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Connectedness at infinity of systolic complexes and groups

Damian Osajda�

Abstract. By studying connectedness at infinity of systolic groups we distinguish them from
some other classes of groups, in particular from the fundamental groups of manifolds covered
by Euclidean space of dimension at least three. We also study semistability at infinity for some
systolic groups.
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1. Introduction

Systolic complexes were introduced by T. Januszkiewicz and J. Świa̧tkowski ([JS1])
and, independently, by F. Haglund ([H]) as combinatorial analogues of nonpositively
curved spaces. They are simply connected simplicial complexes satisfying some local
combinatorial conditions: roughly speaking there is a lower bound for the lengths of
“essential” closed paths in the one-skeleton of every link.

This condition is an analogue of the Gromov condition implying nonpositive cur-
vature for cubical complexes. However systolic complexes equipped with the metric
for which every simplex is isometric to the regular euclidean simplex are not nec-
essarily nonpositively curved. Conversely, there exist nonpositively curved spaces
(e.g. manifolds of dimension at least three) that do not admit systolic triangulations.
Nevertheless systolic spaces (sometimes referred to as complexes of simplicial non-
positive curvature – SNPC) possess many properties analogous to those of spaces of
non-positive curvature (we use [JS1] as a reference for this theory). They are con-
tractible (this is an analogue of the Cartan–Hadamard theorem), with some additional
assumptions they are Gromov hyperbolic or CAT.0/ (CAT.�1/), and complexes of
groups with links satisfying the same conditions as links in systolic spaces are devel-
opable.
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The latter property allows one to construct many examples of systolic spaces and
groups (i.e. groups acting geometrically on systolic complexes) with some additional
properties and to answer some open questions.

Systolic groups are biautomatic ([JS1]). They can be considered as higher dimen-
sional analogues of small cancelation groups ([W]). Ideal boundaries of 7-systolic
groups are strongly hereditarily aspherical compacta ([O]).

We study the topology at infinity of systolic complexes and groups. It turns out
that connectedness at infinity allows to distinguish systolic groups from some other
classes of groups, in particular from fundamental groups of closed manifolds covered
by Rn, for n > 2 (see Section 3). This extends some of the results obtained in [JS2]
and [W] (see Subsection 3.1 below). Our main tool is the property Conn1

k .G/ (see
Section 2.3) saying that for every contractible, rigid G-CW complex X on which
G acts properly discontinuously and cocompactly and for every neighborhood U of
infinity in X there exists a smaller neighborhood of infinity V � U such that every
k-dimensional sphere in V is homotopically trivial in U . The main result is the
following.

Theorem 1 (Theorem 3.1 in Section 3). Let X be a locally finite systolic complex,
let G be a systolic group and let k � 2 be a natural number. Then the conditions
Conn1

k .X/ and Conn1
k .G/ hold.

As a corollary of this theorem, using some homological algebra, we obtain the
following.

Theorem 2 (Theorem 3.2 in Section 3). Systolic groups are not simply connected at
infinity.

In Subsection 3.1 we give some examples of groups that are not systolic. Among
them there are some Coxeter groups, lattices in isometry groups of some buildings
and nonpositively curved cubical complexes.

In Section 4 we study topology at infinity of locally finite systolic chamber com-
plexes such that links of vertices are connected and complements of open balls of
radius 2 in those links are connected – condition R.v;X/ in Section 4. Our results
can be viewed as analogues of some of the results obtained in [BMcCM] for CAT.0/
complexes and in [DM] for Coxeter groups. We prove the following.

Theorem 3 (Theorem 4.6, Section 4). Let X be a locally finite systolic chamber
complex of dimension greater than one. Suppose thatR.v;X/ holds for almost every
vertex v 2 X .i.e. for all but finitely many/. ThenX is not simply connected at infinity.
Moreover, if G acts properly and cocompactly on X then G is semistable at infinity.

As shown in Section 4 for a systolic group acting on a normal pseudomanifold
X the condition R.v;X/ holds for every vertex v. Such groups of arbitrarily large
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cohomological dimension are constructed in [JS1]. Those groups are the only systolic
groups of cohomological dimension greater than two known to us at the moment.

Semistability at infinity is conjectured to hold for all one ended finitely presented
groups. Thus we just give new examples of groups for which it holds.

I would like to thank Tadeusz Januszkiewicz and Jacek Świa̧tkowski for introduc-
ing me to the subject and suggesting the problem. I am also grateful to them and to
Jan Dymara, Ross Geoghegan, Peter Kropholler, Ian Leary and Carrie Schermetzler
for helpful conversations.

2. Preliminaries

2.1. Systolic complexes and groups. A simplicial complex X is flag if every finite
subset of its vertices pairwise connected by edges spans a simplex of X . Following
[JS1] and [JS2] we say that, for a given natural k � 4, a simplicial complex X is
k-large if it is flag and if every cycle � in X (i.e. its subcomplex homeomorphic
to the circle) of length 4 � j� j < k has a diagonal (i.e. an edge connecting two
nonconsecutive vertices in � ). Here j� j denotes the number of edges of � .

A simplicial complexX is locally k-large if for every simplex � ¤ ; ofX its link
X� in X is k-large.

X is k-systolic if it is locally k-large, connected and simply connected.
Because k D 6 is of special importance in that theory, 6-systolic complexes are

called systolic.
A group acting geometrically (i.e. properly discontinuously and cocompactly) by

simplicial automorphisms on a k-systolic (resp. systolic) complex is called k-systolic
(resp. systolic).

For example free groups and fundamental groups of surfaces are systolic. For
other examples see below.

In the rest of this subsection we list some results concerning systolic complexes
and groups which we will use later. If it is not stated otherwise they can be found in
[JS1] and we follow the notation of that paper. In particular, for a simplicial complex
X we denote by X .i/ its i -skeleton, and we denote by � � � the join of simplices �
and �.

Recall that a subcomplex Y of a simplicial complex X is full if every set A of
vertices of Y spanning a simplex of X spans a simplex in Y . The following facts are
immediate:

Proposition 2.1. (1) A full subcomplex in a .locally/ k-large complex is .locally/
k-large.

(2) Links of a k-large complex are k-large.
(3) ([JS1], 1.8.5) There is no k-large triangulation of the 2-sphere for k � 6.

