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The `2-cohomology of hyperplane complements

M. W. Davis, T. Januszkiewicz and I. J. Leary�

Abstract. We compute the `2-Betti numbers of the complement of a finite collection of affine
hyperplanes in Cn. At most one of the `2-Betti numbers is nonzero.
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1. Introduction

Suppose X is a finite CW complex with universal cover zX . For each p � 0, one can
associate toX a Hilbert space, H p. zX/, thep-dimensional “reduced `2-cohomology,”
cf. [3]. Each H p. zX/ is a unitary �1.X/-module. Using the �1.X/-action, one can
attach a nonnegative real number called “von Neumann dimension” to such a Hilbert
space. The “dimension” of H p. zX/ is called the pth `2-Betti number of X .

Here we are interested in the case where X is the complement of a finite number
of affine hyperplanes in Cn. (Technically, in order to be in compliance with the
first paragraph, we should replace the complement by a homotopy equivalent finite
CW complex. However, to keep from pointlessly complicating the notation, we shall
ignore this technicality.) Let A be the finite collection of hyperplanes, †.A/ their
union and M.A/ WD Cn �†.A/. The rank of A is the maximum codimension l of
any nonempty intersection of hyperplanes in A. It turns out that the ordinary (reduced)
homology of †.A/ vanishes except in dimension l � 1 (cf. Proposition 2.1). Let
ˇ.A/ denote the rank of xHl�1.†.A//. Our main result, proved as Theorem 6.2, is
the following.

Theorem A. Suppose A is an affine hyperplane arrangement of rank l . Only the l th

`2-Betti number of M.A/ can be nonzero and it is equal to ˇ.A/.
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This is reminiscent of a well-known result about the cohomology of M.A/ with
coefficients in a generic flat line bundle ( “generic” is defined in Section 5). This
result is proved as Theorem 5.3. We state it below.

Theorem B. Let L be a generic flat line bundle over M.A/. Then H�.M.A/IL/
vanishes except in dimension l and dimC H

l.M.A/IL/ D ˇ.A/.

Both theorems have similar proofs. In the case of Theorem A the basic fact is
that the `2-Betti numbers of S1 vanish. (In other words, if the universal cover R of
S1 is given its usual cell structure, then H �.R/ D 0.) Similarly, for Theorem B, if
L is a flat line bundle over S1 corresponding to an element � 2 C�, with � ¤ 1,
then H�.S1IL/ D 0. By the Künneth Formula, there are similar vanishing results
for any central arrangement. To prove the general results, one considers an open
cover of M.A/ by “small” open sets each homeomorphic to the complement of a
central arrangement. The E1-page of the resulting Mayer–Vietoris spectral sequence
is nonzero only along the bottom row, where it can be identified with the simplicial
cochains with constant coefficients on a pair .N.U/; N.Using//, which is homotopy
equivalent to .Cn; †/. It follows that the E2-page can be nonzero only in position
.l; 0/. (Actually, in the case of Theorem A, technical modifications must be made to
the above argument. Instead of reduced `2-cohomology one takes local coefficients
in the von Neumann algebra associated to the fundamental group and the vanishing
results only hold modulo modules which do not contribute to the `2-Betti numbers.)

In [2] the first and third authors proved a similar result for the `2-cohomology of the
universal cover of the Salvetti complex associated to an arbitrary Artin group (as well
as a formula for the cohomology of the Salvetti complex with generic, 1-dimensional
local coefficients). This can be interpreted as a computation of the `2-cohomology of
universal covers of hyperplane complements associated to infinite reflection groups.
Although the main argument in [2] uses an explicit description of the chain complex
of the Salvetti complex, an alternative argument, similar to the one outlined above, is
given in [2, Section 10].

We thank the referee for finding some mistakes in the first version of this paper.

