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Reflections on the residual finiteness of one-relator groups

Gilbert Baumslag, Charles F. Miller III and Douglas Troeger

Abstract. Let G D ha; b; : : : j r D 1i be a one-relator group equipped with at least two
generators. For all w which do not commute with r in the ambient free group on the generators
a, b, …, the groups G.r; w/ D ha; b; : : : j rrw D r2i are not residually finite and have the
same finite images as G. The existence of this family of one-relator groups which are not
residually finite reinforces what is becoming more obvious with time, that one-relator groups
can be extremely complicated. This not only serves to underline the complexity of one-relator
groups but provides us with the opportunity to raise a number of problems about these groups
in the hope that they will stimulate further work on the conjugacy and isomorphism problems
for one-relator groups as a whole.
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1. One-relator groups which are not residually finite

1.1. The main theorem. The purpose of this note is to prove the following theorem.

Theorem 1. Let
G D ha; b; : : : j r D 1i

be a one-relator group presented on at least two generators. Suppose that w is any
element in the ambient free group F on the generators a, b, … which does not commute
with r , then

G.r; w/ D ha; b; : : : j rrw D r2i
is a one-relator group with the same finite images as G. Moreover, r ¤ 1 in G.r; w/

and r is contained in every subgroup of finite index in G.r; w/. Therefore G.r; w/ is
not residually finite.

The proof of Theorem 1 depends on the following lemma, which will be proved
in Section 3.1.
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Lemma 1. Let u and v be two words in the free group F which do not commute.
Then v�1uvu�2 is not conjugate in F to either u or u�1.

We will record a number of consequences of Theorem 1 in Section 2 and raise a
number of open problems about the G.r; w/ in Section 4. Here we content ourselves
with noting that in the free group F on a, b, if r D ab and w D a, then r and a do
not commute. Hence the group

G.ab; a/ D ha; b j .ab/.ab/a D .ab/2i
is not residually finite and has the same finite images as the infinite cyclic group
G D ha; b j ab D 1i. This group was first introduced in [2] with a slightly different
presentation.

1.2. Some general remarks about one-relator groups. In 1932 W. Magnus [16]
proved that a group defined by a single relation has a solvable word problem. His
proof revealed that such groups can be built up from cyclic groups, both infinite and
finite, by repeatedly forming amalgamated products in a seemingly straightforward
way. This suggests that the conjugacy and isomorphism problems for one-relator
groups are also solvable. More than 70 years later, despite many efforts, neither of
these problems have been solved.

In 1962, Donald Solitar and the first author proved, in particular, that the groups

B.p; q/ D ha; b j a�1bpa D bqi;
where p; q are distinct primes, are non-hopfian [6]. So they are not residually finite.
The B.p; q/ were the first examples of one-relator groups that are not residually finite
and provided evidence of the complexity of one-relator groups.

In 1967, the first author proved [1] that if

B.k; `; m/ D ha; b j .a�1bkab`/mi;
then the group B.2; 3; 2/ is residually finite, although B.2; 3/ is not. This gave rise
to the conjecture that one-relator groups with non-trivial torsion, or as we will re-
fer to them here, one-relator groups with torsion, are all residually finite. In 1968,
B. B. Newman [20] proved that one-relator groups with torsion have a solvable con-
jugacy problem as a consequence of his so-called spelling theorem. This spelling
theorem meant that, in today’s terminology, one-relator groups with torsion are hy-
perbolic. Z. Sela [23] has proved that torsion-free hyperbolic groups are hopfian.
Now a one-relator group with torsion has a torsion-free subgroup of finite index [14].
One can then deduce, as noted in [4], that one-relator groups with torsion are hopfian.

Prompted by some of the questions left open in [1], Benjamin Baumslag and Frank
Levin [5] sketched, in particular, a proof that if m > 1, then the groups B.k; `; m/
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are virtually free by infinite cyclic, i.e., contain a subgroup of finite index which is an
extension of a free group by an infinite cyclic group. We have been unable to verify
their argument, however. Nevertheless, it is worth noting that since finitely generated
virtually free by cyclic groups are residually finite [3], it would follow, as previously
observed already in [1], that B.2; 3; 2/ is residually finite. This leads to the possibility
that all one-relator groups with torsion are virtually free by cyclic. This remark will
be explored in some detail in a paper under development by the authors of this note.