Hence no triangulation of a manifold of dimension n � 3 is 6-large since 2-spheres
would occur as links of some simplices in such triangulation.
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Now letX be a systolic complex and � its simplex. By Section 7 of [JS1] one can
define a closed combinatorial ball of radius i around � in X , Bi .�;X/, inductively:
B0.�;X/ D � and Bi .�;X/ D Sf� j � \ Bi�1.�;X/ ¤ ;g for i > 0. (Note that in
Section 7 of [JS1] the combinatorial balls and the deformation retractions we consider
are defined more generally for any convex subcomplex of X .)

By Si .�;X/ we denote the subcomplex of Bi .�;X/ spanned by the vertices at
combinatorial distance i from � , i.e. not belonging to Bi�1.�;X/. By

B

Bi .�;X/ we
denote the interior of the closed combinatorial i -ball around � inX , i.e.,

B

Bi .�;X/ D
Bi .�;X/ n Si .�;X/.

Thus one can define closed combinatorial balls of small radii in k-large complexes
and they are isomorphic to ones in the corresponding universal covers. In the following
lemma the first claim implies the second one in view of Fact 2.1.

Proofs of the following two lemmas (except the last part of the second lemma)
can be found in Section 7 of [JS1].

Lemma 2.2. The ball Bi .�;X/ and the sphere Si .�;X/ are full subcomplexes of X
and they are k-large.

Lemma 2.3. For every simplex � 2 Si .�;X/, i > 0, � D Si�1.�;X/\X� is a single
simplex and X� \ Bi .�;X/ D B1.�;X� / and X� \ Si .�;X/ D S1.�;X� /.

Proof. We prove here only that X� \ Si .�;X/ D S1.�;X� /.
Let a vertex v belong to X� \ Si .�;X/. Then, since � � Bi�1.�;X/ we have

v 2 S1.�;X� / and hence X� \ Si .�;X/ � S1.�;X� /.
Now let a vertex v belong to S1.�;X� /. Then it is obvious that v 2 Si .�;X/ [

Si�1.�;X/. Assume v 2 Si�1.�;X/. Then v � � 2 Si�1.�;X/ \ X� D � which is
a contradiction. Hence X� \ Si .�;X/ � S1.�;X� /.

In the rest of the paper we call the simplex �, as in the above lemma the projection
of � on Bi�1.�;X/.

For a simplicial complexX , we denote byX 0 its first barycentric subdivision. For
a simplex � 2 X we denote by b� the barycenter of � .

By the lemma above we can define an elementary contraction

�Bi .�;X/ W BiC1.�;X/0 ! Bi .�;X/
0

between barycentric subdivisions of balls by putting

�Bi .�;X/.b�/ D
(
b�\Bi .�;X/ if � \ Bi .�;X/ ¤ ;;
bX�\Bi .�;X/ if � \ Bi .�;X/ D ;

and then extending simplicially. In Section 8 of [JS1] it is shown that �Bi .�;X/ is a

deformation retraction and that �Bi .�;X/.BiC1.�;X/ n B

Bi .�;X// � Si .�;X/.



Connectedness at infinity of systolic complexes and groups 187

Then we define a deformation retraction PBi .�;X/ W X ! Bi .�;X/ as follows. If
x 2 Bj .�;X/ then PBi .�;X/.x/ D �Bi .�;X/ B �BiC1.�;X/ B � � � B �Bj �1.�;X/.x/.

Lemma 2.4. For j > i , the projection PBi .�;X/jBj .�;X/ W Bj .�;X/X ! Bi .�;X/

provides a deformation retraction of Bj .�;X/ n B

Bi .�;X/ onto Si .�;X/ within

Bj .�;X/ n B

Bi .�;X/.

For k � 6, by Corollary 1.5 of [JS1] (compare Fact 2.1 above), a simplicial
complex Y is k-large if and only if it is locally k-large and the minimal length of a
homotopically nontrivial (in Y ) loop in the 1-skeleton Y .1/ of Y is at least k. Hence
we obtain the following.

Lemma 2.5. Let k � 6 and let Y be a k-large simplicial complex. If p W X ! Y

is the universal cover of Y and m < k�1
2

then for i D 0; 1; 2; : : : ; m the map
pjBi .�;X/ W Bi .�;X/ ! p.Bi .�;X// is an isomorphism.

By part 3 of Fact 2.1 there is no systolic manifold above dimension two. But there
are systolic groups acting geometrically on spaces that are “close” to manifolds as we
describe below.

A simplicial complex X is called a chamber complex of dimension n if it is the
union of its n-simplices (which are called chambers of X) and for every .n � 1/-
dimensional face ofX there exist at least two chambers containing it. It is easy to see
that links in a chamber complex are themselves chamber complexes. A gallery in a
chamber complex is a finite sequence of maximal simplices such that two consecutive
simplices share a common face of codimension 1. A chamber complex is said to be
gallery connected if any two chambers can be connected by a gallery. A chamber
complex is normal if it is gallery connected and all its links of dimension above 0
are gallery connected. A chamber complex is a pseudomanifold if every codimension
one face belongs to exactly two maximal simplices.

In [JS1] it is shown (Corollary 19.2) that for every natural n and every k � 6 there
exists an n-dimensional compact chamber complex that is k-large. Such examples
are constructed as developments of some simplices of groups. Moreover, they can be
pseudomanifolds. In Section 5 we show that the groups constructed this way are one-
ended and semistable at infinity. Here we give some background on the constructions
given in [JS1].

Recall (we use here the notation of [JS1]; a standard reference for complexes
of groups is [BriH]) that for a given simplex � a simplex of groups G over � is a
family of groups fG� j � is a subsimplex of �g together with the family of structure
homomorphisms f �� W G� ! G� j � � �g satisfying natural commutation relations.
A simplex of groups G is called developable if there exists a simplicial complex X
(development) and a groupG acting onX such thatGnX D �, where� is identified
with some maximal simplex of X , G� D Stab.�;G/ for � being a subsimplex of �
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and  �� are the inclusions G� ! G� for � � � . We allow the case � D ; and
then we put G; D G. Then we write G D GnnX . We say also that X is the
development of G with respect to the morphism m W G ! G. The morphism m is
the family of injections m� W G� ! G agreeing with structure homomorphisms, for
� being simplices of �. Moreover, if G is developable then there exists a simply
connected simplicial complex zG (universal development of G ) and a group yG (direct
limit of G ) such that G D yGnnzG . For a subsimplex � of� one can consider a simplex
of groups G � over a link�� , being a “restriction of G to the link”. There is a canonical
morphism i� W G � ! G� .

