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Abstract. In this paper a relation between iterated cyclings and iterated powers of elements in
a Garside group is shown. This yields a characterization of elements in a Garside group having
a rigid power, where ‘rigid’ means that the left normal form changes only in the obvious way
under cycling and decycling. It is also shown that, given X in a Garside group, if some power
Xm is conjugate to a rigid element, then m can be bounded above by k�k3. In the particular
case of braid groups fBnI n 2 Ng, this implies that a pseudo-Anosov braid has a small power
whose ultra summit set consists of rigid elements. This solves one of the problems in the
way of a polynomial solution to the conjugacy decision problem (CDP) and the conjugacy
search problem (CSP) in braid groups. In addition to proving the rigidity theorem, it will be
shown how this paper fits into the authors’ program for finding a polynomial algorithm to the
CDP/CSP, and what remains to be done.
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1. Introduction

Braid groups Bn; n D 1; 2; 3; : : : , were introduced in a foundational paper by Emil
Artin [3] in 1925. In it Artin gave the well-known presentation:

Bn D
�
�1; : : : ; �n�1

ˇ̌̌
ˇ �i�j D �j �i if ji � j j > 1;

�i�j �i D �j �i�j if ji � j j D 1

�
: (1)

1
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:::
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��

Figure 1. The elementary braid �i .

The elementary braid �i is depicted in Figure 1. To study Bn, Artin used the fact that
there is a canonical homomorphism � W Bn ! †n, where the image is the symmetric
group, defined by sending a braid to the associated permutation of its endpoints. He
went on to uncover the structure of the kernel of � , and used what he learned to solve
the word problem in Bn: to decide, for arbitrary words X , Y in the generators and
their inverses, whether they represent the same element of Bn. Artin also posed the
conjugacy decision problem (CDP): to decide whether, for arbitrary X; Y 2 Bn, there
exists Z 2 Bn such that Y D Z�1XZ. A different but related problem, the conjugacy
search problem (CSP) asks to find Z, provided that one knows that it exists.

During the period 1925–1969 various efforts were made to solve the conjugacy
problem, building on techniques which had been introduced in [3], but there was no
significant progress. Then, in 1969 F. Garside [23] brought completely new tech-
niques to bear, looking at Bn in a very new way which stressed the similarity of its
combinatorics to those of †n, rather than focusing on ker.� W Bn ! †n/. Garside
succeeded in solving both the word and conjugacy search problems simultaneously,
and in a unified way. His methods were soon shown to apply to other groups too [14],
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[18], and over the years broadened to an entire class of groups which subsequently
became known as Garside groups. The ideas that Garside introduced, and their sub-
sequent improvements, are the subject of this paper, which is the first in a series with
the unifying title ‘Conjugacy in Garside groups I, II, III, … They have a common
goal: to improve Garside’s algorithm for the CDP/CSP in a Garside group to obtain,
in the particular case of the braid group Bn, an algorithm which is polynomial both in
n and an appropriate measure kXk, kY k of the complexity of X and Y . This would
have implications as regards the security of certain codes in public key cryptography
[2], [28].

The existence of such a polynomial algorithm for the word problem in all Garside
groups is now known via the work of [20], [21] for the braid groups. In [17] and
[16] the class of Garside groups is defined in a more general setting, and shown to
be biautomatic. It is a consequence of the way the definitions were chosen in [17],
[16] that in fact, Garside’s algorithm solves the word and CDP/CSP’s in all Garside
groups. Our work in this paper is a step in a program that we have developed to prove
that the CDP/CSP in Bn is polynomial in both n and kXk. But all results in this
paper are valid in every Garside group, except the results in �3.4 and Theorem 3.37,
where we consider applications of these results to the special case of braid groups, in
particular to pseudo-Anosov braids.

Before we can state exactly what we do in this paper, and describe it in context, we
need to set up necessary notation and review the known results and techniques. The
combinatorial structure that we will use, and the new structure that we have uncovered,
is quite complicated and, we think, interesting. In order to make this paper accessible
to non-experts we give details and examples which those who are acquainted with the
literature will probably wish to bypass quickly, moving on to �1.4, where we describe
the essential content of this paper and its context in our larger goal, and thence to �2,
where our new contributions begin.

Acknowledgements. J. Birman and J. González-Meneses, who were working to-
gether, and V. Gebhardt, became acquainted with each other’s partial results at a
conference in the Banff International Research Station for Mathematical Innovation
and Discovery, in October 2004. There was some overlap, and also some recognition
that differing viewpoints could lead to progress, so they decided to pool forces at
that time. The three authors thank the PIMS, MSRI, MITACS and IM-UNAM for
their wisdom in sponsoring international conferences which foster exactly this kind
of fruitful interchange and collaboration.

J. Birman thanks the Project MTM2004-07203-C02-01 of the Spanish Ministerio
de Ciencia y Tecnología for hosting her visit to Seville in November 2004, so that she
and J. González-Meneses could work together on this project.

J. González-Meneses thanks the project MTM2004-07203-C02-01 and the De-
partment of Mathematics of Columbia University for hosting his two visits to New
York, in July 2004 and March–April 2006.
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V. Gebhardt thanks the Department of Algebra of the University of Seville, and
the Junta de Andalucía, for funding his visit to Seville in January 2006.

The work in this paper and [9], [10] was done simultaneously and independently
from the work of S. J. Lee and E. K. Lee in [30], [31], [32]. We first became aware
of that work when we were in the process of writing up this one. Some of this work,
notably Proposition 2.23 below and the results in [9], were reported on in talks at
conferences in Banff in October 2004 and Luminy in June 2005.

1.1. Garside groups. Among the known equivalent definitions of Garside groups,
we use the one which was suggested to us by John Crisp [15], because it seems the
most natural of the many possible definitions. A group G is said to be a Garside group
if it satisfies properties (A), (B) and (C) below:

(A) G admits a lattice order .G; 4; _; ^/, invariant under left-multiplication.

This means that there is a partial order 4 on the elements of G such that a 4 b

implies ca 4 cb for every c 2 G. Also, every pair of elements s; t 2 G

admits a unique lcm s _ t and a unique gcd s ^ t with respect to 4. This partial
order 4 defines a submonoid P � G, called the positive cone of G, defined by
P D fp 2 GI 1 4 pg. Notice that the invariance of 4 under left-multiplication
implies that P \ P �1 D f1g, and also that a 4 b ” a�1b 2 P: Hence the
submonoid P determines the partial order 4, so we shall equally talk about the
lattice .G; P /. We remark that if a; b 2 P then a 4 b if and only if a is a prefix
of b, that is, there exists c 2 P such that ac D b. This is why 4 is sometimes
called the prefix order.

There is also a related suffix order, defined by b < a if ba�1 2 P . It is important
that a 4 b does not imply that b < a. Sometimes we will get genuinely new
information by using both orderings, even when the proofs are little more than
copies of one-another.

(B) There exists an element � 2 P , called the Garside element, satisfying:

(a) The interval Œ1; �� D fs 2 GI 1 4 s 4 �g generates G. Its elements
are called the simple elements of G. We shall always assume that Œ1; �� is
finite, that is, that G has finite type.

(b) Conjugation by � preserves the positive cone P : ��1P� D P .

We remark that if � satisfies both (a) and (b), then Œ1; �� also generates P as
a monoid, which is one of the properties usually required in the definition of a
Garside element.

(C) The monoid P is atomic.

This means that for every x 2 P there exists an upper bound on the length of a
(strict) chain 1 � x1 � � � � � xr D x. In other words, if we define the atoms
of G as the elements a 2 P which cannot be decomposed in P (there are no



Conjugacy in Garside groups I: cyclings, powers and rigidity 225

nontrivial b; c 2 P such that a D bc), then for every x 2 P there exists an
upper bound on the number of atoms in a product x D a1a2 : : : ar with each ai

an atom. In particular, if P is atomic, one can define the length of an element
x 2 P as the maximal length of such a chain, that is,

kxk D maxfnI x D a1a2 : : : an; where ai 2 P nf1gg:
Notice that the atoms generate G.

These data determine a Garside structure on G, which may be defined as follows:
Let G be a countable group, P be a submonoid, and � 2 P . The triple .G; P; �/ is
said to be a ( finite type) Garside structure on G if .G; P / is a lattice, � is a Garside
element (with Œ1; �� finite), and P is atomic. We remark that a given group G may
admit more than one Garside structure.

Example 1. Our first example is very simple. We consider the braid group B3 and
its two known Garside structures:

1A. The classical Garside structure is associated to the presentation (1) of B3. The
Garside element is �1�2�1 D �2�1�2. The elements in P correspond to the braids in
which all crossings are positive. The atoms are �1 and �2.

1B. If we set x D �1, y D �2 and z D �2�1��1
2 we get the presentation

hx; y; z j xy D yz D zxi. The Garside element is now � D xy. See [39] for the
way in which this structure was used to solve the shortest word problem in B3 and
to give an algorithm for determining the genus of knots and links which are closed
3-braids. This Garside structure was generalized to all n in [11].

Example 2 (Free abelian groups of finite rank). This is another very simple example
of a Garside group:

Zn D hx1; : : : ; xn j xixj D xj xi ; i < j i:
The positive cone is

Nn D fxk1

1 : : : xkn
n I ki � 0 for all ig:

The Garside element is � D x1 : : : xn, and the simple elements have the form
x

k1

1 : : : x
kn
n where ki 2 f0; 1g for every i D 1; : : : ; n. Hence there are 2n simple

elements.

Example 3 (The braid group Bn, with the classical Garside structure). Garside used
the presentation (1). The usual Garside structure in this group is determined by
.Bn; BC

n ; �/, where BC
n is the monoid of positive braids, consisting of the elements

in Bn that can be written as a product of �i ’s with no ��1
i , and

� D .�1/.�2�1/.�3�2�1/ : : : .�n�1 : : : �1/ (2)
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is a half-twist on all of the strands. The atoms are �1; : : : ; �n�1. The elements in P

correspond to the braids in which all crossings are positive. The Garside element �

can be characterized as the only positive braid in which every pair of strands cross
exactly once. The simple elements, in the case of Bn, are the positive braids in
which every pair of strands cross at most once. It follows that every simple element
corresponds to a permutation on the set of n elements (the strands). Hence there are nŠ

simple elements in BC
n , with this Garside structure. Figure 2 shows the Hasse diagram

representing the lattice of simple elements in BC
4 . In this diagram, an element a is

joined by a line to an element b in the upper row if and only if a 4 b. Moreover, each
line type corresponds to a right multiplication by an atom: a single line corresponds
to �1, a double line to �2 and a dotted line to �3. This lattice of simple elements
determines the whole Garside structure of the group.

Figure 2. The lattice of simple elements in BC

4
. There are 4Š D 24 elements.

Example 4 (Spherical type Artin–Tits groups [13]). The previous three examples
were particular cases of Artin–Tits groups. All Artin–Tits groups of spherical type
are known to be Garside groups [14]. Given a finite set S , a Coxeter matrix over S

is a symmetric matrix M D .mst /s;t2S , where mss D 1 for all s 2 S and ms;t 2
f2; 3; : : : ; 1g. Every Coxeter matrix M defines a group AM given by the following
presentation:

AM D hS j stst : : :„ ƒ‚ …
mst terms

D tsts : : :„ ƒ‚ …
mst terms

; for all s; t 2 Si;

where mst D 1 means that there is no relation involving s and t . The group AM is
called the Artin–Tits group associated to M , also called Artin group or generalized
braid group.
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If one adds to the above presentation the relations s2 D 1 for all s 2 S , one obtains
the group WM , called the Coxeter group associated to M . An Artin–Tits group is said
to be of spherical type if its corresponding Coxeter group is finite.

The usual Garside structure in these groups is given by .AM ; AC
M ; �/, where

AC
M is the monoid of positive elements, consisting of products of elements of S (the

above presentation of AM , considered as a monoid presentation, gives AC
M ), and the

Garside element � is defined as follows. The set of generators S can be decomposed
into two sets S D S1 [ S2, where elements contained in the same set Si commute.
This decomposition can be easily obtained from the Coxeter graph of the group. The
reader is referred to [13] for the definition of a Coxeter graph and its associated Coxeter
matrix, and also for a list of the Coxeter graphs associated to the finite Coxeter groups.
If the Coxeter graph � is connected, there is only one possible decomposition of S in
the above sense. Now define

�1 D Q
s2S1

s and �2 D Q
s2S2

s:

Then one has
� D �1�2�1�2 : : :„ ƒ‚ …

h terms

;

where h is the Coxeter number of the corresponding Coxeter group. The Coxeter num-
bers corresponding to the spherical type Artin–Tits groups are given it the following
table:

Type Al Bl Dl E6 E7 E8 F4 G2 H3 H4 I2.p/

h l C 1 2l 2l � 2 12 18 30 12 6 10 30 p

As an example, the Garside element of the spherical Artin–Tits group of type
Bl is � D ..s1s3 : : : sl/.s2s4 : : : sl�1//l when l is odd, and � D ..s1s3 : : : sl�1/

.s2s4 : : : sl//
l when l is even. Notice that theArtin–Tits monoid of type Al is precisely

theArtin braid monoid on l C1 strands. Notice also that the Garside structure given by
this construction coincides with the original Artin structure for braid groups described
above.

We remark that every spherical type Artin–Tits group admits another Garside
structure, discovered in [6], called the dual Garside structure. In the case of braid
groups, the dual Garside structure is precisely the one discovered in [11].

Example 5 (Torus knot groups). The fundamental group of the complement of a
.p; q/-torus knot, where p; q > 1 are coprime, is given by the following presentation:

hx; y j xp D yqi:
If we consider the monoid given by this presentation, it is a Garside monoid with
Garside element � D xp .
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Example 6. The following two examples of Garside groups do not belong to a class
of known groups, but they have interesting properties which are not satisfied by the
groups in the previous examples. They were discovered and studied by Picantin in
[36]. In both cases, we give presentations of the groups which, considered as monoid
presentations, yield the corresponding Garside monoids. Hence we shall only define
the Garside element, in each case.

(1) G D hx; y; z j xzxy D yzx2; yzx2z D zxyzx D xzxyzi. The Garside
element is � D xzxyzx. In most examples of Garside groups, the Garside
element � is the least common multiple (with respect to 4) of the atoms. In
this example, since the relations are homogeneous, the atoms are just the letters
x, y and z, and one has lcm4.x; y; z/ D xzxyz. But xzxyz ¤ �. Indeed,
since conjugation by � must preserve the set of atoms, all atoms must be left and
right divisors of �, but we have xzxyz 6< y, hence lcm4.x; y; z/ D xzxyz ¤
lcm<.x; y; z/. This is an example of a Garside monoid in which the lcm4 of
the atoms is not a Garside element.

(2) G D hx; y j xyxyx D y2i. Garside element � D y3. In this case,
lcm4.x; y/ D lcm<.x; y/ D y2, but y2 is not a Garside element. Indeed,
since conjugation by � must preserve the set of simple elements, the set of pos-
itive left-divisors and the set of positive right-divisors of � must coincide. But
this does not happen for y2. For instance xyxy 4 y2 but y2 6< xyxy. This
is also an example of a Garside monoid in which the relations are not homoge-
neous, hence the length of a positive element is not given by the letter length of
any representative.

Construction of new Garside monoids. We already provided several examples
of Garside monoids and groups. Using these monoids as building blocks, one can
construct new Garside monoids and groups thanks to the following result. In [36]
there is a definition of the so called crossed product of monoids, which also allows to
construct new Garside monoids.

Theorem 1.1 ([36]). The crossed product of Garside monoids is a Garside monoid.

An example of crossed product, given in [33], is the semidirect product Z Ë Gn,
where the action of Z on the free product Gn (G is a Garside group) is given by cyclic
permutations of coordinates.

1.2. Solving the word and conjugacy problems in Garside groups. From now on,
we will fix a Garside group G with a finite type Garside structure .G; P; �/. We will
show how to solve the word problem, giving a well known normal form for elements
in a Garside group. The basic reference is [20]. While everything in that paper relates
to the braid groups, most of it generalizes easily to arbitrary Garside groups, which
were singled out as a class several years later [17], [16].
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Definition 1.2 (Left normal form). Given X 2 G, we will say that a decomposition
X D �px1 : : : xr (r � 0/ is the left normal form of X is it satisfies

(1) p 2 Z is maximal such that �p 4 X , that is, x1 : : : xr 2 P and � 64 x1 : : : xr ;

(2) xi D .xi : : : xr/ ^ �, for i D 1; : : : ; r . That is, xi is the biggest simple prefix
of xi : : : xr .

One can also show by induction that �px1 : : : xi D X ^ �pCi , for i D 1; : : : ; r .
It is known that one can check whether a given decomposition X D �px1 : : : xr

is a left normal form by looking at each pair of consecutive factors xixiC1. We say
that a pair of simple elements a; b 2 Œ1; �� is left weighted if the product ab is in left
normal form as written, that is, if a D .ab/ ^ �. Then �px1 : : : xr is a left normal
form if and only if x1 ¤ � and each pair xixiC1 is left weighted.

Notice that if we consider the set of simple elements as a set of generators for G,
then the decomposition defined above is a normal form in the usual sense, that is, a
unique way to write any element of G as a product of the generators and their inverses.
If one wishes to obtain a normal form with respect to any other set of generators (for
example the set of atoms), one just needs to choose a unique way to write each simple
element in terms of the desired generators, and replace this in the left normal form.

We now give several standard terms that will be needed to work with Garside
groups.

If X D �px1 : : : xr is in left normal form, the infimum, supremum and canonical
length of X are defined by inf.X/ D p, sup.X/ D p Cr and `.X/ D r , respectively.

The shift map � is the inner automorphism � W G ! G given by �.x/ D ��1x�.
Given a simple element x, we define x� D x�1�. That is, x� is the only simple

element such that xx� D �, and is called the right complement of x. The element x�
is the maximal element s (with respect to 4) such that xs is simple. A product ab

of simple elements a and b is left weighted if and only if a� ^ b D 1. It will be
convenient to define the right complement map @ W Œ1; �� ! Œ1; �� by @.x/ D x�:

Lemma 1.3. The map @ W Œ1; �� ! Œ1; �� is a bijection, and @2 D � .

