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Abstract. We show that a geodesic metric space, and in particular the Cayley graph of a finitely
generated group, is hyperbolic in the sense of Gromov if and only if intersections of any two
metric balls is itself “almost” a metric ball. In particular, R-trees are characterized among the
class of geodesic metric spaces by the property that the intersection of any two metric balls is
always a metric ball. A variation on the definition of “almost” allows us to characterise CAT (k)
geometry for k < 0 in the same way.
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Introduction

It is well known that in an R-tree the intersection of any two metric balls is itself
a metric ball. In this paper we shall show that this is actually a characterization of
R-trees, and that, more generally, the geometry of the intersection of balls encodes
information about the curvature of a geodesic metric space. Recall from [2], [3], [4]
or [5] that a geodesic metric space is hyperbolic (in the sense of Gromov) if there
is a constant § > 0 such that for any geodesic triangle, any one side is contained
in the §-neighborhood of the union of the two other sides. We prove the following
characterization of hyperbolicity.

Theorem 1. A geodesic metric space (X, d) is hyperbolic if and only if the intersection
of any two metric balls is at uniformly bounded Hausdorff distance from a ball.

Studying curvature in terms of the geometry of the intersection of metric balls
turns out to be very natural and both Gromov hyperbolicity and the notion of CAT (k)
geometry may be characterised in these terms (see Section 4).

Tracking constants in the proof of Theorem 1, one can show that the hyperbolicity
constant depends only on the eccentricity constant. As Pierre Pansu pointed out to us,
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it is then an easy observation to deduce that the hyperbolicity bound varies linearly
with the eccentricity bound; so we obtain:

Corollary 2. A geodesic metric space is an R-tree if and only if the intersection of
any two balls is a ball.

This characterisation of R-trees was first conjectured in an early version of this
paper, and Wenger has independently established the conjecture using very different
methods, see [10]. Our approach is entirely self-contained.

The following notion is crucial for our purposes.

Definition 3. We say that a set S has eccentricity less than § (for some § > 0) if there
is R > 0 such that

B(c,R) C S C B(c,R+9)

for some ¢, ¢’ € X. By convention the eccentricity of the empty set is 0.

We shall see that the intersection of balls having uniformly bounded eccentricity
is also equivalent to hyperbolicity (Proposition 14 and Lemma 17).

The paper is organized as follows. In Section 1 we discuss the geometry of (1, g)-
quasigeodesics following an idea of Papasoglu in [7] and Pomroy in [8], which is an
important step in the proof. Section 2 discusses divergence functions and a quantitative
version of a theorem in [7] as well as a classical argument implying hyperbolicity.
Section 3 collects the proofs of Theorem 1 and Corollary 2. The idea is to show
that hyperbolicity is equivalent to intersections of balls having uniformly bounded
eccentricity. One technical difficulty lies in the fact that the centre and radius of a ball
are not, in general, well defined. When they are, an elementary proof can be given,
and we leave it to the reader. Pomroy’s work appeared in his Warwick University
Masters dissertation, but has never been published. In the Appendix we take this
opportunity to place his main theorem on the record with our own variation on the
proof.
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and Chris Hruska for the reference [6]. Finally we would like to thank Hamish Short
for his comments on the classical argument proving that non-linear divergence of
geodesics implies hyperbolicity.
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1. Bigons in geodesic metric spaces

In this section we establish preliminary results concerning the geometry of geodesics
in a geodesic metric space. The main result in this section is that if two geodesics start
at the same point and travel “almost parallel” for long enough, then this ensures the
existence of e-bigons for any ¢ > 0 whose fatness depends on the distance between
the two geodesics (see Theorem 6 below). The proof of this follows the outline in [7],
[8]. We start with the simple observation that if two geodesics are synchronously far
apart, then they are asynchronously at least half as far apart as well.

Lemma 4. Let y and y' be geodesics with y(0) = y'(0) = e. If there exists t > 0
such that d(y(t),y'(t)) > K then d(y(t),y'(s)) > K/2 for all s.

Proof. Suppose that there is an s < ¢ such that dy = d(y’(s),y(t)) < K/2. Then
since y is a geodesic we have t = d(y(0),y(t)) < d(e,y'(s)) + d('(s),y(®)) =
s + do. Hence dy > t — s. But by hypothesis and the triangle inequality

K <dy/(t),y®) <dy' 1),y () +d ' (s), y (1))
=t—s+dy<2dy<K.

This is a contradiction. Similarly, if there is an s > ¢ such that do = d(y'(s), y(t)) <
K /2. Then since y is a geodesic we have s = d(y'(0),y'(s)) < d(e,y(t)) +
d(y(),y'(s)) = t + do. Hence dy > s — t. But by hypothesis and the triangle
inequality

K =d(y/(t).y(®) =d(' ).y (s)) +d (' (5). y(1))
=s—t+dy<2dy<K.
This is again a contradiction. O

Recall that if A, B are subsets of a metric space (X, d), then the Hausdorff distance
between A and B is given by

dg(A, B) = inf{r | A C N,(B), B C Ny(A)},

where for r > 0, N,(A) is the r-neighborhood of A. It is not clear how having
eccentricity less than a constant § and being at Hausdorff distance less than § to a ball
are related in general, but in the case of intersections of balls in a metric space those
notions will turn out being equivalent.

Definition 5. For constants A > 1 and ¢ > 0 a (4, g)-quasigeodesic is a map
y:10,d] — X such that y(0) = y’(0), y(d) = y’(d) and for all t € [0, d]

1 ’ / !
XII—I|—q§d(7/(t),y(t))§k|t—t|+q-
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The points y(0) and y(d) are said to be the endpoints of y. A g-bigon is a pair y, y’
of (1, g) quasi-geodesics which have the same end points.

