trees, i.e., we consider a simplicial tree T with an action
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of G by simplicial automorphisms, without inversions. See [6], [11], [34] for basic
facts about trees.

We always assume that T is minimal: there is no properG-invariant subtree. This
implies that there are only finitely many orbits of edges, and no terminal vertices.

We usually assume that there is no redundant vertex (every vertex of T has
degree � 3), though we sometimes need to subdivide trees (in the proof of Lemma 6.5,
for instance).

Two distinct points a; b of T bound a unique segment Œa; b�. A finite subtree is
the convex hull of a finite set of points. An end of T is an equivalence class of infinite
rays, two rays being equivalent if their intersection is a subray.

A G-tree T may be considered as a simplicial (or combinatorial) object, or as a
metric space with an isometric action of G. The simplest way to define a metric is to
assign length 1 to every edge. More generally, one may assign any positive length to
each orbit of edges (recall that there are finitely many orbits).

Different length assignments lead to metric trees with the same underlying sim-
plicial tree (in Section 5, we shall say that they belong to the same open cone). They
are equivariantly bi-Lipschitz homeomorphic. It will sometimes be important to dis-
tinguish between a metric tree and the underlying simplicial (non-metric) tree.

Let T be a metricG-tree. The length function `T W G ! R is defined by `T .g/ D
minx2T d.x; gx/. When no confusion is possible, we simply write `. An element
g 2 G is elliptic if it has a fixed point (equivalently, if `.g/ D 0), hyperbolic otherwise.
A hyperbolic element has a translation axisAg , on which it acts as translation by `.g/
and d.x; gx/ D `.g/ C 2d.x;Ag/ for any x 2 T . This formula also holds if g is
elliptic, with Ag understood as the fixed point set of g.

A subgroup H � G is elliptic if it fixes a point. A finitely generated subgroup
is elliptic if and only if all its elements are elliptic [33]. But an infinitely generated
subgroup consisting of elliptic elements may fail to be elliptic; it then fixes a unique
end of T (see for instance [6], Theorem 3.2.6).

We distinguish five types of minimal G-trees (see [11] or [6], p. 134):
� Trivial: T is a point.
� Dihedral: T is a line, but G does not preserve orientation. The action factors

through an action of the infinite dihedral group D1 ' Z=2Z � Z=2Z.
� Linear abelian: T is a line, and G acts by translations. The action factors

through an action of Z.
� Genuine abelian: G fixes an end of T , and T is not a line. The quotient graph

� D T=G is homeomorphic to a circle. When there is only one orbit of edges, T is the
Bass–Serre tree of a strictly ascending HNN-extension G D hA; t j tat�1 D '.a/i,
where ' W A ! A is injective but not onto.

� Irreducible: there exist two hyperbolic elements with disjoint axes. In this case,
G contains a free group of rank 2 acting freely.
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Knowing the partition of G into elliptic and hyperbolic elements (i.e. the zero-
set of the length function) is enough to distinguish trivial, dihedral, abelian, irre-
ducible trees [11] (but the two abelian types are not distinguished). In particular, T
is irreducible if and only if there exist hyperbolic elements g, h whose commutator
Œg; h� D ghg�1h�1 is hyperbolic.

A tree is abelian if and only if its length function is the absolute value of a ho-
momorphism from G to R with cyclic image. Every element of the commutator
subgroup ŒG;G� is elliptic, but the subgroup ŒG;G� is elliptic if and only if the tree
is linear abelian. In particular, there is no genuine abelian G-tree if ŒG;G� is finitely
generated.

Trees are considered equal if they are equivariantly isometric. Two minimal non-
abelian G-trees with the same length function are equivariantly isometric (see [11]).

Maps between G-trees will always be G-equivariant. As trees are minimal, maps
are always onto. A map f W T ! T 0 between simplicial trees is simplicial if each
edge is mapped bijectively onto an edge (in particular, no edge is collapsed). It is a
morphism if each edge of T can be written as a finite union of subsegments, each of
which is mapped bijectively onto a segment in T 0. Equivalently, f is a morphism if
and only if one may subdivide T and T 0 so that f becomes simplicial. When T and T 0
are metric trees, simplicial maps and morphisms are required to map the subsegments
isometrically.

3. Generalities on deformation spaces

We fix a finitely generated group G. All trees considered in this section will be
minimal metric simplicial G-trees, up to equivariant isometry. We always assume
thatG acts without inversions. In this section and in the next one, only the simplicial
structure will really matter. In later sections, however, allowing edge lengths to vary
will be crucial.

Definition 3.1 (domination). We say that T dominates T 0 if there is an equivariant
(but otherwise arbitrary) map f from T to T 0.

Equivalently, T dominates T 0 if and only if every elliptic subgroup of T is elliptic
in T 0. The “only if” direction is clear and the converse is proved by first defining
f equivariantly on vertices, and then extending linearly to edges. Domination is a
pre-ordering. The corresponding equivalence classes are deformation spaces:

Definition 3.2 (deformation space). The deformation space D containing T is the set
of metric trees T 0 such that T and T 0 dominate each other, up to equivariant isometry.
Trees are in the same D if and only if they have the same elliptic subgroups. Identify-
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ing two trees when they differ only by rescaling the metric leads to the projectivized
deformation space PD .

For now D andPD are just sets, with no extra structure, but in Section 5 we shall
view them as topological spaces and complexes.

Definition 3.3 (collapse, collapsible edge). Let e be an edge of T . Collapsing every
edge in the orbit of e to a point produces a new tree T 0. We say that T 0 is obtained
by collapsing T (or e), and T is obtained by expanding T 0. Collapsing is defined for
simplicial trees. In the context of metric trees, it may be viewed as assigning length 0
to edges in the orbit of e.

The tree T 0 is dominated by T . Even if T 0 is not trivial, it is not necessarily in the
same D as T (this may happen if T is irreducible). We say that e is collapsible if T
and T 0 are in the same deformation space.

The stabilizer of a point v, or an edge e D vw, will be denoted by Gv or Ge . We
note that an edge e D vw is collapsible if and only if v and w are in distinct orbits
and at least one of the inclusions from Ge to Gv or from Ge to Gw is onto [16].

Indeed, if v and w are in distinct orbits and the inclusion from Ge to Gv is onto,
then collapsing e does not change the set of elliptic subgroups: the stabilizer of w
does not change (sinceGv �Gv

Gw D Gw ), and although the vertex v “disappears” its
stabilizer remains elliptic (it is contained inGw ). On the other hand, collapsing e with
Ge ¤ Gv and Ge ¤ Gw would create a new elliptic subgroup, namely Gv �Ge

Gw .
If v and w are in the same orbit, say gv D w, then g is hyperbolic in T (because
there is no inversion) and collapsing e makes g elliptic.

Definition 3.4 (elementary collapse, elementary deformation). When e is collapsible,
passing from T to T 0 is called an elementary collapse. The reverse of an elementary
collapse is an elementary expansion. A finite sequence of elementary collapses and
expansions is called an elementary deformation [16]. An elementary deformation
between metric trees is an elementary deformation between the underlying simplicial
trees.

Definition 3.5 (reduced). A tree T is reduced (in the sense of Forester [16]) if no
elementary collapse is possible (collapsing any edge yields a tree in a different defor-
mation space). Equivalently: if an edge e D vw satisfiesGe D Gv , then v and w are
in the same G-orbit.

Being reduced is stronger than being BF-reduced (in the sense of Bestvina–Feighn
[3]), where Ge ! Gv being onto only implies that the image of v in the quotient
graph � D T=G has valence at least 3.

Given any treeT , one may perform a (usually non-unique) sequence of elementary
collapses so as to obtain a reduced tree Tr . We say that Tr is a reduction of T .



142 V. Guirardel and G. Levitt

Remark 3.6. If the reduced trees T , T 0 are related by an elementary deformation,
there exists a sequence of reduced trees T D T1; : : : ; Tk D T 0 such that Ti and TiC1

are different reductions of a treeSi (to see this, callSi the intermediate trees appearing
in the deformation between T and T 0, and choose a reduction Ti for each Si ).

Remark 3.7. Suppose that T , T 0 have the same elliptic subgroups, and T is reduced.
If f W T ! T 0 is equivariant, and e D vw is an edge of T , then f .v/ ¤ f .w/.
Otherwise, one could modify f to be constant on e, so f would factor through the
tree T 00 obtained by collapsing e. But since T is reduced, T 00 does not dominate T .
Since T 00 dominates T 0 which dominates T , this is a contradiction.

By definition, trees related by an elementary deformation are in the same defor-
mation space. Forester proved that the converse is true, hence the terminology. More
explicitly:

Theorem 3.8. Given two G-trees T and T 0, the following are equivalentW
(1) T and T 0 are in the same deformation spaceI
(2) there exist equivariant maps f W T ! T 0 and f 0 W T 0 ! T I
(3) T and T 0 have the same elliptic subgroupsI
(4) T and T 0 are related by an elementary deformationI
(5) there exists an equivariant quasi-isometry from T to T 0I
(6) there exists an equivariant map f W T ! T 0 having bounded preimages.

If T and T 0 are not abelian one may addW
(7) the length functions `T , `T 0 of T and T 0 are bi-Lipschitz equivalent .there exists

C > 0 such that 1
C
`T � `T 0 � C`T /.

All conditions are obviously satisfied when T , T 0 are metric trees with the same
underlying simplicial tree, so this is really a statement about simplicial trees.

Proof. The equivalence between (1) through (6) is in [16]. We sketch some of the

arguments. We have seen .1/ () .2/ () .3/. The implication .3/ ) .4/ is one of
the main results of [16]; we shall provide a new proof in Section 6 (see Theorem 6.6).
.4/ ) .5/ because an elementary collapse is a quasi-isometry: if e is a collapsible
edge, then any connected component of G:e has diameter at most 2. Obviously
.5/ ) .6/. We show .6/ ) .3/. If H � G fixes x 2 T , it fixes f .x/ 2 T 0.
Conversely, if H fixes y 2 T 0, it leaves invariant the bounded set f �1.y/ � T and
so fixes a point in T . Thus .6/ ) .3/.

We now show .5/ () .7/. Given any x 2 T and g 2 G, one has `T .g/ D
limn!1 d.x;gnx/

n
, so .5/ always implies .7/. Conversely, assume .7/. Then T and T 0
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have the same elliptic elements. We must show that they have the same elliptic
subgroups, provided that they are not abelian. We suppose that a subgroup H fixes
y 2 T 0 but is not elliptic in T , and we obtain a contradiction.

The group H fixes a unique end of T . Since T is not abelian, it is irreducible
and we can find a hyperbolic g 2 G whose axis Ag does not contain that end. The
set `T .gH/ is then unbounded, as there exist elements of H whose fixed point set
is arbitrarily far from Ag (see [28], Proposition 1.7). By .7/, the set `T 0.gH/ also
is unbounded. This is a contradiction, as it is bounded by the distance from y to gy
in T 0.

Remark 3.9. .3/ ) .5/ and .3/ ) .6/may obviously be strengthened as follows: if
T , T 0 have the same elliptic subgroups, then any equivariant map f W T ! T 0 which
is piecewise linear on each edge is a quasi-isometry and has bounded preimages. We
give a direct argument to show that f has bounded preimages if (3) holds (this will
be useful in the proof of Theorem 6.6). One can subdivide T and T 0 so that f maps
each edge to a vertex or an edge. We only need to prove that the preimage of a vertex
is bounded, and since T , T 0 have finitely many orbits of vertices, it suffices to show
that sets of the form G:v \ f �1.f .v// are bounded. This intersection is equal to
H:v \ f �1.f .v//, where H is the stabilizer of f .v/. By .3/, H is elliptic in T , so
H:v is bounded.

Proposition 3.10. The following statements hold:

(1) All trees in a given deformation space have the same type .trivial, dihedral,
trivial abelian, genuine abelian, irreducible/.

(2) All trees in a given abelian deformation space have the same length function up
to scaling.

(3) If T is trivial, linear abelian, or dihedral, its projectivized deformation space
consists of only one point.

A deformation space D will be called genuine abelian, or irreducible, if the trees
contained in D are genuine abelian, or irreducible. These are the only interesting
types.

Remark 3.11. More generally, a non-elementary collapse does not change the type,
as long as the collapsed tree is not trivial.

Proof. The first assertion follows from remarks made in Section 2.
The length function of an abelian tree is the absolute value of a homomorphism

' W G ! R with cyclic image. The deformation space determines the kernel of ',
hence ' up to scaling. This shows (2).

(3) is trivial in the trivial case. There is only one linear abelian tree with length
function j'j, so (3) holds in the linear abelian case. Now suppose that T is dihedral,
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and T 0 is in the same deformation space. The actions of G on T and T 0 have the
same kernel (elements acting as the identity), equal to the set of elliptic elements
whose product with any elliptic element is elliptic. One then observes that the infinite
dihedral group only has one non-trivial action, up to scaling.

A deformation space D is determined by the family E consisting of all elliptic
subgroups. Often one also wants to restrict edge stabilizers. Let A be a family of
subgroups ofG, stable under conjugating and passing to a subgroup. For instance, A

may consist of all subgroups which are finite, cyclic, abelian, slender, small, etc.

Definition 3.12 (restricted deformation space DA). We define DA � D as the set
of trees T 2 D whose edge stabilizers belong to A. We call DA � D a restricted
deformation space, or simply a deformation space. We shall see later that any D

contains a smallest nonempty DA, called the reduced deformation space Dr .