2. Hyperplane arrangements

A hyperplane arrangement A is a finite collection of affine hyperplanes in Cn. A
subspace of A is a nonempty intersection of hyperplanes in A. Denote by L.A/ the
poset of subspaces, partially ordered by inclusion, and let xL.A/ WD L.A/[fCng. An
arrangement is central if L.A/ has a minimum element. Given G 2 L.A/, its rank,
rk.G/, is the codimension of G in Cn. The minimal elements of L.A/ are a family
of parallel subspaces and they all have the same rank. The rank of an arrangement A

is the rank of a minimal element in L.A/. A is essential if rk.A/ D n.
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The singular set †.A/ of the arrangement is the union of hyperplanes in A (so
that †.A/ is a subset of Cn). The complement of †.A/ in Cn is denoted M.A/.
When there is no ambiguity we will drop the “A” from our notation and write L, †
or M instead of L.A/, †.A/ or M.A/.

Proposition 2.1. † is homotopy equivalent to a wedge of .l � 1/-spheres, where
l D rk.A/. .So, if A is essential, the spheres are .n � 1/-dimensional./

Proof. The proof follows from the usual “deletion-restriction” argument and induc-
tion. If the rank l is 1, then † is the disjoint union of a finite family of parallel
hyperplanes. Hence, † is homotopy equivalent to a finite set of points, i.e., to a
wedge of 0-spheres. Similarly, when l D 2, it is easy to see that † is homotopy
equivalent to a connected graph; hence, a wedge of 1-spheres. So, assume by induc-
tion that l > 2. Choose a hyperplane H 2 A, let A0 D A � fH g and let A00 be
the restriction of A to H (i.e., A00 WD fH 0 \ H j H 0 2 A0g). Put †0 D †.A0/,
†00 D †.A00/, l 0 D rk.A0/ and l 00 D rk.A00/. We can also assume by induction on
Card.A/ that †0 and †00 are homotopy equivalent to wedges of spheres. If l 0 < n

and H is transverse to the minimal elements of L.A0/, then l 00 D l , the arrangement
splits as a product, † D †00 � C, and we are done by induction. In all other cases
l 0 D l and l 00 D l � 1. We have † D †0 [ H and †0 \ H D †00. H is simply
connected and since l > 2, †0 is simply connected and †00 is connected. By van
Kampen’s Theorem, † is simply connected. Consider the exact sequence of the pair
.†;†0/:

! H�.†0/ ! H�.†/ ! H�.†;†0/ ! :

There is an excision isomorphism,H�.†;†0/ Š H�.H;†00/. SinceH is contractible
it follows that H�.H;†00/ Š xH��1.†

00/. By induction, xH�.†0/ is concentrated in
dimension l � 1 and xH�.†00/ in dimension l � 2. So, xH�.†/ is also concentrated in
dimension l�1. It follows that† is homotopy equivalent to a wedge of l�1 spheres.

3. Certain covers and their nerves

Suppose U D fUigi2I is a cover of some spaceX (where I is some index set). Given
a subset � � I , put U� WD T

i2� Ui . Recall that the nerve of U is the simplicial
complex N.U/, defined as follows. Its vertex set is I and a finite, nonempty subset
� � I spans a simplex of N.U/ if and only if U� is nonempty.

We shall need to use the following well-known lemma several times in the sequel,
see [4, Cor. 4G.3 and Ex. 4G(4)]

Lemma 3.1. Let U be a cover of a paracompact space X and suppose that either
(a) each Ui is open, or (b) X is a CW complex and each Ui is a subcomplex. Further
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suppose that for each simplex � of N.U/, U� is contractible. Then X and N.U/ are
homotopy equivalent.

Suppose A is a hyperplane arrangement in Cn. An open convex subset U in Cn

is small (with respect to A) if the following two conditions hold:

(i) fG 2 xL.A/ j G \ U ¤ ;g has a unique minimum element Min.U /.

(ii) A hyperplane H 2 A has nonempty intersection with U if and only if Min.U /
lies in H .

The intersection of two small convex open sets is also small; hence, the same is true
for any finite intersection of such sets.