The images of the quasigeodesics y and y’ in X are called the sides of the g-bigon.
For K > 0, we say that a g-bigon is K-fat if its sides are a Hausdorff distance more
than K and K-thin otherwise.

Letg > Oand x, y in X. A g-path from x to y is a continuous path y from x to y
such that, for any z = u(¢) for some ¢,

d(x,z) +d(z,y) =d(x,y) +q.

Obviously, given any point on p on a (1, g)-quasi-geodesic with end points x, y
we obtain a g-path by taking a broken geodesic xpy. We now turn to the main result
of this section, whose ideas are from [7] and [8].

Theorem 6. Let (X, d) be a geodesic metric space, and choose integers Ky, K1, q
with 1 < Ko < K1, ¢ > 3. Assume that there are two geodesics y, y' and a real
number R > 0 such that y(0) = y’(0) and d(y(R + 1),y (R + 1)) € [Ko, K1] for
allr € (0,rg). If X does not contain a Ky/2-fat 1/q-bigon then

ro < (q(K1 — Ko) + D& —1)gK; + 1.

In words, if there is an upper bound on the fatness of bigons, then there is an upper
bound on the length for which two geodesics can travel at a controlled distance.

Proof. For the purpose of the proof we introduce a few definitions. Take J €
[Ko, K1], we call an element ¢t € (0,r¢) a J-point if d(y(R + 1),y (R + t)) €
[J,J + 1/gq). We say that ¢ is an integral J-point if ¢ is a positive integer and a
J -point. We define the J -distance between two integral J-points ¢ # ¢’ by

dy(t,t") = ff {integral J — points between z and ¢’ } + 1

and set dy(z,¢’) = 0if and only if # = #’. Note that since we are assuming that #, ¢’

are integers dy(t,t’) <t —t. The interval [Ky, K{] is covered by ¢(K; — Ko) + 1

disjoint half open intervals of the form [J, J 4+ 1/q), where J € (1/q)Z N [Ky, K1].
Given that X does not contain a Ky /2-fat 1/g-bigon we claim the following.
Claim: For any two integral J-points ¢ and ¢/, if dj(¢t,t") = (2" — 1)qJ, then

dy(R+1),Y(R+1t) <t —t+J —n/qg+1/q.

We prove the above claim by induction over #n: first, for n = 0 we have t = ¢’
andd(y(R+ 1),y (R+1t")) <J + 1/q because t =t is a J-point.

So we assume the claim is true for n = m and show it forn = m + 1.

Given integral J-points ¢, t’ with dj(t,t") = (2™T! — 1)qJ we let t, t, be the
integral J points such that

dy(t,t) =dy(t2,t") = 2" = 1)qJ.
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Note that d (¢, 1) = qJ because 2"+ —1)qJ = 2" —1)qgJ +qJ + (2" —1)qJ,
and hence both d(y(R + t1), y(R + t2)) and d(y'(R + t1), y'(R + t»)) are greater
than or equal to ¢ J .

Set P = y(R+1), 0 =y (R+1), Pr = y(R+11), 01 = V(R + 11),
P,=y(R+1t), 0=y (R+1t), PP=y(R+1t),Q =y (R+1),asshownin
Figure 1.

P=y(R+1) Pi=y(R+1t) Po=y(R+1t) P =yR+t)
y'(0) = y(0) |< .I
0=y (R+1) Qi =y (R+n) Q2=y'(R+1) O'=y'(R+1)

Figure 1. The geometry of geodesic bigons.

Suppose for a contradiction that d(P, Q') >t/ —t +J — (m + 1)/q + 1/4.
We shall show that this implies the broken geodesics PP, Q' and PQ;Q’ form a
Ko /2-fat 1/g-bigon. Since X contains no such bigons we shall conclude that in fact
dP,Q)>t'—t+J—(m+1)/qg+1/q.

To see that PP, Q' is a 1/g-path we use the fact that d(P, Py) + d(P2, Q') =
(t2 — t) + d(P, Q') and that, by our induction hypothesis, d(P2, Q') < t' —t, +
J—m/q+1/q:

d(P,Py)+d(P2,0)=(R+t,—R—1t)+d(P2, Q)
<tr—-0)+t'—tr+J—m/qg+1/q
=t —t+J-—m/qg+1/qg<d(P,Q)+1/q.

The last inequality comes from our supposition that d(P, Q") > t' —t + J —
(m+1)/q+1/q.

A similar argument shows that the broken geodesic PQ Q' is also a 1/¢-path if
dP,Q)y>t —t+J —(m+1)/qg+1/q.

Now let & be a point on the path PQ{Q’ which minimises the distance to Ps.
In particular d (&, P;) < d(Q2, P,). If £ lies on the arc PQ; then, by the triangle
inequality, we compute:

to—t=d(P,P) <d(P,§)+d(E P) <d(P, Q1) +d(Q2, P2)
<th—t+J—-m/qg+1/qg+J +1/q.

It follows that gJ = dj(t1,t2) <t —t; < 2J +2/q, which is a contradiction since
weassumedg > 3and 1 < Ky < J.

It follows that £ must lie on the arc Q1 Q’. But applying Lemma 4 to the geodesics
y,y' withs = R+1, we seethatd (£, P») > Ko/2 and hence the bigon is K /2-fat as
required. Hence d(P, Q') < t'—t+J —(m +1)/q + 1/q completing the induction.
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Now by the triangle inequality

R+t <d(e,P)+d(P,Q)<R+t+ (' —t+J—n/q+1/q)
=R+t +J—n/qg+1/q.