Examples. � If G is a free group Fn, Culler–Vogtmann’s outer space is the projec-
tivized deformation space obtained when E consists only of the trivial group.

� Suppose that G D G1 � 	 	 	 � Gp � Z � 	 	 	 � Z, where each Gi is non-trivial,
non-isomorphic to Z, and freely indecomposable. Let E consist of subgroups of
conjugates of the factors, and A consist only of the trivial group. The projectivized
space PDA is the space constructed by McCullough–Miller [26]. If E contains only
subgroups of conjugates of the factorsGi , then PDA is the space considered in [20].

� Let G be a generalized Baumslag–Solitar group (GBS group), i.e., G acts on
a tree with all edge and vertex stabilizers isomorphic to Z. If G is not Z, Z2, or
the Klein bottle group, all such G-trees belong to the same deformation space [16].
We shall call it the canonical deformation space of G. It is genuine abelian if G
is a solvable Baumslag–Solitar group BS.1; n/ with n ¤ ˙1, irreducible if not. If
G D Z2 there are infinitely many deformation spaces, all of them linear abelian. If
G is the Klein bottle group, there are two spaces; one is linear abelian, the other one
is dihedral.

� Let G be the fundamental group of a closed orientable surface †. Any G-tree
with cyclic edge stabilizers is dual to a family of disjoint essential simple closed
curves (see [27], Theorem III.2.6). After projectivization, the space of metricG-trees
with cyclic edge stabilizers may be identified with the curve complex of†. Two such
trees are in the same deformation space if and only if they belong to the same open
simplex.

� Suppose that G has a non-trivial center Z, and D is genuine abelian or irre-
ducible. Standard arguments show that Z acts as the identity on any T 2 D (an
element z 2 Z cannot be hyperbolic, as its axis would be an invariant line; so z is
elliptic, and its fixed point set is an invariant subtree, equal to T by minimality). We
may therefore view D as a deformation space over G=Z.
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4. Invariants of deformation spaces

Trees in a given deformation space D may be fairly different. Still, certain features
depend only on D .

Betti number. The quotient of G by the subgroup generated by all elliptic elements
is a free group, isomorphic to the (topological) fundamental group of the quotient
graph � D T=G for any T 2 D . The rank of this group will be called the Betti
number b1.D/ of D .

Acylindricity. A G-tree T is called acylindrical [32] if there exists k such that, for
any non-trivial g 2 G, the fixed point set of g has diameter less than k. As all trees in
D are equivariantly quasi-isometric to each other, acylindricity depends only on D

(but k depends on T ).
Similar considerations apply to the following weak form of acylindricity: if g is

non-trivial, its fixed point set contains no infinite ray.

Local finiteness. It is easy to see that an elementary collapse, or an elementary
expansion, preserves the property that T is locally finite (recall that we only consider
minimal trees). Local finiteness of trees is therefore a property of the deformation
space. For instance Culler–Vogtmann space, the space constructed by McCullough–
Miller when G is a free product of finite groups, the canonical deformation space of
a GBS group have this property.

Vertex groups. Though all trees in a deformation space D have the same elliptic
subgroups, they do not necessarily have the same vertex and edge stabilizers, even if
they are reduced.

Examples. � In the canonical deformation space of BS.1; 6/ D ha; t j tat�1 D a6i,
there exists a tree T1 whose vertex stabilizers are conjugates of hai, and another tree
T2 whose vertex stabilizers are conjugates of ha2i (see Example 4.3 in [18]). Note
that hai is conjugate to the subgroup ha6i � ha2i.

� Now consider the Bass–Serre tree of the HNN-extension BS.2; 4/ D
ha; t j ta2t�1 D a4i. There is one orbit of vertices. Vertex stabilizers are con-
jugates of hai. On the other hand, the tree associated to the presentation BS.2; 4/ D
ha; b; t j tbt�1 D b2; a2 D b2i, though reduced, has two orbits of vertices, with
vertex stabilizers conjugates of hbi and hai (see [25]).

These examples are possible because there exist edge stabilizers which properly
contain conjugates of themselves. In Section 7, we shall study non-ascending de-
formation spaces, where such examples cannot occur. In a non-ascending space D ,
every elliptic subgroup is contained in a maximal one. All reduced trees T 2 D have
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the same vertex and edge stabilizers, and there is a natural bijection between the set of
G-orbits of vertices and the set M of conjugacy classes of maximal elliptic subgroups
(but there may exist distinct vertices of T with the same stabilizer).

In a general deformation space, we have to define a set M in a more complicated
way.

Definition 4.1 (vertical set M). We associate a set M to D as follows (compare the
definition of vertical subgroups in [18]). Given elliptic subgroups H and K, define
H � K if H is contained in a conjugate of K, and H 
 K if H � K and K � H .
The set C of equivalence classes is partially ordered, and we define M as the set of
maximal elements of C .

If H is a maximal elliptic subgroup, its equivalence class equals its conjugacy
class and is an element of M; in general, an element of M is a union of conjugacy
classes of elliptic subgroups. If D contains T such that no edge-to-vertex inclusion
Ge ! Gv is onto, M is simply the set of conjugacy classes of maximal elliptic
subgroups; it may be identified with the set of G-orbits of vertices.

Example. In the example of BS.1; 6/ given above, the groups hai and ha2i are equiv-
alent. Their class is the unique element of M. There is no maximal elliptic subgroup
(in this example D is abelian, but this may also occur in irreducible deformation
spaces). In the BS.2; 4/ example, the set M has one element, the conjugacy class of
hai (a maximal elliptic subgroup). The vertex stabilizer hbi is not maximal elliptic.

Given a tree T , we denote by s the number of vertices of the quotient graph
� D T=G. It is the number of G-orbits of vertices of T .

Proposition 4.2. Let D be a deformation space.

(1) The set M is finite. If T 2 D , the number s of vertices of � D T=G satisfies
s � jMj.

(2) If T 2 D is reduced, or only BF-reduced, then s � 2jMj C 2b1.D/ � 2.

Proof. Fix T 2 D . There is a natural map ' from the set ofG-orbits of vertices of T
to C : associate to the orbit of v 2 T the equivalence class of Gv . Since any elliptic
subgroup is contained in some Gv , the image of ' contains M. This shows the first
assertion. Also note that any elliptic subgroup is contained in an elliptic subgroup
whose class is in M.

The graph � has first Betti number b1.D/. To prove the second assertion, it
suffices to show that jMj is an upper bound for the number of vertices of valence 1
or 2. Suppose that v 2 T projects onto such a vertex Nv. Since T is minimal and
BF-reduced, the group Gv is a maximal elliptic subgroup, as no inclusion Ge ! Gv

is onto. Thus '.Gv/ 2 M. Furthermore, '.Gv/ ¤ '.Gw/ if Nv, xw are distinct
vertices of valence 1 or 2. This shows the required bound.
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Assertion (2) of the proposition says that accessibility always holds within a given
deformation space (the only assumption beingG finitely generated). The accessibility
theorem of [3] is equivalent to saying that, given a finitely presented group G, there
exists a uniform bound jMj � C , valid for all deformation spaces containing a tree
with small edge stabilizers.

The trees such that s D jMj are precisely the fully reduced trees defined in [18].
Forester proved that the canonical deformation space of a generalized Baumslag–
Solitar group always contains a fully reduced tree [18]. He has an example showing
that this is not true in general. In any case, even when there is a fully reduced tree, it
may not be the most natural element of D .

Example. Let G D ha1; b1; a2; b2; a3; b3 j Œa1; b1� D Œa2; b2� D Œa3; b3�i be the
fundamental group of the space obtained by gluing three once-punctured tori together
along their boundary. Consider the associated deformation space, where a subgroup
is elliptic if and only if it is contained in a conjugate of Gi D hai ; bi i. The set M

has 3 elements. There are trees whose quotient graph � has 3 vertices and 2 edges
(for instance the tree corresponding to G D G1 �Z G2 �Z G3, with Z D hŒai ; bi �i),
but none of them is invariant under the automorphism of order 3 mapping ai , bi to
aiC1, biC1 mod 3. To get an invariant (but not reduced) JSJ tree, one has to create a
“central” vertex of � with group Z (see [4]).

As mentioned above, it is not always true that elements of M are conjugacy classes
of maximal elliptic subgroups and correspond bijectively with the vertices of � for T
reduced. Things become nicer in a non-ascending space (see Section 7), or if we work
in a restricted deformation space DA (see Definition 3.12) and consider only vertex
stabilizers not in A.

Proposition 4.3. For any T 2 DA, the assignment v 7! Gv induces a bijection from
the set of vertices v of T with Gv … A, to the set of maximal elliptic subgroups not
in A.

If we call big a group which is not in A, we get:

Corollary 4.4. All trees in DA have the same “big” vertex stabilizers.

Edge groups. We associate three families of subgroups of G to a G-tree T . Each
family is contained in the next.

� Edge groups: a stabilizer Ge , with e an edge.
� Generalized edge groups: a groupH such thatGe � H � Ge0 , with e, e0 edges

of T .
� Bi-elliptic groups: a groupH contained in someGe (equivalently, a group fixing

two distinct points of T ).
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Example. Consider the trees T1; T2 in the canonical deformation space of BS.1; 6/,
as in the examples on page 145. Fix i 2 Z. The groupH D hai i is always bi-elliptic
(in both T1 and T2). It is a generalized edge group if and only if i divides a power
of 6. It is an edge group of T1 if and only if i is a power of 6, an edge group of T2

if and only if i is twice a power of 6. This example illustrates the general fact that
bi-elliptic groups and generalized edge groups are more canonical than edge groups
(see Proposition 4.6).

Proposition 4.5. Let T be reduced. A subgroupH � G is bi-elliptic in T if and only
if it is contained in a subgroup K having one of the following formsW
(1) K D A \ B , where A and B are elliptic, but hA;Bi is not elliptic.

(2) K is elliptic and there exists a hyperbolic g 2 G such that K � gKg�1.

In particular, all reduced trees in a given deformation space have the same bi-
elliptic subgroups.

Proof. We first show that anyK as indicated is bi-elliptic. IfK is as in (1), the groups
A and B fix distinct points a; b, and K fixes the segment Œa; b�. If K is as in (2), it
fixes a point x and also the point gx ¤ x.

Conversely, supposeH fixes an edge e D ab. IfGe is properly contained in both
Ga and Gb , then (1) holds with K D Ge D Ga \ Gb (note that hGa; Gbi is not
elliptic). If, say, Ge D Ga, there exists a hyperbolic g such that b D ga (because T
is reduced) and (2) holds with K D Ga.

Proposition 4.6. Given simplicial .non-metric/ trees T , T 0 in the same deformation
space, the following conditions are equivalentW
(1) There exist morphisms f W T ! T 0 and f 0 W T 0 ! T .

(2) T and T 0 have the same generalized edge groups.

(3) T and T 0 have the same bi-elliptic groups.

These conditions are satisfied if T and T 0are reduced.

See Section 2 for the definition of a morphism.

Proof. Clearly .2/ ) .3/, as bi-elliptic groups are just subgroups of generalized edge
groups. It is also clear that .1/ ) .3/, since a morphism cannot collapse an edge.
Let us show the stronger statement .1/ ) .2/. We have to prove that every edge
stabilizer Ge of T contains an edge stabilizer of T 0. Since f 0 is onto, some edge e0
of T 0 contains a non-degenerate segment which is mapped injectively into e by f 0.
The stabilizer of e0 is contained in Ge .

We now show .3/ ) .1/. Given T and T 0 in D , there is an equivariant map
f W T ! T 0 which is linear on edges. It is a morphism if and only if no edge e
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of T is mapped to a point. Suppose that f .e/ is a point v 2 T 0. The group Ge

fixes v, and by (3) it fixes a non-degenerate segment Œv; w� � T 0. We redefine f
on e by subdividing e into two halves and mapping each half onto Œv; w�. Doing this
equivariantly on each orbit of collapsed edges replaces the original f by a morphism.

We have seen that (3) holds if T and T 0 are reduced (Proposition 4.5).

Definition 4.7 (bi-morphism class). We say that two simplicial trees T , T 0 are bi-
morphically equivalent, or belong to the same bi-morphism class, if they satisfy the
equivalent conditions of Proposition 4.6. Metric trees are said to be bi-morphically
equivalent if the underlying simplicial trees are.

A deformation space D is thus partitioned into bi-morphism classes. There is only
one class if D is abelian, as any elliptic subgroup is bi-elliptic.

Definition 4.8 (Amin, reduced deformation space Dr ). Given D , we denote by Amin

the family of subgroupsH described in Proposition 4.5 (the bi-elliptic groups of any
reduced T ). They may be characterized as the groups which fix an edge in every tree
belonging to D . The associated restricted deformation space DAmin � D , consisting
of trees T 2 D with all edge stabilizers in Amin, is the reduced deformation space,
denoted Dr .

The space Dr may be viewed as the bi-morphism class containing the reduced
trees. Trees in Dr have the same generalized edge groups and the same bi-elliptic
groups (those of Amin), but not necessarily the same edge groups.

Proposition 4.2 provides a bound for the complexity of reduced trees. In general,
there is no bound for complexity in Dr (it is infinite dimensional), unless some
descending chain condition holds (for instance, if Amin consists of finite groups).
This phenomenon already occurs in the canonical deformation space of GBS groups,
for instance for BS.2; 4/. There are also non-ascending GBS examples (see the end
of Section 7).