Proof. We show that @ is a bijection by defining its inverse @�1 W Œ1; �� ! Œ1; ��

as @�1.y/ D �y�1. The element �y�1, sometimes denoted �y, is called the left
complement of y. It is the only simple element such that �yy D �.

On the other hand, @2.x/ D @.x�1�/ D .��1x/� D �.x/, as we wanted to
show.

Corollary 1.4. There exists a positive integer e such that �e belongs to the center
of G. More precisely, one has �.Œ1; ��/ D Œ1; �� and �.A/ D A, where A is the set
of atoms in G, and �e D idG for some positive integer e, so that �e is central.



230 J. S. Birman, V. Gebhardt and J. González-Meneses

Proof. Since @.Œ1; ��/ D Œ1; ��, it follows that �.Œ1; ��/ D @2.Œ1; ��/ D Œ1; ��.
This also implies that �.A/ D A. Indeed, suppose that there is some atom a such that
�.a/ is not an atom. Then �.a/ is a simple element that can be decomposed into a
product of two simple elements �.a/ D st . But then ��1.s/ and ��1.t/ are simple
elements such that a D ��1.�.a// D ��1.s/��1.t/. A contradiction, since a is an
atom. Hence �.A/ � A. Since A is a finite set, and � W G ! G is a bijection, it
follows that �.A/ D A.

Finally, since � induces a permutation in A, there exists a positive integer e such
that �e induces the trivial permutation on A. Since the atoms generate G, it follows
that �e is the trivial automorphism of G. That is to say, �e is central.

Remark. In the braid group Bn one has e D 2, so �2 is central. Furthermore, the
center of Bn is the cyclic group generated by �2.

The right complement plays an important role when comparing the left normal
forms of X and X�1.

Theorem 1.5 ([20]). If
X D �px1 : : : xr ;

in left normal form, then the left normal form of X�1 is equal to

X�1 D ��p�rx0
r : : : x0

1;

where x0
i D ��p�i .@.xi // for i D 1; : : : ; r .

Remark. Notice that x0
i D ��p�i .@.xi // D @�2p�2iC1.xi /, so the left normal form

of X�1 is equal to

X�1 D ��p�r @�2p�2rC1.xr/ @�2p�2rC3.xr�1/ : : : @�2p�1.x1/:

Corollary 1.6. For every X 2 G, one has inf.X�1/ D � sup.X/, sup.X�1/ D
� inf.X/ and `.X�1/ D `.X/.

See Section 9.5 of [21] for a proof that an n-braid of length m can be put in left
normal form in running time O.m2n log n/, with the usual Garside structure of Bn,
and see [11] to find how one can compute the normal form in time O.m2n/, using the
dual Garside structure of Bn, usually known as Birman–Ko–Lee structure. In general,
using the normal form algorithm, the complexity of computing the left normal form
of a given element in a Garside group G is O.m2p/, where p is the complexity of
computing the gcd of two simple elements in G. The number p usually depends on
the length of � (simple elements are smaller than �) and on the number of atoms
in G, since one usually computes the gcd of two elements by iteratively testing if
there is some atom which is a common prefix.
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We now explain the algorithms for solving the conjugacy decision and search
problems (CDP/CSP) in Garside groups that were given in [23], [20], [22], [24]:
given two elements X; Y 2 G, determine if X and Y are conjugate and, if this is
the case, compute a conjugating element Z such that XZ D Z�1XZ D Y . Each
algorithm in [23], [20], [22], [24] is an improvement of the previous one, but the basic
idea is the same in all of them: Given an element X 2 G, the algorithm computes a
finite subset IX of the conjugacy class of X which has the following properties:

(1) For every X 2 G, the set IX is finite, non-empty and only depends on the
conjugacy class of X . In particular, two elements X; Y 2 G are conjugate if
and only if IX D IY or, equivalently, IX \ IY ¤ ;.

(2) Given X 2 G, a representative zX 2 IX and an element a 2 G such that Xa D zX
can be computed effectively.

(3) Given a non-empty subset I � IX , there is a finite process which either proves
that I D IX or produces an element Z 2 I and an element b 2 G such that
Zb 2 IXnI . In particular, IX can be constructed from any representative as the
closure under this process.

Given X; Y 2 G, solving the CDP/CSP then involves the following steps.

(a) Find representatives zX 2 IX and zY 2 IY .

(b) Repeatedly use the process from (3), keeping track of the conjugating elements,
to compute further elements of IX until either

(i) zY is found as an element of IX , proving X and Y to be conjugate and
providing a conjugating element, or

(ii) the entire set IX has been constructed without encountering zY , proving
that X and Y are not conjugate.

We now discuss, briefly, each particular algorithm in [23], [20], [22], [24]. In
Garside’s original algorithm [23], the set IX is the summit set of X , denoted SS.X/,
which is the set of conjugates of X having maximal infimum. This was improved by
ElRifai and Morton [20] who considered IX D SSS.X/, the super summit set of X ,
consisting of the conjugates of X having minimal canonical length. They also show
that SSS.X/ is the set of conjugates of X having maximal infimum and minimal
supremum, at the same time.

For instance, in the braid group Bn with the usual Garside structure, one has
SS.�1/ D SSS.�1/ D f�1; : : : ; �n�1g. A small example in which SSS.X/ is strictly
smaller than SS.X/ is given by X D ��1�1 2 B3, for which SSS.X/ D f� � �1�3g
and SS.X/ D f� � �1�3; � � �1 � �1; � � �3 � �3g (the factors in each left normal form
are separated by a dot). In general SSS.X/ is much smaller than SS.X/.

Starting by a given element X , one can find an element zX 2 SSS.X/ by a sequence
of special conjugations, called cyclings and decyclings. The conjugating elements
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involved in a cycling or a decycling will play a crucial role later, so we start by
defining them.

Definition 1.7. Given X 2 G whose left normal form is X D �px1 : : : xr (r > 0),
we define the initial factor of X as 	.X/ D ��p.x1/, and the final factor of X as
'.X/ D xr . If r D 0 we define 	.�p/ D 1 and '.�p/ D �.

Remark. Up to conjugation by �p , the simple element 	.X/ (resp. '.X/) corresponds
to the first (resp. last) non-� factor in the left normal form of X . An equivalent
definition of 	.X/ and '.X/, which does not involve the left normal form of X

(although it involves its infimum and supremum), is the following.

� 	.X/ D X��p ^ �.

� '.X/ D .�pCr�1 ^ X/�1X .

This explains why 	.�p/ and '.�p/ are defined in the above way.

The initial and final factors of X and X�1 are closely related.

Lemma 1.8. For every X 2 G one has 	.X�1/ D @.'.X// and '.X�1/ D @�1.	.X//.

Proof. Let �px1 : : : xr be the left normal form of X , and suppose that r > 0. We
know that ��p�rx0

r : : : x0
1 is the left normal form of X�1, where x0

i D ��p�i .@.xi //.
Hence one has 	.X�1/ D �pCr.x0

r/ D �pCr.��p�r.@.xr/// D @.xr/ D @.'.X//.
Permuting X and X�1 in this formula yields 	.X/ D @.'.X�1//, hence '.X�1/ D
@�1.	.X//.

If r D 0, that is if X D �p , then 	.X�1/ D 1 D @.�/ D @.'.X//, and
'.X�1/ D � D @�1.1/ D @�1.	.X//, so the result is also true in this case.

Remark. The above result can be restated as follows: For every X 2 G, one has
'.X/ 	.X�1/ D � D '.X�1/ 	.X/.

We can now define the very special conjugations called cyclings and decyclings.

Definition 1.9. Given X 2 G, we call c.X/ D X �.X/ the cycling of X and we call
d.X/ D X'.X/�1

the decycling of X . In other words, if �px1 : : : xr is the left normal
form of X and r > 0, then

c.X/ D �px2 : : : xr��p.x1/ and d.X/ D xr�px1 : : : xr�1:

In the case `.X/ D 0, we have c.X/ D d.X/ D X .

Roughly speaking, for an element of positive canonical length, the cycling of X is
computed by passing the first simple factor of X to the end, while the decycling of X is
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computed by passing the last simple factor of X to the front. However, the powers of
� are not taken into account, which is why one must use the automorphism � . Notice
that the above decompositions of c.X/ and d.X/ are not, in general, left normal
forms. Hence, if one wants to perform iterated cyclings or decyclings, one needs to
compute the left normal form of the resulting element at each iteration.

As we said above, cyclings and decyclings can be used to find an element in
SSS.X/, given X . The following result was shown for braid groups, but the same
proof is valid for every Garside group.

Theorem 1.10 ([20], [12]). Let .G; P; �/ be a Garside structure of finite type. Choose
X 2 G, and let r D `.X/. Let m be the letter length of �.

(1) A sequence of at most rm cyclings and decyclings applied to X produces a
representative zX 2 SSS.X/.

(2) If Y 2 SSS.X/ and ˛ 2 P is such that Y ˛ 2 SSS.X/ then Y ˛^� 2 SSS.X/.

Notice that ˛ ^ � is always a simple element. Since the set of simple elements is
finite, one has the following:

Corollary 1.11 ([20]). Let X 2 G and V � SSS.X/ be non-empty. If V ¤ SSS.X/

then there exist Y 2 V and a simple element s such that Y s 2 SSS.X/nV .

Since SSS.X/ is a finite set, the above corollary allows to compute the whole
SSS.X/. More precisely, if one knows a subset V � SSS.X/ (at the beginning
V D f zXg/, one conjugates each element in V by all simple elements (recall that
G is of finite type, that is, the set of simple elements is finite). If one encounters
a new element Z with the same canonical length as zX (a new element in SSS.X/),
then consider V [ fZg and start again. If no new element is found, this means that
V D SSS.X/, and we are done. One important remark is that this algorithm not
only computes the set SSS.X/, but it also provides conjugating elements joining the
elements in SSS.X/. Hence it solves both the CDP and the CSP in Garside groups.

The computational cost of computing SSS.X/ depends mainly on two factors: the
size of SSS.X/ and the number of simple elements. If we consider braid groups Bn

with the usual Garside structure, for instance, all known upper bounds for the size of
SSS.X/ are exponential in n, although it is conjectured that for fixed n a polynomial
bound in the canonical length of X exists [21]. Recall also that the number of simple
elements is nŠ, and one needs to conjugate every element in SSS.X/ by all simple
elements. Fortunately, this task can be avoided thanks to the following result.

Theorem 1.12 ([22]). Let X 2 SSS.X/. If s; t 2 G are such that X s 2 SSS.X/ and
X t 2 SSS.X/, then X s^t 2 SSS.X/.
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Corollary 1.13. Let X 2 G and Y 2 SSS.X/. For every u 2 P there is a unique
4-minimal element 
Y .u/ satisfying

u 4 
Y .u/ and Y �Y .u/ 2 SSS.X/:

Proof. The gcd of fv 2 P I u 4 v; Y v 2 SSS.X/g is the element 
Y .u/ and has all
the claimed properties.

The set 
Y .A/ D f
Y .a/I a is an atomg contains all nontrivial elements which
are 4-minimal among those conjugating Y to an element in SSS.X/. We call the
latter the minimal simple elements for Y with respect to SSS.X/. Since one could
have 
Y .a/ � 
Y .b/ (strict) for two distinct atoms a and b, the set of minimal simple
elements for Y is in general strictly contained in 
Y .A/.

Corollary 1.14. Let X 2 G and V � SSS.X/ be non-empty. If V ¤ SSS.X/

then there exist Y 2 V and a minimal simple element 
 D 
Y .a/ for some atom a

such that Y � 2 SSS.X/nV .

Using the technique of minimal simple elements, super summit sets can be com-
puted as in [20], but instead of conjugating each element Y 2 SSS.X/ by all simple
elements, it suffices to conjugate Y by its minimal simple elements. Notice that the
number of minimal simple elements for a given Y 2 SSS.X/ is bounded by the
number of atoms. In the case of the braid group Bn with the usual Garside structure,
the number of atoms is n � 1, hence one just needs to perform n � 1 conjugations
instead of nŠ, for each element in SSS.X/. Moreover, the minimal simple elements
for a given Y 2 SSS.X/ can be computed very fast [22].

Notice that the algorithm just described computes not only the set SSS.X/, but also
the minimal simple elements that connect the elements in SSS.X/ by conjugations. In
other words, the algorithm computes a directed graph whose vertices are the elements
in SSS.X/, and whose arrows are defined as follows: there is an arrow labeled by 


starting at Y and ending at Z if 
 is a minimal simple element for Y and Y � D Z. In
Figure 3 one can see the graph associated to �1 2 B4. Notice that there are exactly 3
arrows starting at every vertex (the number of atoms in B4). In general, the number
of arrows starting at a given vertex can be smaller or equal, but never bigger than the
number of atoms.
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Figure 3. Graph associated to SSS.�1/ in B4.
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Let us mention here a tool that will be used several times in this paper, which is
the transport map introduced in [24]. Let X 2 SSS.X/ and let ˛ be an element such

that ˛�1X˛ D Y 2 SSS.X/. We can write this as X
˛�! Y . We know from [20] that

c.X/ and c.Y / also belong to SSS.X/. Notice that X
�.X/���! c.X/ and Y

�.Y /��! c.Y /.
In [24], the transport ˛.1/ of ˛ is defined as the element making the following diagram
commutative in the sense explained below:

X

˛

��

�.X/ �� c.X/

˛.1/

��
Y

�.Y / �� c.Y /

This means ˛.1/ D 	.X/�1 ˛ 	.Y /. The nontrivial fact shown in [24] is that if ˛ is
simple, then ˛.1/ is simple.

At this point, the size of the set of simple elements is no longer a problem for the
complexity of the algorithm, but there is still a big problem to handle: The size of
SSS.X/ is, in general, very big. The most recent improvement, given in [24], is to
define a small subset of SSS.X/ satisfying all the good properties described above, so
that a similar algorithm can be used to compute it. The definition of this new subset
appeared after observing that the cycling function maps SSS.X/ to itself. As SSS.X/

is finite, iterated cycling of any representative of SSS.X/ must eventually become
periodic. Hence it is natural to define the following:

Definition 1.15. Given X 2 G, define the ultra summit set of X , USS.X/, to be the
set of elements Y 2 SSS.X/ such that cm.Y / D Y , for some m > 0.

The ultra summit set USS.X/ thus consists of a (finite) set of disjoint, closed orbits
under cycling. For instance, in the braid group Bn one has USS.�1/ D SSS.�1/ D
SS.�1/ D f�1; : : : ; �n�1g, and each element corresponds to an orbit under cycling,
since c.�i / D �i for i D 1; : : : ; n � 1. A less trivial example is given by the element

X D �1�3�2�1 � �1�2 � �2�1�3 2 B4:

In this example USS.X/ has 6 elements, while SSS.X/ has 22 elements. More pre-
cisely, the ultra summit set of X consists of 2 closed orbits under cycling, USS.X/ D
O1 [ O2, each one containing 3 elements:

O1 D f�1�3�2�1 � �1�2 � �2�1�3; �1�2 � �2�1�3 � �1�3�2�1;

�2�1�3 � �1�3�2�1 � �1�2g;
O2 D f�3�1�2�3 � �3�2 � �2�3�1; �3�2 � �2�3�1 � �3�1�2�3;

�2�3�1 � �3�1�2�3 � �3�2g:
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Notice that O2 D �.O1/. Notice also that the cycling of every element in USS.X/

gives another element which is already in left normal form, hence iterated cyclings
correspond to cyclic permutations of the factors in the left normal form. We will say
that elements satisfying this property are rigid. The precise definition will be given in
�1.4. We remark that the size of the ultra summit set of a generic braid of canonical
length l is either l or 2l [24]. This means that, in the generic case, ultra summit sets
consist of one or two orbits (depending on whether �.O1/ D O1 or not), containing
rigid braids.

The algorithm given in [24] to solve the CDP/CSP in Garside groups (of finite
type) is analogous to the previous ones, but this time one needs to compute USS.X/

instead of SSS.X/. In order to do this, the following results, which are analogous to
those given for super summit sets, are used.

Theorem 1.16 ([24]). Let X 2 USS.X/. If s; t 2 G are such that X s 2 USS.X/

and X t 2 USS.X/, then X s^t 2 USS.X/.

Corollary 1.17 ([24]). Let X 2 G and Y 2 USS.X/. For every u 2 P there is a
unique 4-minimal element cY .u/ satisfying

u 4 cY .u/ and Y cY .u/ 2 USS.X/:

Definition 1.18. Given X 2 G and Y 2 USS.X/, we say that a simple element s ¤ 1

is a minimal simple element for Y with respect to USS.X/ if Y s D s�1Ys 2 USS.X/,
and no proper prefix of s satisfies this property.

Notice that the set of minimal simple elements for Y with respect to USS.X/ is
contained in cY .A/ D fcY .a/I a is an atomg, hence the number of minimal simple
elements for Y is bounded by the number of atoms. For the rest of the paper, all
minimal simple elements will be considered with respect to ultra summit sets (and
not super summit sets).

Corollary 1.19 ([24]). Let X 2 G and V � USS.X/ be non-empty. If V ¤ USS.X/

then there exist Y 2 V and an atom a such that cY .a/ is a minimal simple element
for Y , and Y cY .a/ 2 USS.X/nV .

In [24] it is shown how to compute the minimal simple elements corresponding to
a given Y 2 USS.X/, hence one can compute the whole USS.X/ starting by a single
element zX 2 USS.X/.

As above, the algorithm in [24] not only computes USS.X/ but also a graph which
determines the conjugating elements. This graph is defined as follows.

Definition 1.20. Given X 2 G, the directed graph �X is defined by the following
data:
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(1) The set of vertices is USS.X/.

(2) For every Y 2 USS.X/ and every minimal simple element s for Y with respect
to USS.X/, there is an arrow labeled by s going from Y to Y s .