Hence J —n/q 4+ 1/q > 0,son < qJ + 1. Sody(t.t") < 227+ — 1)qJ, and
ro < (q(K1 — Ko) 4+ 1)(2951+1 _ 1)gK; + 1 because there are at least ro — 1 integer
points in [0, r¢) and each of these is a J -point for one of the ¢ (K; — K¢) + 1 possible
values of J. O

2. Divergence functions and hyperbolicity

For a geodesic metric space (X, d), a divergence functionisamap f: Ry — R such
that for all x € X, all R € R and all geodesics y = [x, y], ¥’ = [x, z] such that
d(y(R),y'(R)) = f(0) > 0, if r > 01is such that R + r < min{d(x, y),d(x,2)}
and « is a path in the closure of X \ B(x, R+ r) from y(R +r) to y'(R +r), then the
length of « is atleast f(r). We say that geodesics diverge in X if there is a divergence
function f so that lim,_,, f(7) = co. Papasoglu showed in [7], Corollary 1.3, that
a geodesic metric space (X, d) is hyperbolic if and only if geodesics diverge in X.
Here we provide a quantitative version of this result in order to relate the hyperbolicity
constant for a space to the eccentricity bound.

First, following [7] we provide candidates for a divergence function.

Let D > 0 and for r > 0 define

fp(r) = inf{d(y(R+r),y'(R+r)) such that y (0) = y'(0). d(y(R),y'(R)) = D}.

Since X is a geodesic space any path joining two points y(R + r), Y’ (R + r) must
have length at least d(y(R + r), y'(R + r)), and setting fp(0) = D itis easy to see
that the function fp is a divergence function for X.

Proposition 7. Let (X, d) be a metric space such that any q-bigon is 4(q + €)-thin.
Then for D > 32/3 + 48¢ and T > D/4 — 8¢, any ro > 0 such that fp(ro) < T
satisfies

ro < (12T + 266 —3D/4 + 1)(212T 241 _ (12T + 24¢) + 1.
In words, lim, oo fp(r) = 00 and hence geodesics diverge.

Before starting with the proof we show an intermediate result.

Lemma 8. Suppose that (X, d) is ametric space such that q-bigons are K(q +¢)-thin
for some constant K > 1 and some e > 0. Let D > 2Keand T > D/K —2¢. If two
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geodesics y and y' starting at the same point are such that d(y(R), y’(R)) > D for
some R > 0and d(y(R + 1),y (R + ro)) = T for some ry > 0, then

d(y(R+7r),y'(r + R)) € [D/K —2&, KT + 2Kz¢]
forany r € [0, ro].

Proof. Letusdenoteby A, := d(y(R+r),y’'(r+R)). Take a, to be the midpointon a
geodesic a, from y(R + 1) to y’(R + r). Then the broken geodesics y(0)y(R + r)a,
and y(0)y’(R + r)a, form the sides of an A,/2-bigon, which by assumption is
K(A,/2 + ¢)-thin. According to Lemma 4, this bigon is at least D/2-fat since the
distance between the two geodesics is more than D attime R. Hence A, > D/K—2e¢.

The upper bound is obtained in a similar way by looking at the broken geodesics
y(0)y(R+r)ay, and y(0)y’'(R+r)ay,. They forma T'/2-bigon, which by assumption
is K(T' /2 + ¢)-thin. But by Lemma 4, this bigon is at least A, /2-fat since the distance
between the two geodesics is A, at time r < ryg. Hence A, < KT + 2Ke, as
required. O

We now can easily prove Proposition 7.

Proof of Proposition1. Since fp(rg) < T there are two geodesics y and y’ and
R € R such that

(@ y(0) = y'(0),
() d(y(R).y'(R)) = D,
(©) d(y(R+r0). Y (R+71) <T.

We can apply Theorem 6 with ¢ = 3, Ko = D/4 —2¢ and K; = 4T + 8¢, which
can be done using the previous lemma with K = 4. The assumptions on D and T’
ensure that K; > Ko > 0. O

From now on we assume that D > 32/3 + 48¢ so that the function fp satisfies
the conclusions of Proposition 7 for appropriate constants. The next step is to replace
the divergence function fp by a divergence function e of exponential growth. Given
a rectifiable path ¢, let us denote by £(«) its length. For r > 0 we set

e(r) = inf {{(a) | « apath from y(R + r) to
RER .y, ¥/

d(y(R).y (R)=D

Y (R+r)in X \ B(x,R+r)and d(y(R),y'(R)) = D}

where y, y’ are geodesics, y(0) = y’(0) = x and the infimum is taken over all
geodesics y, y’ and all points x € X andall R € R™.

It is clear that if we define e(0) = fp(0) = D then e is a divergence function
on X and that f(r) < e(r) for all » > 0. The following shows that this divergence
function has exponential growth.
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Proposition 9. Foranyk > 1 andr > u + kN, we have
e(r) > (3/2)F(4N +2)

where N = 143D +sup{r | fp(r) <9D}andu = sup{t | fp(t) <4N +2}. In
particular, e has exponential growth.

We start with an intermediate result.

Lemma 10. If y and y’ are geodesics with y(0) = y’(0) and R > 0 satisfies
d(y(R),y'(R)) = D then d(y(R + N),Y' (R + N)) > 3D, where N is as in
Proposition 9.