Peripheral structure. Let D be a deformation space, and Amin as defined above.
Let Dr � D be the reduced deformation space, so that T 2 D is in Dr if and only
if all its edge stabilizers are in Amin.

We say that a vertex stabilizer is big if it is not in Amin. We have seen (Proposi-
tion 4.3 and Corollary 4.4) that all trees in Dr have the same big vertex stabilizers,
and that such vertex stabilizers coincide with maximal elliptic subgroups which are
not in Amin.

The goal of this subsection is to associate a peripheral structure M0 to a maximal
elliptic subgroup G0. It depends only on D and G0.

First suppose that the maximal elliptic subgroup G0 is big (not in Amin). We
consider the set of all subgroups H � G0 which belong to Amin. Among such
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groups, we define H � K if H is contained in a conjugate gKg�1 (with g 2 G0),
and H 
 K if H � K and K � H .

Let M0 be the set of maximal elements of the set of equivalence classes. An
element m 2 M0 is a family of subgroups of G0, stable under conjugation (when
no bi-elliptic subgroup of G0 is conjugate to a proper subgroup of itself, m is just a
conjugacy class of subgroups).

Proposition 4.9. Let G0 … Amin be a maximal elliptic subgroup. Given T 2 Dr , let
v be the .unique/ vertex with stabilizer G0.

(1) If an edge e is adjacent to v, there exists m 2 M0 such that Ge is contained in
a group belonging to m.

(2) Given m 2 M0, there exists an edge e adjacent to v such that Ge belongs to m.

(3) The image Nv of v in the quotient graph � D T=G has valence at least jM0j. In
particular, M0 is finite.

(4) There exists T 0 2 Dr such that equality holds in (3): the valence of Nv is jM0j.

Proof. Let C0 consist of all groups Gf , for f an edge of T adjacent to v. It is a
finite union of conjugacy classes of subgroups of G0, and any bi-elliptic subgroup
ofG0 is contained in an element of C0. Since C0=
 is finite,Ge is contained in some
Gf which is maximal in C0=
. But Gf is also maximal in the set of all bi-elliptic
subgroups of G0, so represents an element m 2 M0. This proves (1).

To prove (2), let H � G0 be a representative of m 2 M0. Since H is bi-elliptic,
H � Ge for some edge e adjacent to v. By maximality, H 
 Ge .

Given m0 ¤ m in M0, define H 0 and e0 similarly. The edges e and e0 are in
different G0-orbits, since otherwise H 
 Ge 
 Ge0 
 H 0, contradicting m ¤ m0.
Assertion (3) follows.

If equality does not hold in (3), there exist oriented edges e, f with origin v, in
distinct Gv-orbits, with Ge � Gf . Perform an elementary expansion, creating an
edge vw with stabilizer Gf , with e and f now attached to w. The new tree is again
in Dr (no new bi-elliptic group is created), and the valence of Nv has decreased by 1.
Iterating this operation proves (4).

Definition 4.10 (peripheral structure M0). The set M0 is the peripheral structure of
the maximal elliptic subgroup G0 … Amin. It describes stabilizers of edges adjacent
to the vertex with stabilizerG0, in any tree belonging to Dr (in particular, in reduced
trees). When no bi-elliptic subgroup of G0 is conjugate to a proper subgroup of
itself, and equality holds in (3), the set M0 is simply the set of conjugacy classes of
stabilizers of edges adjacent to v.

More generally, we now wish to consider any maximal elliptic subgroup G0,
whether in Amin or not. The definition of M0 given above makes sense ifG0 2 Amin,
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but is not satisfying since in this case M0 consists of a single equivalence class
m D fG0g. We shall give a better one.

Let G0 be any maximal elliptic subgroup. Given a reduced T 2 D , choose v
with stabilizer G0 (it is not necessarily unique). If Ge ¤ Gv for every adjacent edge
e D vw, then G0 … Amin. Suppose therefore that there is e D vw with Ge D G0.
Then w is in the G-orbit of v because T is reduced, and Gw D G0 because G0 is
maximal elliptic. The projection of the fixed subtree T0 ofG0 into � D T=G consists
of loops attached to the projection Nv. If N.G0/ denotes the normalizer of G0, the
quotientN.G0/=G0 acts on T0 freely, with one orbit of vertices. It is free, with rank k
equal to the number of loops.

To define M0, we consider all groups H D G0 \ G1, where G1 is elliptic and
not contained in G0. Among such subgroups of G0, we define H � K whenever H
is contained in gKg�1 for some element g of the normalizer N.G0/. The set M0 is
then defined as above, as a set of maximal elements. This definition agrees with the
one given before when G0 … Amin.

Proposition 4.11. Let D be a deformation space, and G0 be any maximal elliptic
subgroup. Let T 2 D be reduced. Let v be any vertex with stabilizer G0.

(1) If an edge e is adjacent to v and Ge ¤ G0, there existsm 2 M0 such that Ge is
contained in a group belonging to m.

(2) Given m 2 M0, there exists an edge e adjacent to v such that Ge belongs to m.

(3) The image Nv of v in the quotient graph� D T=G has valence at least jM0jC2k,
where k is the rank of the free group N.G0/=G0.

We leave the proof to the reader.

5. Topologies on deformation spaces

In this and the next section, D is a deformation space or, more generally, a restricted
deformation space DA. Because of Proposition 3.10 we assume that D is irreducible
or genuine abelian. So far D was mostly viewed as a set. We shall now view D as a
topological space and a complex.

We first consider the set T of all non-trivial minimal metric simplicialG-trees, up
to equivariant isometry.

Three topologies. The equivariant Gromov–Hausdorff topology (or simply Gromov
topology) on T is defined as follows. A fundamental system of neighborhoods for
T 2 T is given by sets VT .X;A; "/, with X � T and A � G finite sets and " > 0.
By definition, T 0 is in VT .X;A; "/ if and only if there exists a “lifting” map x 7! Qx
from X to T 0 such that jd.x; gy/ � d. Qx; g Qy/j < " for every x; y 2 X and g 2 A.
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Remark 5.1. This topology may fail to be Hausdorff. For example, consider T , T 0
with the same length function, with T a line and T 0 genuine abelian. Then every
neighborhood of T contains T 0.

The axes topology on T is the coarsest topology making each translation length
functionT 7! `T .g/ continuous (it is coarser than the Gromov topology, as translation
lengths are continuous in the Gromov topology). By [28], the two topologies have the
same restriction to the set of non-abelian trees (note that dihedral trees are considered
irreducible in [28]). Since non-abelian trees are determined by their length function,
this restriction is Hausdorff.

We now discuss the weak topology. Beware that the open or closed cones to be
defined now are not necessarily open or closed in the topological sense.

The set of metricG-trees obtained from a given simplicial tree T by varying edge-
lengths (keeping them positive) will be called an open cone C . Its dimension p is the
number of orbits of edges (recall that T has no redundant vertices). Two metric trees
are in the same open cone if and only if they are equivariantly homeomorphic.

If we allow edge-lengths of T to become 0 (keeping at least one of them positive,
so that the tree does not become trivial), we obtain the closed cone xC spanned by T .
It consists of trees obtained from T by (possibly non-elementary) collapses. It may
be identified to an octant .RC/p nf.0; : : : ; 0/g. A closed cone is a finite union of open
cones.

The weak topology on T is defined by declaring a set to be closed when its
intersection with every closed cone is closed. It is always finer than the Gromov
topology (a weakly converging sequence converges in the Gromov topology).

If a closed cone xC meets an abelian deformation space D , then it is contained
in D , as any collapse or expansion of an abelian tree is elementary (in the sense of
Section 3). If D is irreducible, then D \ xC is not necessarily closed in xC (this will be
discussed later), but it is convex. To see this, we use Condition (7) of Theorem 3.8:
if ` and `0 are bi-Lipschitz equivalent, then any convex combination is also equivalent
to ` and `0.

Projectivized space. Rescaling the metric defines an action of the group of positive
reals on T , and the real object of interest is the quotient space P T . It is a complex,
an open (resp. closed) simplex being the projection of an open (resp. closed) cone
of T . The three topologies defined on T induce quotient topologies on P T .

If we choose a finite generating system S for G, the projection T ! P T has a
natural section defined as the set of trees such that

P
s2S `.s/ C P

s;t2S `.st/ D 1

(recall that a tree such that all elements s and st are elliptic is trivial [33]). This
section is continuous in all three topologies (because the maps T 7! `T .g/ are), so T

is homeomorphic to P T � R. In practice, we shall work in either T or P T , and the
results will automatically apply to the other space.
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Topologies on D . We now restrict these topologies to a given deformation space D

(irreducible or genuine abelian). First consider the Gromov topology and the axes
topology.

If D is irreducible, the restrictions are the same. The induced topology will be
called the Gromov topology on D . It is Hausdorff.

If D is genuine abelian, all trees in D have the same length function (up to
scaling) and the axes topology is trivial on PD . We therefore only consider the
Gromov topology. We shall prove that it is Hausdorff (it is not obvious in this case),
see Proposition 5.7.

We now consider the weak topology. There is a subtlety here in the irreducible
case due to the fact that D , though a union of open cones of T , is not necessarily
a union of closed cones (D is not closed in T for the weak topology). Indeed, the
closed cone xC of T spanned by a given T 2 D is not always entirely contained in D ,
as collapsing certain orbits of edges may yield a tree not in D . The intersection of xC
with D is the set of trees that may be obtained from trees in C by elementary collapses
(as defined in Section 3). It will be called a closed cone of D (it may have faces “at
infinity”). Closed simplices of PD are defined similarly. A closed cone (resp. closed
simplex) is a finite union of open cones (resp. simplices). It always contains reduced
trees.

Remark. Although simplices ofPD are not actual simplices, there is a standard way
to obtain a genuine simplicial complex (see [12], [26]). Start from the barycentric
subdivision of P T and look at the union of closed simplices which are contained in
PD . One easily checks that one obtains a simplicial complex contained in PD on
which PD retracts by deformation.

The weak topology on D is defined as the induced topology. A subset of D is
closed in D if and only if its intersection with any closed cone of D is closed (in the
cone). Similarly, a subset of PD is closed in the weak topology if and only if its
intersection with any closed simplex of PD is closed.

As pointed out in [26], the weak topology does not always coincide with the
Gromov topology or the axes topology. Indeed, the weak topology on a locally
infinite complex is never metrizable (there is no countable basis of neighborhoods).

Proposition 5.2. Let D be a deformation space. The Gromov topology and the weak
topology induce the same topology on any finite union of cones of D .resp. of simplices
of PD/.

The proof will show that the analogous result for cones in T is true if none of the
cones is contained in an abelian deformation space. But it may be false on the union
of two cones contained in different abelian deformation spaces (see Remark 5.1). The
proof of the proposition for D abelian requires the fact that D is Hausdorff in the
Gromov topology. This will be proved at the end of this section.
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Proof. It suffices to show the result in PD . Let † be any finite union of simplices
of P T (not necessarily contained in PD). Let x† be its weak closure in P T . Trees
in x† are obtained by performing (possibly non-elementary) collapses on trees in †.
Being a finite union of closed simplices ofP T , the space x† is weakly compact. Since
the weak topology is finer than the Gromov topology, it is enough to show that x† is
Hausdorff in the Gromov topology.

If † contains only non-abelian trees, so does x†, and we know that the set of non-
abelian trees is Hausdorff in the Gromov topology. If † is contained in a genuine
abelian deformation space D , we have seen that x† D †. We then use the fact that
PD is Hausdorff in the Gromov topology (see Proposition 5.7).

Remark 5.3. In particular, the topologies agree on any open or closed cone of D .
Such a cone being convex (as a subset of Rp), it is contractible. The same holds for
simplices of PD .

Locally finite trees. In this subsection we assume that all trees in D are locally
finite (see Section 4 for a discussion, and examples of local finiteness). In this case,
it is easy to show that the complex PD is locally finite (see [25]). Moreover, all
vertex and edge stabilizers are commensurable, so they are all finitely generated, or
all infinitely generated. We shall show:

Proposition 5.4. If D consists of locally finite trees with finitely generated vertex
stabilizers, then the Gromov topology and the weak topology coincide on D and
PD .

Let T be a tree. Denote by E.T / the set of oriented open edges of T , and by
e 7! Ne the involution mapping an edge to the opposite edge. Say that three oriented
edges e1, e2, e3 are aligned in this order if there is a geodesic going through e1, e2

and e3 successively, with the correct orientation.

Lemma 5.5. LetT ,T 0 be two simplicialG-trees. ThenT is a .maybe non-elementary/
collapse ofT 0 if and only if there exists aG-equivariant injection ' W E.T / ,! E.T 0/,
with '. Ne/ D '.e/, which preserves alignment in the following senseW if e1, e2, e3 are
aligned in this order, then so are '.e1/, '.e2/, '.e3/.

Proof. If f W T 0 ! T is a collapse map, then the preimage of each open edge of T
is an open edge of T 0. This defines a map ' W E.T / ! E.T 0/ with the desired
properties.