We remark that one obtains an element zX 2 USS.X/ by iterated application of
cycling to an element in SSS.X/, which we know how to compute using cyclings and
decyclings. The number of times one needs to apply cycling, in order to go from an
element in SSS.X/ to an element in USS.X/ is not known in general. Nevertheless,
the theoretical complexity of the algorithm in [24] is not worse than the one of the
algorithm in [22], and is substantially better in practice, at least for braid groups.

In fact, it follows from the work in [23], [20], [12], [22], [24] discussed above, that
the complexity of CDP/CSP for two elements X , Y in a Garside group (kXk � kY k/

is O.jUSS.X/jp Cq/, where p is a polynomial in kXk and the number of atoms, and
q is related to the number of times one must apply cycling to an element in SSS.X/

to transform it into an element in USS.X/. We believe that the second term q is
negligible compared to jUSS.X/jp, so our main interest is in trying to bound the size
of the ultra summit set of an element in a Garside group.

In the particular case of braid groups, the size and structure of an ultra summit set
happen to depend heavily on the geometrical properties of the braid, more precisely,
on its Nielsen–Thurston type. This is explained next.

1.3. The Thurston–Nielsen trichotomy in the braid groups. The braid group Bn

is isomorphic to the mapping class group �0.DiffC.D2
n// of the disc with n points

removed. Admissible diffeomorphisms preserve orientation, fix @D2 pointwise and
fix the n punctures or distinguished points setwise. Admissible isotopies fix both
pointwise. As a mapping class group, Bn has structure which, at this time, has not
been fully related to its Garside structure, although some interesting relation between
the two structures can be found in [19]. We will use the geometric structure in �3.4
and also in [9], [10], so we describe what we need here. The structure that we describe
had its origins in three very long papers of J. Nielsen [35], written in the 1930s, but
the grand sweep of the theory was not recognized until much later, in the work of
W. Thurston [38]. We refer to it as the Thurston–Nielsen trichotomy. There are many
ways to describe it. We choose one which is based upon the action of Bn on isotopy
classes of simple closed curves (scc) on D2

n. The scc considered in D2
n are non-

degenerate, which means that they bound neither a single puncture nor all punctures
(otherwise they could be collapsed to a puncture or isotoped to the boundary).

Theorem 1.21 ([38], [35]). Let X 2 Bn. Then, after a suitable isotopy, X belongs
to exactly one of the following pairwise disjoint classes:

(1) X is ‘periodic’. That is, some power of X is a power of a Dehn twist on @D2
n

(this Dehn twist is precisely �2, with the usual Garside structure).
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(2) X is ‘pseudo-Anosov’ or PA. That is, neither X nor any power of X fixes the
isotopy class of any scc on D2

n. This case is the generic case.

(3) X is ‘reducible’. That is, X is not periodic and there exists a family of scc on D2
n

whose isotopy class is fixed by X , so that some power Xm of X fixes the isotopy
class of each simple closed curve in the family. Moreover, if the disc D2

n is split
open along suitable representatives of the fixed curves, then the restriction of
Xm to the closure of each component of the split-open disc is either periodic
or PA.

We note that there is a working algorithm, given in [4], [5], to determine whether a
given braid is periodic or reducible, and we used it in basic ways when we computed
the millions of examples that suggested the different structures of ultra summit sets,
depending on the geometric type. Note that if one can recognize whether a braid is
periodic or reducible, then if it is neither it must be PA.

1.4. A project to solve the conjugacy problems in braid groups and a summary
of our results. Making use of almost all of the ideas that we have just described, we
have developed a strategy for attacking the problem of the complexity of the conjugacy
decision and search problems (CDP/CSP) in the braid groups. It uses the structure of
centralizers of PA braids [26], and the uniqueness of their roots [25], some particular
properties of periodic braids, and also the geometric decomposition of a reducible
braid along its invariant curves. Hence, our strategy does not apply to an arbitrary
Garside group, although many of the results that we show (all results in [9] and all
results in this paper, except Theorem 3.37 and those in �3.4) are stated and hold in the
general framework of Garside groups. The results in [10] and the remaining parts of
our project are conceived for braid groups, although we believe that they will probably
be generalized to other Garside groups, at least to spherical type Artin–Tits groups.

As was noted in the previous sections, two elements X; Y in a Garside group are
conjugate if and only if one element in USS.X/ is also in USS.Y /. This means that we
must compute all of USS.Y / in order to be able to test conjugacy. Thus we will need
to understand the structure and size of the ultra summit set. Unfortunately, however,
USS.X/ can be quite complicated, partly because cycling is not, in general, a cyclic
permutation of the factors in a left normal form, but also because it is not clear how
the distinct orbits in USS.X/ are related. The former problem is avoided if USS.X/

is made of rigid elements.
In Section 3 we will introduce and study rigid elements. Let X D �px1x2 : : : xr

be in left normal form. Assume that r > 0. Then X is rigid if �px1x2 : : : xr��p.x1/

is in normal form as written. We were lead to study rigid elements when we realized,
long ago, that it was often very difficult to predict and understand the changes in
normal form of braids after cycling. If X is rigid, the left normal form of c.X/ is
precisely �px2 : : : xr��p.x1/, so cycling is simpler than in the general case, and the
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combinatorics in USS.X/ are easier to understand.
In this paper we will see that obtaining a polynomial solution to the CDP/CSP

for certain elements in a Garside group, reduces to obtaining such a solution for rigid
elements. In the case of braid groups, this happens for pseudo-Anosov (PA) braids.
Since the property of being PA is generic in Bn, this is an important step in the case
of braids.

Assuming that X; Y 2 Bn, we consider the three cases separately: X; Y are PA,
periodic or reducible. We break our approach to Bn into the following six steps:

I Determining if a braid is periodic, reducible or PA. We remark that it is very
fast to decide whether a given braid is periodic [25], so the main problem is to
determine if a braid is reducible, and find the reducing curves. This question is
solved in [4], [5], but the proposed algorithm computes SSS.X/. In fact, one
can replace SSS.X/ by USS.X/, but having to compute USS.X/ means that the
algorithm is not polynomial, in general (in [10] there are examples of USS’s in
Bn whose size is exponential in n). This yields the following.

Open question 1: Is there an algorithm to determine if a braid in Bn is reducible
and to find its reducing curves, which is polynomial in n and kXk?

This problem was first studied in [4]. Some work in this direction can be found
in [29]. There is also an algorithm in [8] which solves the above problem, but it
is not polynomial, to our knowledge.

II PA braids: passing to powers. In Sections 2 and 3 of this paper we show that
if X and Y are PA, there is some small power m such that USS.Xm/ is made of
rigid braids, and it suffices to solve the CDP/CSP for Xm and Y m.

In this regard we make two remarks: The first is that, in view of the results in
[25], for every nonzero integer m, the braids X and Y are conjugate if and only
if Xm and Y m are conjugate. Furthermore, PA braids have unique roots. Hence
if X and Y are PA, and Z conjugates Xm to Y m, then Z conjugates X to Y .
Therefore nothing is lost in passing to powers.

Our second remark is that we prove the non-emptiness of the stable ultra sum-
mit set SU.X/ in a Garside group (compare with [30], where the stable super
summit set is introduced). That is, for every X 2 G define SU.X/ D fY 2
USS.X/I Y k 2 USS.Y k/ for all k 2 Zg. Proposition 2.23 of this paper proves
that SU.X/ 6D ;. However, we will not need to work in SU.X/, it will suffice
to control a bounded number of powers of X , and we learn how to do that.

III Understanding the USS graph. In [9] we uncover and study the structure of the
ultra summit set of an element in a Garside group. More precisely, we show that
the conjugations corresponding to minimal simple elements (the arrows in the
USS graph) are a very special kind of conjugation that we call partial cyclings.
This work is not restricted to braids. At the end of [9] we specialize our work to
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the cases: (a) X is a rigid element, and (b) X is a periodic element (in a Garside
group, that is, a root of some power of �). This is a first step towards the solution
of the following.

IV Finding a polynomial bound for the size of USS.X/, when X is rigid. At
this writing this work is incomplete. We have computed many many examples,
using random searches, and on the basis of the evidence found that in the generic
case USS.X/ has either 2 orbits, where one is the conjugate of the other by �,
or 1 orbit which is conjugate to itself by �. However, there are exceptional
cases where USS.X/ has unexpected size. There is no indication whatsoever of
uncontrolled growth. Indeed, the combinatorial conditions that are uncovered
in [9] are so restrictive that exponential growth seems very unlikely. But since
we do not have an affirmative answer, we state the following.

Open question 2: If X is a rigid element in Bn, is the size of USS.X/ bounded
above by some polynomial in n and kXk?

We remark that, in �3.2 of this paper, we show that if X 2 G is a rigid element
of canonical length greater than 1, then USS.X/ consists of rigid elements.

Finally, solving Open question 2 affirmatively would imply that the algorithm
in [24] applied to rigid braids is polynomial in n and kXk, provided that the
following is also true, at least for conjugates of a rigid braid:

Open question 3: Given X 2 Bn and Y 2 SSS.X/, let m be such that cm.Y / 2
USS.X/. Is m bounded above by a polynomial in n and kXk?

V Periodic braids. In [10] we settle the CSP for periodic braids in Bn, in poly-
nomial time with respect to n and kXk. We remark that the CDP for periodic
braids was already known to be polynomial [4], [5], but the usual algorithm to
solve the CSP is not polynomial in this case, so in [10] we find a new specific
algorithm for periodic braids.

VI Reducible braids. Suppose that Open question 1, 2 and 3 above are solved. Note
that reducible braids are braids that are made up of braided tubes, each containing
braided tubes and so forth until one reaches an irreducible braid, which is then
either periodic or PA. Once that reducing curves are known, and one knows
how to solve the CDP/CSP for irreducible braids, one can use techniques from
[25], namely Proposition 3.2, in the following way. First one solves the CSP
for the external (or tubular) braids, so one can assume that the two braids one
started with, X and Y , have the same associated tubular braid, say yX . Then one
needs to solve the CDP/CSP for the interior braids (the braids inside the tubes).
Proposition 3.2 in [25] states that X and Y will be conjugate if and only if each
interior braid of X is conjugate to an interior braid of Y , and there is an element
in the centralizer of yX whose permutation sends each interior braid of X to the
tube in which one finds its corresponding conjugate in Y . Notice that the tubular
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braid is no longer reducible, hence it is either periodic or pseudo-Anosov. If
it is periodic, then its centralizer is well known [7] and easy to compute, with
the help of the algorithm in [10]. If it is pseudo-Anosov, it is known that its
centralizer is isomorphic to Z2, but we don’t know an algorithm to compute
the two generators it in polynomial time. In any case, if X is pseudo-Anosov,
the centralizer of X equals the centralizer of Xm for every nonzero m, since
pseudo-Anosov elements have unique roots [25]. Therefore, using the results in
this paper, one can assume that X is rigid, and the only thing that remains to be
shown, in the reducible case, is the following.

Open question 4: Given X 2 Bn a pseudo-Anosov, rigid braid, is there an
algorithm polynomial in n and kXk that computes two free generators of the
centralizer of X?

As a conclusion, the work in this paper and in [9], [10], together with an affirmative
answer to Open questions 1, 2, 3 and 4 above, would yield a polynomial algorithm
to solve the CDP/CSP in braid groups. Due to our increasing understanding of the
structure of ultra summit sets, we believe that this final goal is within reach.

In this paper we will solve problem II above. Most of our results (except those in
�3.4 and Theorem 3.37) hold in all Garside groups.

In �2 we determine the relationship between the m-times iterated cycling cm.X/

of X 2 G and the mth power Xm of X . The main result is Theorem 2.9 of �2.2. In
�2.4 we introduce the stable ultra summit set SU.X/ of X 2 G (cf [30]) and give
a short proof that it is non-empty. While we realized, after we had completed the
work in this paper, that we did not really need SU.X/ in our work, we include it for
completeness, and because it may be useful for others.

In �3 we study rigid elements in Garside groups and prove some surprising results
about them. In particular, in Theorem 3.15 we prove that if X is rigid and `.X/ > 1

then every element in USS.X/ is also rigid. Theorem 3.21 characterizes exactly which
elements in a Garside group have rigid powers. Using it, we prove in Theorem 3.23
that if X is a pseudo-Anosov braid in its USS, then there exists an m such that Xm

is rigid. In Theorem 3.34 we solve the problem that is described in II above in this
section, obtaining a polynomial bound for the power m.

Remark. As this paper was about to go to press, the second and third authors dis-
covered a way to avoid solving open problem 1, provided open problems 2, 3 and 4
are solved. A manuscript does not yet exist, so that, unfortunately, we cannot give a
reference.
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2. Cyclings and powers

Recall the definition of a rigid element in a Garside group G (Definition 3.1). Our goal
in this paper is to understand the conditions under which an element X 2 USS.X/ �
G which is not necessarily rigid has a small power Xm which is rigid. This will be
done by investigating the relationship between iterated cyclings and iterated powers
of X . However, the connection between cycling and normal forms of powers is fairly
subtle. The problems that we will encounter and solve will be easier to understand
after we study an example. They will probably have been encountered by others who
have worked with left normal forms (see [1], [20], [21]) in the braid group Bn, and
struggled to understand how they change after cycling.

An example. Let X D �px1 : : : xr 2 USS.X/ � G, r > 0. Since inf.X/ D p,
`.X/ D r , it is immediate that inf.Xm/ � mp and that `.Xm/ � mr . We can think
of the terms �mp in the normal form of Xm as the expected �0s, and any additional
ones as unexpected �0s. Similarly, sup.X/ D p C r , so that mp Cmr is the expected
supremum of Xm. There will be an unexpected decrease in sup.Xm/ if and only if
the actual value of sup.Xm/ is less than mp C mr . These two issues are closely
related, because by Corollary 1.6 sup.X/ D � inf.X�1/ and inf.X/ D � sup.X�1/,
so that if we arrive at an understanding of unexpected increases in the infimum, we
will also have arrived at an understanding of unexpected decreases in the supremum.
Unfortunately, however, the normal form of Xm is not easily related to the normal
form of X , as is illustrated by the following example, taken from the 5-string braid
group B5.

Let X D 12132143143 2 Bn, where the letter i means the elementary braid �i .
In this example inf.X/ D 0. A calculation shows that X is in its ultra summit set, and
there are 2 cycling orbits in USS.X/, each with 4 elements, with the second being the
conjugate of the first by �. In this simple case `.X/ D 2, that is, there are 2 simple
factors in the left normal form for X D C1 � R1, where dots are used to separate the
simple words in the left normal form. Here is the first orbit:

X D 12132143 � 143 D C1 � R1;

c.X/ D 121324321 � 14 D C2 � R2;

c2.X/ D 12132432 � 214 D C3 � R3;

c3.X/ D 121343 � 12324 D C4 � R4;

c4.X/ D X:

What about powers of X? Calculating left normal forms, we find that:

X D 12132143 � 143;

X2 D � � 2324321 � 14 � 143;
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X3 D �2 � 12324 � 214 � 14 � 143;

X4 D �2 � 12132143 � 143 � 12324 � 214 � 14 � 143;

X5 D �3 � 2324321 � 14 � 143 � 12324 � 214 � 14 � 143:

Since inf.X/ D 0, the powers X2; X3; X4; X5 have 1, 2, 2, 3 unexpected �0s.
A hint at how the normal forms of X and Xm might be related comes from a

more careful inspection of this example (and many many other examples like it). The
initial factors of the elements in the orbit of X are C1 D 12132143, C2 D 121324321,
C3 D 12132432, C4 D 121343. These are the ‘conjugating factors’ that are used
when we cycle, that is, if Cm D C1C2 : : : Cm, then cm.X/ D XCm : Here are the left
normal forms for C1; C2; : : : ; C5:

C1 D 12132143 D first simple factor in X;

C2 D 12132143121324321

D � � 2324321

D product of first 2 simple factors in X2;

C3 D 1213214312132432112132432

D �2 � 12324

D product of first 3 simple factors in X3;

C4 D �2 � 12132143 � 143 D product of first 4 simple factors in X4;

C5 D �3 � 2324321 � 14 D product of first 5 simple factors in X5:

One of the main results in this paper states that, for every X 2 USS.X/, the
product of the first m factors in the left normal form of Xm��mp , where we include
powers of � in the count, is precisely Cm, the product of the conjugating elements
involved in the first m cyclings of X . This will allow us to determine which elements
admit a rigid power and, under some hypothesis, we find an upper bound for the
smallest power which is rigid. In the particular case of braid groups, these results
apply to pseudo-Anosov braids, since we will show in �3.4 that every pseudo-Anosov
braid in its ultra summit set has a rigid power.

2.1. Decomposition of powers of X . In this section we will decompose Xm as
a product of two elements, each of which is determined by the iterated cyclings of
X 2 G. Assume from now on that X 2 SSS.X/ and `.X/ � 1. We will develop
some basic properties of this decomposition for elements of a Garside group.

We first need some notation. If the left normal form of X is �px1 : : : xr , recall
that 	.X/ D ��p.x1/ is the initial factor of X , and that the cycling of X is defined
by c.X/ D X �.X/. If we apply iterated cyclings to X , the conjugating elements
will be denoted by C1; C2; : : : That is, Ci D 	.ci�1.X// for i � 1. Hence one has
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cm.X/ D XC1:::Cm . The letter C in the symbol Ci comes from conjugating element,
since one conjugates ci�1.X/ by Ci to obtain ci .X/.

The element X can be decomposed as follows: X D �px1 : : : xr

D C1�px2 : : : xr . We denote R1 D x2 : : : xr , so X D C1�pR1. For the iter-
ated cyclings of X , we denote Ri in a similar way, that is, the element satisfying
ci�1.X/ D Ci�

pRi . The letter R comes from remainder. Notice that every Ci is a
simple element, while Ri is simple only if `.X/ � 2, and it is trivial if `.X/ D 1.
The important fact about these elements relies on how they behave when they are
multiplied in the right way.

Definition 2.1. Let X 2 SSS.X/ with inf.X/ D p and `.X/ � 1. For i � 1, let Ci

and Ri be the elements defined above. Then, for every m � 1, we define:

� Cm D C1 : : : Cm.