Following [JS1] for a natural k � 4 we will call a simplex of groups G , locally
k-large if for every link �� , the development of G � with respect to the canonical
morphism i� W G � ! G� is k-large.

Proposition 2.6 (Corollary 17.4 in [JS1]). For k � 6 every locally k-large simplex
of groups is developable.

In Section 18 of [JS1] a notion of (local) extra-tilability of simplices of groups
and of their developments is introduced. The most important for us is the following
property.

Proposition 2.7 (Proposition 18.3 in [JS1]). Let G be a locally extra-tilable simplex
of groups. Then the action of the direct limit yG on the universal development zG has
the following property: each i -ballBi .�; zG /, for any natural i , is a strict fundamental
domain for the action of a unique subgroup of yG .

By applying Proposition 2.7, it is shown in [JS1] that for given natural k � 6,
simplex � and a family of finite groups fAs j s is a codimension 1 face of �g there
exists a simplex of groups G over � such that Gs D As , for every codimension one
face, and G admits finite k-large development. The explicit construction of local
groupsG� of such G goes by induction on the codimension of � . The important point
is that for every � , local developments of G at � are k-large and extra-tilable.

2.2. Homology of groups. The following two propositions and their proofs were
supplied by Ian Leary. The main reference for homology of groups is [Bro1].

Proposition 2.8. If a group G acts with finite stabilizers on a finite-dimensional
contractible simplicial complex X thenW
(1) cdQG � dim.X/.

(2) There exists a free QG-module F D L
i QG and n0 � dim.X/ such that

Hn0

.GIF / ¤ 0.



Connectedness at infinity of systolic complexes and groups 189

(3) There exists a free ZG-module zF D L
j ZG and n D n0 or n D n0 C 1 such

that Hn.GI zF / ¤ 0.

Proof. 1. LetH be a finite subgroup ofG and let� W QG ! QG=H be the projection
map given by�.g/ D gH . Then there is a section s W QG=H ! QG of� , defined by
s.gH/ D 1

jH j
P
h2H gh. Hence QŒG=H	 is QG-projective and the simplicial chain

complex C�.X I Q/ is a projective resolution of Q over QG (compare Exercise I.8.5
in [Bro1]).

2. Since cdQG � dim.X/ < 1, we have

cdQG D maxfn0 j there exists a QG-module M with Hn0

.GIM/ ¤ 0g:
Given such an M , let F be a free QG-module fitting into the short exact sequence

0 ! K ! F ! M ! 0:

The cohomology long exact sequence gives

Hn0

.GIF / ! Hn0

.GIM/ ! Hn0C1.GIK/:
Since Hn0C1.GIK/ D 0 we have Hn0

.GIF / ¤ 0.
3. There is a short exact sequence of abelian groups

0 ! L
m�1

Z ! L
m�1

Z ! Q ! 0:

Hence there is a short exact sequence of ZG-modules

0 ! L
m�1

ZG ! L
m�1

ZG ! QG ! 0

and a short exact sequence of ZG-modules

0 ! zF ! zF ! F ! 0:

The cohomology long exact sequence gives

Hn0

.GI zF / ! Hn0

.GI zF / ! Hn0

.GIF / ! Hn0C1.GI zF /:
Since Hn0

.GIF / ¤ 0 we obtain Hn0

.GI zF / ¤ 0 or Hn0C1.GI zF / ¤ 0.

Proposition 2.9. If a groupG acts with finite stabilizers and cocompactly on a finite-
dimensional contractible simplicial complex X then there exists a natural number
n � dim.X/ such that Hn.GI ZG/ ¤ 0.
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Proof. Let C�.X/ denote a simplicial chain complex for X and let P� be a free
resolution for Z over ZG. Consider the spectral sequence for

E
ij
0 D HomG.Ci .X/˝ Pj ;M/;

whereM Š L
k ZG (compare ChapterVII.7 in [Bro1]). For each fixed i ,Ci .X/˝P�

is a free resolution of Ci .x/, so in the spectral sequence in which the differential
d0 W Eij0 ! E

i;jC1
0 is induced by the differential onP�, we haveEij1 Š ExtjG.Ci ;M/.

By Shapiro’s lemma (cf., e.g., Proposition III.6.2 in [Bro1]), Ext�G.ZG=H;M/ Š
Ext�

H .Z;M/ D H�.H IM/ for a subgroup H < G. By the hypotheses, for a
stabilizer H of every simplex in X , we have H j .H IM/ D 0 for j > 0. Hence
ExtjG.Ci ;M/ D 0 for j > 0 and we have Eij1 D 0 for j > 0, and Ei01 D
HomG.Ci ;M/. Thus the spectral sequence collapses at E2, with Eij2 D 0 for i > 0
and Ei02 D H i

G.X IM/. On the other hand, the total complex for C� ˚ P� is a free
resolution for Z over ZG, and so the spectral sequence must converge to a filtration
ofH�.GIM/. Thus we have a natural isomorphism betweenH� HomG.C�.X/IM/

and H�.GIM/ (compare Exercise VIII.7.4 in [Bro1]).
Since C�.X/ is a chain complex of finitely generated G-modules we have

HomG.C�.X/;
L
j ZG/ D L

j

HomG.C�.X/;ZG/:

Now taking cohomology we obtain

H�.GIM/ D H� HomG.C�.X/IM/

D L
k

H� HomG.C�.X/I ZG/

D L
k

H�.GI ZG/:

Using Proposition 2.8 and setting M D zF we have that there exists n such that
Hn.GI ZG/ ¤ 0.

2.3. Connectedness and acyclicity at infinity. For a topological space Y and an
integer n � �1 denote by Conn1

n .Y / the following condition:

For every compactK � Y there exists a compactL � Y such thatK � L

and every map Sn D @BnC1 ! Y n L extends to a map BnC1 ! Y nK.
This condition is also called vanishing of the n-th homotopy pro-group at
infinity – see [G].