Conversely, we are given ' and we want to define a collapse map f W T 0 ! T .
Let I � T 0 be the union of all open edges in the image of '. We first define f on I ,
using '�1. Next, consider x 2 T 0 n I . Let ˛, ˇ be two edges in I such that x is in
the convex hull of ˛ [ ˇ (they exist because T 0 is minimal). Choose ˛, ˇ so that this
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hull is minimal. Orient ˛ and ˇ so that they point towards x. Denote by y˛ and yˇ

the terminal points of '�1.˛/ and '�1.ˇ/ respectively. If y˛ ¤ yˇ , there is an edge
e between them, and e ¤ ˛; ˇ because ' preserves alignment. Then '.e/ is between
˛ and ˇ, contradicting minimality in the choice of ˛, ˇ. Thus y˛ D yˇ , and we may
define f .x/ D y˛ consistently. The map f is clearly a collapse map.

Proof of Proposition 5.4. If T , T 0 are metric trees, we say that T 0 collapses to T if
this is true for the underlying simplicial trees. Local finiteness implies that, given
T 2 D , the set S.T / consisting of trees of D which collapse to T is a finite union of
cones. Since the weak topology is finer than the Gromov topology and both topologies
coincide on S.T / by Proposition 5.2, it suffices to prove that S.T / contains the
intersection of D with some Gromov-neighborhood VT .X;A; "/ of T .

By local finiteness of T , one can find a finite subtree K of T such that, for each
pair ˛, ˇ of adjacent edges, there exists g 2 G mapping both ˛ and ˇ into K. Let X
be the set of vertices of K. Let A � G be a finite set containing a set of generators
of each Gv for v 2 X (recall that each Gv is assumed to be finitely generated) and
also an element sending v1 to v2 for each pair of points v1; v2 2 X lying in the same
G-orbit. Take " very small compared to the lengths of edges of T . We show that any
T 0 2 D \ VT .X;A; "/ collapses to T .

We first construct an equivariant map v 7! v0 from V.T / (the set of vertices of T )
to T 0. If v 2 X we denote by Qv a “lift” of v to T 0, as in the definition of VT .X;A; "/.
For each G-orbit of vertices, choose a representative vi 2 X . Since Gvi

is elliptic in
T 0, and the generators of Gvi

move Qvi by less than ", the group Gvi
has a fixed point

in T 0 at distance at most "=2 from Qvi . We define v0
i to be such a point, and we extend

equivariantly.
If v 2 X is not a vi , the point v0 is at distance at most 3"=2 of Qv. It follows that,

if uv and uw are two adjacent edges of T , then the distances between u0, v0, w0 are
4"-close to the distances between u, v, w (this is true if the points are vertices of K,
hence in general by our choice of K). In particular, the overlap between u0v0 and
u0w0 has length at most 6".

We shall now define a map ' W E.T / ! E.T 0/ as in Lemma 5.5. For each edge
e D uv of T , let Ie be the segment of T 0 obtained by removing from u0v0 the 6"-balls
centered at u0 and v0. Our choice of " guarantees that Ie has length much bigger than
". If e1, e2 are adjacent, then Ie1

\ Ie2
is empty and d.Ie1

; Ie2
/ � 12". It follows

that, given a geodesic edge path e1; : : : ; en in T , the segments Ie1
; : : : ; Ien

are aligned
in this order in T 0. In particular, Ie1

\ Ie2
D ; for any pair of edges e1 ¤ e2,.

Moreover, no Ie contains a vertex in its interior. Otherwise, the subtree branching
from Ie would contain a segment Ie0 (by minimality). We would get a contradiction
by considering the edge path from e to e0 in T and the corresponding aligned segments
in T 0.

Thus, one can define ' W E.T / ,! E.T 0/ by mapping an edge e to the edge of T 0
containing Ie . By the lemma, T is a collapse of T 0.
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The closure of an irreducible space. Let D be an irreducible deformation space.
We consider its closure xD in the space TR of non-trivial minimal R-trees, equipped
with the Gromov topology. It usually contains non-simplicial R-trees (see [13] for a
concrete example).

If T 2 xD we denote by ` its length function. Given g 2 G, we denote by Ag the
axis of g if g is hyperbolic in T , its fixed point set if it is elliptic (an element which
is hyperbolic in D may become elliptic in T 2 xD).

Proposition 5.6. Let D be an irreducible deformation space. Let xD be its closure in
the Gromov topology. Let T be an R-tree in xD .

(1) If g 2 G is hyperbolic in D but elliptic in T , its fixed point set contains no
tripod.

(2) If g, h, Œg; h� are hyperbolic in D , then Ag \ Ah is a segment . possibly empty
or degenerate/ whose length is at most `.g/C `.h/.

(3) T is irreducible.

(4) xD is also the closure of D in the axes topology.

Proof. Assertion (1) holds because fixing a tripod is an open condition (see [29],
p. 153). To prove (2), note that Ag and Ah contain no tripods. If jAg \ Ahj >
`.g/C `.h/, this inequality holds in trees T 0 2 D close enough to T (if x 2 Ag any
lift Qx of x to T 0 is close to the axis of g in T 0). A standard argument shows that Œg; h�
is elliptic in T 0, a contradiction.

Since D is irreducible, we can find g; h as in (2). Compactness of Ag \ Ah

implies that T is not abelian. Applying the argument to g2 and h2 shows that T is
not dihedral, so it is irreducible.

Recall that the Gromov topology and the axes topology agree on the set of non-
abelian trees [28]. To prove (4), it suffices to see that length functions of trees in D

cannot accumulate onto an abelian length function j'j, with ' W G ! R a non-trivial
homomorphism.

Supposing they do, fix g 2 G with '.g/ > 0. It is hyperbolic in D . Since D is
irreducible, we can find a conjugate h of g such that Œg; h� is hyperbolic in D (choose
h such that g and h have disjoint axes in some tree of D). Now consider T 2 D

whose length function ` is close to j'j when applied to g, h, and g3h�3 (in particular,
`.g3h�3/ is small). Using the formulas in [28], Proposition 1.6, one sees that the
intersection of the axes of g and h in T must contain a segment of length almost
3'.g/. Since 3'.g/ > 2'.g/ 
 `.g/C `.h/, the commutator Œg; h� is elliptic in T ,
a contradiction.



Deformation spaces of trees 157

Abelian deformation spaces are Hausdorff

Proposition 5.7. Any genuine abelian deformation space D is Hausdorff in the Gro-
mov topology.

Proof. If T 2 D , all translation axes Ag in T have a common end, which is fixed
by G. We say that a hyperbolic g is positive (in T ) if it moves points away from the
fixed end, negative if it moves towards the end (in other words, we think of the fixed
end as being at �1).

It is easy to check that a hyperbolic element g is positive if and only if, given any
h 2 G, the group generated by the commutators Œgn; h�, with n > 0, is elliptic. In
particular, positivity does not depend on the choice of T in D .

Similarly, the fact that two hyperbolic elements g; h have the same axis depends
only on D (it is characterized by ellipticity of the group generated by the elements
Œgn; h�, n 2 Z).

Consider positive hyperbolic elements g, h with different axes. Let Pgh be the
endpoint of the ray Ag \ Ah (see Figure 1). It is characterized by the equations

d.P; gP / D `.g/;

d.P; hP / D `.h/; (1gh)

d.gP; hP / D `.g/C `.h/:

P

gP

hP

Ag

Ah

Figure 1. Characterizing the endpoint of Ag \ Ah.

Furthermore, this system is stable in the following sense: there exists a universal
constant C such that if P satisfies each equation up to ", then it is C"-close to Pgh.

Now consider three positive hyperbolic elements g, h, i with distinct axes. We
claim that the number ıT D d.Pgh; Pgi / depends continuously on T (in the Gromov
topology).

If T 0 is another tree in D with length function `0, we denote by .10
gh
/ the system

.1gh/with ` replaced by `0. Note that the right-hand sides depend continuously on T .
Fix " > 0. If T 0 is close enough to T , we can find lifts zPgh 2 T 0 satisfying .10

gh/

up to ", and zPgi satisfying .10
gi / up to ", with d. zPgh; zPgi / "-close to ıT . We get

jıT 0 � ıT j � .2C C 1/", showing continuity.
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To prove that D is Hausdorff, suppose that T; T 0 do not have disjoint neighbor-
hoods. Then ıT 0 D ıT for all ordered triples .g; h; i/ as above. We show that this
implies T D T 0.

Denote by g1, g2, : : : the positive hyperbolic elements of D . Write Ai (resp. A0
i )

for the axis of gi in T (resp. T 0). We may assume that A1 ¤ A2. Since Ai D Aj is
equivalent to A0

i D A0
j , we get A0

1 ¤ A0
2.

There is a unique isometry f2 W A1 [ A2 ! A0
1 [ A0

2 sending A1 to A0
1 and A2

to A0
2. If A3 is distinct from A1 and A2, its position with respect to A1 [ A2 is

completely determined by the three numbers ıT associated to the triples .g1; g2; g3/,
.g2; g3; g1/, .g3; g1; g2/ (one of these numbers is 0, the other two are equal). Thus
f2 extends uniquely to an isometry f3 W A1 [A2 [A3 ! A0

1 [A0
2 [A0

3 sending A3

to A0
3.

By a similar argument, f3 has a sequence of successive unique extensions
fn W A1 [ 	 	 	 [ An ! A0

1 [ 	 	 	 [ A0
n sending Ai to A0

i for i � n, and we fi-
nally get a global isometry f W T ! T 0 sending every Ag to A0

g . By uniqueness, f
is G-equivariant.

6. Contractibility

Let D be a deformation space, or more generally, a restricted deformation space DA.
We shall prove:

Theorem 6.1. Let D be a deformation space.

(1) D is contractible in the weak topology.

(2) If D contains a tree T0 with finitely generated vertex stabilizers, then D is
contractible in the Gromov topology.

(3) If D is irreducible and contains a treeT0 with finitely generated vertex stabilizers,
then its closure xD in the Gromov topology is contractible.

The same results hold for PD .

Recall that xD is the closure of D in TR (the space of non-trivial minimal R-trees,
equipped with the Gromov topology or the axes topology, see Proposition 5.6). Its
projectivization is the closure of PD in P TR. Note that the closure in T (equipped
with the Gromov topology) of a genuine abelian space is never Hausdorff, since adding
the linear abelian tree having the same length function makes D non-Hausdorff (see
Remark 5.1).

The key technique for proving contractibility is Skora’s idea of deforming mor-
phisms between metric trees: given any morphism f W S0 ! S , there is a canonical
way of constructing intermediate trees St , for 0 � t � 1, with S1 D S (see [7],
[20], [35]). The tree St depends continuously on f and t in the Gromov topology. It
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belongs to D (resp. DA) if both S0 and S do, for there are morphisms 't W S0 ! St

and  t W St ! S with  t B 't D f .

Defining a contraction. In this subsection, we explain how to define a map
� W D � Œ0;C1� ! D with �.T;1/ D T and �.D � f0g/ contained in a con-
tractible subset. We shall then show Assertions (1) and (2) by establishing continuity
of �. The proof of (3) will be given at the end of the section.

Fix T0 2 D , with finitely generated vertex stabilizers if proving (2). We may
assume that it is reduced (elementary collapses do not create new vertex stabilizers).
We view T0 as a simplicial tree, and we let C0 � D be the open cone containing it (it
is the set of all metric trees with T0 as underlying simplicial tree). Recall (Remark 5.3)
that C0 is contractible, both in the Gromov topology and in the weak topology.

We shall associate to T 2 D a morphism fT W T0.T / ! T , where T0.T / is a
metric tree belonging to C0. Skora’s deformation (see above) provides intermediate
trees Tt .T /. Setting �.T; t/ D Tt .T / yields a map � W D � Œ0;C1� ! D , with
�.T; 0/ D T0.T / and �.T;1/ D T (if some intermediate tree fails to be minimal,
we replace it by its minimal subtree). Since T0.T / belongs to the contractible set C0,
we deduce that D is contractible (assuming continuity of �).

There remains to construct fT . It is easy in the following special case (see [20]).
Suppose that D is a restricted deformation space DA, and no vertex stabilizer Gv

of T0 belongs to A. Then Gv fixes a unique point v0 in T , and fT is defined on the
vertex set of T0 by sending v to v0. Since T0 is reduced, adjacent vertices are mapped
to distinct points by Remark 3.7. There is a unique edge-length assignment on T0

such that the natural extension of fT is an isometry when restricted to edges. This
assignment defines the metric tree T0.T / 2 C0, and fT W T0.T / ! T is a morphism.

In general (as in Skora’s proof that Culler–Vogtmann space is contractible), con-
structing fT requires choosing a basepoint P 2 T (continuously). Once P has been
chosen, one obtains fT as follows. Fix a representative vj 2 T0 in each orbit of
vertices and define fT .vj / 2 T as the projection Pj of the basepoint P onto the fixed
point set ofGvj

. Then extend fT equivariantly to the vertex set of T0 (this is possible
because Gvj

fixes Pj ), and to the edges as before.
Skora’s construction of a basepoint was based on minimization. We give a different

one.
First suppose that D is irreducible. Fix elements g; h 2 G such that g, h and

Œg; h� are hyperbolic in D . If T 2 D the axes Ag and Ah of g and h in T have
compact intersection (see Proposition 5.6), and we use this fact to define P .

The most symmetric way would be to define P as the midpoint of the segment
Ag \Ah ifAg andAh meet, and as the midpoint of the “bridge” between them if they
are disjoint. This “symmetric basepoint” will be used at the end of this section (see
Figure 4), but for technical reasons (in the proof of Corollary 6.3) we now define P
in a slightly different way (see Figure 2 later in this section). If Ag and Ah meet, we
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orderAg so that the action of g is by a positive translation and we let P be the largest
element of the segment Ag \Ah. If Ag and Ah are disjoint, we define P as the point
of Ag closest to Ah.