� Rm D ��p.Rm/��2p.Rm�1/ : : : ��mp.R1/.

Notice that
Rm�pm D .�pRm/.�pRm�1/ : : : .�pR1/:

Since later we will deal not only with X , but with successive cyclings of X , we
want to define the corresponding elements above, for ck.X/. Hence we define CŒk;m�

and RŒk;m� to be the elements Cm and Rm above, but defined with respect to ck.X/.
This yields the analogous definition with the indices shifted by k:

Definition 2.2. Let X 2 SSS.X/ with inf.X/ D p and `.X/ � 1. For i � 1, let Ci

and Ri be the elements defined above. Then, for every m � 1 and k � 0, we define:

� CŒk;m� D CkC1 : : : CkCm.

� RŒk;m� D ��p.RkCm/��2p.RkCm�1/ : : : ��mp.RkC1/.

Notice that

RŒk;m��
pm D .�pRkCm/.�pRkCm�1/ : : : .�pRkC1/:

Clearly, Cm D CŒ0;m� and Rm D RŒ0;m�.
In the particular case in which X 2 USS.X/, that is, X 2 SSS.X/ and ct .X/ D X

for some positive integer t , we can extend the above definition to negative values of k,
as follows. We know that cm.X/ 2 USS.X/ for every m � 0. If we denote by O.X/

the orbit of X under cycling, we can define c�m.X/ to be the element Y 2 O.X/ such
that cm.Y / D X (although cycling is not injective in the whole G, it is a bijection in
USS.X/, so we hope this notation will not cause confusion).

Recall that we defined Ci D 	.ci�1.X//, and Ri in such a way that ci�1.X/ D
Ci�

pRi , for every i � 1. The same definitions can now be given for every i 2 Z,
as we have definitions for the negative cyclings of X . Since O.X/ is a finite set, the
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sequences fCigi2Z and fRigi2Z are periodic. Therefore, we have definitions for the
elements Ci , Ri , and also CŒk;m� and RŒk;m� for every i; k 2 Z and every m � 1.

Let us show a result that will be useful later.

Lemma 2.3. Let X 2 SSS.X/ with inf.X/ D p and `.X/ � 1. For every m; k � 1

one has
RŒk�1;m��

pm Ck D CkCm RŒk;m��
pm:

In other words,

.�pRkCm�1/ : : : .�pRk/Ck D CkCm.�pRkCm/ : : : .�pRkC1/:

Moreover, if X 2 USS.X/, the same equality holds for every k 2 Z.

Proof. We first show the result for X 2 SSS.X/ and k � 1. If m D 1, the result is
true since .�pRk/Ck D ck.X/ D CkC1.�pRkC1/ by definition. Suppose the result
true for m � 1. Then one has

.�pRkCm�1/.�pRkCm�2/ : : : .�pRk/Ck

D .�pRkCm�1/CkCm�1.�pRkCm�1/ : : : .�pRkC1/

D ckCm�1.X/.�pRkCm�1/ : : : .�pRkC1/

D CkCm.�pRkCm/.�pRkCm�1/ : : : .�pRkC1/;

so the result is also true for m and we are done.
If X 2 USS.X/ and k � 0, the same proof is valid.

We will now see how the element Xm can be decomposed in terms of Cm and
Rm, together with some properties concerning the normal form of these two factors.

Lemma 2.4. Let X 2 SSS.X/, with `.X/ � 1. Let Ci , Ri , Cm and Rm be the
elements defined above. Then:

(1) The m-th power of X has the decomposition

Xm D CmRm�mp:

(2) In this decomposition, inf.Rm/ D 0 and 	.Rm/ 4 CmC1, for every m � 1.

(3) In general inf.Cm/ � 0. If `.X/ > 1, one has sup.Cm/ D m, `.Cm/ > 0 and
'.Cm/ < '.cm.X//, for every m � 1.

Remark. The left normal form of Cm is not so easy to understand, as we saw in the
example that was given at the beginning of Section 2. Uncovering it, and relating it
to the left normal form of Xm, will be a major part of our investigations.
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Proof of Lemma 2.4. (1) For m D 1 the result is clear, since X D C1�pR1 D
C1R1�p by definition. Now suppose that

Xm�1 D Cm�1Rm�1�.m�1/p:

Then one has

Xm D Xm�1X D Cm�1Rm�1�.m�1/pC1.�pR1/:

By Lemma 2.3 with k D 1, it then follows that

Xm D Cm�1CmRŒ1;m�1��
.m�1/p.�pR1/

D CmRŒ1;m�1��
mpR1

D CmRŒ1;m�1��
�mp.R1/�mp

D CmRm�mp;

so the result is true for every m � 1.
(2) To prove that inf.Rm/ D 0 and that 	.Rm/ 4 CmC1, for every m � 1, we

notice that Rm is positive by definition. Hence both statements will follow if we can
show that � ^ Rm 4 CmC1.

If m D 1 one has R1 D ��p.x2 : : : xr/, hence � ^ R1 D ��p.x2/. We also
have C2 D 	.c.X// D 	.�px2 : : : xr��p.x1//. Since X 2 SSS.X/, we have
inf.x2 : : : xr��p.x1// D 0, so the first factor in its left normal form is equal to
x2s for some simple element s. Hence C2 D 	.�px2 : : : xr��p.x1// D ��p.x2s/.
Therefore � ^ R1 D ��p.x2/ 4 ��p.x2s/ D C2, and the result is true for m D 1.

Suppose that �^Rm�1 4 Cm for some m. By definition, Rm D ��p.RmRm�1/,
hence

� ^ Rm D � ^ ��p.RmRm�1/ D ��p.� ^ .RmRm�1//:

Notice that, since inf.Rm�1/ D 0 by the induction hypothesis, the initial factor
of RmRm�1 depends only on Rm and on the initial factor of Rm�1, that is,

� ^ .RmRm�1/ D � ^ .Rm.� ^ Rm�1// 4 � ^ .RmCm/:

But �pRmCm D cm.X/, and 	.cm.X// D CmC1, hence �^.RmCm/ D �p.CmC1/.
Therefore

� ^ .RmRm�1/ 4 �p.CmC1/;

and then

� ^ Rm D ��p.� ^ .RmRm�1// 4 ��p.�p.CmC1// D CmC1;

as we wanted to show.
(3) We prove (3) by induction on m. If m D 1 then C1 D C1. As `.X/ > 0, C1

is a non-trivial simple element, whence sup.C1/ D `.C1/ D 1. As X 2 SSS.X/,
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the number of canonical factors cannot decrease when passing from X to c.X/. In
particular, the factor C1 moved to the end cannot be absorbed completely which shows
'.C1/ D C1 < '.c.X//.

Suppose the result true for some m � 1 and let F D '.Cm/ D '.C1 : : : Cm/.
As above we see that '.cm.X//CmC1 cannot be simple, as X (and hence cm.X/)
is super summit. Notice that we used `.X/ > 1 here. Since F < '.cm.X// by
induction, this implies that F CmC1 also has supremum 2. It is well known [34] that
if one multiplies a left normal form y1 : : : ym by a simple element CmC1, then the
left normal form of the product is computed by applying m local transformations
to pairs of consecutive factors, starting by the rightmost pair. In this way one can
compute the normal form of every element, so we will refer to this as the normal form
algorithm. Since sup.Cm/ D m by induction hypothesis, and F CmC1 is not simple,
the normal form algorithm implies that sup.CmC1/ D sup.C1 : : : CmC1/ D m C 1.
This algorithm together with F < '.cm.X// and `.X/ > 1 also implies that

'.CmC1/ D '.C1 : : : CmCmC1/

D '.F CmC1/ < '.'.cm.X//CmC1/ D '.cmC1.X//:

Finally, since CmC1 ¤ � and F CmC1 has supremum 2, it follows that '.CmC1/ D
'.F CmC1/ ¤ �, so `.CmC1/ > 0.

Since the super summit set of an element is closed under cycling, Lemma 2.4 is
still true if we apply it to every iterated cycling of X . If furthermore X 2 USS.X/,
the same will be true for every element in O.X/. This yields the following result.

Lemma 2.5. Let X 2 SSS.X/, with `.X/ � 1. With the above notation, one has, for
every k � 0 and every m � 1:

(1) The m-th power of ck.X/ has the decomposition

.ck.X//m D CŒk;m�RŒk;m��
mp:

(2) In this decomposition, inf.RŒk;m�/ D 0 and 	.RŒk;m�/ 4 CkCmC1, for every
m � 1.

(3) In general inf.CŒk;m�/ � 0. If `.X/ > 1, one has sup.CŒk;m�/ D m,
`.CŒk;m�/ > 0 and '.CŒk;m�/ < '.ckCm.X//, for every m � 1.

Moreover, if X 2 USS.X/, the result holds for every k 2 Z.

Notice that in CŒk;m� and RŒk;m�, the first index determines an element in the
cycling orbit of X , and the second index determines its power. One can also think of
m as being the number of factors in the decompositions of CŒk;m� and RŒk;m� given
by the definitions. But this is not necessarily the number of factors in their normal
forms.
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2.2. Interplay between Cm and Rm. Having proved that Xm D CmRm�pm, we
will show that if X belongs to its ultra summit set, this decomposition is left weighted,
that is, '.Cm/ 	.Rm/ is in left normal form as written. In other words, since we know
by Lemma 2.4 that sup.Cm/ D m, we will show that the product of the first m factors,
including �’s, in the left normal form of Xm��pm is precisely Cm.

If X 2 USS.X/, recall that by Lemma 2.3, one has

RŒk�1;m��
pmCk D CkCmRŒk;m��

pm;

for every k 2 Z. We will actually see that the initial factor of this element is precisely
CkCm, no matter how many remainders we multiply on the right, that is, no matter
how big is m.

Lemma 2.6. Let X 2 SSS.X/ with inf.X/ D p and `.X/ � 1. For every m � 1

and k � 0, one has
.CkCmRŒk;m�/ ^ � D CkCm:

If furthermore X 2 USS.X/, this is also true for every k 2 Z.

Proof. If m D 1, we need to show that .CkC1RŒk;1�/ ^ � D CkC1, but we have
ck.X/ D CkC1�pRkC1 D CkC1RŒk;1��

p , where this decomposition is left weighted
by definition. So the result is true for m D 1.

Suppose the result true for m � 1. This means that

.CkCm�1RŒk;m�1�/ ^ � D CkCm�1:

If we multiply on the left by RkCm�1 we get

.RkCm�1CkCm�1RŒk;m�1�/ ^ .RkCm�1�/ D RkCm�1CkCm�1:

Notice that � 4 RkCm�1�, hence if we consider the maximal simple prefix of each
element in the above equality, we obtain

.RkCm�1CkCm�1RŒk;m�1�/ ^ � D .RkCm�1CkCm�1/ ^ �:

On the other hand, recall that

.�pRkCm�1/CkCm�1 D ckCm�1.X/ D CkCm.�pRkCm/;

whence RkCm�1CkCm�1 D �p.CkCm/RkCm, where �p.CkCm/ is the maximal sim-
ple prefix of this element. Therefore, one has

.RkCm�1CkCm�1RŒk;m�1�/ ^ � D .RkCm�1CkCm�1/ ^ � D �p.CkCm/:

Now notice that

�pRkCm�1CkCm�1RŒk;m�1� D CkCm�pRkCmRŒk;m�1� D CkCmRŒk;m��
p:



Conjugacy in Garside groups I: cyclings, powers and rigidity 249

This means that

RkCm�1CkCm�1RŒk;m�1� D �p.CkCmRŒk;m�/;

and we just showed that its maximal simple prefix is precisely �p.CkCm/. Applying
��p to this element, one obtains .CkCmRŒk;m�/ ^ � D CkCm, as we wanted to show.

The proof for X 2 USS.X/ and k < 0 is the same.

It will possibly help to understand the situation if we extract a particular case from
the above result, assuming that X 2 USS.X/:

Lemma 2.7. Let X 2 USS.X/ with inf.X/ D p and `.X/ � 1. For every m � 1,
one has

.C1RŒ1�m;m�/ ^ � D C1:

In other words, the biggest simple prefix of

C1��p.R1/��2p.R0/��3p.R�1/ : : : ��mp.R2�m/

is C1, no matter how big is m.

We can now show that the decomposition CmRm is left weighted. This will
actually be a particular case of the following stronger result.

Proposition 2.8. Let X 2 USS.X/ with `.X/ � 1. With the above notation, for
every k; l; m; n 2 Z, such that m; n � 1 and k C m D l C n, the decomposition
CŒk;m�RŒl;n� is left weighted. That is, '.CŒk;m�/ 	.RŒl;n�/ ^ � D '.CŒk;m�/.

Proof. We proceed by induction on m. If m D 1, one has CŒk;1�RŒl;n� D CkC1RŒl;n�.
Since k C1 D l Cn by hypothesis, it follows from Lemma 2.6 that the biggest simple
prefix of this element is precisely CkC1. Hence CŒk;1�RŒl;n� is left weighted, and the
result is true for m D 1.

Now consider k; l; m; n as above, with m > 1, and suppose the result true for
m � 1. This implies that CŒk;m�1�RŒl�1;n� is left weighted, since k; l � 1; m � 1; n

satisfy the required hypothesis. (Notice that if we had required k; l � 0, we would
not have been able to apply the induction hypothesis here, since we could have had
l � 1 < 0; This is why we require X 2 USS.X/ and not only in SSS.X/.)

Let CŒk;m�1� D �qy1 : : : ys and RŒl�1;n� D z1 : : : zt in left normal form. Then
CŒk;m�1�RŒl�1;n� D �qy1 : : : ysz1 : : : zt is in left normal form as written, by induc-
tion hypothesis. Now multiply this element on the right by ��pn.Cl/. By the normal
form algorithm, since �qy1 : : : ysz1 : : : zt is already in left normal form and ��pn.Cl/

is a simple element, then the left normal form of �qy1 : : : ysz1 : : : zt�
�pn.Cl/ is com-

puted by applying s C t local transformations to pairs of consecutive factors, starting
by the rightmost pair. When we apply the first t transformations, we obtain the left
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normal form of z1 : : : zt�
�pn.Cl/ D RŒl�1;n��

�pn.Cl/. By Lemma 2.3, this element
is equal to ClCnRŒl;n� D CkCmRŒl;n�. Moreover, by Lemma 2.6, CkCm is the biggest
simple prefix of this element. Hence the left normal form of z1 : : : zt�

�pn.Cl/ has
the form CkCmz0

1 : : : z0
t , where z0

1 : : : z0
t D RŒl;n�. We then have

CŒk;m�1�RŒl�1;n��
�pn.Cl/ D CŒk;m�1�CkCmRŒl;n� D �qy1 : : : ysCkCmz0

1 : : : z0
t ;

where the last t C 1 factors in the latter decomposition are in left normal form.
If we continue applying the normal form algorithm, we perform s local transfor-

mations to the element y1 : : : ysCkCm, which is equal to CŒk;m�1�CkCm D CŒk;m�.
Since the resulting factorization of CŒk;m�RŒl;n� is in left normal form by construction,
it follows that '.CŒk;m�/ 	.RŒl;n�/ is left weighted, as we wanted to show.

This result implies one of the strongest relations between cyclings and powers of
an element X in its ultra summit set:

Theorem 2.9. Let X 2 USS.X/ with inf.X/ D p and `.X/ > 1. For every m � 1,
the product of the first m factors (including �’s) in the left normal form of Xm��mp

is equal to Cm. That is,
.Xm��mp/ ^ �m D Cm:

In particular, 	.Xm/ D 	.Cm/.

Proof. The first claim is a straightforward consequence of the previous result and
Lemma 2.4, since Xm��mp D CmRm, where the latter decomposition is left weighted
and sup.Cm/ D m.

The second claim follows from the fact that 	.Y / D 	.Y�t / for every Y 2 G

and every t 2 Z. Hence 	.Xm/ D 	.Xm��mp/ D 	.CmRm/. Since the latter
decomposition is left weighted, and `.Cm/ > 0, it follows that 	.Xm/ D 	.Cm/, as
we wanted to show.

Corollary 2.10. For X 2 USS.X/ and m � 1, one has

inf.Xm/ D m inf.X/ C inf.Cm/:

In particular, the unexpected �0s in Xm are determined entirely by the Cm part of
the normal form of Xm.

Proof. Since we know by Lemma 2.4 that `.Cm/ > 0, it follows from Theorem 2.9
that all �’s in the left normal form of Xm can be seen in �pm�pm.Cm/, where
p D inf.X/. Hence inf.Xm/ D pm C inf.Cm/, and the result follows.

We end this section with an immediate corollary concerning how the infimum and
supremum of an element, in its ultra summit set, behave when one raises the element
to some power. This is related to the translation number of the element (see [32]).
Notice that the following result is closely related to Proposition 3.6 in [30].
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Corollary 2.11. Let X 2 USS.X/. For every m � 1, one has

inf.Xm/ C inf.X/ � inf.XmC1/ � inf.Xm/ C inf.X/ C 1:

If X�1 2 USS.X�1/, then

sup.Xm/ C sup.X/ � 1 � sup.XmC1/ � sup.Xm/ C sup.X/:

Proof. Let p D inf.X/. By the previous corollary, inf.Xm/ D pm C inf.Cm/ and
inf.XmC1/ D p.m C 1/ C inf.CmC1/. Hence, the first inequality will be true if and
only if

inf.Cm/ � inf.CmC1/ � inf.Cm/ C 1:

But CmC1 D CmCmC1, where CmC1 is a simple element. The result then follows
from the following well know fact, which is a direct consequence of the normal form
algorithm: If an element in a Garside group is multiplied by a simple element, then
its infimum either is preserved or is increased by one.

The second inequality is equivalent to the first one, since sup.X/ D � inf.X�1/

by Corollary 1.6.

2.3. The absolute initial and final factors. In this section we will define some
simple factors related to an element X 2 USS.X/. They are defined in terms of the
cycling elements Ci , but they are closely related to powers of X , as we will see. We
called them the absolute initial and final factors of X .

In general, the absolute initial and final factors are related to, but do not coincide
with, the initial and final factors of X . Nevertheless we will see that, if X has a rigid
power Xm, the absolute initial and final factors of X coincide with the initial and final
factors of Xm.