If Conn1
k .Y / holds for every k � n then we say that Y is n-connected at infinity

(compare e.g. [G]). Y is .�1/-connected at infinity if and only if it is not compact. Y
is 0-connected at infinity if and only if it has one end. A space 1-connected at infinity
is also called simply connected at infinity.
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Recall that two maps f1; f2 W X ! Y are said to be properly homotopic if there
exists a proper (i.e. with compact preimages of compact sets) homotopy
F W X 	 Œ0; 1	 ! Y joining them. A proper map f W X ! Y is a proper homo-
topy equivalence if there exists a proper map g W Y ! X such that f B g and g B f
are properly homotopic to, respectively idY and idX . It is obvious that if f W X ! Y

is a proper homotopy equivalence then Conn1
n .X/ if and only if Conn1

n .Y /.
A map f W X ! Y between CW complexes is CW-proper if for each n there

exists k such that f .X .n// � Y .k/ and f jX.n/ W X .n/ ! Y is proper. A definition of
CW-proper homotopy equivalence is then analogous to proper homotopy equivalence.
If f W X ! Y is a CW-proper homotopy equivalence then Conn1

n .X/ iff Conn1
n .Y /.

The next theorem is a slight generalization of a part of Theorem 5.8.2 of [G].
The proof is the same as the one of the latter (this was pointed out to us by Ross
Geoghegan) hence we just describe it briefly. An action of a group on a CW complex
is rigid if the stabilizer of any cell acts trivially on that cell. Observe that a group
acting by simplicial automorphisms on a simplicial complex acts rigidly on the first
barycentric subdivision of the complex. Let � W A ! C be a cellular map between
CW complexes and let for each cell e of C a CW complex Fe be given. Then (see
e.g. Chapter 2.6 in [G]) � is a stack of CW complexes with fiber Fe if it is (roughly
speaking) “built” by induction on skeleta of C so that over the interior

B
e of a cell e,

� is homotopically equivalent to the projection Fe 	 B
e ! B

e.

Proposition 2.10. Let Y1 and Y2 be two contractible rigid G-CW complexes with
cocompact G-actions such that stabilizers of all cells are finite. Then Conn1

n .Y1/ if
and only if Conn1

n .Y2/.

Proof. For i D 1; 2 apply the Borel Construction (see e.g. Chapter 2.6 in [G]) using
a K.G; 1/-complex X of finite type to get the commutative diagram:

zX 	 Yi Yi

Zi 
i D GnYi

........................................................................................................................................................................ ............
projection

................................................................................................................................................. ............
qi

.................................................................
...
.........
...

.................................................................
...
.........
...

Here, the diagonal action of G on the contractible CW complex zX 	 Yi is free,
so Zi D Gn. zX 	 Yi / is a K.G; 1/-complex. Then qi W Zi ! 
i is a stack of CW
complexes which can be rebuilt to give a commutative diagram

Z0
i Zi


i

............................................................................................................................................................................................ ............
hi

....................................................................................................
...
............

qi

....................................................................................................... .........
...

q0
i
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(see 2.6.4 in [G]) in which q0
i W Z0

i ! 
i is a stack of CW complexes and hi is a
homotopy equivalence. Here the fiber Fe of qi over the cell e of 
i is a K.Ge; 1/-
complex where Ge is finite, and the fiber F 0

e of q0
i over e is a K.Ge; 1/-complex of

finite type (see 2.11.5 of [G]). From Chapters 2.6 and 2.12 of [G] one sees that the
map zZ0

i ! zX 	 Yi ! Yi is a stack of CW complexes in which the fiber over a
cell Qe of Yi is homeomorphic to the universal cover of F 0

e (where Qe lies over a cell e
of 
i ). Thus that fiber is a contractible CW complex of finite type. It follows that the
indicated map zZ0

i ! Yi is a CW-proper homotopy equivalence and hence Conn1
n .Yi /

if and only if Conn1
n .

zZ0
i /.

Thus to prove the proposition it suffices to show that Conn1
n .

zZ0
1/ is equivalent to

Conn1
n .

zZ0
2/. But Z0

1 and Z0
2 are both K.G; 1/-complexes hence by Corollary 2.8.7

of [G] they are homotopy equivalent and by Theorem 3.1.23 of [G] there exists a
proper homotopy equivalence zZ0

1 ! zZ0
2.

Hence for a group G we can define a condition Conn1
k .G/ by requiring that

Conn1
k .X/ holds for some, and hence for any contractible, rigid G-CW complex X

on which G acts properly discontinuously and cocompactly. If Conn1
k .G/ for every

k D �1; 0; 1; : : : ; n then we say thatG is n-connected at infinity (cf [G] Chapter 5.4).
Note that, by Theorems 7.6.11 and 7.6.12 of [G], Conn1

k .G/ is a quasi-isometry
invariant in the sense that if G and H are quasi-isometric groups then Conn1

k .G/ if
and only if Conn1

k .H/.
Let Y be a finite-dimensional locally finite path connected CW complex, let

.Li /
1
iD1 be the filtration of Y by compact subcomplexes and let n � �1 be an

integer. We denote by Y �c Li the largest subcomplex of Y whose vertices are the
vertices of Y n Li . We say that Y is n-acyclic at infinity with respect to a ring R if
the inverse system f zHk.Y �c Li IR/; {ji g is pro-trivial for every �1 � k � n (see

e.g. Chapter 5.8 in [G]). Here {ji W Hk.Y �c Lj IR/ ! Hk.Y �c Li IR/ is a map
between reduced homologies induced by inclusion. An inverse system like the above
is pro-trivial if for every i there exists j � i such that the image of {ji is trivial.

Let moreover Y be a contractible rigidG-CW complex with cocompactG-action
such that stabilizers of all cells are finite. If Y is n-acyclic at infinity then we say that
the group G is n-acyclic at infinity. By Theorem 5.8.2 in [G] this is a property of G,
i.e. it does not depend on the choice of Y as above.

2.4. Semistability at infinity. LetG act geometrically (i.e. properly discontinuously
and cocompactly) and rigidly on a one ended contractible CW complexY . Let .Li /1iD1
be the filtration of Y by compact subcomplexes. Choose a map ! W Œ0;C1/ ! Y

such that !.i/ 2 Y �c Li , i 2 N, and put � i1 D �1.Y �c Li ; !.i// and denote by
P
j
i W �j1 ! � i1 the maps induced by inclusions and changing of the base point along
!. Then we say (see [G], Chapters 5.1, 5.4 and Theorem 5.8.2) that a group G is
semistable at infinity if for every i there exists j � i such that for all k � j we have
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im.P ji / D im.P ki /. Note that this definition does not depend on the choice of the
filtration .Li /1iD1.

IfG is semistable at infinity then the fundamental pro-group at infinity ofG being
the inverse limit of the system f� i1; P ji g is well defined, i.e., it is independent of Y
and !. Moreover in that case some other invariants (e.g. Čech fundamental group or
strong fundamental group) can be defined (see Section 5.4 of [G]).