If D is abelian, we fix two positive hyperbolic elements g; h 2 G with distinct
axes in some and therefore in any T 2 D (see the proof of Proposition 5.7). We
define P as the endpoint of the ray Ag [ Ah.

This completes the definition of the map � W D � Œ0;C1� ! D . We now study
its topological properties.

Lemma 6.2. Suppose that, given any two vertices v, w of T0, the map T 7!
d.fT .v/; fT .w// from D equipped with the Gromov topology to R is continuous.
Then the map � is continuous in the Gromov topology.

Recall that all trees T0.T / have T0 as their underlying simplicial tree, so their
vertex sets are canonically identified.

Proof. If the condition of the lemma is satisfied, it is easy to see that the morphism
fT depends continuously on T (there is a natural Gromov topology on the space of
morphisms, see e.g. [20]). Continuity of � then follows from continuity of Skora’s
deformation (see [20], Section 3). We may have to replace a tree by its minimal
subtree, but this is a continuous operation in the Gromov topology.

Corollary 6.3. If S is a closed cone of D , the restriction �S W S � Œ0;1� ! D is
continuous in the Gromov topology.

Proof. By Proposition 5.2, the Gromov topology and the weak topology agree on S .
It is homeomorphic to a Euclidean cone, parametrized by edge-lengths `1; : : : ; p̀

(p is the number of orbits of edges of trees in the interior of S ; as discussed in
Section 5, the cone may fail to be closed as a Euclidean cone). The basepoint P ,
and its projections Pj , were defined using only the simplicial structure of T , with no
reference to edge-lengths. In restriction to S , any function d.fT .v/; fT .w// as in
Lemma 6.2 is thus a fixed linear combination of `1; : : : ; p̀ , hence is continuous.

Contractibility in the weak topology. We now show that � is continuous in the
weak topology, thus proving contractibility of D in that topology. By definition of
the weak topology, it suffices to prove continuity of restrictions �S W S � Œ0;1� ! D ,
with the target space equipped with the weak topology.

As in [20], we show this by proving that when T varies inside S , the set of
intermediate trees Tt .T / D �.T; t/ only meets finitely many cones.

Lemma 6.4 (finiteness lemma). Let C be an open cone in D . The set of intermediate
trees Tt .T / D �.T; t/, for t � 0 and T 2 C , is contained in a finite union of cones.
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The meaning of this lemma is that there are only finitely many possibilities for
Tt .T / as a non-metric tree, as t and T vary. The lemma has weaker hypotheses than
Lemma 4.3 of [20], and the conclusion is weaker: we do not control all trees T 0
such that fT factors through T 0, only those which occur as intermediate trees in the
deformation.

Since the closed cone S is a finite union of open cones, contractibility of D in
the weak topology follows from the finiteness lemma together with Corollary 6.3 and
Proposition 5.2.

The proof of Lemma 6.4 is rather complicated, so we first prove the following
simpler result:

Lemma 6.5. Let f W T0 ! T be a morphism between two metric trees belonging to
the same deformation space. The set of intermediate trees Tt is contained in a finite
union of cones.

Proof. The proof we give is not the shortest possible, but the method will be used to
prove Lemma 6.4. We first recall how the intermediate trees Tt and the factorization
of f through morphisms 't W T0 ! Tt and  t W Tt ! T are constructed (see [20],
[35]).

Two points x; y 2 T0 with f .x/ D f .y/ are identified in Tt if and only if the
image of the segment Œx; y� by f is contained in the t -ball centered at f .x/. This
definesTt as a set. The distance function onTt is the maximal one making the quotient
map 't 1-Lipschitz, and  t is defined in the obvious way. See [20] for details.

A key feature of this construction is that the geometry of the image of a segment
Œx; y� in Tt depends only on t and the restriction of f to Œx; y�.

By subdividing T0 and T we may assume that f is a simplicial map (an edge
is mapped to an edge). Choose a set of representatives "i for orbits of non-oriented
edges of T . Label edges of T by the corresponding i . Also orient edges of T in an
equivariant way. Use f to lift labeling and orientation to edges of T0.

Consider a couple .˛; ˇ/ consisting of distinct non-oriented edges of T0 with the
same image in T . Let E be the convex hull of ˛ [ ˇ (a segment). Since T0 and T
have the same elliptic subgroups, Remark 3.9 implies that there is a bound for the
length of E (as .˛; ˇ/ varies).

The morphism 't W T0 ! Tt folds E into a finite subtree E.t/ which interpolates
betweenE and its imageF D f .E/ inT . As already pointed out, this folding process
depends only on the restriction of f to E. We formalize this observation as follows.

Let .˛; ˇ/ and .˛0; ˇ0/ be two couples as above. We say that they are equivalent
if there exists a commutative diagram

E ��

f

��

E 0

f

��
F �� F 0
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where the horizontal arrows are label-preserving and orientation-preserving simplicial
isomorphisms. In particular, .g:˛; g:ˇ/ is equivalent to .˛; ˇ/ for any g 2 G. Also
note that the common label of˛ andˇ gives a well-defined label i for the corresponding
equivalence class.

Equivalence implies that the same folding takes place inE as inE 0 as t increases;
in particular, E.t/ andE 0.t/ are isometric. Furthermore, there are only finitely many
equivalence classes since E has bounded length and there are finitely many labels.

Given t > 0 and an equivalence class c, we shall define a (possibly empty or
degenerate) subsegment Ic.t/ of the edge "i (where i is the label of c). It will encode
the way in which folding occurs in Tt .

Represent c by .˛; ˇ/, with ˛, ˇ mapping onto "i . The edges ˛, ˇ are mapped
isometrically into Tt , but their images may be glued along a closed segment (possibly
a point). We define Ic.t/ as the image of this segment in "i (it is empty if no gluing
occurs). It depends only on c, not on the choice of .˛; ˇ/.

We have associated to t a finite family of subsegments Ic.t/, one for each equiv-
alence class c. We focus on the combinatorial structure of this family: we say that
t and t 0 are similar if, for every i , there exists an orientation-preserving homeomor-
phism of "i mapping each Ic.t/ to Ic.t

0/. There are only finitely many similarity
classes. We complete the proof by fixing a class and showing that, as a non-metric
tree, Tt does not depend on the choice of t in that class.

Subdivide each "i by adding all endpoints of segments Ic . Extend the subdivision
equivariantly, and lift it to T0 and Tt using f and  t . We use the symbol z to indicate
the subdivided trees. The simplicial structure on zT0 is fixed, and the map 't is now
simplicial (it sends edges to edges). The simplicial structure on zTt is completely
determined by knowing which pairs of edges of zT0 get identified in zTt (see [20]).

So consider edges z̨, ž with the same image Q" in zT . They are contained in edges
˛, ˇ of T0 (the unsubdivided tree). UsingG-equivariance, we may assume that ˛ and
ˇ map onto some "i . Now observe that z̨ and ž are identified in zTt if and only if Q" is
contained in Ic.t/, where c is the equivalence class of .˛; ˇ/. This description does
not involve t (in the given similarity class), so zTt depends only on the similarity class
(as a simplicial tree).

Proof of Lemma 6.4. Choosing a point in C amounts to choosing a metric m (which
assigns lengths to edges) on a fixed non-metric tree. Instead of controlling the image
of a single curve t 7! Tt as in the previous lemma, we now have to control a family of
curves t 7! Tt .m/, indexed bym. We review the arguments in the proof of Lemma 6.5,
checking that the parameter m introduces only finitely many new possibilities.

In order to make fT simplicial, we only have to subdivide T0.T /. Because of the
wayfT was constructed (using the basepointP and its projectionsPj ), the subdivision
of T0.T /, and fT as a simplicial map, are independent ofm. In particular, equivalence
classes of couples .˛; ˇ/ are defined independently ofm. The subsegments Ic.t/ now
depend on m, so we denote them by Ic.t; m/. Similarity is defined as in the proof
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of Lemma 6.5, but for couples: .t; m/ is similar to .t 0; m0/ if there exist orientation-
preserving homeomorphisms of "i mapping each Ic.t; m/ to Ic.t

0; m0/ (the length
of "i depends on m, but this is irrelevant since we only consider the combinatorial
structure). There are only finitely many similarity classes, and we have seen in the
previous proof that, as a non-metric tree, Tt .m/ depends only on the similarity class
of .t; m/. This completes the proof of Lemma 6.4, hence also of the first assertion of
Theorem 6.1.

Forester’s deformation theorem. Before showing contractibility in the Gromov
topology, we use Lemma 6.5 to give a proof of Forester’s deformation theorem [16],
which we state as follows:

Theorem 6.6. Let T0; T be simplicial .non-metric/ trees with the same elliptic sub-
groups.

(1) There exist trees T0; T1; : : : ; Tk D T such that TiC1 is obtained from Ti by an
elementary expansion or an elementary collapse.

(2) If all edge stabilizers of T0 and T belong to a family A which is stable under
taking subgroups, one may choose Ti with edge stabilizers in A.

The second assertion is not in [16], but it can be deduced from Forester’s proof.

Proof. Using elementary collapses, we assume that T0 is reduced. Since elliptic
subgroups of T0 are elliptic in T , we can map the vertex set of T0 equivariantly to the
vertex set of T . Adjacent vertices have distinct images by Remark 3.7, and we may
choose metrics on T0 and T so that there exists a morphism f W T0 ! T .

We apply Lemma 6.5 (note that in its proof we only used the fact that T0 and T
have the same elliptic subgroups). The set of intermediate trees Tt is contained in
a finite union of cones. By Proposition 5.2, Tt is a continuous path in the weak
topology. In particular, the union of all cones which meet this path is connected in
that topology. Thus, there is a finite sequence of closed cones T0 2 C0; : : : ;Cn 3 T
such that for all i 2 f1; : : : ; ng, either Ci is a face of Ci�1 or Ci�1 is a face of Ci .
Now if C 0 is a face of C , trees of C 0 are obtained from trees of C by an elementary
collapse. This proves assertion (1).

Making T0 reduced does not create new edge stabilizers. Edge stabilizers of Tt

are in A because there is a morphism  t W Tt ! T . This proves assertion (2).

Contractibility in the Gromov topology. We now prove assertion (2) of Theo-
rem 6.1. We assume that T0 has finitely generated vertex stabilizers and we check
that the condition in Lemma 6.2 holds. We first wish to say that the basepoint P 2 T
depends continuously on T . As P does not belong to a fixed space, we express it in
the following way:
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Lemma 6.7. For any a 2 G, the map T 7! d.P; aP /, from D to R, is continuous.

Of course, D is now equipped with the Gromov topology.

Proof. We first consider the case when D is irreducible. We recall the definition ofP .
We fix g; h 2 G with g, h, Œg; h� hyperbolic in D . If the axes Ag and Ah are disjoint,
P is the point of Ag closest to Ah. If Ag and Ah meet, P is the largest element of
the segment Ag \ Ah, with Ag ordered so that g acts as a positive translation.

Using the general formula d.x; gx/ D `.g/ C 2d.x;Ag/, it is easily checked
that P is characterized by the system

d.P; gP / D `.g/;

d.P; hP / D `.h/C 2D;

d.gP; hP / D `.g/C `.h/C 2D;

d.gP; h�1P / D `.g/C `.h/C 2D;

(1)

with D equal to the distance between Ag and Ah (see Figure 2).

h−1P P

gP

hP

Ag

Ah

P

AgAh
hP

h−1P

gP

D

Figure 2. The basepoint P .

As in the proof of Proposition 5.7, this system is stable: if zP satisfies each equation
up to ", then it is C"-close to P , for some fixed number C . Furthermore, the right-
hand sides depend continuously on T (see [28], Proposition 3.5, for the continuity
of D).

We can now prove that d.P; aP / is continuous at any given T . Fix " > 0.
Consider another T 0 2 D and the corresponding system .10/. If T 0 is close enough
to T in the Gromov topology, then there exists a lift zP 2 T 0 satisfying .10/ up to ".
We also require that d. zP ; a zP / be "-close to d.P; aP /. Then zP is C"-close to the
basepoint P 0 of T 0, so d.P 0; aP 0/ is .2C C 1/"-close to d.P; aP /.

When D is abelian, we fix two positive hyperbolic elements g; h 2 G with distinct
axes, and P is the endpoint of the ray Ag [ Ah. The argument is the same as in the
irreducible case, using the system .1gh/ introduced in the proof of Proposition 5.7.
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More generally:

Lemma 6.8. Let H1, H2 be .possibly equal, possibly trivial/ finitely generated sub-
groups ofG which are elliptic in D . Given T 2 D , letPi 2 T be the projection of the
basepoint P onto the fixed point set ofHi . For any a 2 G, the map T 7! d.P1; aP2/

is continuous.

Proof. We show continuity at a given T 2 D . For i 2 f1; 2g fix a finite generating
set Si for Hi . Choose si in Si so that d.P; siP / is maximal (si is not necessarily
unique). The point Pi is the midpoint of ŒP; siP �.

P ′ si.P
′s′i.P

′

P ′
i

P̃ ′
i

P si.P

s′i.P

Pi

Figure 3. Proof of Lemma 6.8.