Proof. Let 8 be a geodesic joining y(R + N) to y'(R + N). Suppose for a contra-
diction that 8 has length less than 3D, so no point on S lies in the interior of the ball
B(x,R + N —3D), where x = y(0). Concatenate 8 with the terminal subarcs of
y, vy of length 3D to obtain a path joining y(R + N —3D) to y'(R + N —3D).
No point on this path lies in the interior of the ball B(x, R + N — 3D), so it must
have length at least e(N — 3D). On the other hand we see that the path has length
6D + £(B) which by assumption is less than 9D, so we gete(N —3D) < 9D. How-
ever e(N —3D) > f(N —3D) > 9D by choice of N, and this is a contradiction.

O

Proof of Proposition 9. Arguing by induction on k it is enough to show that e(r) >
%e(r — N)forany r > u + N. If e(r) = oo we are done. So we can assume that
e(r) is finite and therefore there are geodesics y, ¥’ with y(0) = y’(0) = x and
R > 0 such that d(y(R), y'(R)) > D such that there is an arc « in the closure of the
complement of the ball B(x, R + r) which joins y(R + r) and y’(R + r) and which
has length less than e(r) + 1.

Lett; = sup{t € [0,M/2] | a(t) € B(x,R +r + N)} and let t, = inf{t €
(M/2,M] | a(t) € B(x,R+r + N)}. Notethatt; > Nand M —#, > N,
so the subarc «|[;, ;,] must have length less than or equal to M —2N. Let ¢; and
¢, be geodesics from x to «(¢1) and «(f,) respectively. By combining the triangle
inequality Lemma 10 we see that

3D <d(y(R+ N),y'(R+N))
<d(y(R+N).ci(R+ N))+d(ci(R+ N),c2(R+ N))
+d(c2(R+ N),y (R+ N)).

It follows that at least one of the three terms in the above sum must be greater
than or equal to D. It cannot be the middle term for the following reason: if
d(ci(R + N),c2(R + N)) > D, then, by definition of e, any path joining
c1(R+ N 4+ r) to ¢c;(R + N + r) which lies in the closure of the complement
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of the ball B(x, R + N + r) must have length at least e(r), so in particular the subarc
o/|[z, ,1,] must have length at least e (). On the other hand we observed that this subarc
has length at most M — 2N, so we see thate(r) < M —2N. Since M < e(r) + 1
we have that e(r) < e(r) + 1 — 2N and since N > 1 this is a contradiction.

Thus we may assume (interchanging v and ¢; with Y’ and ¢, if necessary) that
d(y(R+ N),c1(R+ N)) > D. We construct a path «’ in the complement of the ball
B(x, R +r) joining y(R + r) to c¢1 (R + r) by concatenating the subarc o /(g ;,] with
the subarc ¢} of ¢y joining ¢1 (R + r) to «e(t1). Since a(#1) is within R +r + N of x
we see that | has length at most N, and so «’ has length at most M/2 + N. On the
other hand the length of &’ is bounded below by ¢e(R +r — (R + N)) = e(r — N),
so we see that

e(r— N)<M/2+ N.

Butrecall that M < e(r)+ 1, so we see thate(r) > 2e(r — N)—2N — 1. Finally,
sincer —N > u and by definition of u, we have thate(r—N) > fp(r—N) > 4N +2.
It follows that e(r — N)/4 > N + 1/2 and so

e(r)y>2(e(r—N)—N—1/2)>2e(r—N)—e(r—N)/4 = ;e(r —N). O

It follows from Lemma 9 that for any affine function g(r) = ar + b there is
some rg such that e(r) > g(r) for all r > ry. The value ry depends only on the
function fp and the constants a and b, though there may be no closed formula to
compute it. Itis clear that the value of ryp may be bounded in terms of the values of the
constants N and u appearing in Lemma 9, and those depend only on the constant D
and the eccentricity bound € as shown in the next lemma. This will enable us to show
that there is an upper bound on the hyperbolicity constant for X which is a function
of ¢ alone.

Lemma 11. Let (X, d) be a geodesic metric space such that for each q the q-bigons
are 4q + 4e-thin. Let D > 32/3 + 48¢, N = sup{r | f(r) < 9D} + 1+ 3D and
u =sup{t | f(¢t) < 4N + 2} as in Proposition 9. Then N and r are bounded above
by functions of € and D. More precisely,

(1) N < (106D + 26g + 1)(2108D+24e+1 _ 1)(108 D + 24¢) + 2 + 3D,
(2) u < (48N + 265 —3D/4 + 25)(248N+256+13 _ 1)(48N + 24¢ + 24) + 1.

Proof. (1) Apply Proposition 7 with T = 9fp (0) = 9D.
(2) Apply Proposition 7 with T = 4N + 2 > 3D. O

Theorem 12. Let (X, d) be a geodesic metric space such that for each q the q-bigons
are 4q + 4e-thin. Then X is §(g)-hyperbolic, for some function § depending on &
alone.
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Proof. To ensure that D > 32/3 + 48e we set D = 11 + 48¢. Let x,y,z € X
and choose geodesics o; = [x, y], ax = [y, 2], @y = [z, x] in X. We denote by oz;l
the reverse of the geodesic o, We wish to estimate the thickness ¢ of this geodesic
triangle A using the exponential divergence function e defined above. The following
argument is adapted from that given in [1].