It is still unknown if there exists a finitely presented one-ended group which is not
semistable at infinity.

3. Connectedness at infinity of systolic complexes and groups

In this section we show that for a systolic group G and a natural k � 2 the condi-
tion Conn1

k .G/ holds (see section 2.3 for the definition). As a consequence we get
that systolic groups are not simply connected at infinity. Those results allow us to
distinguish systolic groups from some other natural classes of groups.

Theorem 3.1. Let X be a locally finite systolic complex, let G be a systolic group
and let k � 2 be a natural number. Then the conditions Conn1

k .X/ and Conn1
k .G/

hold.

Proof. Let a compact K � X be given. Choose a simplex � of X . We denote by Bl
the combinatorial ball Bl.�; X/.

There exists a natural l > 0 such thatK is a subset of Bl . Define L D BlC2. Let
M D X �c BlC1 be the maximal subcomplex of X , whose vertices are the vertices
of X n BlC1. By definition M is a full subcomplex of X and hence, by Fact 2.1,
it is aspherical. Therefore every map f W Sk ! X n L � M extends to a map
g W BkC1 ! M � X nK. Thus Conn1

k .X/ holds.
To show that Conn1

k .G/ holds, it is enough to notice that if G acts properly
discontinuously and cocompactly by automorphisms on a systolic complex Y then
G acts geometrically and rigidly on the first barycentric subdivision Y 0 of Y . Thus
Conn1

k .Y / implies Conn1
k .Y

0/ and the latter is equivalent to Conn1
k .G/.

Theorem 3.2. Systolic groups are not simply connected at infinity.

Proof. LetG be a systolic group and letX be a systolic simplicial complex on which
G acts geometrically, by automorphisms.

We will prove thatG is not simply connected at infinity, arguing by contradiction.
Assume G is simply connected at infinity. Then condition Conn1

k .G/ holds for
every k D �1; 0; 1; 2; : : : , i.e., G is l-connected at infinity for arbitrarily large l . By
the Proper Hurewicz Theorem (Theorem 5.7.6 in [G]) we have that G is l-acyclic at
infinity with respect to Z for arbitrarily large l . By Corollary 4.2 in [GMi1] (compare
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also Theorem in [GMi2] and Theorem 4.3.3 in [G]) it follows that H k.GI ZG/ D 0

for all k.
This is a contradiction since, by Proposition 2.9, there exists a natural number

n � dim.X/ < 1 such that Hn.GI ZG/ ¤ 0.

Corollary 3.3. Let 0 ! K ! G ! H ! 0 be a short exact sequence of infinite
finitely presented groups. If G is systolic then neither K nor H has one end.

Proof. It follows directly from Corollary 1.5 in [GMi1] (compare also Theorem 5.9.7
in [G]) and the fact that G is not simply connected at infinity.

3.1. Non-examples. Here we list some corollaries of the above results.
1) Z3 is not systolic (see below). This is also proved in [W] by showing that the

second isoperimetric function of a systolic group is linear (for a precise definition
and a proof see Section 8 of [JS2]). Note that it is conjectured there that higher
isoperimetric functions are also linear.

2) LetM be a closed manifold. ThenM has homotopy type of a finite polyhedron
P (cf. [KS]). The universal covers zM and zP of, respectively M and P are properly
homotopy equivalent. Hence if zM D Rn for n � 3, then zP is simply connected at
infinity. Thus we get the following.

Corollary 3.4. For n � 3, fundamental groups of closed manifolds covered by Rn

are not systolic.

3) A theorem of D. Wise on subgroups (see [W]) says that finitely presented
subgroups of a fundamental group of a compact 6-large complex are systolic. Hence
we get that fundamental groups of closed manifolds covered by Rn, n � 3, are not
isomorphic to subgroups of fundamental groups of compact 6-large complexes.

In [JS2] it is proved directly (i.e. without using the result of Wise) that fundamental
groups of closed non-positively curved riemannian manifolds of dimension at least
three are not isomorphic to subgroups of systolic groups.

4) From Corollary 3.3 it follows that if a systolic groupG is a productG D H 	K
of infinite groups, then neither K nor H is one-ended. To show this observe that G
is finitely presented and therefore its factors H and K are finitely presented, too.

Corollary 7.5 in [JS2] states that in fact a product of infinite groups H and K is
systolic only if H and K are both virtually free.

5) By Corollary 1.5 in [GMi1] (compare Corollary 5.9.6 in [G]) a product of
infinite finitely generated groups has one end. Hence, analogously to point 4) above,
we have that if G D H 	 K 	 N , where H , K and N are infinite then G is not a
systolic group.

This gives another proof of Corollary 7.7 in [JS2].
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6) Coxeter groups acting cocompactly on Rn for n � 3 are not systolic. Moreover,
let .W; S/ be a Coxeter system, L the associated nerve and S the poset of spherical
subsets of S (we use the notation of [DM]). Assume L � � is simply connected for
every � 2 S . Then by Theorem 4.3 in [DM] W is simply connected at infinity and
W is not systolic. (Compare point 8) below).

7) LetX be a locally compact building (triangulated) with an apartment isometric
to A (for basic facts about buildings see eg. [Bro2]). Let A be a space for which
Conn1

k .A/ does not hold for some k � 2. Then Conn1
k .X/ does not hold. Hence

discrete and cocompact subgroups of automorphisms group of X are not systolic.
To show this let us fix a folding p W X ! A onto an apartment of X such that

p�1.b/ D b for some chamber b. Take a natural k � 2 and a compact set xK � A such
that for every compact xL � xK there exists a map f W Sk ! An xL non homotopically
trivial in A n xK. Let K D p�1. xK/ and let a compact L � X with K � L be given
(here we use local compactness of X). Then xL D p.L/ is compact and one can find
a map f as above. To show that f is homotopically nontrivial in X n K we will
argue by a contradiction. Let us assume there exists its extension g W BkC1 ! X nK.
Then p B g W BkC1 ! A n xK is an extension of f W Sk ! A n xL that contradict non
triviality of f in A n xK. In particular cocompact lattices in groups of automorphisms
of Euclidean (i.e. with apartments being the Euclidean spaces En) and hyperbolic
(with apartments Hn) buildings are not systolic for n � 3.