Now consider T 0 close to T in D . Define P 0, P 0
i , s0

i as in T (see Figure 3). Note
that si is fixed, but s0

i may vary asT 0 varies. Let zP 0
i be the midpoint of ŒP 0; siP 0�. Since

P 0
i is fixed by si , the point zP 0

i is located on ŒP 0; P 0
i � and d. zP 0

i ; P
0
i / D 1

2
.d.P 0; s0

iP
0/�

d.P 0; siP 0//. Our choice of si guarantees that d.P; sP / � d.P; siP / � 0 for every
s 2 Si . Lemma 6.7 therefore implies that d. zP 0

i ; P
0
i / goes to 0 as T 0 ! T .

Since distances between the four points P , s1P , aP , as2P vary continuously
by Lemma 6.7, the distance d. zP 0

1; a
zP 0

2/ between the midpoints of ŒP 0; s1P 0� and
ŒaP 0; as2P 0� converges to d.P1; aP2/ as T 0 ! T . Thus d.P 0

1; aP
0
2/ ! d.P1; aP2/.

Since fT was defined using projections onto fixed point sets of vertex stabilizers
of T0, this lemma immediately implies that the condition in Lemma 6.2 holds if T0

has finitely generated vertex groups. This completes the proof of Assertion (2) of
Theorem 6.1.

The closure of an irreducible space is contractible. We now wish to extend the
contraction to the closure xD of an irreducible D (in the Gromov topology). Fix g, h
with g, h, Œg; h� hyperbolic. See Proposition 5.6 for properties of R-trees T 2 xD . In
particular, T is irreducible. The characteristic sets Ag , Ah (axis or fixed point set)
contain no tripod, and their intersection has length � `.g/C `.h/.

We have to change the definition of P , as there is no natural way to orient Ag

if g is elliptic. We use the “symmetric” definition: P is the midpoint of the segment
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Ag \ Ah if Ag and Ah meet, the midpoint of the “bridge” between them if they are
disjoint.

P

Ag

Ah

P=Q1=Q2

AgAh

hP gP

L−
Q2Q1

L+

Figure 4. The “symmetric” basepoint.

The point P is characterized by the following property (see Figure 4): there exist
Q1, Q2 such that

d.P; gP / D d.Q1; gQ1/ D d.Q2; gQ2/ D `.g/C L�;
d.P; hP / D d.Q1; hQ1/ D d.Q2; hQ2/ D `.h/C L�;

d.P;Q1/ D d.P;Q2/ D LC=2;
d.Q1;Q2/ D LC;

where LC D max.L; 0/ and L� D max.�L; 0/, with L 2 R equal to the length of
Ag \ Ah if Ag \ Ah is nonempty, and equal to minus the distance between Ag and
Ah if they are disjoint.

To see this, first suppose that Ag \ Ah D ; (so LC D 0). The equations reduce
to d.P; gP / D `.g/CL� and d.P; hP / D `.h/CL� (withQ1 D Q2 D P ). They
mean that P has distance L�=2 to both Ag and Ah. This determines it uniquely. If
Ag \ Ah ¤ ;, the first two equations mean that P , Q1, Q2 belong to Ag \ Ah, the
other two that the segment ŒQ1;Q2� has length LC and midpoint P . This uniquely
determines P .

Furthermore, the system (2) is stable in the sense used above: if . zP ; zQ1; zQ2/ is
an approximate solution, then zP is close to P .

To extend Lemmas 6.7 and 6.8 to xD , we have to know that L is continuous on xD .
It is continuous on D by [28], Proposition 3.5, but the argument of [28] breaks down
when both g and h are elliptic in T 2 xD . If this happens, first suppose that the fixed
point sets of g and h are disjoint. Then we have L D �1

2
.`.gh/� `.g/� `.h// in T

and in nearby trees, so L is continuous at T . If g and h have a common fixed point,
we know that it is unique, so L D 0 at T . Continuity at T follows from the general
inequality jLj � max.`.g/C `.h/; 1

2
`.gh//.

The rest of the argument is now as before. The space xD is contracted into a closed
cone, as certain edges of T0.T / may have length 0 if T 2 xD n D .
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7. Non-ascending deformation spaces

Given a G-tree T , we now view the quotient graph � D T=G as a graph of groups.
We often view a deformation space as a collection of marked graphs of groups (a
marking of � is an isomorphism fromG to the fundamental group of � , well defined
up to composition with inner automorphisms). We say that � is reduced if T is.

We use the same notation (such as v) to denote a vertex of T or of � . The
corresponding group (vertex stabilizer or vertex group) is then denoted byGv . Edges
are denoted by letters such as e, with groupGe . An edge of � is a loop if its endpoints
are equal, a segment otherwise.

Slide moves. Let e D vw and f D vx be adjacent edges in a G-tree T , with
Gf � Ge . Assume that e, f are not in the same orbit as non-oriented edges. We define
a new tree T 0 with the same vertex set as T by replacing f by an edge f 0 D wx and
extending this operation equivariantly to the orbit of f . We say that f slides across e
(see [18]). More generally, one can slide several edges fi satisfying Gfi

� Ge .
Though sliding makes sense for metric trees, we shall apply it only in the context of
non-metric trees.

The trees T and T 0 belong to the same deformation space (they have the same
vertex stabilizers). In fact, a slide move may be viewed as an elementary expansion
followed by an elementary collapse (in the middle tree, f is attached to the midpoint
of e). The trees T and T 0 even have the same edge stabilizers: since Gv \ Gx �
Gv \Gw and Gx \Gw � Gv , we have Gf 0 D Gw \Gx D Gv \Gx D Gf .

It is easier to visualize a slide move on � , as one edge sliding across another (one
or both may be loops). The number of vertices and edges of � does not change. We
usually describe a slide move by its action on � . There may exist different moves
in T with the same projection in � , but this will not be an issue here (compare [9]).

Non-ascending spaces: definition and examples. Given an edge e D vw of �
(possibly with v D w), there are injections Ge ,! Gv and Ge ,! Gw . We attach
two labels to the edge e, one near v and one near w. Each of these labels is D or ¤,
depending on whether the corresponding injection is onto or not.

With these notations, � is reduced if and only if all labels D are carried by loops.
If a vertex v has degree 2, at least one of the two labels near v is ¤ (because there is
no redundant vertex in T ). If e carries a label D near v, then all other edges attached
to v may slide across e.

When viewed in � , an elementary collapse (see Section 3) is the collapse of a
segment e carrying at least one D label; such an e is called collapsible. The graph
� is reduced if and only if it contains no collapsible edge. All collapses considered
here will be elementary collapses, so we often drop the word elementary.

We usually identify the edges of the collapsed graph with the edges of � other
than e, and a vertex of � with its image in the collapsed graph. When e is collapsed, a
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collapsible edge f ¤ e may become non-collapsible; a non-collapsible edge remains
non-collapsible.

A strict ascending loop [18] is a loop e of � carrying exactly one D and one ¤.
The fundamental group of e, viewed as a graph of groups, is then a strictly ascending
HNN extension. All edges adjacent to the basepoint of e may slide around e.

A deformation space D is non-ascending if it is irreducible, and no � in D con-
tains a strict ascending loop. Note that genuine abelian spaces always contain graphs
with a strict ascending loop.

The following observation will be very useful. Define an ascending circle as an
embedded circle C � � which may be oriented in such a way that all edges of C
carry a D label near their origin. If � belongs to a non-ascending space, then edges
of C also carry a D near their terminal point: otherwise, collapsing all edges of C
except one would create a strict ascending loop.

Proposition 7.1. Let D be an irreducible deformation space. If one of the following
conditions is satisfied, then D is non-ascendingW
(1) No reduced graph of groups in D contains a strict ascending loop.

(2) There exists a tree T 2 D such that no fixed point set Fix.g/, for g ¤ 1, contains
an infinite ray.

(3) No group in Amin properly contains a conjugate of itself.

(4) There exist Tc 2 D such that, for any T 2 D , there exists zT 2 D such that both
Tc and T may be obtained from zT by collapses.

Recall that the weak acylindricity condition (2) holds for all trees in D if it holds
for one (see Section 4), and that Amin consists of groups fixing an edge in every
T 2 D (see Definition 4.8). Condition (3) holds if D is the canonical deformation
space of a GBS group which does not contain any BS.1; n/ with n � 2 (see [25]).
Condition (4) means that Tc is “compatible” with every T 2 D : the graphs of groups
�c and � have a common refinement z� in D .

Proof. Starting with� having a strict ascending loop e based at v, we make it reduced
without destroying the loop. First we collapse all collapsible edges which do not
contain v, or have a ¤ label near v, or have two D labels. This does not change Gv ,
so e remains strictly ascending. If there remains a collapsible edge f , we change its
D label near v to ¤ by sliding it around e. This makes f non-collapsible. Iterate
until all edges have been made non-collapsible.

If � has a strict ascending loop e, the associated tree T does not satisfy (2), and
Ge properly contains a conjugate (Ge 2 Amin if � is reduced).

It remains to consider (4). Recall that length functions of trees in D are bi-
Lipschitz equivalent (Theorem 3.8). To estimate the bi-Lipschitz constant, we restrict
to trees all of whose edges have length 1. Suppose that T 0 is obtained from T by
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collapsing all edges in the orbit of an edge e. As pointed out in [16], components of
this orbit have diameter at most 2. This implies `T =3 � `T 0 � `T (at most two thirds
of the edges in a given axis may be collapsed). If we can pass from T to T 0 by p
elementary operations (expansions or collapses), we get 3�p`T � `T 0 � 3p`T .

In the situation of (4), the number of operations needed to pass from Tc to T is
bounded by j�cj C j�j, where j�j denotes the number of edges of the quotient graph,
as we may assume that no edge of zT gets collapsed in both Tc and T .

A consequence of (4) is therefore the following: Given k, there existsC such that,
if T; T 0 2 D have edges of length 1 and the quotient graphs � , � 0 have at most k
edges, then 1

C
`T � `T 0 � C`T . We now suppose that some reduced � 2 D has

a strict ascending loop e based at a vertex v, and we obtain a contradiction to this
assertion.

Let f be another edge adjacent to v (it exists because D is irreducible). We may
assume that it carries no D label (if it does, then it is a loop at v because � is reduced,
and we get rid of D labels by sliding around e).

Define a graph�n, with Bass–Serre treeTn, by slidingf n times around e (oriented
from its D label to its ¤ label). Recall that all trees Tn have the same vertex set.
Consider a lift v0x of f to T0 D T , with v0 lifting v. It is slid to a position vnx

in Tn. For 0 � i � n, the distance between vn and x in Ti is n� i C 1 (the geodesic
is vnvn�1 : : : vix).

Choose g 2 G fixing x but not v0 (it exists because f carries no D), and hn

fixing vn but not vn�1 (the sequence Gvn
is strictly ascending because e is). The

distance between the fixed point sets of g and hn in Ti is dTi
.vn; x/ D n � i C 1,

so `Ti
.ghn/ D 2.n � i C 1/. Writing this for i D 0 and i D n, we see that the

bi-Lipschitz constant between `T and `Tn
goes to infinity with n, contradicting the

consequence of (4) stated above.

Connecting trees by slide moves. In the rest of this section we only consider non-
ascending spaces.

It is easy to show that, in a non-ascending deformation space, every elliptic sub-
group is contained in a maximal one. If T is reduced, there is a bijection between the
set of vertices of � and the set of conjugacy classes of maximal elliptic subgroups
(this is the vertical set M of Section 4). The next result will provide more precise
information. We consider trees as simplicial, non-metric, objects (or we restrict to
trees with edges of length 1).

Theorem 7.2. Let D be a non-ascending deformation space. Any two reduced sim-
plicial trees T; T 0 2 D may be connected by a finite sequence of slides.

Conversely, performing a slide move on a reduced tree in a non-ascending space
yields a reduced tree.
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This theorem was proved by Forester [18] for the canonical deformation space of
GBS groups. His proof works in the general situation. We give a different argument.

Proof. By Remark 3.6, we may assume that T , T 0 are different reductions of a tree S .
We also assume that no edge of S gets collapsed in both T and T 0. We work with the
quotient graphs of groups � , � 0, ‚ of T , T 0, S . We first show that there exist edges
e, e0 of ‚ with a common vertex v such that both e and e0 carry a D near v, e gets
collapsed in � 0, and e0 gets collapsed in � .

Since ‚ is not reduced, we can find an edge e1 of ‚ which gets collapsed in � 0.
Let v1 be an endpoint of e1 with label D. Since e1 is not collapsed in � , some edge e0

1

of ‚ with endpoints v1, v0
1 gets collapsed in � . If the label of e0

1 at v0
1 is ¤, its label

at v1 is D and we are done. If not, we repeat the argument, using e0
1, v0

1 instead of
e1, v1. We obtain edges e2, e0

2, e3, : : : which get collapsed in � or � 0 alternatively.
If the process does not stop, we eventually create an ascending circle C . Since D is
non-ascending, C carries only D labels and we can find e, e0.

e e
′

Θ

==collapsed
in Γ′

{ }
collapsed
in Γ

= =f

e e
′

Θ0

==
w w′

v

Figure 5. Proof of Theorem 7.2.