The remarks above serve to indicate that many of the outstanding problems for
one-relator groups may well be solvable for one-relator groups with torsion. Indeed
S. J. Pride [22] has proved that the 2-generator one-relator groups with torsion have
a solvable isomorphism problem. And E. Egerov [8] has proved that if r is a word in
the generators a; b; : : : ; c in which no negative powers occur and if n > 1, then the
one-relator group

G D ha; b; : : : ; c j rn D 1i
is residually finite. Subsequent work by D. Wise [24], [25] and J. McCammond and
D. Wise [17], among others, has uncovered hitherto unseen structural properties of
one-relator groups with torsion, which suggest that they can well be put together in a
new way.

2. Some corollaries of Theorem 1

2.1. Groups whose finite images are abelian

Corollary 2. Let r D Œa; b�, let G D ha; b j r D 1i be the free abelian group on a

and b and let w D a. Then

G.r; a/ D ha; b j Œa; b�Œa;b�a Œa; b��2 D 1i

is not residually finite and all of its finite images are finite abelian groups.

2.2. Groups whose finite images are metabelian

Corollary 3. Let r D bab�2 and w D a. Then G D ha; b j bab�2i is metabelian
and all of the finite images of

G.r; a/ D ha; b j .bab�2/.bab�2/
a D .bab�2/2i

are finite metabelian groups.
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2.3. Groups with trivial center all of whose non-trivial finite images have centers

Corollary 4. Let G.r; a/ D ha; b j rra D r2i where r D a2b�2. Then G D ha; b j
r D 1i has an infinite cyclic center and

(1) G.r; a/ has a trivial center;

(2) all of the non-trivial finite factor groups of G.r; a/ have a non-trivial center;

(3) G.r; a/ has non-abelian finite images;

(4) G.r; a/ is not residually finite (r ¤ 1 and is contained in every subgroup of finite
index).

Since one-relator groups with center are residually finite (see, for example [7]), it
follows that G.r; a/ is centerless.

2.4. Groups with the same finite images as a free group. Finally we have the
following

Corollary 5. Let G D ha; b; : : : ; c j ri, where r D ab : : : c, i.e., is the product of
all of the given generators of G. Then G is a free group of rank n � 1 where n is the
number of generators of G. Hence the n-generator, one-relator group

G.ab : : : c; a/ D ha; b; : : : ; c j .ab : : : c/a.ab : : : c/�2i
is not residually finite and has the same finite images as the free group of rank n � 1.

We observe that since free groups are residually finite, G.ab : : : c; a/ is not free.

3. The proofs of Lemma 1 and Theorem 1

3.1. The proof of Lemma 1. We denote the length of an element f in a free group
by jf j.
Proof of Lemma 1. Suppose on the contrary that v�1uvu�2 is conjugate in F to u� .
Since free groups are residually torsion-free nilpotent, there exists an integer n such
that u 2 �n.F / and also that u … �nC1.F /. Then working modulo �nC1.F / we find
that

v�1uvu�2 D u�1 D u�

which means that � D �1.
The assertion is invariant under inner automorphisms, so we can suppose that u is

cyclically reduced.
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Suppose then that for some w 2 F we have v�1uvu�2 D w�1u�1w or equiva-
lently that

u2 D w�1uw v�1uv:

We will prove that this is impossible.
Notice that if v and w both end in u, i.e., if v D v1u and w D w1u for some v1

and w1, then u2 D w�1
1 uw1v�1

1 uv1. Since u and v do not commute, neither do u

and v1. Thus we can assume that w and v do not both end in u.
Now u is cyclically reduced. So if we freely reduce the product w�1uw we obtain

w�1
0 Nuw0 where Nu is a cyclic permutation of u, w0 is a terminal segment of w and

where w�1
0 Nuw0 is reduced without cancellation. Similarly, freely reducing v�1uv

gives the expression v�1
0 Ouv0 which is reduced without cancellation, where Ou is a

cyclic permutation of u and v0 is a terminal segment of v. This yields the equation

u2 D w�1
0 Nuw0 v�1

0 Ouv0: (1)

Since u is cyclically reduced, the left hand side of this equation is reduced as written.
On the right-hand side of equation (1) the only place cancellation can occur is at the
juncture w0v�1

0 .
In the case when v0 is empty, we have u2 D w�1

0 Nuw0 Ou. In this equation the
unreduced length of the right-hand side is 2jw0j C 2juj. Any cancellation must start
at the juncture w0 Ou and successively cancel symbols from w0. When j � jw0j
symbols have been cancelled, the length of the right-hand side is 2jw0j C 2juj � 2j .
It follows from this that w0 must be cancelled entirely, and when this has occurred
the resultant word has unreduced length 2juj. Consequently no further cancellation
can occur. Moreover, we then have u � w�1

0 Nu0 for some initial segment Nu0 of Nu. So
Nu � Nu0 Nu1. But then we also have u D Nu1 Ou1 and so Nu1 D w�1

0 which is impossible
unless w0 is empty because w�1

0 Nuw0 is freely reduced. So we conclude that if v0 is
empty then so is w0 and u D Nu D Ou. But Ou D v�1uv which means that u D v�1uv,
a contradiction.