8) Let X be a finite, locally CAT.0/, piecewise Euclidean complex. For a cell �
of X let Lk.�/ denote its link, and for p 2 Lk.�/ let Plk.�; p/ denote the punctured
link of � at p, i.e., Lk.�/ with all the points closer than �=2 to p (in the angular
metric on Lk.�/) removed (we use here the notation of [BMcCM]). Assume that for
every cell � of X and every point p 2 Lk.�/ both Lk.�/ and Plk.�; p/ are simply
connected. Then, by Theorem 1.3 in [BMcCM], the universal cover zX ofX is simply
connected and hence the fundamental group of X is not systolic.

Questions. Do there exist closed aspherical manifolds of dimension above 2, whose
fundamental groups are systolic?

More generally, does there exist a closed aspherical manifold M of dimension
n � 3, such that Conn1

k .
zM/ holds for every k � 2?

For Davis aspherical manifolds M (cf. [D]), Conn1
k .M/ fails for some k � 2

(this fact we know from Craig Guilbault and Tadeusz Januszkiewicz).

4. Systolic chamber complexes

The aim of this section is to show that systolic complexes of some class are one-
ended, are not simply connected at infinity, and groups acting on them geometrically
are semistable at infinity. That class contains, in particular, systolic groups acting on
normal pseudomanifolds of arbitrarily large dimension, constructed in [JS1].
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Throughout this section, if it is not stated otherwise, we denote by X a systolic
chamber complex of dimension n � 1. For a natural k, we denote by Bk the closed
combinatorial ball Bk.�; X/ around a given simplex � of X .

Lemma 4.1. Sk is an .n � 1/-dimensional chamber complex for every k � 1.

Proof. We first show that Sk is at most .n � 1/-dimensional. If there existed an
l-simplex � in Sk with l � n, then one would have a projection of � onto Bk�1
(see Lemma 2.3) spanning with � a simplex of dimension > n. Now we show that
every l-simplex � of Sk is contained in some .n � 1/-simplex by induction on the
dimension of X . For dim.X/ D 1 the assertion is clear. Let now dim.X/ D n > 1.
Consider the link X�. It is obviously an .n � l � 1/-dimensional chamber complex.
Moreover (see Lemma 2.3)X�\Bk is a ballB 0 inX� of radius 1 around some simplex
� of X�. But X� is a 6-large complex and closed balls of radii less than 3 in such
complexes are the same as those in their universal covers, i.e. as in systolic complexes
(see Lemma 2.5). Hence by the induction assumptions there exists .n�l�2/-simplex
� in S 0 D @.X�\Bk/ D X�\Sk (see Lemma 2.3). Then ��� is an .n�1/-simplex
of Sk .

Now we show that every codimension one simplex of Sk is contained in at least
two maximal simplices of Sk . If � (as above) is an .n � 2/-simplex then X� is a
1-dimensional chamber complex and X� \Bk D B1.�; X�/. Since X� is a chamber
complex, there should be at least two edges in X� \ Bk intersecting � with other
vertices �1 and �2 lying on S1.�; X�/. Then � � �1 and � � �2 are two .n � 1/-
simplices containing �.

Lemma 4.2. Let � be an .n � 1/-dimensional simplex of Sk . Then there exists a
vertex v at a distance k C 1 from � such that v � � is a simplex of X .

Proof. Since � belongs to Sk , there exists a vertex w at distance k � 1 from � such
that w � � is a simplex. Since X is a chamber complex, there is another vertex v
spanning an n-simplex with � . By Lemma 4.1 the vertex v does not belong to Sk .
Thus it remains to show that v is not at a distance k � 1 from � . Suppose it is. Then
PBk�1

.b� / is, by definition, a barycenter of some simplex � containing both v and
w. But then one has a simplex � � � belonging to X and of dimension at least nC 1.
This contradicts the assumption on the dimension of X .

Corollary 4.3. The universal cover of a 6-large chamber complex of dimension at
least 1 is unbounded.

Proof. By Lemmas 4.1 and 4.2 spheres of arbitrarily large radii around some simplex
of the universal cover (which is systolic) are non-empty.
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Let us define here, for a given vertex v of X , a condition R.v;X/ that will be
crucial for the remaining part of the section:

R.v;X/ if and only if .Xv n B

B2.�;Xv/ is connected for all � 2 Xv:

Lemma 4.4. Suppose that condition R.v;X/ holds for every vertex v in Sk . Then
for every path �k D .v1; v2; : : : ; vl/ in .Sk/.1/ .i.e., the vi ’s are consecutive vertices/
there exists a path

�kC1 D .w11 ; w
2
1 ; : : : ; w

m.1/
1 ; z1; w

1
2 ; : : : ; zl�1; w1l ; w

2
l ; : : : ; w

m.l/

l
/

in S .1/
kC1 such thatW

� PBk
.w

j
i / lies in the same simplex of Sk as vi , for j D 1; 2; : : : ; m.i/, and

� PBk
.zi / lies in the same simplex ofSk as the barycenter ei of the edge .vi ; viC1/.

Proof. By Lemma 4.1, for every i D 1; 2; : : : ; l � 1 there exists an .n � 1/-simplex
�i containing .vi ; viC1/. By Lemma 4.2 we can find vertices zi in SkC1 such that
zi � �i span a simplex in X . By the definition of PBk

we have that PBk
.zi / lies at a

distance not greater than 1 from ei .

Observe that zi belongs to .Xvi
n B

B2.�i ; Xvi
// \ .XviC1

n B

B2.�iC1; XviC1
//,

where �j D Xvj
\Bk�1.�; X/. Hence, by R.viC1; X/, one can connect zi�1 and zi

by .w1i ; w
2
i ; : : : ; w

m.i/
i /. Since by definition PBk

.w
j
i / 2 B1.vi ; Sk/ we conclude

these projections are as desired.

Lemma 4.5. Let Sk be connected and let condition R.v;X/ hold for every vertex
v 2 .Sk/.0/. Then SkC1 is connected.

Proof. Let w; z 2 .SkC1/.0/ and let � and � be the two maximal simplices of Sk
containing, respectively, PBk

.w/ and PBk
.z/. Choose vertices w0 of � and z0 of �

and a path �k in .Sk/.1/ joining w0 and z0. Then by the above lemma there exists
a path �kC1 D .v1; : : : ; vl/ in .SkC1/.1/ such that v1 2 Xw0 n B

B2.�w0 ; Xw0/ and
vl 2 Xz0 n B

B2.�z0 ; Xz0/ for appropriate �w0 and �z0 (i.e. as in Lemma 2.3). Since
also w 2 Xw0 n B

B2.�w0 ; Xw0/ and z 2 Xz0 n B

B2.�z0 ; Xz0/ by condition R.v;X/ we
can extend �kC1 to a path connecting w and z.