Let Ty = sup{t | d(az(?), ocy_l(t)) < D} and set x;, = az(Ty) and x; =
a; ' (Ty). Similarly we define Ty, Tz, yx, Yx, Zx and zy. Now set L; = d(x,y) —
(Tx+Ty), Ly =d(y,2) —(Ty + Ty)and L, = d(z,x) — (T; + Tx)

Case 1. At least one of the values, say L, is non-positive. In this case any point
on o is within D of the other two sides, while any point on the subarcs yy, or xx;
is within D of the other two sides. There is z’ on o; between y, and x, that is within
D of both y, and x,. Hence the broken paths z’y,z and z’x,z form a D-bigon,
consequently the triangle is 4D + 4¢-thin (see Figure 2).

y

Figure 2. Geodesic triangles are thin.

Case 2. All three of the values Ly, Ly, L, are positive. In this case we shall show
that we can bound all three of these values by some uniform value L given in terms
of D and ¢, and hence, setting D = 11 + 48¢, L depends on ¢ alone. Once this is
done it is clear that any point on any side of the triangle is within L /2 4+ 11 + 48¢ of
some point on one of the other two sides, so it remains to find this bound L.

We can assume that L, < L, < L. First note that if L, < 2D we can run the
argument from case 1 with 2D in place of D, so we may assume that 2D < L, <
Ly, <L,.

We claim that the interior of B(x, Ty + L;/2) does not intersect the geodesic ay.
Indeed, since d = (x,y) = Tx + T), + L, the interior of the balls B(x, Ty + L;/2)
and B(y, Ty + L;/2) have disjoint intersection. Similarly, the balls B(x, Tx 4+ L;/2)
and B(z, T; + Ly — L;/2) have disjoint interiors. Butsince d(y,z) < T; + Ty + L,
the arc a is contained in the union of B(z,7; + L, — L;/2) and B(y, Ty + L;/2).
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Now let p = a;(Tx + L;/2) and p’ = a; ' (Tx + L;/2). The arcs pyx, yxVz,
YzZy,ZyZx and Zx p’ arein the complement of the ball B(x, T+ L, /2) (since they are
eitherin the ball B(y, Ty, + L;/2) or B(z,T; + L, —L;/2)). So concatenating those
arcs we obtain a path in the closure of the complement of the ball B(x, Tx + Lx/2)
oflength Ly + Ly, +2D < 2D + 4L, /2. Applying the divergence function to the
geodesics oy, (x;l emanating from the point x we see that e(L;/2) < 2D +4L,/2.

Now choose an integer k > 0 sothat L, /2 € (u + kN, u + (k + 1)N] where u,
N are the constants estimated in Lemma 11. If k < 0then L, < u + N and, since
u, N depend only on ¢, we are done. If £ > 1 we can apply Theorem 9 to show that
e(r) > (3/ 2)K(4N + 2). It follows that k can also be bounded above in terms of &
and D. As noted before, we may choose D = 11 + 48¢ to obtain a bound on k in
terms of & alone. We denote this bound by k(). This gives a bound on L, /2 since
Ly/2 <u+ (k(¢) + 1)N. This in turn bounds the fatness of the triangle as less than
orequal to D +2(u + (k(¢) + YN =11 + 48 + 2(u + (k(¢) + 1)N).

We have shown that any geodesic triangle is either 10D + 4¢-thin, which since
D = 11 + 48 means that the triangle is 110 + 484e&-thin, or it is u + N -thin,
oritis 11 4+ 48¢ + 2(u + (k(¢) + 1)N)-thin. In the second case and third case
the constants u, k(g), N can all be written in terms of ¢ alone. If we take 6(g) =
max{110 +484¢,u + N, 11 +48¢ 4+ 2(u + (k(¢) + 1) N)} then we see that the space
(X, d) is §(&)-hyperbolic, as required. O

3. Proof of the quasi-balls characterization

The proof of Theorem 1 is a sequence of simple observations, combined with Theo-
rem 12. Our first observation in this section holds for any geodesic metric space and
gives the interior radius of the intersection of two balls.

Lemma 13. Let (X, d) be a geodesic metric space.
(1) For any x,y € X withd(x,y) = d and s,t > 0, if the balls B(x,s) and
B(y, t) are neither disjoint nor nested, then

B(c,r) € B(x,s) N B(y, 1),

_ s+t—d(x,y)
wherer = —

s—t+d
2

and c is any point on any geodesic between x and y, at distance

from x.
) Ifs,t <d and B(§, R) € B(x,s) N B(y,t), then R <s+t—d.

Proof. (1) If the balls B(x,s) and B(y,t) are neither disjoint nor nested, then we
have r = W >0and 0 < % < d, and hence given any geodesic y from

X to y we may take a point ¢ on y at distance % from x and a ball of radius r
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around c. Then for z € B(c,r)

—t+d t—d
d(x,z)fd(x,c)+d(c,z)§s 2+ +s+2 =5

and similarly d(y,z) <.

(2) First notice that our assumptions on s and ¢ being strictly smaller than d show
that x and y do not belong to B(x,s) N B(y,t). Leta = d(x,&) and b = d(y, §),
sothata <s,b <tandd <a+b < s+ t. Take a geodesic y,¢ from x to £ and
a point z on this geodesic, at distance R from £. Such a point exists because x does
not belong to B(&, R). Since z € B(§, R) € B(y,t) we have

d=d(x,y)<d(x,z)+d(z,y) <a—R+rt.

Similarly, take a geodesic y,¢ from y to £ and a point z" on this geodesic, at distance
R from &. Since z’ € B(§, R) € B(x,s) we have

d=d(x,y)<d(x,7)+dZ,y)<b—R+s.