In the event that w0 is empty a similar argument shows that v0 must also be empty
and again that u D Nu D Ou and therefore that u D v�1uv, a contradiction. So we can
assume henceforth that neither w0 nor v0 is empty.

If w0v�1
0 is reduced as written, there is no cancellation on the right-hand side of

equation (1). Since u, Nu and Ou all have the same length, it follows that w0 and v0 are
empty and we have already dealt with this case.

So we can now suppose there is cancellation at the juncture w0v�1
0 . Since the

expressions w�1
0 Nuw0 and v�1

0 Ouv0 are reduced as written, freely reducing the right-
hand side of equation (1) proceeds by successively cancelling inverse pairs starting
from this juncture (there are no others to cancel at any stage). Now the last symbol
of v0 is the same as the last symbol of w0 which is the inverse of the first symbol of
w�1

0 . But u2 is cyclically reduced as written, so the right-hand side of equation (1)
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must freely reduce to a cyclically reduced word. The only way this can happen is if
one of w�1

0 Nuw0 and v�1
0 Ouv0 is entirely cancelled in this process.

First suppose that w�1
0 Nuw0 is entirely cancelled. Then the expression v�1

0 Ouv0 ends
in u2. There must be 2juj C 4jw0j symbols cancelled, leaving 2juj symbols after the
cancellation. Initially there are 2juj C 2jw0j C 2jv0j symbols on the right-hand side
of equation (1) so 2juj C 2jw0j C 2jv0j D 4juj C 4jw0j and hence jv0j D juj C jw0j.
It follows that v0 D Nuw0 and so

u2 D w�1
0 Nuw0 v�1

0 Ouv0 D w�1
0 Nuw0 w�1

0 Nu�1 Ou Nuw0 D w�1
0 Ou Nuw0:

Consider the case in which jw0j < juj. Since w�1
0 Nuw0 is entirely cancelled, we

then have Ou � w0 Ou1 for some terminal segment Ou1 of Ou and u2 D Ou1 Nuw0 where
both sides are reduced without cancellation; we emphasise that the notation � is used
to express the fact that none of the letters in any of the words cancel in computing
the various products. Factoring Nu as Nu0 Nu1 we can write Nu � Nu0 Nu1 so that u � Ou1 Nu0

and u � Nu1w0. But from the definition of Ou1 it follows that j Nu0j D jw0j and so
both Nu0 D w0 and Ou1 D Nu1. In particular Nu � w0 Nu1 which contradicts the fact that
w�1

0 Nuw0 is reduced without cancellation with w0 non-empty. So this case does not
arise.

We observe next that jw0j cannot be greater than or equal to juj, since this implies
that both w0 and v0 end in u and therefore that both w and v end in u, contrary to our
initial assumption.

Finally, the remaining possibility that v�1
0 Ouv0 is entirely cancelled implies by an

essentially identical argument that u and v commute, which is not the case. This
completes the proof of the lemma.

Corollary 6. If r and w are elements of a free group which do not commute, then
rrw

r�2 is not conjugate to either r or r�1.

Proof. Since r and w do not commute, they freely generate a free group of rank two.
In particular then r and rw do not commute. Thus if we set u D r and v D rw then it
follows immediately from Lemma 1 that rrw

r�2 is not conjugate to either r or r�1.

3.2. A version of an observation of Graham Higman. We begin the proof of
Theorem 1 with the following version of an observation essentially due to Graham
Higman.

Lemma 2. Let J be a group generated by two elements x and y of the same finite
order m. Suppose that

xy D x2:

Then J D 1.
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Proof. Suppose if possible that m > 1. Now y conjugates x to its square and so
induces an automorphism of X D gp.x/. It follows that m is odd. Let p be the
smallest prime dividing m. Notice that p > 2. Let Z be a subgroup of gp.x/ of
order p, generated say by z. Now y conjugates z to its square and hence induces
a non-trivial automorphism of Z. But the automorphism group of a group of prime
order is of order p � 1. It follows that if C is the centralizer of z in gp.y/ then the
order of gp.y/=C divides p � 1. It follows that gp.y/=C contains an element of
prime order q dividing p � 1. But then q divides m and is clearly smaller than p.
This is a contradiction of the choice of p. It follows that m D 1 and completes the
proof of the lemma.