Theorem 4.6. LetX be a locally finite systolic chamber complex of dimension greater
than one. Suppose that R.v;X/ holds for almost every vertex v 2 X .i.e. for all but
finitely many/. ThenX is not simply connected at infinity. Moreover, ifG acts properly
and cocompactly on X then G is semistable at infinity.
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Proof. We show X is not simply connected at infinity, arguing by contradiction.
Assume X is simply connected at infinity. Let � 2 X .0/. Let N 2 N be such that
for every vertex v 2 X n B

BN condition R.v;X/ holds. By simple connectedness
at infinity there exists a natural L such that every loop in X n B

BNCL is contractible
in X n B

BN . Since SN is a full subcomplex of X , it is 6-large. It is also finite.
But by Corollary 4.3 its universal cover (i.e. a systolic complex) is infinite, hence
SN is not simply connected and we can find a closed path �N in .SN /.1/ which is
homotopically non-trivial in SN . Observe that, by Lemma 4.4, we can find a closed
path �NC1 2 .SNC1/.1/ such thatPBN

.�NC1/ is homotopic to �N in SN . SincePBN

is a deformation retraction (see 2.4) we obtain that �NC1 is homotopic to �N within
BNC1 n B

BN . Continuing this process we can find a closed path �NCL in .SNCL/.1/

such that it is homotopic to �N withinBNCL n B

BN and is homotopically trivial within
X n B

BNCL by the assumptions onL. But then �N is homotopic in SN toPBN
.�NCL/

which is homotopically trivial within SN . This contradicts the choice of �N .
To see that G is not simply connected at infinity observe that G acts properly

discontinuously, cocompactly and rigidly on the barycentric subdivision of X (see
Section 2.3).

For semistability take a filtration .Bk/1kD0 of X (see Section 2.4) and a suitable
ray ! W Œ0;C1/ ! X such that PBk

.!.k// D !.k � 1/ (this can be done by taking
a sequence .xk/1kD0 of points such that xk 2 Sk , then considering their projections
on spheres Si which are compact and getting the desired sequence by a diagonal
argument taking accumulation points of projections on Si ’s). Observe that X 0 �c Bk
(we take a barycentric subdivisionX 0 ofX to make action ofG rigid) is homotopically
equivalent to X n B

Bk and hence to SkC1. Given k � N (N as above) and an element
g 2 �1.X�cBk; !.k// D �1.SkC1; !.k//, choose a path� in .SkC1/.1/ representing
g. Then by the above construction for any L D 0; 1; 2; : : : one can find a closed path
�L in .SkCLC1/.1/ such that PBkC1

.�L/ is homotopic to � in SkC1. Hence if gL is
an element of �1.SkCLC1; !.kCL// D �1.X �c BkCL; !.kCL// represented by
�L (using connectedness of SkCLC1 by Lemma 4.5) we have that .PBkC1

/�.gL/ D g

and that the map �1.X �c BkCL; !.k CL// ! �1.X �c Bk; !.k// induced by the
inclusion is surjective. This shows G is semistable at infinity.

The next lemma gives a condition which helps to prove the condition R.v;X/ in
some cases – see e.g. Section 5.

Lemma 4.7. LetX be a 6-large chamber complex such thatX� is connected for every
simplex � of codimension greater than one in X and X� n B

B2.�;X� / is connected
for every codimension two simplex � of X and every simplex � of its link X� . Then
R.v;X/ holds for every vertex v of X .

Proof. We will proceed by induction on n D dim.X/.
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For n D 2 the assertion is clear since codimension two simplices are just vertices.
Assume we proved the lemma for n � k. Let dim.X/ D k C 1. Take a vertex v

ofX and consider its linkXv . It has dimension k. Observe that if ˛ is a codimension
l simplex of Xv then ˇ D ˛ � v is a codimension l simplex of X and .Xv/˛ D Xˇ .
Hence by the induction assumptions for every vertex w of Xv condition R.w;X/
holds.

Take a simplex ! of Xv . Since ! D S0.!;Xv/ is connected we have by
Lemma 4.5, Lemma 2.5 and by the fact that Xv is 6-large (as a full subcomplex
of X ) that also S1.!;Xv/ and S2.!;Xv/ are connected. Take two vertices t and s of
Xv n B

B2.!;Xv/. Since, by assumptions,Xv is connected there exists a path in .Xv/.1/

joining them. If this path missesS2.!;Xv/ it joins these vertices inXvn B

B2.!;Xv/. If
not, we can replace it (using connectedness ofS2.!;Xv/) by a path inXvn B

B2.!;Xv/.
Hence we have the conclusion.

Corollary 4.8. Let X be locally finite systolic chamber complex of dimension above
one. IfX� is connected for every simplex � of codimension greater than one inX and
X� n B

B2.�; X� / is connected for every codimension two simplex � of X and every
simplex � of its link X� , then X is not simply connected at infinity and every group
acting properly and cocompactly on X is semistable at infinity.

Remark. Observe that it follows from the proof of Lemma 4.7 that it is enough to have
the above assumptions only for almost every codimension two simplex � similarly as
in Theorem 4.6.

Corollary 4.9. Locally finite normal systolic pseudomanifolds are one-ended and are
not simply connected at infinity. Groups acting on them cocompactly and properly
are one-ended, semistable at infinity and do not split as amalgamated products or as
HNN extensions over finite groups.

Proof. Let X be a locally finite normal systolic pseudomanifold. Let � be an l-
simplex of X , for l � 2. Then @� is connected and by Lemma 4.5 every sphere
Si .�;X/ is connected. Thus X has one end.

As for semistability at infinity observe that one dimensional link of a normal pseu-
domanifold is a circle. Hence it satisfies the assumptions of the preceding corollary.

By Stallings theorem ([S]) if a finitely generated group has one end then it does
not split as an amalgamated product or an HNN extension over a finite group.

Remark. Systolic groups acting geometrically on normal pseudomanifolds con-
structed in [JS1] are the only systolic groups of cohomological dimension greater
then two known to us at the moment.
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Example. We give an example of a 2-dimensional systolic normal chamber com-
plex X which is simply connected at infinity. It shows we cannot delete condition
R.v;X/ from the assumptions of Theorem 4.6. Let .A; a; b; r/ denote the quadruple
consisting of

– A, a closed Euclidean half-plane (i.e. f.x; y/ 2 R2 j y � 0g) triangulated by
regular triangles;

– a, a vertex (of triangulation) in the interior of A;

– b, a vertex on the boundary @A;

– r , a closed geodesic ray in A.1/ starting from a.