Now let U D fUigi2I be an open cover of Cn by small convex sets. Put

Using WD fU 2 U j U \† ¤ ;g:

Lemma 3.2. N.U/ is a contractible simplicial complex and N.Using/ is a subcom-
plex homotopy equivalent to †. Moreover, H�.N.U/; N.Using// is concentrated in
dimension l , where l D rk A.

Proof. Using is an open cover of a neighborhood of † which deformation retracts
onto †. For each simplex � of N.U/, U� is contractible (in fact, it is a small convex
open set). By Lemma 3.1, N.U/ is homotopy equivalent to Cn and N.Using/ is ho-
motopy equivalent to†. The last assertion of the lemma follows from Proposition 2.1.

Remark 3.3. Lemma 3.1 can also be used to show that the geometric realization of
L is homotopy equivalent to †.

Definition 3.4. ˇ.A/ is the rank of Hl.N.U/; N.Using//.

Equivalently, ˇ.A/ is the rank of Hl.C
n; †.A// (or of xHl�1.†.A//. Also, it is

not difficult to see that .�1/lˇ.A/ D �.Cn; †/ D 1 � �.†/ D �.M/, where �. /
denotes the Euler characteristic.

Remark 3.5. Suppose AR is an arrangement of real hyperplanes in Rn and†R � Rn

is the singular set. Then Rn � †R is a union of open convex sets called chambers
and ˇ.AR/ is the number of bounded chambers. If A is the complexification of AR,
then †.A/ � †.AR/. Hence, ˇ.A/ D ˇ.AR/.

For any small open convex set U , put

yU WD U �†.A/ D U \M.A/:



The `2-cohomology of hyperplane complements 305

Since U is convex, .U; U \ †.A// is homeomorphic to .Cn; †.AG//, where G D
Min.U / and AG is the central subarrangement defined by

AG WD fH 2 A j G � H g:
(G might be Cn, in which case AG D ;.) Hence, yU is homeomorphic to M.AG/,
the complement of a central subarrangement.

The next lemma is well known.

Lemma 3.6. Suppose U is a small open convex set. Then �1. yU/ is a retract of
�1.M.A//.

Proof. The composition of the two inclusions yU ,! M.A/ ,! M.AG/ is a homo-
topy equivalence, where G D Min.U / 2 L.A/.

By intersecting the elements of U withM (D Cn �†) we get an induced cover yU
of M . An element of yU is a deleted small convex open set yU for some U 2 U.
Similarly, by intersecting Using with M we get an induced cover yUsing of a deleted
neighborhood of †. The key observation is the following.

Observation 3.7. N. yU/ D N.U/ and N. yUsing/ D N.Using/.

4. The Mayer–Vietoris spectral sequence

Let X be a space, � D �1.X/ and r W zX ! X the universal cover. Given a left
�-module A, define

C �.X IA/ WD Hom�.C�. zX/;A/;
the cochains with local coefficients in A. Taking cohomology gives H�.X IA/.

Let U be an open cover of X and N D N.U/ its nerve. Let N .p/ denote the set
of p-simplices in N . There is an induced cover zU WD fr�1.U /gU 2U with the same
nerve. There is a Mayer–Vietoris double complex

Cp;q D
M

�2N .p/

Cq.r
�1.U� //

(cf. [1, §VII.4]) and a corresponding double cochain complex with local coefficients:

Cp;q.A/ WD Hom�.Cp;qIA/:
The cohomology of the total complex is H�.X IA/. Now suppose that for each
simplex � of N , U� is connected and that �1.U� / ! �1.X/ is injective. (This
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implies that r�1.U� / is a disjoint union of copies of the universal cover zU� .) We get
a spectral sequence with E1-page

E
p;q
1 D

M

�2N .p/

H q.U� IA/: (1)

HereH q.U� IA/means the cohomology of Hom�.C�.r�1.U� //; A/ or equivalently,
of Hom�1.U� /.C�. zU� /IA/. TheE2-page has the formEp;q DHp.N I Hq/, where Hq

means the functor � ! H q.U� IA/. The spectral sequence converges to H�.X IA/.
In the next two sections we will apply this spectral sequence to the case where