Let e, e0 be as constructed. We define a new graph of groups ‚0 by performing
an elementary expansion at v in ‚ as follows (see Figure 5). We replace v by a new
edge f D ww0 carrying two D labels. Edges of ‚ incident to v are attached to w or
w0, the only restriction being that edges collapsed in � 0 (resp. �) are attached to w
(resp. w0) (changing the attachment point of an edge amounts to sliding it across f ).
In particular, the edge e (resp. e0) is attached to w (resp. w0). It carries a label D at w
(resp. w0).

Let F0 be the image in ‚0 of the subforest of ‚ which gets collapsed in � (it
contains e0). Collapsing F0 [ f in ‚0 yields � . Since no edge of F0 is attached to
w, we may also collapse F0 [ e. This gives a graph �1 which differs from � by slide
moves (the middle graph is obtained from‚0 by collapsing F0). Define � 0

1 similarly,
using � 0 instead of � . The graphs �1 and � 0

1 are both reductions of the graph ‚1

obtained from ‚0 by collapsing e [ e0. Since ‚1 has one less edge than ‚, iterating
this construction yields a sequence of slides connecting � and � 0.

Corollary 7.3. If D is non-ascending, all reduced trees in D have the same vertex
and edge stabilizers; given two reduced trees in D , there areG-equivariant bijections
 V ,  E between their vertex and edge sets.



Deformation spaces of trees 171

By [14], the existence of  V always implies that of  E . In general,  V and  E

are not compatible with the incidence relations.

A finite dimensional retract. Recall that we only consider graphs of groups in
non-ascending deformation spaces. All collapses considered here are elementary.

As mentioned above, a collapsible edge of � may become non-collapsible when
other edges are collapsed. This motivates the following definition.

An edge e of � is a surviving edge if it is non-collapsible, or may be made non-
collapsible by collapsing other edges. In other words, e is a surviving edge if and
only if one can make � reduced without collapsing e.

Recall that there are two types of non-collapsible edges: segments carrying two
¤ labels, and loops. In order to describe surviving edges, we define two types of
subgraphs � of � in terms of their topology and the labels they carry:

� � D .e1; : : : ; ek/ is an embedded edge-path (homeomorphic to Œ0; 1�); all labels
carried by � at interior vertices are D, but the labels carried by e1 at its origin, and by
ek at its terminal point, are ¤ (when k D 1, this is just a non-collapsible segment).

� � is homeomorphic to a circle; all labels carried by � are D, except possibly
those at a special vertex v0 (if there is a special vertex, both labels at v0 are ¤ by the
non-ascending assumption).

We call such a � a shelter. Note that one-edge shelters are exactly non-collapsible
edges. Any edge e contained in a shelter � is a surviving edge, since it becomes
non-collapsible when the other edges of � are collapsed. The following lemma will
imply the converse (every surviving edge is contained in a shelter).

Lemma 7.4. Let � be a graph of groups belonging to a non-ascending deformation
space, and let � 0 be obtained from � by collapsing a collapsible edge f . An edge
e ¤ f is contained in a shelter of � if and only if its image e0 in � 0 is contained in a
shelter.

Proof. This is just a statement about graphs with a D, ¤ labeling. The proof is not
difficult, but there will be several cases to consider.

Let v, w be the vertices of f . They are distinct and f carries at least one D label,
say near v. When f is collapsed, labels carried by other edges near w do not change
(the vertex group does not change). A ¤ label near v remains ¤. A D label gets
replaced by the label of f near w.

Assume that e is contained in a shelter � . If f is disjoint from � , or contained
in � , or if f \ � D fwg, the image of � in � 0 is a shelter. If f \ � D fvg, the image
of � consists of one or two shelters. Now assume f \ � D fv;wg. If the label of f
near w is ¤, the non-ascending hypothesis implies that w must be an endpoint of �
or the special vertex v0. The image of � in � 0 is homeomorphic to a circle, or to a
wedge of two circles, or to the union of a circle and an interval. One checks that each
of these circles or intervals is a shelter. We have proved one direction of the lemma.



172 V. Guirardel and G. Levitt

Conversely, assume that e0 is contained in a shelter � 0. Let w0 be the image of v
and w in � 0 (so � is obtained from � 0 by expanding w0 into f ). We may assume that
w0 2 � 0. Let �0 be the subgraph of � consisting of edges projecting onto the edges
of � 0 (it has one or two components). Edges of �0 near f may be attached to either v
or w. We may assume that at least one is attached to v (otherwise, �0 is obviously a
shelter).

First assume that the label of f near w is D. The only non-trivial case is when �0

has one edge attached to v and one to w. If w0 is the special vertex of a circular � 0,
then �0 is a shelter (homeomorphic to an interval). If not, then �0 [ f is a shelter.

Now suppose that the label of f nearw is ¤. Thenw0 has to be an endpoint of � 0,
or its special vertex v0, since otherwise no edge of �0 could be attached to v. If it is
an endpoint, then �0 is a shelter if the label of �0 near v is ¤, and �0 [ f is a shelter
if the label is D. The same conclusion holds if w0 is the special vertex of � 0 and �0

has an edge attached to w. If w0 D v0 and �0 has two edges attached to v, then �0 is
a shelter.

Corollary 7.5. Let� be a graph of groups belonging to a non-ascending deformation
space.

(1) An edge is a surviving edge if and only if it is contained in a shelter.

(2) Let � 0 be obtained from � by collapsing a collapsible edge f . An edge e ¤ f

is a surviving edge of � if and only if its image e0 in � 0 is a surviving edge.

Proof. We have seen that edges contained in a shelter are surviving edges. If e is
a surviving edge, one may collapse edges other than e to obtain a reduced �r . The
image of e in �r is non-collapsible, so is a one-edge shelter. By the “if” part of the
lemma, e is contained in a shelter of � . Assertion (2) is just a rewording of the lemma.

Let G � D be the set of graphs of groups all of whose edges are surviving edges.
It is stable under collapses, so its projection PG � PD is a subcomplex. Using
shelters, it is easy to see that trees corresponding to graphs � in G are BF-reduced
(as defined in Section 3): if a vertex v of � has valence 2 and the labels near v are
D, ¤, the edge carrying the D label cannot be contained in a shelter. Proposition 4.2
implies that G is finite dimensional.

Theorem 7.6. Let D be a non-ascending deformation space, equipped with the weak
topology. There is a deformation retraction r from PD onto the finite dimensional
subcomplex PG . If F � Out.G/ leaves D invariant, then r is F -equivariant.

Proof. The deformation retraction is simply given by letting the length of the non-
surviving edges go linearly to 0. It maps a given closed simplex into itself in a
continuous way by assertion (2) of Corollary 7.5, so it is continuous in the weak
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topology. The deformation is clearly equivariant with respect to the group of auto-
morphisms leaving D invariant (its action on a graph of groups consists in changing
the marking).

We have seen that all reduced trees in D have the same edge stabilizers (Corol-
lary 7.3). The same property holds for trees in G , since all edges of graphs in G are
surviving edges. This shows that G is contained in the reduced deformation space Dr

defined in Section 4.

Examples. In these examples, G is a GBS group, D is its canonical deformation
space (see the end of Section 3), and G is the set of graphs of groups all of whose
edges are surviving edges.

� Let G D ha; b; c; t j a2 D b6; b2 D c2; tc3t�1 D b9i. Using arguments from
[18], it may be shown that D is non-ascending (although G contains BS.1; 3/). The
subcomplex G is 4-dimensional, but Dr is infinite dimensional.

� LetG D BS.2; 4/. In this case, G is not a subcomplex and there is no retraction
from D to G . Clay has shown, however, that there always is a retraction from D to
the barycentric spine of G [9].

� Let G D ha; s; t j sas�1 D a2; tat�1 D a2i. By sliding one loop many times
around the other and performing elementary expansions, one constructs graphs of
groups with an ascending circle of arbitrarily large length. It follows that G is infinite
dimensional.

8. Applications to automorphisms

Restriction. Up to now, we have been working with a single finitely generated
group G. In this subsection, we also consider a finitely generated group yG contain-
ing G as a normal subgroup. This study will be used in the next subsection, with G
a centerless group and yG the preimage of some F � Out.G/ under the natural map
Aut.G/ ! Out.G/.

The results of the present subsection also hold (and are easier to prove) if G has
finite index in yG (without being normal) and more generally if any h 2 yG has a power
in G.

We shall consider irreducible trees. Recall that they are determined by their
length function `. The Gromov topology and the axes topology coincide on the set
of irreducible trees (see Section 5). In this section it will be more convenient to use
the axes topology (i.e. to work with length functions).

Any yG-tree T may be viewed as aG-tree. We call this a restriction. We sometimes
write T yG and TG instead of simply T to emphasize which group we are considering.
Note that T yG is obviously minimal and irreducible if TG is.
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Lemma 8.1. Let G C yG be a pair of finitely generated groups with G normal in yG.
Let T be an irreducible yG-tree, with length function `. Assume thatG is not contained
in the kernel of the action.

(1) The G-tree TG is minimal and irreducible.

(2) For any h 2 yG, one has

`.h/ D sup
g2G

lim sup
k!C1

1
2k
`.Œg; hk�/:

(3) ` is determined by its restriction to G.

The kernel of the action is the set of elements acting on T as the identity.

Proof. IfG is elliptic, its fixed subtree is yG-invariant becauseG is normal, so equalsT
by minimality of T yG ; this means thatG is contained in the kernel. If there is a unique

G-invariant end, or a unique G-invariant line, this end or line is yG-invariant, contra-
dicting irreducibility of T yG . The only remaining possibility is that TG is irreducible.
It is minimal because the unique minimal G-invariant subtree is yG-invariant and T yG
is minimal.

Given anyh, denote byAh its axis or fixed point set. Recall the formulad.x; hx/ D
`.h/C 2d.x;Ah/, valid for any x 2 T , and the general inequality `.hh0/ � `.h/C
`.h0/C2d.Ah; Ah0/, obtained by computing d.hh0x; x/ for an x 2 Ah0 such that h0x
minimizes the distance to Ah. Writing Œg; hk� D g.hkg�1h�k/, we obtain

`.Œg; hk�/ � 2`.g/C 2d.Ag ; h
kAg/ � 2`.g/C 2k`.h/C 4d.Ag ; Ah/:

This shows that `.h/ is bigger than the sup appearing in the statement of the lemma.
To prove the opposite inequality, we may assume that h is hyperbolic. By as-

sertion (1), there exists a hyperbolic g 2 G with Ag \ Ah compact. For k large,
Ag and Ahkg�1h�k D hkAg are disjoint, and their distance is k`.h/C o.k/. Since
`.gg0/ D `.g/C `.g0/C2d.Ag ; Ag0/ for hyperbolic elements with disjoint axes, we
have `.Œg; hk�/ D 2k`.h/C o.k/.

Assertion (3) follows from (2), since Œg; hk� 2 G if g 2 G.

Let G, yG be as in the lemma. Consider any yG-tree T yG and its restriction TG . El-
liptic subgroups of TG are precisely intersections of elliptic subgroups of T yG withG.
Restriction therefore sends a given deformation space D yG of yG-trees into a deforma-
tion space DG of G-trees. We denote this map by i W D yG ! DG . By Lemma 8.1, it
is injective if D yG is irreducible and G is not elliptic in D yG .

Lemma 8.2. Let G C yG be a pair of finitely generated groups with G normal in yG.

(1) An irreducible deformation space of G-trees contains the image of at most one
deformation space of yG-trees.
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(2) If D yG is an irreducible deformation space of yG-trees in which G is not elliptic,
restriction induces a homeomorphism from D yG onto a closed subspace of an
irreducible deformation space DG of G-trees.

Assertion (2) is true both in the Gromov (or axes) topology and in the weak
topology.

Proof. Recall that two irreducible trees belong to the same deformation space if
and only if their length functions are bi-Lipschitz equivalent (Theorem 3.8). If the
restrictions of ` and `0 toG are bi-Lipschitz equivalent, then ` and `0 are bi-Lipschitz
equivalent by assertion (2) of Lemma 8.1. This shows the first assertion.

Under the hypotheses of (2), we have seen that restriction induces an injection
i W D yG ! DG into an irreducible space. We now study the topological properties
of i .

First consider the weak topology. Given a yG-tree T yG , restriction maps the closed
cone spanned by T yG linearly into the closed cone of DG spanned by TG (as in
Section 5, we parametrize cones by edge-lengths). The image consists of all trees
satisfying certain equalities between edge-lengths. In particular, at most one open
cone ofD yG maps into a given open cone of DG . Assertion (2) for the weak topology
follows from these observations.

In the axes topology, the only obvious fact is continuity of i . To prove that i
is a homeomorphism onto a closed set, we suppose that `n is a sequence of length
functions on yG, associated to trees in D yG , whose restrictions toG converge to a non-
trivial length function `G associated to a tree TG in DG . We show that `n converges
to a length function associated to a tree in D yG .

Since the set of projectivized length functions on yG is compact [11], we can find
numbers an > 0 such that an`n converges to a non-trivial length function ` on yG
(after replacing `n by a subsequence). The sequence an is bounded because `G is
non-trivial. We have to bound it away from 0.

Let T be the R-tree with length function `. It is irreducible by Proposition 5.6.
If g 2 G is hyperbolic in D yG , it may be elliptic in T , but cannot fix a tripod (see
Proposition 5.6). This implies that G is not contained in the kernel of the action.
In particular (see Lemma 8.1), there exists g0 2 G with `.g0/ ¤ 0. Since `n.g0/

converges to `G.g0/ and an`n.g0/ converges to a non-zero number, the bounded
sequence an has a positive limit, which we may assume to be 1. This implies that `n

converges to `, and `G is the restriction of ` to G. In particular, TG is the restriction
of T , and T is simplicial. It is in D yG by assertion (1). This completes the proof of
assertion (2) for the axes topology.