Suppose that X 2 USS.X/. We saw in Lemma 2.5 that

'.CŒk;m�/ D '.CkC1 : : : CkCm/ < '.ckCm.X//;

where this is true for every m � 1 and every k 2 Z. This implies a very interesting
fact: if we fix the number k C m and take different values of k, that is, if we start
with CkCm and multiply it on the left by CkCm�1, then by CkCm�2, etc., then the
final factor of each of the resulting elements is a left multiple of '.ckCm.X//. For
instance, if we take k C m D 0, we have

'.C�mC1C�mC2 : : : C�1C0/ < '.X/;

for every m � 1.
In the same way, by Lemma 2.5 we know that

	.RŒk;m�/ D 	.��p.RkCm/��2p.RkCm�1/ : : : ��mp.RkC1// 4 CkCmC1
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for every m � 1 and every k 2 Z, where p D inf.X/. Hence, if we fix k C m, say
k C m D 0, we have (recall that C1 D 	.X/)

	.��p.R0/��2p.R�1/ : : : ��mp.R�mC1// 4 	.X/;

for every m � 1. In the particular case in which inf.X/ D p D 0, this formula is
even more similar to the above one, since one has

	.R0R�1 : : : R�mC1/ 4 	.X/;

for every m � 1.
But it is even more interesting to relate the values of

'.C�mC1C�mC2 : : : C�1C0/ and of 	.��p.R0/��2p.R�1/ : : : ��mp.R�mC1//;

respectively, for different values of m. It turns out that they form ordered chains with
respect to < and 4, respectively, as shown in the following result.

Proposition 2.12. Let X 2 USS.X/ with `.X/ > 1. For every k; m 2 Z with m > 0,
one has

'.CŒk;m�/ < '.CŒk�1;mC1�/ and 	.RŒk;m�/ 4 	.RŒk�1;mC1�/:

In other words, for every k 2 Z there are chains

'.CŒk;1�/ � '.CŒk�1;2�/ � '.CŒk�2;3�/ � � � �
and

	.RŒk;1�/ 4 	.RŒk�1;2�/ 4 	.RŒk�2;3�/ 4 � � � :

Proof. We know that sup.CŒk;m�/ D m and sup.CŒk�1;mC1�/ D m C 1. More-
over, CŒk�1;mC1� D CkCkC1 : : : CkCm D CkCŒk;m�. Hence, if we write CŒk;m� D
�qc1 : : : cs in left normal form (where q C s D m and s > 0), then '.CŒk;m�/ D cs �
'.Ck�qc1 : : : cs/ D '.CŒk�1;mC1�/.

On the other hand, let p D inf.X/. One has

RŒk�1;mC1� D ��p.RkCm/��2p.RkCm�1/ : : : ��mp.RkC1/��.mC1/p.Rk/

D RŒk;m� � ��.mC1/p.Rk/;

that is, RŒk;m� 4 RŒk�1;mC1�. As we know that inf.RŒk;m�/ D inf.RŒk�1;mC1�/ D 0,
it follows that 	.RŒk;m�/ 4 	.RŒk�1;mC1�/.

Since the chains given by the above proposition consist of proper simple elements,
we know that the chains must stabilize. But we will furthermore show that they
stabilize fast. More precisely, they stabilize exactly at the first repetition. Moreover,
the corresponding chains for all elements in O.X/ stabilize at the same time. This is
proved by the next four lemmas and the proposition that follows them.
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Lemma 2.13. Let X 2 USS.X/ with `.X/ > 1 and m > 0. If '.CŒk;m�/ D
'.CŒk�1;mC1�/ for some k 2 Z, then '.CŒi;m�/ D '.CŒi�1;mC1�/ for every i 2 Z.

Proof. Since X belongs to a closed orbit under cycling, the sequences fCŒi;m�gi2Z

and fCŒi;mC1�gi2Z are periodic, hence it suffices to show the case i D k C 1.
Note that we can reinterpret the property '.CŒk;m�/ D '.CŒk�1;mC1�/, that is,

'.CkC1 : : : CkCm/ D '.Ck : : : CkCm/, as follows. Since sup.CkC1 : : : CkCm/ D m

and sup.Ck : : : CkCm/ D m C 1, their final factors coincide if and only if the first
m � 1 factors of the first element, multiplied on the left by Ck , coincide with the first
m factors of the second element. In other words,

.Ck : : : CkCm/ ^ .Ck�m�1/ D .Ck : : : CkCm/ ^ �m:

We can now apply Gebhardt’s transport [24] to the whole equality. We know that the
transport of �m is �m. Notice that the transport of Ck (based at ck�1.X/) is CkC1.
This implies, by recurrence, that the transport of Ck : : : CkCm is CkC1 : : : CkCmC1,
and also that the transport of Ck�m�1 is CkC1�m�1. Since the transport preserves
greatest common divisors, the transport of the above equality yields

.CkC1 : : : CkCmC1/ ^ .CkC1�m�1/ D .CkC1 : : : CkCmC1/ ^ �m;

that is, '.CŒkC1;m�/ D '.CŒk;mC1�/, and the result is shown.

Lemma 2.14. Let X 2 USS.X/ with `.X/ > 1. If '.CŒk;m�/ D '.CŒk�1;mC1�/ for
some k; m 2 Z with m > 0, then '.CŒi;j �/ D '.CŒi�1;j C1�/ for every i 2 Z and
every j � m.

Proof. We know by Lemma 2.13 that '.CŒi;m�/ D '.CŒi�1;mC1�/ for every i 2 Z.
We just need to be able to increase the second subindex. But if '.CiC1 : : : CiCm/ D
'.Ci : : : CiCm/ ¤ �, and we multiply both elements on the right by CiCmC1, since we
know that no unexpected decrease of supremum will happen (sup.CŒi;mC1�/ D mC1),
it follows that

'.CiC1 : : : CiCmCiCmC1/ D '.'.CiC1 : : : CiCm/CiCmC1/

D '.'.Ci : : : CiCm/CiCmC1/

D '.Ci : : : CiCmCiCmC1/:

Hence '.CŒi;mC1�/ D '.CŒi�1;mC2�/ for every i 2 Z. By induction on m, it follows
that '.CŒi;j �/ D '.CŒi�1;j C1�/ for every j � m, as we wanted to show.

The analogous results can now be shown for the chain involving prefixes of RŒk;m�.

Lemma 2.15. Let X 2 USS.X/ with `.X/ > 1 and m � 1. If 	.RŒk;m�/ D
	.RŒk�1;mC1�/ for some k 2 Z, then 	.RŒi;m�/ D 	.RŒi�1;mC1�/ for every i 2 Z.
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Proof. As above, since X belongs to a closed orbit under cycling, it suffices to show
the case i D k C 1. We want to reinterpret the equality 	.RŒk;m�/ D 	.RŒk�1;mC1�/.
If we recall that .ck.X//m D CŒk;m�RŒk;m��

mp where p D inf.X/, and that
inf.RŒk;m�/ D 0, then we see that

.ck.X//m ^ .CŒk;m��
mpC1/ D CŒk;m� 	.RŒk;m�/�

mp

D CkC1 : : : CkCm 	.RŒk;m�/�
mp:

In the same way, we obtain

.ck�1.X//mC1 ^ .CŒk�1;mC1��
.mC1/pC1/ D CŒk�1;mC1� 	.RŒk�1;mC1�/�

.mC1/p

D Ck : : : CkCm 	.RŒk�1;mC1�/�
mpCp:

Therefore the equality 	.RŒk;m�/ D 	.RŒk�1;mC1�/ can be rewritten as follows:

CkŒ.ck.X//m ^ .CŒk;m��
mpC1/��p D .ck�1.X//mC1 ^ .CŒk�1;mC1��

.mC1/pC1/:

If we apply Gebhardt’s transport to the whole equality, it follows that

CkC1.ckC1.X//m^.CŒkC1;m��
mpC1/��p D .ck.X//mC1^.CŒk;mC1��

.mC1/pC1/;

hence 	.RŒkC1;m�/ D 	.RŒk;mC1�/, and the result is shown.

Lemma 2.16. Let X 2 USS.X/ with `.X/ > 1. If 	.RŒk;m�/ D 	.RŒk�1;mC1�/ for
some k; m 2 Z with m > 0, then 	.RŒi;j �/ D 	.RŒi�1;j C1�/ for every i 2 Z and every
j � m.

Proof. By Lemma 2.15 	.RŒi;m�/ D 	.RŒi�1;mC1�/ for every i 2 Z. We just need to be
able to increase the second subindex. But 	.RŒi;m�/ D 	.RŒi�1;mC1�/ is equivalent to
	..�pRiCm/.�pRiCm�1/ : : : .�pRiC1// D 	..�pRiCm/.�pRiCm�1/ : : : .�pRi //,
where p D inf.X/. If we multiply both elements on the left by �pRiCmC1, since we
know that there is no unexpected increase of infimum (inf.RŒi;mC1�/ D 0), it follows
that

	..�pRiCmC1/.�pRiCm/ : : : .�pRiC1//

D 	..�pRiCmC1/	..�pRiCm/ : : : .�pRiC1///

D 	..�pRiCmC1/	..�pRiCm/ : : : .�pRi ///

D 	..�pRiCm/.�pRiCm�1/ : : : .�pRi //:

Hence 	.RŒi;mC1�/ D 	.RŒi�1;mC2�/ for every i 2 Z. By induction on m, it follows
that 	.RŒi;j �/ D 	.RŒi�1;j C1�/ for every j � m, as we wanted to show.
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Proposition 2.17. Let X 2 USS.X/ with `.X/ > 1. Given k 2 Z, the chain

'.CŒk;1�/ < '.CŒk�1;2�/ < '.CŒk�2;3�/ < � � �
stabilizes whenever '.CŒk�j C1;j �/ D '.CŒk�j;j C1�/, and this happens for some
j < k�k. Moreover, for all i 2 Z, the analogous chains starting at '.CŒi;1�/

stabilize at the same value of j . Also, the chain

	.RŒk;1�/ 4 	.RŒk�1;2�/ 4 	.RŒk�2;3�/ 4 � � �
stabilizes whenever 	.RŒk�j C1;j �/ D 	.RŒk�j;j C1�/, and this happens for some
j < k�k. Moreover, for all i 2 Z, the analogous chains starting at 	.RŒi;1�/ stabilize
at the same value of j .

Proof. By Lemma 2.14, all chains of final factors stabilize whenever '.CŒk�j C1;j �/ D
'.CŒk�j;j C1�/ for some j . Up to that point, the chains must be made of strict inequali-
ties. But the maximal length of such a chain (formed by nontrivial simple elements) is
bounded by the length of �. The proof for the sequences of initial factors is identical.

Definition 2.18. Given X 2 USS.X/ with `.X/ > 1, we define the absolute final
factor F.X/ of X as the factor in which the above descending chain stabilizes, for
k D �1, that is,

F.X/ D '.CŒ�m;m�/

for m � k�k � 1. In other words, F.X/ D '.C�mC1C�mC2 : : : C�1C0/ for m big
enough.

Definition 2.19. Given X 2 USS.X/ with `.X/ > 1, we define the absolute initial
factor I.X/ of X as the factor in which the above ascending chain stabilizes, for
k D �1, that is,

I.X/ D 	.RŒ�m;m�/

for m � k�k�1. In other words, I.X/ D 	.��p.R0/��2p.R�1/ : : : ��mp.R�mC1//;

or alternatively I.X/ D 	..�pR0/.�pR�1/ : : : .�pR�mC1//; for m big enough,
where p D inf.X/.

Proposition 2.20. Given X 2 USS.X/ with `.X/ > 1, the decomposition F.X/I.X/

is left weighted as written.

Proof. This is an immediate consequence of Proposition 2.8, since

F.X/I.X/ D '.CŒ�m;m�/ 	.RŒ�m;m�/

for m big enough.
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We have seen at the beginning of this section that F.X/ < '.X/ and I.X/ 4 	.X/.
But we will see now that the absolute factors are also related to the initial and final
factors of powers of X .

Proposition 2.21. Let X 2 USS.X/ with inf.X/ D p and `.X/ > 1. For every
m � 1 such that Xm 2 SSS.Xm/, one has:

� F.X/ < '.Xm/.

� I.X/ 4 	.Xm/.

Proof. The case m D 1 is a straightforward consequence of Lemma 2.5, for k D �m.
Suppose that m > 1. We know from Theorem 2.9 that the left normal form of

.c�m.X//m D .C�mC1 : : : C0/Xm.C �1
0 : : : C �1�mC1/

is equal to
�pmCqy1 : : : ysz1 : : : zt ;

where �qy1 : : : ys D �pm.C�mC1 : : : C0/ and q C s D m. If we conjugate this
element by C�mC1 : : : C0 we obtain

Xm D �pmz1 : : : zt�
q��pm.y1 : : : ys/:

But if Xm 2 SSS.Xm/, we also have Y m 2 SSS.Xm/ for every Y in the cycling or-
bit of X : Indeed, Y m D .XCt /m D .Xm/Ct for some t , where Ct D .Xm��mp/^�t

by Theorem 2.9. Since Xm��mp and �t conjugate Xm to elements in their su-
per summit sets (namely ��mp.Xm/ and � t .Xm/, respectively), it follows by Theo-
rem 1.12 that Y m D .Xm/Ct 2 SSS.Xm/. In particular .c�m.X//m 2 SSS.Xm/,
hence `.Xm/ D `..c�m.X//m/ D s C t . Since the above decomposition of Xm

has precisely s C t non-� factors, and the final one is ��pm.ys/, it follows that
��pm.ys/ < '.Xm/. That is, '.C�mC1 : : : C0/ < '.Xm/.

Notice that we can apply the same reasoning to every element in the cycling orbit of
X , in particular to c�m.X/. It follows that '.C�2mC1 : : : C�m/ < '..c�m.X//m/ D
zt . Hence, since multiplying Ci ’s never decreases the supremum, one has

'.C�2mC1 : : : C�mC�mC1 : : : C0/ D '.'.C�2mC1 : : : C�m/C�mC1 : : : C0/

< '.zt�
q��pm.y1 : : : ys// D '.Xm/:

Applying the same reasoning once more, we can obtain by induction on k that
'.C�kmC1 : : : C0/ < '.Xm/ for every k � 1. When k is big enough so that
km � k�k � 1, this implies F.X/ < '.Xm/, as we wanted to show.

The relation I.X/ 4 	.Xm/ is shown in a similar way. Since ��pm.z1 : : : zt / D
RŒ�m;m�, from the above decomposition of Xm is follows that 	.RŒ�m;m�/ D
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��pm.z1/ 4 	.Xm/. Applying the same reasoning to c�m.X/, is follows that
	.RŒ�2m;m�/ 4 	..c�m.X//m/ D ��pm�q.y1/. Hence

	.RŒ�2m;2m�/ D 	.RŒ�m;m� �pm.RŒ�2m;m�//

D 	.RŒ�m;m� 	.�pm.RŒ�2m;m�///

4 	.RŒ�m;m� ��q.y1// D 	.�pmz1 : : : zt�
q��mp.y1// D 	.Xm/:

Iterating the same reasoning one shows that 	.RŒ�km;km�/ 4 	.Xm/ for every k � 1,
and when k is big enough this yields I.X/ 4 	.Xm/.

2.4. The stable ultra summit set. We have studied, up to now, how powers and
cyclings of X are related under the hypothesis, in most cases, that X 2 USS.X/. But
this fact does not imply that Xm 2 USS.Xm/ for every m 2 Z, not even for every
m 2 N. If we want to extract more information from the powers of X , it would be
desirable that all these powers belonged to their ultra summit sets.

Definition 2.22. Given X in a Garside group G, the stable ultra summit set of X is
defined as

SU.X/ D fY 2 USS.X/I Y m 2 USS.Xm/; m 2 Zg:

The first obvious question is whether SU.X/ 6D ;.

Proposition 2.23. For every X 2 G, the set SU.X/ is non-empty.

Proof. We can clearly assume that `.Y / > 0 for every Y 2 USS.X/. Given an
element Z D �pz1 : : : zr , its initial factor 	.Z/ can be described as Z��p ^ �,
because Z��p is equal to ��p.z1 : : : zr/, hence the initial factor of Z is equal to the
first factor of Z��p , which is computed by considering its gcd with �.

Recall that 	.Z/ is also the conjugating element for cycling. On the other hand,
the conjugating element for decycling is �pz1 : : : zr�1, which can be described as
Z ^ �pCr�1 (even if p is negative).

Therefore, if we want to apply a cycling or a decycling to Z, we must conjugate
it by Z��p ^ � or by Z ^ �pCr�1, respectively.

Now consider an element X . For every Y 2 USS.X/, define S.Y / to be the set
of integers k such that Y k belongs to its USS. Let V 2 USS.X/ be such that S.V /

is maximal. Such a V exists because USS.X/ is finite. We will see that S.V / D Z,
hence V 2 SU.X/.

Suppose that S.V / ¤ Z. This means that some power of V , say V k , does not
belong to its USS. We would then like to apply cyclings and decyclings to V k to
bring it into USS.Xk/. Let us conjugate V by 	.V k/, to obtain some W . In this way,
all powers of V will be conjugate by 	.V k/. In particular, W k will be the cycling
of V k . Moreover, if some other power of V , say V s , belongs to its USS, then W s
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also belongs to its USS. Indeed, let m D inf.V k/. It is clear that V k��m conjugates
V s to an element in its USS, namely ��m.V s/. In the same way, � conjugates V s to
an element in its USS, �.V s/. Therefore, by Theorem 1.16, 	.V k/ D .V k��m/ ^ �

conjugates V s to an element (W s) in its USS.
Therefore, the set S.W / contains S.V /, and the power W k is the cycling of V k .

The same can be done for decycling, since the conjugating element for decycling V k

is V k ^ �t (for some t ). Hence, by suitable conjugations of V , we can apply iterated
cyclings and decyclings to V k , until we obtain a conjugate Z of V such that S.Z/

contains S.V /, and Zk belongs to its USS. But then S.Z/ strictly contains S.V /,
which contradicts the maximality of S.V /. This shows that SU.X/ is non-empty.

