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A short note on Dynkin groups and convergence groups

Asli Yaman

Abstract. We prove that the family of discrete non-elementary Dynkin groups coincides with
the family of non-elementary convergence groups.
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1. Introduction

Convergence groups have a prominent role in the study of geometric groups. They
were introduced by Gehring and Martin in [GM] in order to describe the dynamical
properties of Kleinian groups, i.e. discrete subgroups of isometries of the hyperbolic
n-space H"*!, acting on the boundary of H”*!. The notion of convergence group
was later on generalised to actions on compact Hausdorff spaces by several people,
such as Tukia, Freden and Bowditch (see [T], [Fr], [B]). The groups acting properly
discontinuously on a complete locally compact Gromov hyperbolic space are the mo-
tivation examples for the general case, hence include in particular hyperbolic groups.
It is well known that such groups induce a convergence action on the boundary of the
Gromov hyperbolic space.

Grigorchuk asked whether convergence groups and Dynkin groups might be re-
lated since they admit similar kind of dynamics. Indeed this note answers this question
and shows the following.

Theorem. The family of discrete “non-elementary” Dynkin groups coincides with
the family of “non-elementary” convergence groups.

Dynkin groups and spaces were defined by Furstenberg in order to study bound-
aries of finitely generated groups. In particular Dynkin groups and Dynkin sets
(see [Fu] for the definition) give a natural generalisation of hyperbolic groups and
their boundaries. Recall that the boundary of a hyperbolic group is the boundary
of a complete locally compact Gromov hyperbolic space on which the hyperbolic
group acts properly discontinuously and cocompactly. Hence the theorem shows that
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convergence groups and Dynkin groups induce the same generalisation for “non-
elementary” cases.

I would like to thank to R. Grigorchuk for bringing the question to my attention
and to the referee for his comments.

2. Definitions and results
Let us recall some definitions (see also [Fu]).

Definition 1. Let I be a locally compact topological group and M be a compact
metrizable space on which I' acts by homeomorphisms. The space M is a Dynkin
space of T if, for every ¢ > 0, there is a compact subset F, of I' such that, for
each y € T\ Fg, there exist x,y € M such that y sends the complement of an
e-neighborhood of x into an e-neighborhood of y.

Definition 2. A group I" is a Dynkin group if it possesses a Dynkin space M with no
global fixed point.

In this note we are interested only in discrete groups. Therefore each Dynkin
group is assumed to be discrete, hence in its definition the compact set F; is always
a finite set. The following lemma establishes a dichotomy between “elementary”
and “non-elementary Dynkin groups” similar to “elementary” and “non-elementary
convergence groups’”.

Lemma. Let I be a Dynkin group and (M, d) be a Dynkin space of T with its
metric d. Then either I" preserves setwise two points of M or each orbit in M has
infinite cardinality; in particular it is infinite.

We shall thus refer to Dynkin groups preserving setwise two points of M as
elementary Dynkin groups.

Proof. Suppose that O = {x1,...,x,} is a finite orbit of I' in M with n > 3. Then
clearly the subgroup H = {y | yx; = x;} is infinite.

Let 4¢ < min{d(x;, x;), ieqj}. Since I is a Dynkin group there exists F, such
that for all y ¢ F, there are x, y € M so that the complement of an e-neighbourhood
N¢(x) is sent by y into an e-neighbourhood N (y) of y.

Let y,, be an infinite sequence of distinct elements of H \ F,. Then for all n there
are a,, b, € M such that for all z ¢ N.(x) we have y,z € N.(y). As M is compact,
after passing to a subsequence a, and b, converge respectively to a and b, and so, for
n large enough, d(a,,a) < ¢ and d(b,,b) < e. Since O has at least three elements
and d(x;, x;) > 4e, there exists i # j with x;, x; ¢ Nog(a). Hence x;, x; ¢ Ne(an)
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for n large enough, which implies that y,, x; and y, x; arein Ng(b,) C N2 (b) forlarge
enough n. This is a contradiction since y,x; = x; for all i and so D(yx;, yx;) > 4e
by the choice of &. This shows that there are no orbits of cardinality that is finite and
greater than 2 in M. O

We now give the definition of a convergence group. We mention that the notion
of convergence group can be defined in greater generality for the non-discrete case
(See [T]). We restrict ourself to the discrete case.