X is M.A/ and the open cover is yU from the previous section. By Lemma 3.6
�1. yU� / ! �1.M.A/ is injective, so we get a spectral sequence with E1-page given
by (1). Moreover, the �-module A will be such that for any simplex � in N. yUsing/,
H q. yU� IA/ D 0 for all q (even for q D 0) while for a simplex � of N. yU/ which
is not in N. yUsing/, H q.U� IA/ D 0 for all q > 0 and is constant (i.e., independent
of � ) for q D 0. Thus Ep;q

1 will vanish for q > 0 and E�;0
1 can be identified with the

cochain complex C �.N.U/; N.Using// with constant coefficients.

5. Generic coefficients

Here we will deal with 1-dimensional local coefficient systems. We begin by consid-
ering such local coefficients on S1. Let ˛ be a generator of the infinite cyclic group
�1.S

1/. Suppose k is a field of characteristic 0 and � 2 k�. LetA� be the kŒ�1.S
1/�-

module which is a 1-dimensional k-vector space on which ˛ acts by multiplication
by �.

Lemma 5.1. If � ¤ 1, then H�.S1IA�/ vanishes identically.

Proof. If S1 has its usual CW structure with one 0-cell and one 1-cell, then in the
chain complex for its universal cover both C0 and C1 are identified with the group
ring kŒ�1.S

1/� and the boundary map with multiplication by 1 � ˛, where ˛ is the
generator of �1.S

1/. Hence, the coboundary map C 0.S1IA�/ ! C 1.S1IA�/ is
multiplication by 1 � �.

Next, consider M.A/. Its fundamental group � is generated by loops aH for
H 2 A, where the loop aH goes once around the hyperplane H in the “positive”
direction. Let ˛H denote the image of aH in H1.M.A//. Then H1.M.A// is free
abelian with basis f˛H gH2A. So, a homomorphismH1.M.A// ! k� is determined
by an A-tupleƒ 2 .k�/A, whereƒ D .�H /H2A corresponds to the homomorphism
sending ˛H to �H . Let ƒ W � ! k� be the composition of this homomorphism with
the abelianization map � ! H1.M.A//. The resulting local coefficient system on
M.A/ is denoted Aƒ. The next lemma follows from Lemma 5.1.
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Lemma 5.2. Suppose A is a nonempty central arrangement and ƒ is such thatQ
H2A �H ¤ 1. Then H q.M.A// vanishes for all q.

Proof. Without loss of generality we can suppose that the elements of A are linear
hyperplanes. The Hopf bundle M.A/ ! M.A/=S1 is trivial (cf. [6, Prop. 5.1,
p. 158]); so, M.A/ Š B � S1, where B D M.A/=S1. Let i W S1 ! M.A/ be
inclusion of the fiber. The induced map on H1. / sends ˛ to

P
˛H . Thus, if we pull

back Aƒ to S1, we get A�, where � D Q
H2A �H . The condition on ƒ is � ¤ 1,

which by Lemma 5.1 implies that H�.S1IA�/ vanishes identically. By the Künneth
Formula H�.M.A/IAƒ/ also vanishes identically.

Returning to the case where A is a general arrangement, for each simplex �
in N. yU/, let A� WD AMin.U� / be the corresponding central arrangement (so that
yU� Š M.A� /). Given ƒ 2 .k�/A, put

�� WD
Y

H2A�

�H :

Call ƒ generic if �� ¤ 1 for all � 2 N.Using/.

Theorem 5.3 (Compare [7, Thm. 4.6, p. 160]). Let A be an affine arrangement of
rank l and ƒ a generic A-tuple in k�. Then H�.M.A/IAƒ/ is concentrated in
degree l and

dimk H
l.M.A/IAƒ/ D ˇ.A/:

Proof. We have an open cover of zM.A/, fr�1. yU/gU 2U. By Observation 3.7, its
nerve is N.U/. By Lemma 5.2 and the last paragraph of Section 4, the E1-page of
the Mayer–Vietoris spectral sequence is concentrated along the bottom row where it
can be identified with C �.N.U/; N.Using/I k/. So, the E2-page is concentrated on
the bottom row and Ep;0

2 D Hp.N.U/; N.Using/I k/. By Lemma 3.2, this group is
nonzero only for p D l and

dimk E
l;0
2 D dimk H

l.N.U/; N.Using/I k/ D ˇ.A/:

Remark 5.4. When k D C, a 1-dimensional local coefficient system on X is the
same thing as a flat line bundle over X .