Combining the two inequalities gives that 2d < a + b — 2R + 5 + ¢,
hence 2R <s+t—d+a+b—d <2(s+1t—d). O

We can now prove one implication of Theorem 1 and Corollary 2.

Proposition 14. If a geodesic metric space (X, d) is §-hyperbolic with hyperbolicity
constant less than or equal to § > 0, then both the eccentricity of the intersection
of any two balls and the Hausdorff distance from the intersection to a ball are both
uniformly bounded by 26.

Proof. Take x,y € X withd = d(x,y) and s,t € R4, with s > ¢. We shall show
that the eccentricity of B(x,s) N B(y,t) is less than 2§. This implies the statement
about Hausdorff distance as well, by definition of Hausdorff distance (recalled in the
beginning of this section).

According to Lemma 13, part (1), either B(x,s) € B(y,t), B(y,t) € B(x,s),
B(x,s)N B(y,t) =@ or B(c,r) € B(x,s) N B(y,t), where c and r are as defined
in that lemma. In the first three cases the eccentricity is clearly bounded by 0. In the
remaining case it suffices to show that there is a constant ¢ independent of x, y, s, ¢
such that B(x, s)N B(y, t) is contained in some ball of radius r 4+&. We shall show that
in fact B(c,r) € B(x,s) N B(y,t) € B(c,r +268). Now, for z € B(x,s) N B(y, ),
let us estimate the distance to c.

Since ¢ lies on a geodesic from x to y it is within § of a point p which lies
on a geodesic from y to z or on a geodesic from x to z. We first assume that p
lies on a geodesic from x to z. By the triangle inequality, we have that
d(x,c) +d(c,z) < d(x,p) +d(p,z) + 28. Since p lies on a geodesic from x
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to z this yields d(x,c) + d(c,z) < d(x,z) + 28 = s + 25. Now we have, as
required,

—t+d t —d(x,
s +2(x,y):s+ 2(xy>+2

s.

d(c,z) <s+28—

If p lies on a geodesic from y to z instead, then we use the same argument switching
the roles of x, y and of s, ¢. O

The following says that in a geodesic metric space such that the intersection of
any two balls has uniformly bounded eccentricity, then the set of points on K-paths
is uniformly close to a geodesic.

Lemma 15. Suppose that (X, d) has a uniform bound ¢ > 0 on the eccentricity of
the intersection of any two balls. Then for any g > 0, given any two points x,y € X,
any point on a q-path from x to y is contained in the 2q + 2¢e-neighbourhood of any
geodesic from x to y.

Proof. Let z be a point on a g-path u from x to y with s = d(x,z),t = d(y,2)
sothatd <s+t <d +gq. If s > d thent < g and z is within ¢ of y. Similarly
ift > d then s < ¢ and ¢ is within ¢ of x, so we may assume that both 5,7 < d.
Now let Y = B(x,s) N B(y,t) so that z € Y. Then by Lemma 13, point (2), we
see that any ball contained in Y has radius at most g. It follows from the bounded
eccentricity hypothesis that Y € B(£,q + ¢) for some point £ € X. Let y be a
geodesic from x to y and ¢ any point on y at distance less than s to x and less than
t to y (such a point exists because d < s +¢). Thenc,z € Y € B(&,g + ¢), hence
d(c,z) <d(c,§)+d(.z) <2q+ 2e. O]

Remark. Taking K = 0 in the lemma above shows that in a geodesic metric space
such that the intersection of any two metric balls has eccentricity less than or equal
to §, any geodesic between two points is contained in a §-neighbourhood of any other
geodesic between those two points.

An analogous result holds in terms of Hausdorff distance.

Lemma 16. Suppose that (X,d) has a uniform bound ¢ > 0 on the Hausdorff
distance from the intersection of any two balls to a ball. Then for any g > 0, given
any two points x,y € X, any point on a q-path from x to y is contained in the
2q + 6¢&-neighbourhood of any geodesic from x to y.

Proof. Let z be a point on a g-path p from x to y with s = d(x,z),t = d(y,2)
sothatd < s+t <d+q. If s+e&>dthent —e < ¢ and z is within g + ¢
of y. Similarly if # + & > d then s — ¢ < ¢ and ¢ is within g + ¢ of x. So we
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may assume that both s + ¢, t + & < d. Now let Y = B(x,s) N B(y,t), so that
z € Y. By assumption, d(Y, B(§, R)) < ¢, for some £ € X and some R > 0,
which implies that Y C B(§, R + ¢) = N (B(&, R)) and that B(§, R) C N.(Y) C
B(x,s+¢&)NB(y,t+¢). Soby Lemma 13, point (2), we see that any ball contained in
B(x,s+¢)N B(y,t + ¢) hasradius at most g 4 2¢. It follows that Y € B(§, g + 3¢).
Let y be a geodesic from x to y and ¢ any point on y at distance less than s to x and
less than ¢ to y (such a point exists because d < s+1¢). Thenc,z € Y C B(§, g+ 3e),
hence d(c,z) <d(c,§) +d(§,z) <2q + 6e. O

We can now prove the other implication in Theorem 1, namely that (b) implies (a).

Lemma 17. (i) There is a linear function §: Rt — R™ such that if (X,d) is a
geodesic metric space with the property that the intersection of any two balls has
eccentricity bounded by ¢, then X is §(¢)-hyperbolic.

(ii) There is a linear function § : RT™ — R such that if (X, d) is a geodesic metric
space with the property that the intersection of any two balls is at Hausdorff distance
less than /3, then X is 8(g)-hyperbolic.