Remark. Although we had a different name for the stable ultra summit set, we chose
the latter when we learnt about the paper [30], in which the stable super summit
set was defined in a similar way as above, but considering Y m 2 SSS.Y m/ for
every m 2 N. We remark that Proposition 2.23 was made public by the authors at
a meeting on braid groups held in Luminy, in June 2005, some months before the
appearance of [30]. Notice also that the proof of Proposition 2.23 can be applied to
show the non-emptiness of the stable super summit set, using Theorem 1.12 instead
of Theorem 1.16. Moreover, one can extend the set of exponents to the whole Z, in
both cases. The proof of the non-emptiness of the stable super summit set in [30] is
much more involved, and was found independently from ours.

Now notice that the proof of Proposition 2.23 yields an algorithm to compute the
set

fY 2 USS.X/I Y m 2 USS.Xm/; m 2 ŒA; B�g
for every pair of integers A < B , that is, we can assume that Xm belongs to its ultra
summit set for all integers between A and B . A priori, no matter how big is the interval
ŒA; B�, this does not say that X 2 SU.X/, since one could have X t 62 USS.X t / for
some t 62 ŒA; B�. But for our purposes we will only need that Xm 2 USS.Xm/ for
m 2 Œ1; k�k�, hence the proof of Proposition 2.23 allows us to assume this hypothesis.

Remark. Very recently we learnt that in [32], a finite time algorithm to compute the
stable super summit set [30] is given. It is possible that similar methods can be used
to compute SU.X/ in finite time, but as we said above, we will not need that for our
purposes in this paper.

Let us then assume that Xm 2 USS.Xm/ for m D 1; : : : ; k�k. Recall that we
have defined some factors Ci , Ri , Ci and Ri related to X , for every i 2 Z. We
can thus define the same elements related to each Xm, but we need some notation to
make the distinction between them, for different values of m. The notation Ci .X

m/ D
	.ci�1.Xm// would not cause confusion, but it would be too awkward for the formulae
below, so we will simplify it by denoting

C
.m/
i D Ci .X

m/ D 	.ci�1.Xm//:
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Thus C
.m/
i has the same definition as Ci , but related to Xm instead of X . Later on,

we will study the sequence
C1; C

.2/
1 ; C

.3/
1 ; : : : ;

that is,
	.X/; 	.X2/; 	.X3/; : : : :

Notice that, a priori, there does not have to be a relation between them, due to the
unexpected increases of supremum that one encounters when taking powers.

Similarly to C
.m/
i , one defines R

.m/
i , C

.m/
i and R

.m/
i in the same way as Ri , Ci

and Ri , but related to Xm instead of X . The relation between these elements for
different powers of X will be crucial in the sequel.

3. Rigidity

3.1. Rigidity of an element and behavior under cyclings and powers. In this
section we will define a notion of rigidity for elements in a Garside group, and we will
study how rigidity is affected when applying some cyclings or taking some powers.
The idea of studying rigidity came from the study of elements whose left normal form
changes only in the obvious way under cyclings, decyclings and powers, so their ultra
summit sets are easier to study. We call them rigid elements:

Definition 3.1 (Rigid element). Let X D �px1 : : : xr be in left normal form, with
r > 0. Then X is rigid if the element �px1 : : : xr��p.x1/ is in left normal form as
written.

Notice that if X is rigid, then the cycling of X , that is, c.X/ D �px2 : : : xr��p.x1/

is in left normal form as written. Actually, this latter property is equivalent to X be-
ing rigid if r > 1. But we prefer the definition above, otherwise every element of
canonical length 1 would be rigid.

The following are equivalent definitions of rigid elements.

Proposition 3.2. Given X D �px1 : : : xr 2 G with r > 0, the following conditions
are equivalent.

(1) X is rigid.

(2) '.X/	.X/ is left weighted as written.

(3) 	.X/ ^ 	.X�1/ D 1.

Proof. By definition X is rigid if �px1 : : : xr��p.x1/ is in left normal form as written.
Since x1 : : : xr is already in left normal form, this is equivalent to the left weightedness
of xr��p.x1/ D '.X/ 	.X/ so conditions 1 and 2 are equivalent. But condition 2
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means ��p.x1/^@.xr/ D 1. We know that 	.X/ D ��p.x1/ and also, by Lemma 1.8,
	.X�1/ D @.xr/. Hence conditions 2 and 3 are also equivalent.

In general, we define the rigidity of an element, in such a way that rigid elements
have rigidity 1.

Definition 3.3. Given X D �px1 : : : xr in left normal form, with r > 0, we define
the rigidity of X as

R.X/ D k=r;

where k is the biggest integer in f0; : : : ; rg such that the first k factors in the left normal
form of x1 : : : xr��p.x1/ are precisely x1 : : : xk . If r D 0, we define R.X/ D 0.

The rigidity of an element tells us how many (non-�) factors of the left normal
form of X are preserved when considering X2. Notice that X is rigid if and only if
R.X/ D 1.

Example 7. (1) If X D � � 12 � 21 � 12 2 B3, then R.X/ D 3=3 D 1, since
	.X/ D ��1.12/ D 21, and 12 � 21 � 12 � 21 is in left normal form as written. Hence
X is rigid.

(2) If X D 13 � 13 � 1 2 B4, then R.X/ D 2=3, since the left normal form of
.13 � 13 � 1/ 13 is 13 � 13 � 13 � 1, hence k D 2 and r D 3. This means that two thirds of
the left normal form of X are preserved when considering X2 D 13 � 13 � 13 � 13 � 1 � 1.

(3) If X D 12132143 � 143 2 B5 (this is the example at the beginning of Sec-
tion 2), then R.X/ D 0, since the left normal form of .12132143 � 143/ � 12132143 is
� � 2324321 � 14. Hence, nothing from the left normal form of X is preserved when
computing its square X2 D � � 2324321 � 14 � 143. In this case we say that X has no
rigidity, or that it is 0-rigid. This is, of course, the most difficult case if one tries to
relate cyclings and powers of X .

Let us see some characterizations of rigidity, and then how rigidity behaves under
cyclings or powers of an element.

Lemma 3.4. Let X 2 G with `.X/ D r > 0 and inf.X/ D p. Then R.X/ D k=r

if and only if k is the biggest integer such that

.X2��2p/ ^ �k D .X��p/ ^ �k :

In particular, R.X/ > 0 if and only if inf.X2/ D 2p and 	.X2/ D 	.X/.

Proof. First notice that k D 0 always satisfies the above condition, because
.X2��2p/ ^ 1 D 1 D .X��p/ ^ 1. Also, no k > r can satisfy the condition,
since .X��p/ only has r factors, and this would imply that X2��2p D X��p ,
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which is not possible if r > 0. Hence the biggest integer k satisfying the condition
must belong to f0; : : : ; rg.

The rigidity of X D �px1 : : : xr is at least k=r if the first k factors in the left
normal form of x1 : : : xr��p.x1/ are x1 : : : xk . This is the case if and only if the
biggest simple prefix of xk : : : xr��p.x1/ is xk , which in turn is the case if and only
if the biggest simple prefix of xk : : : xr��p.x1 : : : xr/ is xk . Since x1 : : : xk is in
left normal form, the above condition holds if and only if the left normal form of
X2 D �2p�p.x1 : : : xr/.x1 : : : xr/ has the form �2p�p.x1/ : : : �p.xk/z1 : : : zt for
some simple elements z1; : : : ; zt . This happens if and only if .X2��2p/ ^ �k D
��p.x1 : : : xk/ D .X��p/ ^ �k . This shows that R.X/ D k=r if and only if k is
the biggest integer satisfying the latter condition.

Now R.X/ > 0 if k is at least 1, where for k D 1 the above condition reads
X2��2p ^� D ��p.x1/ D 	.X/, which is equivalent to inf.X2/ D 2p and 	.X2/ D
	.X/. (Notice that if inf.X2/ > 2p then X2��2p ^ � D � ¤ 	.X2/.)

One can also check the rigidity of an element by looking at its inverse.

Lemma 3.5. Let X 2 G with `.X/ D r > 0. Then R.X/ D k=r > 0 if and only
if sup.X�2/ D 2 sup.X�1/ and the final k factors in the left normal forms of X�1

and X�2 coincide. In particular, X is rigid if and only if X�1 is rigid. And also
R.X/ > 0 if and only if sup.X�2/ D 2 sup.X�1/ and '.X�2/ D '.X�1/.

Proof. The rigid case can be shown independently. We know by Proposition 3.2 that
X is rigid if and only if 	.X/ ^ 	.X�1/ D 1, and this condition is invariant under
taking inverses. Hence X is rigid if and only if so is X�1.

On the other hand, let �px1 : : : xr be the left normal form of X . By Lemma 3.4,
R.X/ D k=r > 0 if and only if the first k factors in the left normal forms of X2��2p

and X��p coincide. This means that the left normal form of X2 is �qy1 : : : yt , where
q D 2p and yi D �p.xi / for i D 1; : : : ; k. By Theorem 1.5, the left normal form of
X�1 is ��p�rx0

r : : : x0
1 where x0

i D ��p�i .@.xi //, and the left normal form of X�2

is ��q�ty0
t : : : y0

1, where y0
i D ��q�i .@.yi //. Then q D 2p means sup.X�2/ D

2 sup.X�1/, and yi D �p.xi / means y0
i D ��2p�i .@.yi // D ��2p�i .@.�p.xi /// D

��2p�i .�p.@.xi /// D ��p�i .@.xi // D x0
i , hence the result follows.

In the case of nonzero rigidity, we will be able to state some common property of
all powers of X .

Corollary 3.6. Let X 2 G with `.X/ > 0. If R.X/ > 0, then 	.X/ D 	.Xm/

.whence '.X�1/ D '.X�m//, and also inf.Xm/ D m inf.X/ .whence sup.X�m/ D
m sup.X�1// for every m � 1.

Proof. We show the equalities 	.X/ D 	.Xm/ and inf.Xm/ D m inf.X/. By
Corollary 1.6, these imply '.X�1/ D @�1.	.X// D @�1.	.Xm// D '.X�m/ and
sup.X�m/ D � inf.Xm/ D �m inf.X/ D m sup.X�1/.
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The result is trivially true for m D 1. Let �px1 : : : xr be the left normal form of
X , and suppose that 	.Xm/ D 	.X/ D ��p.x1/ and inf.Xm/ D m inf.X/ D mp for
some m � 1. Write then Xm D �mp�mp�p.x1/y2 : : : ys in left normal form.

Observe that � 6� x1 : : : xr��p.x1/ because R.X/ > 0. Hence, there is no un-
expected appearance of � in the product XXm, which in turn implies inf.XmC1/ D
inf.X/ C inf.Xm/ D p C mp D .m C 1/ inf.X/. Furthermore, 	.XmC1/ D
	.�px1 : : : xr��p.x1/��mp.y2 : : : ys/�mp/ D 	.�px1 : : : xr��p.x1// D ��p.x1/ D
	.X/, and the result follows.

Let us see that rigidity cannot decrease by cyclings.

Proposition 3.7. Let X 2 SSS.X/ with `.X/ > 0. Then R.X/ � R.ct .X// for all
t � 1. Furthermore, if X 2 USS.X/, equality holds.

Proof. Let p D inf.X/. By definition of rigidity, R.X/ D k=r means that k is the
biggest integer such that X	.X/ ^ �pCk D X ^ �pCk . If we apply the transport
map defined in [24] to this equality, we get

c.X/ 	.c.X// ^ �pCk D c.X/ ^ �pCk;

which means that R.c.X// � k=r (notice that `.c.X// D r since X 2 SSS.X/).
Applying the same reasoning to every cycling of X , one has R.ct�1.X// � R.ct .X//

for every t � 1, so the result follows.
If X 2 USS.X/, one cannot have R.X/ < R.ct .X// for some t , since some

further cycling of ct .X/ would be equal to X , yielding the contradiction R.X/ <

R.X/.

If an element has some rigidity, its conjugating elements for cycling Ci satisfy the
following useful property.

Lemma 3.8. Let X 2 SSS.X/ with `.X/ > 0. If R.X/ > 0, the left normal form of
Cm is precisely C1C2 : : : Cm for every m � 1.

Proof. Let �px1 : : : xr be the left normal form of X , and let �py1 : : : yr be the left
normal form of c.X/ D �px2 : : : xr��p.x1/. Since R.X/ > 0, the left normal form
of x1x2 : : : xr��p.x1/ is x1y1 : : : yr . Since C1 D ��p.x1/, C2 D ��p.y1/ and x1y1

is left weighted, it follows that C1C2 is left weighted. Applying the same reasoning
to ci�1.X/ for every i � 2, it follows that CiCiC1 is left weighted as written, hence
C1 : : : Cm is the left normal form of Cm.

It is easy to see that if an element X is rigid, then every power of X is rigid. We
can generalize this to every element X 2 USS.X/, showing that the rigidity of X can
never decrease by taking powers.
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Proposition 3.9. Let X 2 USS.X/ with `.X/ � 1. Then R.X/ � R.Xm/ for every
m > 1.

Proof. Let `.X/ D r and R.X/ D k=r . If k D 0 the result is trivial, so we can
assume that k > 0. In the case r D 1 this would mean that X is rigid, hence every
power of X is rigid and the result would also be true. Therefore we will also assume
that `.X/ D r > 1. Let �px1 : : : xr be the left normal form of X . Recall that by
Corollary 3.6 inf.X t / D tp for every t � 1. We will show that for m � 1 one has

.Xm��pm/ ^ �mk D Cmk :

Recall from Theorem 2.9 that .Xmk��pmk/ ^ �mk D Cmk : Since one has
Xm��pm 4 Xmk��pmk for every k > 0, (notice that the infimum of both ele-
ments is 0) it follows that

.Xm��pm/ ^ �mk 4 .Xmk��pmk/ ^ �mk D Cmk;

hence we only need to show that Cmk 4 Xm��pm.
We will first show that Ci D ��p.xi / for i D 1; : : : ; k. This will be done by

proving that, for i D 0; : : : ; k � 1 the first k � i non-� factors in the left normal form
of ci .X/ are xiC1 : : : xk . Indeed, this is trivially true for i D 0. If we assume the
claim true for some i , 0 � i < k �1, we have ci .X/ D �pxiC1 : : : xkykC1 : : : yrCi .
By Proposition 3.7 we know that R.ci .X// � k=r , hence the first k � 1 non-�
factors in the left normal form of ciC1.X/ D �pxiC2 : : : xkykC1 : : : yrCi�

�p.xiC1/

are precisely xiC2 : : : xkykC1 : : : ykCi . In particular, the first k � .i C 1/ non-�
factors are xiC2 : : : xk , thus the claim is shown. This implies that

Ck D C1 : : : Ck D ��p.x1 : : : xk/;

hence Ck 4 X��p .
Now suppose that Cmk 4 Xm��pm for some m � 1. If we apply k times the

transport defined in [24], which preserves 4, we obtain

CŒk;mk� 4 .ck.X//m��pm:

As Ck D ��p.x1 : : : xk/, this implies ck.X/DXCk D�pxkC1 : : : xr��p.x1 : : : xk/.
Hence,

XmC1 D .�px1 : : : xr/mC1

D �px1 : : : xk.xkC1 : : : xr�px1 : : : xk/mxkC1 : : : xr

D �px1 : : : xk.�p�p.xkC1 : : : xr/x1 : : : xk/mxkC1 : : : xr

D ��p.x1 : : : xk/.ck.X//m��p.xkC1 : : : xr/�p:
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Since ��p.x1 : : : xk/ D Ck , and CŒk;mk� 4 .ck.X//m��pm, it follows that

C.mC1/k D CkCŒk;mk� 4 XmC1��.mC1/p;

as we wanted to show. Hence .Xm��pm/ ^ �mk D Cmk for every m � 1.
Now recall from Lemma 3.8 that, since k > 0, the left normal form of Cmk is

C1 : : : Cmk . Hence, for every m � 1 one has

.X2m��2pm/ ^ �mk D C2mk ^ �mk D Cmk D .Xm��pm/ ^ �mk :

By Lemma 3.4, and since `.Xm/ � mr , this implies that R.Xm/ � mk
mr

D k
r

D
R.X/, as we wanted to show.

Remark. The main difference between rigidity of cyclings and rigidity of powers is
that, while iterated cycling of X 2 SSS.X/ yields a non-decreasing sequence

R.X/ � R.c.X// � R.c2.X// � � � � ;

this does not happen for powers of X , even if X 2 USS.X/. For instance, if
X D 12132143 � 143 2 B5 is the example at the beginning of Section 2, one has

R.X/ D 0; R.X2/ D 0; R.X3/ D 1;

R.X4/ D 0; R.X5/ D 0; R.X6/ D 1; : : : :

Notice that this is not in contradiction with Proposition 3.9, where the rigidity of Xm

is compared with that of X , not with the rigidity of the intermediate powers.

The above results imply that elements having some rigidity behave nicely with
respect to powers and cyclings, in the following sense:

Corollary 3.10. If X 2 USS.X/ with `.X/ � 1 and R.X/ > 0, then one has
.ct .X//m D ct .Xm/ for every t; m � 1.

Proof. By Lemma 3.8, the left normal form of Cm is C1 : : : Cm. If `.X/ > 1 this
implies, by Theorem 2.9, that C1 D 	.C1 : : : Cm/ D 	.Xm/. If `.X/ D 1 then
Xm D C1 : : : Cm�mp where p D inf.X/, so also in this case we have 	.Xm/ D C1.
Hence c.Xm/ D .Xm/C1 D .XC1/m D .c.X//m, and the result is true for t D 1.
If the result is true for some t � 1, it suffices to apply the previous case to ct�1.X/,
which has some rigidity by Proposition 3.7, to obtain

ct .Xm/ D c.ct�1.Xm// D c..ct�1.X//m/ D .c.ct�1.X///m D .ct .X//m:

Corollary 3.11. Let X 2 USS.X/ with `.X/ � 1. If R.X/ > 0 then Xm belongs to
a closed orbit under cycling, for every m � 1.
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Proof. Let N be the orbit length of X . By Corollary 3.10, cN .Xm/ D .cN .X//m D
Xm, so the result follows.