Fixed point sets. We return to the study of a single finitely generated groupG. There
is a natural action of Out.G/ on the set of G-trees, given by precomposition. If a
subgroup of Out.G/ fixes a tree, it acts on the deformation space containing it.
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Theorem 8.3. Let D be an irreducible deformation space. If a finitely generated
group F � Out.G/ fixes a tree T0 2 D , the fixed point set of F in D is contractible
in the weak topology.

Proof. Let yG be the preimage of F by the natural map Aut.G/ ! Out.G/. First
assume that G has trivial center. It embeds into Aut.G/, as inner automorphisms,
and yG is a finitely generated group containing G as a normal subgroup.

The key observation is that aG-tree TG isF -invariant if and only if the action ofG
on T extends to an action of yG. The fixed point set of F in D is homeomorphic to an
irreducible deformation space D yG by Lemma 8.2, so is contractible by Theorem 6.1.

If G has a non-trivial center, yG contains G=Z.G/ as a normal subgroup and we
simply view D as a deformation space of G=Z.G/-trees (see the last example in
Section 3).

Theorem 8.3 also holds in the Gromov topology, under the extra assumption that
T0 has finitely generated vertex stabilizers (as a G-tree, hence also as a yG-tree).

Corollary 8.4. Let D be an irreducible deformation space. Suppose that D is finite
dimensional, or non-ascending. If a solvable finite group F � Out.G/ leaves D

invariant, then F has a fixed point in D .

Proof. By induction on the order of F . If F is not trivial, it has a normal subgroup
F1 with F=F1 cyclic of prime order p. By induction, F1 fixes a point in D . Let
D1 � D be its fixed point set.

First assume that D is finite dimensional. Then D1 is finite dimensional, and
contractible by Theorem 8.3. The group F=F1 ' Z=pZ acts on D1 and has a fixed
point (otherwise, it would have a finite dimensional classifying space). This means
that F has a fixed point in D .

If D is non-ascending, we consider the finite dimensional subcomplex G � D

constructed in Section 7. The deformation retraction D ! G is F -equivariant. Let
D1 (resp. G1) be the fixed point set of F1 in D (resp. G ). By induction, D1 is
nonempty. As it is contractible, we deduce that G1 is contractible and we conclude
by considering the action of F=F1 on G1.

Locally finite trees. In this subsection, we consider a deformation space D consist-
ing of locally finite trees and the projectivized space PD . We let OutD.G/ be the
subgroup of Out.G/ leaving D invariant.

We say thatH � G is a stabilizer if it is a vertex or edge stabilizer in some T 2 D .
All stabilizers are commensurable as subgroups of G: if H1, H2 are stabilizers, then
H1 \H2 has finite index in both H1 and H2 (this is clear if H1, H2 are stabilizers
in the same tree, and also if they are stabilizers in trees differing by an elementary
expansion).
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A group H (possibly infinitely generated) is small [3] if there is no H -tree in
which axes of two hyperbolic elements intersect in a compact set. Any group not
containing F2 is small. Smallness is not stable under taking subgroups, even of finite
index.

To remedy this, we say that H � G is small in G if there is no G-tree in which
axes of two hyperbolic elements of H intersect in a compact set. Of course, any
small group contained inG is small inG, and being small inG is stable under taking
subgroups. It is also a commensurability invariant.

Lemma 8.5. Given G, there exists at most one irreducible deformation space con-
sisting of locally finite trees whose stabilizers are small in G.

Proof. This is proved in [16] in the case of stabilizers Z, in [8] for slender stabilizers
(recall that a group is slender [15] if all of its subgroups are finitely generated). We
use the same argument to determine elliptic subgroups algebraically: if T is locally
finite and stabilizers are small in G, then a subgroup H � G is elliptic if and only
if it is contained in a subgroup which is small in G and commensurable to all its
conjugates.

The “only if” direction is obvious. Conversely, suppose that H is small in G,
commensurable to all its conjugates, but not elliptic. It is easy to check that H acts
on T with a unique fixed end or a unique invariant line. This line or end isG-invariant,
contradicting irreducibility.

A basic invariant of D is the modular homomorphism� W G ! QC� with values in
the multiplicative group of positive rationals [2], [18]. It may be defined by choosing

a stabilizer H and setting �.g/ D ŒH WH\gHg�1�

ŒgHg�1WH\gHg�1�
. Given T 2 D , one has

� D � B� , where � is the natural epimorphism fromG to the topological fundamental
group of the quotient graph � (see the beginning of Section 4), and � is defined on
a loop � D .e1; : : : ; ek/ by �.�/ D Qk

j D1
i.ej /

i. Nej /
, denoting by i.ej / (resp. i. Nej /) the

index of the edge group in the vertex group at the origin (resp. endpoint) of ej .

Remark. There is a more refined invariant, with values in the abstract commensurator
of H . For GBS groups, it is the (signed) modular homomorphism used in [18] or
[25].

As in [18], we say that D has no non-trivial integer modulus if the image of �
contains no integer n > 1 (when vertex groups are isomorphic to Z, this is equivalent
to saying that G does not contain a solvable Baumslag–Solitar group BS.1; n/ with
n > 1, see [25]). An irreducible deformation space with no non-trivial integer mod-
ulus is obviously non-ascending.

Proposition 8.6. Let H be a finitely generated subgroup of G such that H , and
every group commensurable to H , has finite outer automorphism group. Let D be
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an irreducible deformation space consisting of locally finite G-trees with stabilizers
commensurable to H .

(1) If H is small in G, then OutD.G/ D Out.G/.

(2) IfH , and all its finite index subgroups, have finite center, then OutD.G/ acts on
D with finite stabilizers.

(3) If there is no non-trivial integer modulus, then OutD.G/ acts onPD with finitely
many orbits of simplices.

Proof. (1) follows from Lemma 8.5.
For (2), consider T 2 D . We study its stabilizer OutT .G/ � Out.G/ using

results and notations from [24]. Since all edge and vertex stabilizers have Out finite,
the group of twists T has finite index in OutT .G/ ([24], Theorem 1.6). This group T

is a quotient of a finite direct product of centralizers ZGv
.Ge/, with Ge an edge

stabilizer and Gv an adjacent vertex stabilizer. The hypothesis of (2) implies that all
groups commensurable with H have finite center, so all these centralizers are finite.

(3) was proved by Forester for GBS groups [18]. We generalize his argument.
Given T 2 D , consider the quotient graph of groups � . The hypothesis about moduli
implies that there is a uniform bound N (independent of T ) for the index of an edge
group in an adjacent vertex group ([18], Theorem 8.2).

If H1, H2 are commensurable to H , we note that there are only finitely many
injections H1 ,! H2 whose image has index � N , up to postcomposition with an
inner automorphism of H2. This is clear since H2 has finitely many subgroups of
index � N and Out.H1/ is finite.

Since PD is a locally finite complex (see Section 5) and every closed simplex
contains a reduced tree, it suffices to show that there are finitely many OutD.G/-orbits
of non-metric reduced trees. As D is non-ascending, all reduced trees in D are related
by slide moves (Theorem 7.2), so there are finitely many possibilities for � D T=G

as a graph. We now have to consider � as a graph of groups, with edge groups, vertex
groups, and inclusions.

All reduced trees have the same edge and vertex stabilizers (Corollary 7.3), so there
are finitely many possibilities for the isomorphism type of edge and vertex groups
of� . As for the inclusions, we have observed that there are finitely many possibilities,
up to inner automorphisms of vertex groups. But composing an inclusion with such
an automorphism does not change the Bass–Serre tree [1], so we have shown that D

only meets finitely many Out.G/-orbits of non-metric reduced trees. Assertion (3)
follows.

All finiteness conditions (but not smallness) are satisfied when G is a “generic”
hyperbolic group (one whose boundary is a Menger curve). When all conditions are
satisfied, Out.G/ acts on the contractible complex PD with finite stabilizers and
finitely many orbits of simplices, so is F1. We have for instance:
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Corollary 8.7. Let p be prime. Suppose that T is an irreducible locally finite G-
tree with stabilizers commensurable to BS.1; p/. If there is no non-trivial integer
modulus, then Out.G/ is F1.

Proof. BS.1; p/ is small. Its subgroups of finite index are isomorphic to some
BS.1; pn/, so have trivial center. Since p is prime, their Out is finite by [10]. A group
containing BS.1; pn/ with finite index also has Out finite (see e.g. [20], Lemma 5.4).

References

[1] H. Bass, Covering theory for graphs of groups. J. Pure Appl. Algebra 89 (1993), 3–47.
Zbl 0805.57001 MR 1239551

[2] H. Bass and R. Kulkarni, Uniform tree lattices. J. Amer. Math. Soc. 3 (1990), 843–902.
Zbl 0734.05052 MR 1065928

[3] M. Bestvina and M. Feighn, Bounding the complexity of simplicial group actions on
trees. Invent. Math. 103 (1991), 449–469. Zbl 0724.20019 MR 1091614

[4] B. H. Bowditch, Cut points and canonical splittings of hyperbolic groups. Acta Math. 180
(1998), 145–186. Zbl 0911.57001 MR 1638764

[5] M. Bridson and A. Miller, Lost manuscript.

[6] I. Chiswell, Introduction to ƒ-trees. World Scientific, Singapore 2001. Zbl 1004.20014
MR 1851337

[7] M. Clay, Contractibility of deformation spaces ofG-trees. Algebr. Geom. Topol. 5 (2005),
1481–1503. Zbl 02221903 MR 2186106

[8] M. Clay, A fixed point theorem for deformation spaces ofG-trees. Comment. Math. Helv.
82 (2007), 237–246.

[9] M. Clay, Deformation spaces of G-trees. PhD thesis, University of Utah, Salt Lake City
2006.

[10] D. J. Collins, The automorphism towers of some one-relator groups. Proc. London Math.
Soc. (3) 36 (1978), 480–493. Zbl 0376.20025 MR 0470091

[11] M. Culler and J. W. Morgan, Group actions on R-trees. Proc. London Math. Soc. (3) 55
(1987), 571–604. Zbl 0658.20021 MR 907233

[12] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups. Invent.
Math. 84 (1986), 91–119. Zbl 0589.20022 MR 830040

[13] M. Culler and K. Vogtmann, The boundary of outer space in rank two. In Arboreal group
theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ. 19, Springer, New York 1991,
189–230. Zbl 0786.57002 MR 1105335

[14] W. Dicks, Groups, trees and projective modules. Lecture Notes in Math. 790, Springer-
Verlag, Berlin 1980. Zbl 0427.20016 MR 0584790

http://www.emis.de/MATH-item?0805.57001
http://www.ams.org/mathscinet-getitem?mr=1239551
http://www.emis.de/MATH-item?0734.05052
http://www.ams.org/mathscinet-getitem?mr=1065928
http://www.emis.de/MATH-item?0724.20019
http://www.ams.org/mathscinet-getitem?mr=1091614
http://www.emis.de/MATH-item?0911.57001
http://www.ams.org/mathscinet-getitem?mr=1638764
http://www.emis.de/MATH-item?1004.20014
http://www.ams.org/mathscinet-getitem?mr=1851337
http://www.emis.de/MATH-item?02221903
http://www.ams.org/mathscinet-getitem?mr=2186106
http://www.emis.de/MATH-item?0376.20025
http://www.ams.org/mathscinet-getitem?mr=0470091
http://www.emis.de/MATH-item?0658.20021
http://www.ams.org/mathscinet-getitem?mr=907233
http://www.emis.de/MATH-item?0589.20022
http://www.ams.org/mathscinet-getitem?mr=830040
http://www.emis.de/MATH-item?0786.57002
http://www.ams.org/mathscinet-getitem?mr=1105335
http://www.emis.de/MATH-item?0427.20016
http://www.ams.org/mathscinet-getitem?mr=0584790


180 V. Guirardel and G. Levitt

[15] M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender
groups. Invent. Math. 135 (1999), 25–44. Zbl 0939.20047 MR 1664694

[16] M. Forester, Deformation and rigidity of simplicial group actions on trees. Geom. Topol.
6 (2002), 219–267. Zbl 02062447 MR 1914569

[17] M. Forester, On uniqueness of JSJ decompositions of finitely generated groups. Comment.
Math. Helv. 78 (2003), 740–751. Zbl 1040.20032 MR 2016693

[18] M. Forester, Splittings of generalized Baumslag-Solitar groups. Geom. Dedicata 121
(2006), 43–59. Zbl 05119716

[19] K. Fujiwara and P. Papasoglu, JSJ-decompositions of finitely presented groups and com-
plexes of groups. Geom. Funct. Anal. 16 (2006), 70–125. Zbl 1097.20037 MR 2221253

[20] V. Guirardel, G. Levitt, The outer space of a free product. Proc. London Math. Soc., to
appear. arXiv:math.GR/0501288

[21] V. Guirardel and G. Levitt, A general construction of JSJ decompositions. In Proceedings
of the Barcelona Conference on Geometric Group Theory 2005, to appear.
http://picard.ups-tlse.fr/~guirardel/papiers/Barcelone.pdf

[22] V. Guirardel and G. Levitt, in preparation.
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