Proof. According to Lemma 15 or Lemma 16, in such a metric space all g-bigons are
6(q + ¢)-slim. We conclude using Theorem 12 above. As Pierre Pansu pointed out to
us, it immediately follows that we can take § to be linear in &, namely §(¢) = 4(1).
Indeed, scaling the metric we see that (X, d/¢) has the property that the intersection
of any two balls has eccentricity bounded by 1 and so is §(1)-hyperbolic. Rescaling
we see that (X, d) is €§(1)-hyperbolic. O

We conclude this section with the proof of Corollary 2, which asserts that R-trees
are characterised by the property that the intersection of any two metric balls is a
metric ball.

Proof of Corollary 2. One implication is given by Proposition 14. Conversely, if the
space (X, d) has the property that the intersection of any two balls has eccentricity 0,
then for any ¢ > 0 the intersection of any two balls has eccentricity bounded by ¢,
and so the space is €6(1)-hyperbolic for all ¢ > 0. It is therefore 0-hyperbolic and
hence must be an R-tree. O

Remark. Notice that in fact we do not need to assume that the intersection of any two
balls is a ball to carry out the proof, only that the eccentricity of such an intersection
is 0. A priori this is a weaker condition, however in an R-tree the intersection of
two balls is always a ball and therefore, as a consequence of the theorem, the two
conditions are equivalent.
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4. Miscellaneous comments

In Theorem 1 and Corollary 2, the assumption that the metric space (X, d) be geodesic
cannot be removed. The notion of hyperbolic spaces extends to non-geodesic metric
spaces via the Gromov product (see e.g. Définition 3, p. 27 of [4]) but it is no longer
a quasi-isometry invariant (see [9]). And indeed Viktor Schroeder pointed out the
following.

Example 18. Let 0 < r < 1/2 and let X = {(x,r|x|) | x € R} that we endow with
the induced metric from R2. Recall that hyperbolicity via Gromov product reads as
follows: there is § > 0 such that for any p € X and any x, y,z € X, we have

(x[y)p = min{(x|2)p. (y[2)p} — 8

where 2(x|z), = d(x,p) + d(z, p) —d(x,z). Now set fort > 0, x = (0,0),
v = (2t,2rt), z; = (—2¢,2rt) and p; = (¢,rt). Letting ¢ tend to infinity shows
that X is not hyperbolic. But obviously (due to our choice of the parameter r) the
space X satisfies that the intersection of any two balls is a ball.

However, recall that a §-ultrametric space is a metric space (X, d) which satisfies
the following strengthened version of the triangle inequality,

d(x,y) = max{d(x,z),d(z,y); + 4

for all x, y,z in X. It is easy to see that at least two of d(x, y), d(y,z) and d(x, z)
differ by at most §, meaning that any triangle is almost isoceles. These are examples
of 25-hyperbolic spaces in the sense of Gromov, see [5], Section 1.2 on p. 90. It would
be interesting to know if those spaces do satisfy the property that any intersection of
two balls is almost a ball (in some sense).

Definition 19. We say that a geodesic metric space (X, d) has the geodesic extension
property if any geodesic arc y: [0,a] — X extends to a geodesic y’: [0,00) — X,
ie., ' lo.a =7

The most important feature of a space with the geodesic extension property is that
centres and radii of balls are well defined (this is easily checked). More precisely we
shall use the following.

Lemma 20. Let (X,d) be a space with the geodesic extension property, and let
x,y € Xands,t > 0satisfy s,t < d(x,y). Then B(c,r) is the biggest ball that fits
in B(x,s)N B(y,t), wherer = m and ¢ is a point on any geodesic between

x and y, at distance S_t2+d from x.
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Proof. Let Y = B(x,s) N B(y,t). If s +¢t < d(x,y) then Y = @ and there is
nothing to prove. So let us assume that s +¢ > d(x, y). Take r > 0 and ¢ € Y such
that B(c,r) C Y. Leta = d(x,c)and b = d(y,c), sothata + b > d(x, y). Since
B(c,r) € B(x,s), we deduce that @ + r < s, and similarly, since B(c,r) C B(y,t),
we deduce that b + r < ¢ (here we use the geodesic extension property). Combining
those two inequalities shows that

2r<s+t—(a+b)<s+t—d(x,y). O

If X = X, is the symmetric space of constant curvature k < O there is a single
triangle x, y, z (up to isometry) with side lengths s = d(x,z), t = d(y,z) and
d = d(x,y). So we define

s+t—d
Becy(s.1,d) 1= d(z0) = 55,
where ¢ is the point on the geodesic between x and y at distance (d + s —1)/2
from x. (This point exists because the triangle inequality ensures that t < d + s, so
the distance is positive, and because s < d + ¢ implies that (d +s —1¢)/2 < d.) We
shall see that there is an analogue to Theorem 1 which characterises CAT (k) geometry
fork <0

Theorem 21. Given k < 0, a geodesic metric space (X, d) with geodesic extension
property is CAT (k) if and only if the eccentricity of the intersection of any two balls
of respective radii s and t and at distance d is bounded by Ecc(s,t,d).