3.3. Checking on the conjugacy of elements in a free group. We will need the
following lemma in the proof of Theorem 1.

Lemma 3. Let F be a free group and let u and v be elements of F . In addition
suppose that w D w.u; v/ is product of the elements u and v and their inverses, i.e.,
a word in u and v. If u D 1 is a consequence of the relation w.u; v/ D 1 and if
w.u; v/ D 1 is a consequence of the relation u D 1, then u is a conjugate of w or
w�1.

Proof. We denote the normal closure in F of the subset S of F by gpF .S/. Now
in order to prove Lemma 3, let K D gpF .w/ and let L D gpF .u/. Since w D 1

is a consequence of u D 1, it follows that w 2 L and so K � L. Moreover the
assumption that u is a consequence of w D 1 implies that L � K. Thus

K D L:

Now in a free group, if u; w 2 F and if gpF .u/ D gpF .w/, then Magnus [16] has
proved that u is a conjugate of w or a conjugate of w�1. This completes the proof of
Lemma 3.

3.4. The proof of Theorem 1. Let

G D ha; b; : : : j r D 1i
be a one-relator group presented on at least two generators. Suppose that w is any
element in the ambient free group F on the generators a, b; : : : which does not
commute with r in F and let

G.r; w/ D ha; b; : : : j rrw D r2i:
Suppose that H is a finite image of the group G.r; w/. Put

ri D w�irwi .i 2 Z/:
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Then the ri are conjugate elements in G.r; w/ and consequently have the same order.
Moreover

r
r1

0 D r2
0 :

Consequently by Lemma 3, r0 D 1, i.e., r D 1 in H . Therefore H is a finite quotient
of G.

On the other hand, G is itself a homomorphic image of G.r; w/. To see this
observe that if we map the generators of G.r; w/ to the corresponding generators of
G, then the image of the relator rrw

r�2 maps to the identity because the image of r

is already 1 in G. So every quotient of G is a quotient of G.r; w/. In particular all
of the finite quotients of G are finite quotients of G.r; w/. So we have proved that G

and G.r; w/ have the same finite images.
We are left with the proof that G.r; w/ is not residually finite. Since r D 1 in

every finite quotient of G.r; w/, it suffices to prove that r ¤ 1 in G.r; w/. Now if
r D 1 in G.r; w/, then r is a consequence of rrw

r�2. On the other hand, rrw
r�2

is clearly a consequence of r . Then, by Lemma 3, rrw
r�2 is a conjugate of r or

r�1. However since r and w do not commute in the ambient free group F , they
freely generate a free group. Consequently, r and rw do not commute and therefore it
follows immediately from Lemma 1 that rrw

r�2 is not a conjugate of r or r�1, which
contradicts the assumption that r D 1 in G. This completes the proof of Theorem 1.

It is worth emphasizing that all of the quotients of G are quotients of G.r; w/.
However, if G is residually finite, G.r; w/ is not isomorphic to G. It is conceivable,
however, that if G is not residually finite, then we have not excluded this possibility.
These remarks seem to touch on a possible connection between the isomorphism
problem for one-relator groups and the residual finiteness problem.

4. More on the G.r; w/

The existence of the G.r; w/ underlines the increasing awareness of the complexity
of one-relator groups. They provide test cases for a number of open problems about
one-relator groups. Here are a few sample questions.

� Is the isomorphism problem solvable for the G.r; w/? (Cf. the solution of the
isomorphism problem for the groups B.p; q/ by D. I. Moldavanski [19].)

� Can one compute lower bounds for the isoperimetric functions for these groups
(cf. S. M. Gersten [10] and A. N. Platonov [21]).

� Are the G.r; w/ hopfian?

� Can one use C. F. Miller’s family [18] of residually finite groups with unsolv-
able word problem to show that the isomorphism problem for the G.r; w/ is
unsolvable?
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� Are the G.r; w/ coherent, i.e., are their finitely generated subgroups finitely
related?

� Are the groups

G.r; w; n/ D ha; b; : : : j .rrw

r�2/n D 1i;
n D 2; 3; : : : , residually finite? Virtually free-by-cyclic?

� Much of the discussion about the groups G.r; w/ applies also to the more general
class of groups

G.r; u; v; w/ D ha; b; : : : j .ru/rv D .rw/2i:
Whether this remark will turn out to be of interest remains to be seen.
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