Remark. The above result does not imply that Xm 2 USS.X/, since it could happen
that Xm 62 SSS.Xm/. But the fact that Xm belongs to a closed orbit under cycling
will be enough for our purposes.

3.2. The ultra summit set of a rigid element is made of rigid elements. By the
above discussion on rigidity, we know that if X 2 USS.X/ is rigid, then the whole
orbit of X under cycling is made of rigid elements. But what about the other orbits
in USS.X/? In this subsection we will show that, if `.X/ > 1, all orbits in USS.X/

are made of rigid elements. Hence USS.X/ is just the set of rigid conjugates of X .
We start with three small results.

Lemma 3.12. Given X 2 USS.X/ then d.X/ 2 USS.X/.

Proof. Let �px1 : : : xr be the left normal form of X . Notice that XX D X 2
USS.X/ and that X�pCr�1 D �pCr�1.X/ 2 USS.X/. Then, by Theorem 1.16,
d.X/ D X .�px1:::xr�1/ D XX^�pCr�1 2 USS.X/.

Lemma 3.13. If X 2 G is rigid, then ci .X/ and di .X/ are rigid for every i � 1.
Moreover X 2 USS.X/, and if e � 1 is such that �e is central, then cm.X/ D X

for some m � `.X/ e.

Proof. Let �px1 : : : xr be the left normal form of X . By Proposition 3.7, all it-
erated cyclings of X are rigid. Then one can easily show by recurrence that if
i D kr C j with 0 � j � r � 1, the left normal form of ci .X/ is equal to
�p�kp.xj C1/ : : : �kp.xr/� .kC1/p.x1/ : : : � .kC1/p.xj /. Hence, if e is such that
�e D 1, one has cer.X/ D �p�ep.x1/ : : : �ep.xr/ D �px1 : : : xr D X , so X

belongs to a closed orbit under cycling, and the orbit length is a divisor of re D `.X/e.
By Lemma 3.5 X is rigid if and only if so is X�1. This means that ci .X�1/ is

rigid for every i � 1. But we know by [20] that ��i .ci .X�1// D .di .X//�1, hence
di .X/ is also rigid for every i � 1.

Furthermore, by the above arguments X�1 belongs to a closed orbit under cycling,
thus X belongs to a closed orbit under decycling. But an element belonging to closed
orbits under cycling and decycling belongs to its ultra summit set (since one can
always reach the ultra summit set by iterated cycling and decycling), so it follows that
X 2 USS.X/.

For elements which belong to their ultra summit set, the converse of Lemma 3.13
is also true.
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Lemma 3.14. If Y 2 USS.X/ is not rigid, then neither ci .Y / nor di .Y / are rigid
for any i � 1.

Proof. It clearly suffices to show the result for i D 1. First, c.Y / has the same rigidity
as Y by Proposition 3.7, hence it cannot be rigid.

Now suppose that d.Y / is rigid. This is clearly not possible if `.Y / D 1, so
we can suppose that `.Y / > 1. If �py1 : : : yr is the left normal form of Y , then
d.Y / D �p�p.yr/y1 : : : yr�1, although this decomposition is not the left normal
form of d.Y /. Nevertheless, since y1 : : : yr�1 is in left normal form, we know, by
the left normal form algorithm (see for instance [21]) that there is a decomposition
yi D aibi for i D 1; : : : ; r � 1 such that the left normal form of d.Y / is precisely
�p.�p.yr/a1/.b1a2/ : : : .br�2ar�1/.br�1/.

Since we are assuming that d.Y / is rigid, we have that .br�1/.yr��p.a1// is left
weighted as written. Notice that this implies that yr�1.yr��p.a1// is left weighted
as written. Therefore the left normal form of y1 : : : yr��p.y1/ is precisely
y1 : : : yr�1.yr��p.a1//��p.b1/. In other words, R.Y / D r�1

r
. By Proposition 3.7,

all iterated cyclings of Y have rigidity r�1
r

. This implies, in particular, that

cr�1.Y / D Y ��p.y1:::yr�1/ D �pyr��p.y1 : : : yr�1/ D ��p.d.Y //;

but this latter element is supposed to be rigid. A contradiction. Hence no iterated
decycling of Y can be rigid.

We can finally prove the main result concerning the elements of the ultra summit
set of a rigid element.

Theorem 3.15. Let X be rigid and `.X/ > 1. Then every element in USS.X/ is
rigid.

Proof. Suppose that there exists an element in USS.X/ which is not rigid. Since
every two elements in USS.X/ are connected by a sequence of conjugations by
simple elements, there must be a non-rigid element in USS.X/ which is the conjugate
of a rigid one by a simple element. Hence we can assume without loss of generality
that X s D Y for some non-rigid element Y 2 USS.X/ and some simple element
s. We will also assume that s is a maximal element (with respect to 4) in the set of
all simple elements conjugating X to a non-rigid element in USS.X/. We will get a
contradiction by showing that X is conjugate to c.d.Y // by a simple element which
is a proper right multiple of s.

Let �px1 : : : xr be the left normal form of X and let �py1 : : : yr be the left normal
form of Y . Since X s D Y , it is known by [24] that there exist simple elements
s0; : : : ; sr such that s0 D �p.s/, sr D s and yi D s�1

i�1xisi for i D 1; : : : ; r . That is,
the left normal form of Y is �py1 : : : yr D �p.s�1

0 x1s1/.s�1
1 x2s2/ : : : .s�1

r�1xrsr/.



Conjugacy in Garside groups I: cyclings, powers and rigidity 267

Now consider d.X/ and d.Y /. By Lemma 3.12, these two elements belong to
USS.X/. Since X is rigid, the left normal form of d.X/ is �p�p.xr/x1 : : : xr�1.
However, Y is not rigid, so the left normal form of d.Y / is not �p�p.yr/y1 : : : yr�1,
since �p.yr/y1 is not left weighted as written. (Here we use the fact that
r D `.X/ > 1.) Hence, 	.d.Y // D yr t for some nontrivial simple element t .

The elements d.X/ and d.Y / are also connected through a conjugation by a
simple element. Namely, d.X/sr�1 D �p�p.sr�1/�1�p.xr/x1 : : : xr�1sr�1 D
�p�p.yr/y1 : : : yr�1 D d.Y /. Hence, by [24] again, there exist simple elements
t0; : : : ; tr such that t0 D �p.sr�1/, tr D sr�1 and the left normal form of d.Y / is
�p.t�1

0 �p.xr/t1/.t�1
1 x1t2/ : : : .t�1

r�1xr�1tr/. So 	.d.Y // D ��p.t0/�1xr��p.t1/ D
s�1

r�1xr��p.t1/. Since we saw that 	.d.Y // D yr t D .s�1
r�1xrs/t , it follows that

st D ��p.t1/, which is a simple element. If we denote u D ��p.t1/, we just showed
that s � u (strict) and that 	.d.Y // D s�1

r�1xru.

Finally, we observe that Xu D ..Xx�1
r /sr�1/s�1

r�1
xr u D .d.X/sr�1/s�1

r�1
xr u D

d.Y /�.d.Y // D c.d.Y //. But since Y is not rigid and belongs to USS.X/, Lemma 3.14
tells us that d.Y / is not rigid. Since d.Y / also belongs to USS.X/ by Lemma 3.12,
it follows again by Lemma 3.14 that c.d.Y // is not rigid, and belongs to USS.X/.
But s – u, so this contradicts the maximality of s, and we are done.

Corollary 3.16. If X is rigid and `.X/ > 1, then USS.X/ is the set of rigid conjugates
of X .

Proof. Let Y be a rigid conjugate of X . Since Y is rigid, it belongs to its ultra
summit set and since it is conjugate to X , its ultra summit set is precisely USS.X/.
Conversely, every element in USS.X/ is rigid by the above result.

Corollary 3.17. If X is rigid and `.X/ > 1, then USS.X�1/ is the set of inverses of
the elements in USS.X/.

Proof. This is a direct consequence of Corollary 3.16 and the fact that Y 2 G is rigid
if and only if Y �1 is rigid (Lemma 3.5).

Remark. If `.X/ D 1, then USS.X/ may contain rigid and non-rigid elements. For
instance, the simple element 12321435 2 B6 is rigid (since 12321435 � 12321435

is left weighted), but it is conjugate (by 23) to the simple element 12134325, which
is not rigid (the left normal form of 12134325 12134325 is 1213432514 � 213245).
Clearly both elements belong to the ultra summit set, since they are simple.

3.3. Elements having a rigid power. In this section we will characterize elements
X 2 G having a rigid power Xm for some integer m ¤ 0. Notice that such an
element cannot be periodic. Otherwise, since rigidity is preserved by powers, some
rigid power of X (which, by definition, has positive canonical length) would also be a
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power of � (which has zero canonical length), and this is not possible. If the element
X belongs to its ultra summit set, we can say something more.

Proposition 3.18. Let X 2 USS.X/ with `.X/ � 1. If X has a rigid power, then
there exists some M > 0 such that CM D �kX t for some integers k, t , where t > 0

and �k is central.

Proof. Let p D inf.X/. If `.X/ D 1 then XM D CM �pM for every M , so we just
need to take M big enough so that �M is central, and we are done. Hence we can
assume that `.X/ > 1.

Let e > 0 be such that �e is central, let m > 0 be such that Xm is rigid, and let
N be the orbit length of X under cycling. Consider T D emN . By Lemma 2.4 one
has XT D CT RT �pT , and by Proposition 2.8, '.CT / 	.RT / is left weighted. Since
T is a multiple of e, �pT is central. Since T is a multiple of m, it follows that XT

is rigid, hence '.XT / 	.XT / D '.RT / 	.CT / is also left weighted (notice that the
equality holds since �pT is central). Finally, since T is a multiple of N , it follows
that CT commutes with X , thus it commutes with XT . This implies

XT D .XT /CT D RT �pT CT D �pT RT CT :

Moreover, since '.RT / 	.CT / is left weighted, one has '.XT / D '.CT /. Hence
'.CT / 	.CT / D '.XT / 	.XT / is left weighted by the rigidity of XT , so it follows
that CT is also rigid. In particular, inf..CT /k/ D k inf.CT / for every k > 0. Since T

is a multiple of N , one has .CT /k D CT k . Hence, by considering a suitable multiple
of T , we can assume that inf.CT / is a multiple of e, that is, CT D �eqy1 : : : yr , and
RT D z1 : : : zs , where yrz1 and zsy1 are left weighted. Then one has

�e.pmN Cq/y1 : : : yrz1 : : : zs D XT D �e.pmN Cq/z1 : : : zsy1 : : : yr ;

where both decompositions of XT are in left normal form. In other words, the left
normal form of XT is invariant under some cyclic permutations of its factors. This
is only possible if there is some rigid element Y D y1 : : : ya (where a D gcd.r; s/),
such that Y i D y1 : : : yr and Y j D y1 : : : yrz1 : : : zs for some i; j > 0. But then
CTj D .CT /j D .�eqy1 : : : yr/j D �eqj Y ij . Since Y ij D .y1 : : : yrz1 : : : zs/i ,
it follows that Y ij D �ek0

XT i for some k0 2 Z. Denoting M D Tj , t D T i and
k D e.k0 C qj /, one finally obtains CM D �kX t , as we wanted to show.

We will now show that the converse of Proposition 3.18 is also true for elements
of canonical length greater than 1, by the following two results.

Proposition 3.19. Let X 2 USS.X/ with `.X/ > 1. Suppose that CM D �kX t for
some integers M , k, t , where M; t > 0 and �k is central. Then R.X�m/ > 0 for
some m > 0.
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Proof. Notice that CM commutes with X , hence M is a multiple of the orbit length
of X , and then .CM /r D CMr for every r � 1. This implies C2M D .CM /2 D
�2k.X t /2, where �2k is also central. Hence, replacing M by a multiple if necessary,
we can assume that M � k�k.

By Lemma 2.4, sup.CM / D M and sup.C2M / D 2M . Hence sup..X t /2/ D
�2k C 2M D 2.�k C M/ D 2 sup.X t /. At the same time, since M is a multiple of
the orbit length of X and M � k�k, one has '.CM / D F.cM .X// D F.X/ and also
'.C2M / D F.X/. Therefore '..X t /2/ D '.C2M / D F.X/ D '.CM / D '.X t /.
By Lemma 3.5, this means that R.X�t / > 0, so we take m D t and we are done.

Proposition 3.20. Let X 2 USS.X/ with `.X/ > 1. Suppose that CM D �kX t for
some integers M , k, t , where M; t > 0 and �k is central. Then XT is rigid for some
T > 0.

Proof. We know by Proposition 3.19 that R.X�m/ > 0 for some m > 0. We also
know that CM r D �krX tr for every r � 1. Hence, replacing M by a multiple, if
necessary, we can assume that both M and t are multiples of m. Since R.X�m/ > 0,
and M and t are multiples of m, Corollary 3.6 implies that '.XM / D '.Xm/ D
'.X t / D '.CM /. Notice that M � t ¤ 0, otherwise RM would be a power of �,
while `.RM / > 0 by Lemma 2.4. Hence jM � t j is also a nontrivial multiple of m,
so we have '.CM / D '.X jM�t j/.

On the other hand, by Lemma 2.4 we get XM D CM RM �pM D �kX tRM �pM ,
where p D inf.X/. Since �k is central, this means RM D X�t��kXM ��pM D
XM �t��k�Mp . Recall that `.RM / > 0, hence 	.RM / D 	.XM�t /. Moreover
M �t > 0, otherwise we would have '.CM / D '.X t�M / and 	.RM / D 	.XM�t / D
@.'.X t�M //, whence '.CM / 	.RM / D � and this contradicts Proposition 2.8, which
states that '.CM / 	.RM / is left weighted.

As M � t > 0, we have '.CM / D '.XM�t /. Hence, '.XM�t / 	.XM�t / D
'.CM / 	.RM / is left weighted, that is, XM�t is rigid and we can just choose T D
M � t .

We have then shown the following result.

Theorem 3.21. Let X 2 USS.X/ with `.X/ > 1. Then X has a rigid power if and
only if CM D �kX t for some integers M , k, t , where M; t > 0 and �k is central.

Moreover, in this case M � t > 0 and M can be chosen so that RM D �sXM�t

where �s is central, and XM , X t and XM�t are all rigid.

Proof. The first claim is shown in Propositions 3.18 and 3.20. In the proof of Propo-
sition 3.20 it is also shown that in this case M � t > 0. Replacing M by some suitable
multiples, we replace XM , X t and XM�t by powers, hence we can choose M in such
a way that these three elements are rigid.
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A very interesting consequence of this result is the following

Theorem 3.22. Let X 2 USS.X/ with `.X/ > 1. If X has a rigid power, then all
elements in USS.X/ have rigid powers.

Proof. By Theorem 3.21, CM D �kX t for some integers M; k; t , where M; t > 0

and �k is central. We can also assume that M is a multiple of the orbit length of X .
Let Y 2 USS.X/. For i � 1, let C 0

i , R0
i , C 0

i and R0
i denote the elements analogous

to Ci , Ri , Ci and Ri , defined for Y instead of X .
Let ˛ be a positive element such that ˛�1X˛ D Y . In [24], the M -th transport

of ˛ is defined as the element ˇ such that ˛�1CM ˇ D C 0
M . It is shown in [24] that

some iterated transport of ˛ will be equal to ˛. Hence, replacing M by a multiple if
necessary, we can assume that ˇ D ˛. But then C 0

M D ˛�1CM ˛ D ˛�1�kX t˛ D
�k˛�1X t˛ D �kY t . By Theorem 3.21 this means that Y also has a rigid power.

3.4. Consequences for pseudo-Anosov braids. The results from the previous sub-
section have a very important consequence in the case of braid groups. The structure
of centralizers of pseudo-Anosov braids is well known, and this allows to show that
pseudo-Anosov braids in their ultra summit set have rigid powers.

Theorem 3.23. Let X 2 Bn be a pseudo-Anosov braid. If X 2 USS.X/ and
`.X/ > 1, then X has a rigid power.

Proof. Let N be the orbit length of X under cycling. Then CN commutes with X .
It is known [27], [26] that if X is pseudo-Anosov, every element in the centralizer of
X has a common power with X , up to multiplication by a central power of �. Hence
.CN /r D �kX t for some integers r , k, t , where �k is central. Moreover we can
assume that r > 0, otherwise we consider the inverse of the above equation. Since N

is the orbit length of X , .CN /r D CNr , hence taking M D Nr one has CM D �kX t

for some positive M and some integers k; t such that �k is central. By Theorem 3.21,
we only need to show that t > 0.

Suppose that t < 0. Replacing M by a multiple if necessary, we can assume that
M � k�k, hence '.CM / D F.X/ D '.CMr/ D '.X tr/ for every r � 1. We can
also assume that M is a (positive) multiple of t , hence t � M will be a (negative)
multiple of t , and then '.CM / D '.X t�M /.

On the other hand, by Lemma 2.4, we know that XM D CM RM �Mp , where
p D inf.X/. Hence RM D XM�t��k�Mp , and then 	.RM / D 	.XM�t / D
@.'.X t�M //. This would contradict Proposition 2.8, which states that '.CM / 	.RM /

is left weighted. Therefore t > 0, and Theorem 3.21 implies that X has a rigid
power.

Corollary 3.24. Every pseudo-Anosov braid has a rigid power, up to conjugacy.
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Proof. Let Y be a pseudo-Anosov braid, and let X 2 SU.Y /. That is, X is conjugate
to Y and all powers of X belong to their ultra summit set.

We know that powers of � are not pseudo-Anosov but periodic, hence `.X/ � 1.
We will first show that we have `.Xm/ > 1 for some m > 1. Indeed, if `.Xm/ D 1

for all m > 1, since the set of simple elements is finite we would have Xa D �us

and Xb D �vs for the same simple element s and a ¤ b. But then Xb�a D �v�u,
which is not possible since a pseudo-Anosov braid cannot be periodic.