Proof. Oneimplication is clear, so we suppose by contradiction that the eccentricity of
the intersection of any two balls of respective radii s and ¢ and at distance d is bounded
by Eccy (s, ¢, d) but that X is not CAT(x). Then there is a geodesic triangle x, z, y in
X and a point p = y(r) on a geodesic y from x to y such that d(x, p) < d(x, p).
Letro = sup{r’ <r | d(y(r'),z) < d(y(r'),z)} where y denotes the geodesic X y in
the comparison triangle. Similarly let ry = inf{r’ > r | d(y(+'),z) < d(F7 ('), 2)}.
In other words, ry and r; are the nearest points left and right of p that satisfy the
CAT (k) inequality. So for any r’ in the open interval (rg, 1) we have d((y(r’), z) >
d(y(r"),z). Notice that r; > ro since the metric varies continuously with points.
Set s" = d(y(ro).z) = d(y(ro).2), and t' = d(y(r1),z) = d(y(r1),2). Let
d" =d(y(ro).y(r1)) = ri —ro.

Now consider a geodesic triangle y(ry), z, y(r1) where the geodesic from y(ro)
to y(ry) is taken to be the restriction of y to the closed interval [rg, 71]. Clearly the
geodesic triangle y (rp), Z, ¥ (r1) is a comparison triangle in X, (see Figure 3).

Take the point ¢’ on the above geodesic from y(rg) to y(r;) at distance
(s" +d’ —1t")/2 from y(r¢). (This point exists because of the triangle inequality.)
First notice that ¢’ has to be equal to either y(r) or y(r1), otherwise we would have
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Figure 3. The CAT(0) comparison triangle.

d(z,c’) > d(z,¢"), and the intersection of B(y(rg), s”) with B(y(r1),t’) exceeds the
allowed eccentricity. Assume that ¢’ = y(r¢) (if ¢’ = y(s1) the argument is similar
and we omit it). Then (s' +d’ —1')/2 = 0,s0t’ = s’ + d’. It follows that the path
given by concatenating the geodesics from z to y(rg) and from y(rg) to y(r1) is itself
a geodesic. Now let m be the midpoint of the geodesic from y(rg) to y(r1). This
point is at distance s’ + (r1 — ro)/2 from z. Inspecting the (degenerate) comparison
triangle we see that 7 is also at distance s’ + (r; — ro)/2 from Z, but this contradicts
our assumption that every point between y(ro) and y(r;) is further from z than we
see in the comparison triangle. O

Remark. Following the arguments in the proof of Theorem 1 we note that there is an
alternative notion of a “based” eccentricity function which measures eccentricity from
the defined centre ¢ for both the inscribed and circumscribed balls. In these terms it
is easy to see that Gromov hyperbolicity is equivalent to the existence of a uniform
bound on the based eccentricity function, while the proof of Theorem 21 shows that
CAT (k) geometry is characterised by bounding the based eccentricity function in
terms of the function Ecc,. Hence both notions of non-positive curvature may be
naturally expressed in terms of eccentricity bounds.

5. Appendix: Pomroy’s result

In [7] Papasoglu showed that for a graph hyperbolicity was equivalent to a bound
on the thinness of geodesic bigons. As remarked before, the same statement is not
true for general geodesic metric spaces (any non-hyperbolic CAT(0) space furnishes
a counter example since uniqueness for geodesics gives a bound of 0 on the fatness
of geodesic bigons). The point is that the bound for the fatness of geodesic bigons
in a graph gives an automatic bound on the fatness of (1, 1) quasi-geodesic bigons
and Papasoglu remarks that there is a natural generalisation of the result as follows.
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The theorem appears in the Masters dissertation of Pomroy [8], but to the best of our
knowledge no proof exists in the literature. We offer a proof of the result in order to
place it on the record.

Theorem 22 (Pomroy [8]). Let (X, d) be a geodesic metric space. Ifthereise, p > 0
so that p-bigons are uniformly e-thin, then X is hyperbolic.

Proof. We argue by contradiction, similarly to Corollary 12 and using those particular
divergence functions. According to Theorem 7 for any D > 0, the functions fp as
defined above never tend to infinity, and hence there is L = L (D) sothatliminf fp =
L(D) < oo. This means that for any #o € R, there are two geodesics y and y’ and
R € R such that

(@) y(0) = y'(0),
(®) d(y(R),y'(R)) = D,
©) diy(R+719), Y (R +rg)) < L + 1 for some rog > t.

Let us fix ¢ > 3 sothat 1/¢ < p, and again let A, = d(y(R +r),y’(R + r)) and
ao = Y(R+ro),ay,...,an = y'(R + ro) be points on a geodesic from y(R + r¢)
to Y'(R + ro) and at distance less than p from each other (we can choose n <
(L+1)g+1).Forl=1,...,n, weseea p-bigon as follows: one side is a geodesic
from y(0) to a;, and the other is a broken geodesic y (0)a;—1a;. So our assumptions say
that it is e-thin, and hence A, < ne. Nowletbg = y(R+71), b1, ....b = Yy (R+7)
points on a geodesic from y(R + r) to ¥’ (R + r) and at distance less than p from
each other (we can choose m < A,q + 1). Again we construct a p-bigon as follows:
one side is a geodesic from y(0) to b;, and the other is a broken geodesic y(0)b;_1b;.
Moreover, since Ay = D, it means that me > D, and hence (4,q + 1)e > D, so that
A, > (D/e — 1)1/q. This means that the geodesics y and y’ fulfill the assumptions
of Theorem 6 for any D big enough (i.e., D so that (D/e — 1)1/q > 0), and hence,
taking D big enough (i.e., so that (D/e — 1)1/2g > ¢), Theorem 6 contradicts our
assumption that p-bigons are uniformly e-thin. O

Remark. This result may seem close to Lemma 7.2 in [6], which states that if (3, 0)-
quasigeodesics stay uniformly close to any geodesic between the endpoints, then
the space is hyperbolic. However the proof of Papasoglu’s or Pomroy’s result is
considerably more elaborate.
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