6. `2-cohomology

For a discrete group � , `2� denotes the Hilbert space of complex-valued, square
integrable functions on � . There are unitary �-actions on `2� by either left or right
multiplication; hence, C� acts either from the left or right as an algebra of operators.
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The associated von Neumann algebra N � is the commutant of C� (acting from, say,
the right on `2�).

Given a finite CW complexX with fundamental group� , the space of `2-cochains
on its universal cover zX is the same asC �.X I `2�/, the cochains with local coefficients
in `2� . The image of the coboundary map need not be closed; hence, H�.X I `2�/

need not be a Hilbert space. To remedy this, one defines the reduced `2-cohomology
H �. zX/ to be the quotient of the space of cocycles by the closure of the space of
coboundaries. We shall also use the notation H �.X I `2�/ for the same space.

The von Neumann algebra admits a trace. Using this, one can attach a “dimension,”
dimN � V , to any closed, �-stable subspace V of a finite direct sum of copies of
`2� (it is the trace of orthogonal projection onto V ). The nonnegative real number
dimN �.H

p.X I `2�// is the pth `2-Betti number of X .
A technical advance of Lück [5, Ch. 6] is the use of local coefficients in N � in place

of the previous version of `2-cohomology. He shows there is a well-defined dimension
function on N �-modules, A ! dimN � A, which gives the same answer for `2-Betti
numbers, i.e., for each p one has that dimN � H

p.X I N �/ D dimN � H p.X I `2�/.
Let T be the class of N �-modules of dimension 0. The dimension function is additive
with respect to short exact sequences. This allows one to define `2-Betti numbers
for spaces more general than finite complexes. The class T is a Serre class of N �-
modules [8], which allows one to compute `2-Betti numbers by working with spectral
sequences modulo T .

Lemma 6.1. Suppose A is a nonempty central arrangement. Then, for all q � 0,
H q.M.A/I N �/ lies in T . In other words, all `2-Betti numbers of M.A/ are zero.

Proof. The proof is along the same line as that of Lemma 5.2. It is well known that
the reduced `2-cohomology of R vanishes. SinceM.A/ D S1 �B , the result follows
from the Künneth Formula for `2-cohomology in [5, 6.54 (5)].

Theorem 6.2. Suppose A is an affine hyperplane arrangement. Then

H�.M.A/I N �/ Š H�.N.U/; N.Using//˝ N � .mod T /:

Hence, for l D rk.A/, the `2-Betti numbers of M.A/ vanish except in dimension l ,
where dimN � H l. zM.A// D ˇ.A/.

Proof. For each � 2 N.Using/, let �� WD �1.U� /. By Lemma 6.1,

dimN ��
H�.M.A� /I N �� / D 0:

Since the N� -module H�.M.A� /;N �/ is induced from H�.M.A� /;N �/,

dimN � H
�.M.A� /I N �/ D dimN ��

H�.M.A� /I N �� / D 0:
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As in the proof of Theorem 5.3, it follows that the E1-page of the spectral sequence
consists of modules in T , except that E�;0

1 is identified with C �.N.U/; N.Using//˝
N .�/. Similarly, theE2-page consists of modules in T , except thatE�;0

2 is identified
withH�.N.U/; N.Using//˝N � . For each subsequent differential, either the source
or the target is a module in T , and hence for each i and j one has that Ei;j1 Š E

i;j
2

.mod T /. The claim follows since the filtration of H�.M.A/I N �/ given by the
E1-page of the spectral sequence is finite.
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