Since the property of being pseudo-Anosov is preserved by powers, Xm is a
pseudo-Anosov braid such that `.Xm/ > 1. Moreover, Xm 2 USS.Xm/, as X 2
SU.Y /. Hence we can apply Theorem 3.23 to Xm and it follows that some power of
Xm, thus some power of X , is rigid. Since X is conjugate to Y , the result follows.

We remark that generic elements of Bn are pseudo-Anosov. This means that most
elements in Bn have rigid powers, up to conjugacy.

3.5. A bound for the rigid power of an element. In this section we will show that
if X 2 USS.X/ has a rigid power, and several powers of X belong to their ultra
summit sets, then Xm is rigid for some small m, namely m < k�k3. Moreover, if
`.X/ > 1 we can take m < k�k2. In the particular case of braid groups, using the
Artin structure one has k�k D n.n � 1/=2, and using the Birman–Ko–Lee structure
k�k D n�1. Hence in both cases the bound is polynomial on the number of strands,
and does not depend on the length of the braid.

We first need to show two results concerning elements having rigid powers and
absolute final factors.

Proposition 3.25. Let X 2 USS.X/ with `.X/ > 1. Suppose that X has a rigid
power, and that X t 2 USS.X t / for some t > 1. Then F.X/ D F.X t /.

Proof. By Theorem 3.21, one has CM D �kX r for some M , k, r such that M; r > 0

and �k is central. Replacing M by a multiple if necessary, so that M is a multiple of
the orbit length of X under cycling, one has CŒ�M;M� D CM D �kX r .

In the same way, X t also has a rigid power. Moreover, since `.Ct / � 1, `.Rt / � 1

and CtRt is left weighted, one has `.X t / > 1. Hence we can apply Theorem 3.21 to
X t and we obtain C

.t/

Œ�M 0;M 0�
D C

.t/
M 0 D �k0

X tr 0

for some M 0; r 0 > 0 and some k0

such that �k0

is central.
Replacing M and M 0 above by some suitable multiples, we can assume that r D

t r 0, and also that M; M 0 � k�k. Hence F.X t / D '.CŒ�M 0;M 0�/ D '.�k0

X tr 0

/ D
'.�kX r/ D '.CŒ�M;M�/ D F.X/.

Proposition 3.26. Let X 2 USS.X/ with `.X/ > 1, and suppose that X has a rigid
power. If R.X/ > 0, then 	.X/ D I.X/. If R.X�1/ > 0, then '.X/ D F.X/.
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Proof. By Theorem 3.21, there exists some M > 0 such that CM D �kX t and
RM D �sXM �t , where t > 0, M � t > 0, and both �k and �s are central.

Suppose that R.X�1/ > 0. By Corollary 3.6 this implies that '.Xm/ D '.X/

for every m � 1. We can assume that M is a multiple of the orbit length of X ,
hence CŒ�M;M � D CM . If one chooses M big enough (replacing it by a multiple if
necessary), one has F.X/ D '.CŒ�M;M�/ D '.CM / D '.X t / D '.X/.

Now suppose that R.X/ > 0. Then 	.Xm/ D 	.X/ for every m > 0, by Corol-
lary 3.6. In the same way as above, since M is a multiple of the orbit length of
X and M � t > 0, replacing M (and thus t ) by a multiple if necessary one has
I.X/ D 	.RŒ�M;M�/ D 	.RM / D 	.�sXM�t / D 	.XM�t / D 	.X/.

In order to obtain the claimed bound on rigid powers, we need to investigate how
the left normal form of CŒk;m� is modified when we multiply it on the left by Ck . We
actually show the following, more general result.

Proposition 3.27. Let X 2 USS.X/ with `.X/ > 1, and suppose that X has a rigid
power. Let t > 1 be such that X t 2 USS.X t /. Consider C1 : : : Cm D �ky1 : : : ys

and CmC1 : : : CmCt D �qz1 : : : zr in left normal form. Then, the final t � 1 factors
in the left normal form of C1 : : : CmCt are precisely z2 : : : zr .

Proof. We will need to use the factors Ci and Ri corresponding to the element Y D
.cm.X//t . In order to avoid an excessive use of indices, we will denote them by C 0

i

and R0
i . That is, C 0

1 D 	.Y /, and the other elements C 0
i and R0

i are defined in the same
way as the corresponding elements for X .

We know by Theorem 2.9 that CmC1 : : : CmCt is equal to the product of the first t

factors (including �’s) in the left normal form of .cm.X//t��pt (where p D inf.X/).
Hence C 0

1 D 	..cm.X//t / D ��q.z1/, and ��q.z2/ 4 R0
1.

Now one has

C1 : : : CmCmC1 : : : CmCt D C1 : : : Cm�qz1 : : : zr

D C1 : : : Cm��q.z1/��q.z2/�qz3 : : : zr :

According to Proposition 2.12 and the definition of absolute final factors, one has
'.C1 : : : Cm/ < F.cm.X//. Recall from the proof of Proposition 2.23 that if X t 2
USS.X t / then .cm.X//t also belongs to its ultra summit set, since the action of cycling
or decycling any power of X (in particular X ) preserves the set of powers of X be-
longing to their ultra summit set. Moreover, since X has a rigid power, Theorem 3.22
implies that cm.X/ also has a rigid power. We can then apply Proposition 3.25 to
obtain F.cm.X// D F..cm.X//t / D F.Y /. Hence '.C1 : : : Cm/ < F.Y /.

This yields the following:

'.C1 : : : Cm��q.z1// D '.C1 : : : CmC 0
1/ < '.F.Y /C 0

1/ D '.C 0�aC1 : : : C 0�1C 0
0C 0

1/
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for a big enough. But we know by Lemma 2.5 that the decomposition

'.C 0�aC1 : : : C 0�1C 0
0C 0

1/R0
1

is left weighted. Hence

'.C1 : : : Cm��q.z1// ��q.z2/

is also left weighted, and the factors z2 : : : zr are not modified when computing the
left normal form of C1 : : : CmCt .

The fact that the left normal forms of CŒ�m;m� are not modified too much when
one increases m, implies a strong property on the initial factors of powers of X : they
are comparable by 4. First we need the following technical result.

Lemma 3.28. Let A D �px1 : : : xr 2 G, and let s be a simple element. Then either
	.As/ 4 	.A/ or 	.A/ 4 	.As/.

Proof. Suppose there is no unexpected � when multiplying A by s, that is, inf.As/ D
p. Then 	.�px1 : : : xrs/ D ��p.x1t / for some (possibly trivial) simple element t .
Hence 	.A/ D ��p.x1/ 4 ��p.x1t / D 	.As/.

Now suppose there is an unexpected �, that is, inf.As/ D p C 1. Let ˛ D
.x2 : : : xrs/ ^ �. Then 	.As/ D 	.�px1 : : : xrs/ D 	.�px1˛/. Moreover, x1˛ D
�ˇ for some simple element ˇ, that is, ˛ D @.x1/ˇ. Since ˛ is simple, it follows
that ˇ 4 @2.x1/ D �.x1/. Therefore

	.As/ D 	.�px1˛/ D 	.�pC1ˇ/ 4 	.�pC1�.x1// D ��p.x1/ D 	.A/:

Proposition 3.29. Let X 2 USS.X/ with `.X/ > 1. Suppose that X has a rigid
power, and let t � 1 such that X t 2 USS.X t /. Then for every m � 1, the simple
elements 	.C1 : : : Cm/ and 	.C1 : : : CmCt / are comparable. That is, either

	.C1 : : : Cm/ 4 	.C1 : : : CmCt /

or
	.C1 : : : CmCt / 4 	.C1 : : : Cm/:

Proof. Write C1 : : : Cm D �ky1 : : : ys and CmC1 : : : CmCt D �qz1 : : : zr . We know
by Proposition 3.27 that

'.y1 : : : ys��q.z1// ��q.z2/

is left weighted. Hence

	.C1 : : : CmCt / D 	.�ky1 : : : ys��q.z1//;

where ��q.z1/ is simple. By Lemma 3.28, this implies that 	.C1 : : : CmCt / is com-
parable to 	.�ky1 : : : ys/ D 	.C1 : : : Cm/, as we wanted to show.
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We can finally state the result concerning the initial factors of powers of X .

Corollary 3.30. Let X 2 USS.X/ with `.X/ > 1, and suppose that X has a rigid
power. If Xm 2 USS.Xm/ for m D 1; : : : ; k�k, then the set

f	.X/; 	.X2/; : : : ; 	.Xk�k/g
is totally ordered by 4 (although the total order given by 4 does not necessarily
coincide with the above enumeration).

Proof. We just need to recall from Theorem 2.9 that 	.Xm/ D 	.C1 : : : Cm/ for every
m � 1, and use the above result. Since every two elements are comparable by 4, the
set is totally ordered.

Corollary 3.31. With the above conditions, there exist some integers a; b with
1 � a < b � k�k such that 	.Xa/ D 	.Xb/.

Proof. The length of a strict chain of simple elements 1 � s1 � s2 � � � � � sr � �

is bounded by k�k. Since the elements in f	.X/; 	.X2/; : : : ; 	.Xk�k/g are totally
ordered, the lack of a repeated pair would provide a chain of bigger length, which is
not possible.

It is important to notice that, in the sequence 	.X/; 	.X2/; 	.X3/; : : : , when one
encounters the first repetition, the sequence becomes periodic. And the period is the
distance between the two repeated elements. This is given by the following result.

Proposition 3.32. With the above conditions, if 	.Xa/ D 	.Xb/ then 	.XaCk/ D
	.XbCk/ for every k � 0.

Proof. By hypothesis 	.C1 : : : Ca/ D 	.Xa/ D 	.Xb/ D 	.C1 : : : Cb/. Apply-
ing to this equality the transport defined in [24], one obtains 	.C2 : : : CaC1/ D
	.C2 : : : CbC1/. Let 	 D 	.C2 : : : CaC1/ D 	.C2 : : : CbC1/. By Proposition 3.27, if we
multiply C2 : : : CaC1 or C2 : : : CbC1 on the left by C1, only their initial factors (which
in both cases are equal to 	) are modified. Moreover, since sup.C1 : : : CaC1/ D aC1,
it follows that sup.C1	/ D 2. Hence the initial factor of C1 : : : CaC1 is equal either to
�^.C1	/ (if the infimum does not increase) or to .C1	/��1 (if the infimum increases).
In any case, 	.C1 : : : CaC1/ D 	.C1	/. In the same way, 	.C1 : : : CbC1/ D 	.C1	/,
hence 	.XaC1/ D 	.XbC1/. Induction on k finishes the proof.

The above results can be used to bound the smallest power of X having some
rigidity.

Proposition 3.33. Let X 2 USS.X/ with `.X/ > 1, and suppose that X has a rigid
power. If X t 2 USS.X t / for t D 1; : : : ; k�k, then R.Xm/ > 0 for some positive
m < k�k.
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Proof. We know by Corollary 3.31 that 	.Xa/ D 	.Xb/ for some 1 � a < b � k�k,
and by Proposition 3.32 that the sequence 	.Xa/, 	.XaC1/, 	.XaC2/, … is periodic
of period d D b � a.

Since the interval Œa; b� has length d , there exists a unique m, a � m < b, which
is a multiple of d . Then 	.Xm/ D 	.XmCm/ D 	..Xm/2/. Hence, by Lemma 3.4,
we will have R.Xm/ > 0 if we show that inf.X2m/ D 2 inf.Xm/.

Suppose that Xm D �py1 : : : yr . Since m < b � k�k one has Xm 2 USS.Xm/,
so � 64 y2 : : : yr��p.y1/, which implies � 64 y2 : : : yr��p.y1 : : : yr/ since ��p.y1/

is the biggest simple prefix of ��p.y1 : : : yr/. Then

y1� 64 y1y2 : : : yr��p.y1 : : : yr/:

But if inf.X2m/ D 2p C 1 then, since X2m D .Xm/2 D �py1 : : : yr�py1 : : : yr ,
we would have � 4 �p.y1 : : : yr/y1 : : : yr , and since 	.X2m/ D 	.Xm/ D ��p.y1/,
it would follow that ��pC1.y1/ 4 �p.y1 : : : yr/y1 : : : yr . Applying ��p to this
inequality, we would obtain ��.y1/ D y1� 4 y1 : : : yr��p.y1 : : : yr/, a contradic-
tion. Therefore inf.X2m/ D 2p D inf.Xm/, and since 	.X2m/ D 	.Xm/ it follows
from Lemma 3.4 that R.Xm/ > 0.

Theorem 3.34. Let X 2 USS.X/ with `.X/ > 1, and suppose that X has a rigid
power. If X t 2 USS.X t / for every t such that �k�k � t � k�k, then there is some
m < k�k2 such that Xm is rigid.

Proof. By Proposition 3.33, R.Xp/ > 0 for some 0 < p < k�k. Applying Propo-
sition 3.33 to X�1, one obtains that R.X�q/ > 0 for some 0 < q < k�k.

Let m D lcm.p; q/ � pq < k�k2. Since Xm is a power of Xp , it follows from
Corollary 3.11 that Xm belongs to a closed orbit under cycling, hence it has maximal
infimum in its conjugacy class [20]. In the same way, since X�m is a power of X�q ,
it follows from Corollary 3.11 that X�m belongs to a closed orbit under cycling, thus
Xm belongs to a closed orbit under decycling, and hence it has minimal supremum in
its conjugacy class [20]. Therefore Xm 2 SSS.Xm/, and since it belongs to a closed
orbit under cycling, Xm 2 USS.Xm/.

Moreover, by Proposition 3.9, R.Xm/ > 0 and R.X�m/ > 0, since they are
powers of Xp and X�q . This implies by Proposition 3.26 that 	.Xm/ D I.Xm/

and '.Xm/ D F.Xm/. Since F.Xm/I.Xm/ is left weighted by Proposition 2.20, it
follows that '.Xm/	.Xm/ is left weighted as written, hence Xm is rigid, as we wanted
to show.

Remark. The proof of the above result is based on the fact that if an element X is such
that R.X/ > 0 and R.X�1/ > 0, and if X has a rigid power, then X is already rigid.
The hypothesis of X having a rigid power is necessary, since we could have X and
X�1 with some rigidity without X being rigid, even if X 2 SU.X/. For instance, if we
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consider the reducible braid X D �1�3 ��3 2 B4, we have R.X/ D R.X�1/ D 1=2,
but neither X nor any power of X is rigid, since Xm D .�1�3/m � �m

3 . In this case
X 2 SU.X/ and R.Xm/ D 1=2 for every m ¤ 0.

We can also find a bound for the smallest rigid power in the case `.X/ D 1, thanks
to the following result.

Lemma 3.35. Let X 2 G with `.X/ D 1. If X t 2 USS.X t / for t D 1; : : : ; k�k,
then `.Xm/ ¤ 1 for some m � k�k.

Proof. Suppose that `.X t / D 1 for t D 1; : : : ; k�k. We will show that the set
f	.X/; 	.X2/; : : : ; 	.Xk�k/g is totally ordered by showing that any two elements in
that set are comparable. Indeed, given s; t 2 f1; : : : ; k�kg with s < t , we have
`.X t�s/ D 1, hence 	.X t / D 	.X sX t�s/ D 	.X s	.X t�s//. Since 	.X t�s/ is sim-
ple, Lemma 3.28 implies that either 	.X t / 4 	.X s/ or 	.X s/ 4 	.X t /. Therefore,
f	.X/; 	.X2/; : : : ; 	.Xk�k/g is a totally ordered set of proper simple elements, thus
	.Xa/ D 	.Xb/ for some 1 � a < b � k�k. But since `.Xa/ D `.Xb/ D 1, this
means that Xb�a is a power of �, a contradiction. Therefore, `.Xm/ ¤ 1 for some
m � k�k.

We can finally remove the hypothesis `.X/ > 1 in order to bound the rigid power
of an element.

Theorem 3.36. Let X 2 USS.X/, and suppose that X has a rigid power. If X t 2
USS.X t / for every t such that �k�k2 � t � k�k2, then there is some m < k�k3

such that Xm is rigid.

Proof. If `.X/ > 1 the result follows from Theorem 3.34. If `.X/ D 1, Lemma 3.35
implies that `.X r/ ¤ 1 for some r � k�k. We cannot have `.X r/ D 0, otherwise
X would be periodic and would not have a rigid power. Hence `.X r/ > 1, and
.X r/t 2 USS..X r/t / for �k�k � t � k�k. The hypothesis of Theorem 3.34 are
then satisfied by X r , hence .X r/s is rigid for some s < k�k2. Therefore X rs is rigid
with rs < k�k3.

In the case of braid groups, the above result implies the following.

Theorem 3.37. If X 2 Bn is a pseudo-Anosov braid, then USS.Xm/ consists of rigid
braids, for some m < k�k3. Moreover, if the canonical length of the elements in
USS.X/ is greater than 1, then m < k�k2.

Proof. By Corollary 3.24, some conjugate Y of X has a rigid power. Moreover, one
can choose Y 2 SU.X/, hence by Theorem 3.36 Y m is rigid for m < k�k3 (and
m < k�k2 if `.Y / > 1). In the proof of Theorem 3.36 we see that we can assume
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`.Y m/ > 1, hence it follows from Theorem 3.15 that USS.Y m/ consists of rigid
elements.

To summarize the consequences for pseudo-Anosov braids, we can solve the
CDP/CSP problem for two pseudo-Anosov elements X; Y 2 Bn using rigid braids.
We just need to compute an element in USS.X t / for each t D 1; 2; : : : until we find
one of them, say zXm 2 USS.Xm/ which is rigid and has canonical length greater
than one. By the above result, m < k�k3. Then all elements in USS.Xm/ will be
rigid, so the computation of USS.Xm/ is easier than in the general case, as will be
seen in [9], and we will possibly be able to bound the size of USS.Xm/. Moreover,
since pseudo-Anosov braids have unique roots, if one solves the CDP/CSP for Xm

and Y m, finding some conjugating element Z, then Z is also a conjugating element
for X and Y , so this solves the CDP/CSP for X and Y .
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