Definition 3. Let I" be a group acting on compact metrizable space M by homeo-
morphisms. The group I" is a convergence group if, for any sequence {y; }; of distinct
elements of I', there are two points a,b € M and a subsequence {y;, }, such that
{¥i, }n converges to b locally uniformly on M \{a} as n tends to co.

A convergence group is elementary if it is finite or preserves setwise a nonempty
subset with at most 2 elements of M. As an analogue of the lemma above we know
that a non-elementary convergence group does not fix any finite set in M. When M
has at least 3 points, Definition 3 is equivalently formulated in [B] as follows.

Definition 4. Let I" be a group acting on a compact metrizable space M by homeo-
morphisms and let M have at least 3 points. The group I' is a convergence group if
its action on the space of distinct triples, ®3(M ), is properly discontinuous (i.e., for
any compact subset K € O3(M) theset {y € I' | yK N K # @} is finite).

We note that the first definition gives a dynamical characterization of convergence
groups, while the second one is more natural topologically, given that ®3(M) can
be compactified by adding a copy of M. This compactification can be described by
presenting ®3(M) LI M as a quotient of M x M x M, where the quotient map is
the identity on ®3(M) and sends a triple (x, y,z) to a € M if at least two of x,
v, z are equal to a. We will refer to the topology thus defined on ®3(M) U M as
the topology of compactification. In this topology we can see that if (x;, y;, z;); is a
sequence in ®3(M) with x; and y; tending to a, then (x;, y;, z;) converges to a in
®3(M)UM. The converse is also true up to permuting x;, y;, z;. Therefore the action
of a convergence group I' can be extended to ®3(M) with (x, y, z) — (yx,yy,yz)
forevery y € T'.

Proof of Theorem. We first prove that if I" is a non-elementary Dynkin group then it
is a non-elementary convergence group.

Let I" be a non-elementary Dynkin group and (M, d) be a Dynkin space. Thus M
has at least 3 elements. Let us assume that I" is not a convergence group. Thus I" does
not act properly discontinuously on ®3(M ). Hence there exist an infinite sequence
{¥n}n of distinct elements in I" and (ay, by, cp) € ©3(M) such that (ay, by, cp) —
(a,b,c) € ©3(M) and yn(an, by, cn) — (x,y,z) € O3(M).
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Choose ¢ such that 6¢ < min{d(a, b),d(b,c),d(a,c),d(x,y).d(y,z),d(x,z)}.
Thus there exists a finite set F, in " such that for all y € I'\ F; there existu,v € M
such that the complement of an e-neighborhood N.(x) of x is sent by y into an &-
neighborhood N, (y) of y. Therefore, without loss of generality, we can assume that,
for all n, there exist points u,, v, in M with y, (M \Ng(u,)) C Ne(v,). Since M is
a compact space we know that, after passing to subsequences of {uy, }, and {vy},, un
and v, converge tou, v in M, respectively. For n large enough, we have d (u,, u) < e,
d(v,,v) < e. By the choice of ¢ we can assume, without loss of generality, that for
alln, we have a,b ¢ N3.(u) and hence a,,, b, ¢ N¢(u,) for all large n. That implies
that, for all large n, y,a, and y,b, are in N¢(v,), hence d(x,y) < e. This is in
contradiction with the choice of ¢.

For the other direction we prove that every convergence group is a Dynkin group.

Let I be a convergence group acting on a compact metrizable space (M, d)
where d denotes the metric on M .

Assume that M is not a Dynkin space for I". Then there exist an ¢ and an infinite
sequence {Yn}, in I" such that for all x,y in M and for all n there exists a point
zy € M\ Ng(x) with y,z, ¢ N.(y). As I is a convergence group, after passing to a
subsequence we see that there are two points @, b € M such that y, converges to b lo-
cally uniformly on M \{a}. Now, by hypothesis, for all n, there exists z, € M\ Ng(a)
with y,z, € M\Ng(b), hence y,z, converges to z € M\ N,(b). This is a contra-
diction since y,z, converges to b by locally uniform convergence on M \{a} of y,.

O
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