Let .Ai ; ai ; bi ; ri /1iD1 be a sequence of quadruples isomorphic to .A; a; b; r/. We
will construct X recursively by “gluing consecutive quadruples”. More precisely
let X1 D A1. Having Xk we find the lowest index ik � k such that bik belongs
to a boundary edge ek of Aik (viewed as a subspace of Xk) that does not belong
to any triangles of Aj (viewed as a subspace of Xk), for j ¤ ik , j � k. Then
XkC1 D Xk [ k

AkC1, where  k W rkC1 ! Aik sends isometrically rkC1 to a
closed half-line NrkC1 of @Aik starting at bik and containing ek . If one defines a map
k W XkC1 ! Xk so that k.AkC1/ D NrkC1 and as identity on Xk � XkC1, then
.Xi ; i /

1
iD1 is an inverse sequence and we set X D inv lim.Xi ; i /.

Figure 1. Topology of X11.

It is clear thatX is a locally finite2- dimensional normal systolic chamber complex.
Since every Ai is contractible and we “glue them along rays” we obtain that X is
contractible. Then it can be easily observed that X is simply connected at infinity.
Observe that the assumptions of Theorem 4.6 (i.e. the condition R.bi ; X/) are not
satisfied for vertices bi in X . Note that there is no geometric group action on X .

Question. Are one-ended systolic groups semistable at infinity?
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5. Extra-tileable simplices of groups

Besides groups acting geometrically on trees and on 2-dimensional systolic complexes
the only other systolic groups known to us at the moment are the ones constructed in
[JS1] as fundamental groups of locally 6-large and locally extra-tilable simplices of
groups (see the comment after Proposition 2.7 in Section 2).

In this section we show the latter groups are one-ended and semistable at infinity,
provided groups associated with codimension one faces are nontrivial. Let G be a
locally 6-large and locally extra-tilable simplex of groups, as constructed in Proposi-
tion 19.1 of [JS1] and let� be the underlying simplex. Assume that groups associated
with codimension one faces of� are nontrivial. In view of Corollary 4.8 it is enough
to show that the universal development zG of G (which exists by Proposition 2.6) is a
locally finite systolic chamber complex such that its links of dimension above 0 are
connected and complements of open balls of radius 2 in 1-dimensional links of zG are
connected. The argument below was supplied by J. Świa̧tkowski.

We refer to the construction made in [JS1], Section 19, and use notation introduced
there. See also Section 2 above.

By Proposition 17.1 (5) of [JS1] (compare also [BriH]) the universal development
zG is a union of its top-dimensional simplices and, by our assumption, the groups G�
(compare Section 2) are non-trivial for all codimension one faces � of �. Hence zG
is a chamber complex. By Proposition 19.1 of [JS1] it is locally 6-large and hence –
because it is simply connected – systolic. It is locally finite by Proposition 19.1 (3)
of [JS1], because the groups G� are finite for all faces � of � (by the proof of
Proposition 19.1 of [JS1]). By construction (the proof of Proposition 19.1 of [JS1]),
for every face � of � the canonical morphism i� W G � ! G� is surjective (meaning
that G� is generated by the union of images of i� ’s). Hence, by Proposition 17.1 (6)
of [JS1], links in zG are gallery connected.

Now we show that complements of open balls of radius 2 in 1-dimensional links ofeG are connected. Let � be a codimension 2 face of� and s, t be the two codimension 1
faces containing � . Then the groups Gs , Gt and G� form a segment of groups G �

over the link �� , which is extra-tilable by local extra-tilability of G .
The link of a codimension two simplex of the universal development zG of G lying

over � is constructed as follows (cf. Corollary 18.6 in [JS1]). In the tree �G � (the
universal development of G � ) take a ball B D Bk.Œ�� ; 1	; �G � / of radius k D 6. Let
HB be the subgroup of the direct limit �G � of G � for which B is a strict fundamental
domain. Such a subgroup exists by Proposition 2.7. The 1-dimensional link we look
for is of the form Nn �G � , for some finite index normal subgroup N of H.B/. The
image p.B/ � Nn �G � of B is a strict fundamental domain for the action of a finite
group HB=N on Nn �G � , where p W �G � ! Nn �G � is the quotient map.

We show that A ´ .Nn �G � / np. B

B2.Œ�� ; 1	; �G � // is connected. Then .Nn �G � / n
p.

B

B2.Œ�� ; g	; �G � // is connected for every g 2 �G � since Nn �G � acts transitively on



202 D. Osajda

the set of top-simplices of the link Nn �G � . We show that every two points x; y 2 A
can be connected by a path in A. Consider first the case when x 2 A n p.B/ and
y 2 A\p.B/. Consider the Cayley graph .HB=N; S/whereS is the set of generators
defined as follows

s 2 S if and only if p.B/ \ s.p.B// ¤ ;:

This set generates HB=N due to connectedness of B and Nn �G � . Find a path in
A\p.B/ joining y with y0 2 p.@B/. Let 1 ¤ s 2 T be such that y0 2 s.p.B//. It is
a general easy fact that the complement of a vertex (in particular, the complement of the
vertex corresponding to 1) in any Cayley graph of a finite group is connected. Hence
if k 2 HB=N is such that x 2 k.p.B//we can find a sequence s; s1; : : : ; sl 2 S such
that ss1 : : : sl D k and ss1 : : : si ¤ 1, for i D 1; 2; : : : ; l . Then ss1 : : : si .p.B// �
A for i D 1; 2; : : : ; l . For i D 1; 2; : : : ; l � 1 and yi D ss1 : : : si�1.p.B// \
ss1 : : : si .p.B// we can find a path in ss1 : : : si�1.p.B// connecting yi�1 and yi for
i < l and a path in k.p.B// connecting yl�1 and x. Concatenation of those paths
is a path in A connecting x and y. If x; y 2 A \ p.B/, then we can find a vertex
z 2 A n p.B/ and connect x and y with z.

Similarly for x; y 2 A n p.B/. Thus A is connected.

The proof that �G �=N n p. B

B2.Œz; 1	; �G � // is connected for a vertex z of �� is
similar.
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