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Aperiodic colorings and tilings of Coxeter groups
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Abstract. We construct a limit aperiodic coloring of hyperbolic groups. Also we construct
limit strongly aperiodic strictly balanced tilings of the Davis complex for all Coxeter groups.
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Introduction

In [BDS] we constructed a quasi-isometric embedding of hyperbolic groups into a
finite product of binary trees. First we implemented such construction for hyperbolic
Coxeter groups [DS]. As a byproduct we obtained aperiodic tilings with finitely many
tiles of the Davis complex for these groups. Our tilings are limit strongly aperiodic and
the set of tiles can be taken to be aperiodic. As a result we obtain limit strongly aperi-
odic tilings of those hyperbolic spaces Hn which admit cocompact reflection groups.
Thus 2-dimensional examples come from regular p-gons, p � 5 in the hyperbolic
plane. In dimension 3 there exists a right-angled regular hyperbolic dodecahedron
([A]). In dimension 4 there exists a right-angled hyperbolic 120-cell ([C], [D2], [PV]).
The examples exist up to dimension 8 [VS]. Of course the dimension of the hyperbolic
spaces is limited by Vinberg’s theorem (� 29) [V]. Existence of aperiodic sets of tiles
for these cases also follows from results of Block and Weinberger [BW]. A new part
of our results is the limit strong aperiodicity of tilings. Also the Block–Weinberger
aperiodic tilings are unbalanced. In this paper we construct strongly balanced tilings
which are limit strongly aperiodic. A strongly aperiodic tiling of H2 was recently
constructed by Goodman-Strauss [G] (his tiling even has a finite strongly aperiodic
set of tiles).

First we obtain our tiling of the Davis complex as a tiling by coloring with geometri-
cally the same tile (the chamber). Then we take a geometric resolution of the tiling by
coloring. If a discrete group G acts by isometries properly cocompactly on a metric
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space X , there is a universal way to construct an aperiodic tiling of X by means of
an aperiodic coloring of G. We consider an orbit Gx and the Voronoi cells Vgx for
g 2 G where

Vy D fx 2 X j d.y; x/ � d.y;Gx/g:
Clearly, all cells are isometric to each other and an aperiodic coloring of G defines
an aperiodic tiling of X by color. In the case of Coxeter groups one can consider
colorings of the walls instead of groups. This allows us to construct strictly balanced
aperiodic tilings.

This paper is arranged as follows. First we consider a coloring of discrete groups
(Section 1). Then we extend this to a coloring of spaces, in particular trees, on which
the group acts (Section 2). Then we apply this to the case of trees of walls in a
Coxeter group (Section 3). Finally we construct a strictly balanced limit aperiodic
tiling (Section 5). In Section 4 we give a brief account of the topology on the space
of tilings.

It is a pleasure to thank Victor Bangert and Mark Sapir for useful discussions about
the Morse–Thue sequence. Also we would like to thank the Max-Planck Institut für
Mathematik in Bonn for its hospitality.

1. Aperiodic coloring of groups

Definition. A coloring of a set X by the set of colors F is a map � W X ! F .

We consider the product topology on the set of all colorings FX of X where F is
taken with the discrete topology.

A group G acts (from the left) on FG by .g�/.x/ D �.g�1x/.

Definition. A coloring � W � ! F of a discrete group is called aperiodic if � ¤ g�

for all g 2 � n e. This means that the orbit �� of � under the left action of � on F �

is full i.e., the isotropy group of � is trivial.
If � D g� for some g 2 � we call � g-periodic. Clearly, the g-periodicity is

equivalent to the g�1-periodicity.

Note that every group admits an aperiodic coloring ıe W � ! f0; 1g by two ele-
ments with ıe.e/ D 1 and ıe.g/ D 0 for g ¤ e. This coloring is not interesting since
it fails to satisfy the following condition.

Definition. A coloring � W � ! F of a discrete group � is called limit aperiodic if
the action of � on the closure �� of the orbit �� is free, i.e., every coloring  2 ��
is aperiodic.
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We consider the question whether every finitely generated group admits a limit
aperiodic coloring by finitely many colors.

Remark. There is a weaker version of this question. We say that a coloring � 2 F �

is weakly aperiodic if the orbit �� is infinite. A coloring � is called limit weakly
aperiodic if every coloring in the closure  2 �� is weakly aperiodic. We note
that the weakly aperiodic version of this question has an affirmative answer. Namely
V. Uspenskii proved [U] that for every discrete group � the topological dynamical
system .F � ; �/ has a compact infinite �-invariant setX � F � with a minimal action
on it. We recall that an action is minimal if every orbit is dense. Thus no orbit in X
can be finite, and hence every element � 2 X is limit weakly aperiodic.

We do not deal with weakly aperiodic colorings in this paper. We just note that
weakly aperiodic colorings correspond to aperiodic tilings and aperiodic coloring
correspond to strongly aperiodic tilings (see Section 4).

Proposition 1. Let H � G be a finite index subgroup. Then the group G admits a
limit aperiodic coloring by finitely many colors if and only if H does.

Proof. Let � W G ! F be a limit aperiodic coloring of G. Let n D ŒG W H� and let
G D `n

iD1Hyi be the decomposition of G into right H -cosets. Let �y denote the
result of the right y-action, that is .�y/.x/ D �.xy/.

We define  W H ! F n by the formula  .x/ D ..�y1/.x/; : : : ; .�yn/.x//.
Assume that limk.hk / D  0 for a sequence hk 2 H and  0.ax/ D  0.x/ for
some a 2 H and for all x 2 H . Taking a subsequence we may assume that the
sequence hk� is convergent. Since limk.hk�/ is not a-periodic, there is z 2 G

such that .hk�/.az/ ¤ .hk�/.z/ for infinitely many k. Let z 2 Hyi . Then for all
sufficiently large k we have the equality .hk /.ax/ D .hk /.x/ for x D zy�1

i 2 H .
Hence .hk�yi /.ax/ D .hk�yi /.x/. Therefore we have a contradiction:

.hk�/.az/ D �.h�1
k azy�1

i yi /

D .hk�yi /.ax/

D .hk�yi /.x/

D �.h�1
k xyi / D .hk�/.z/:

In the other direction we may assume that H is normal. If it is not, we take a
smaller normal subgroup of finite indexH 0. By the aboveH 0 admits a limit aperiodic
coloring. Let  W H ! F be a limit aperiodic coloring of H and let n D ŒG W H�.
We define a coloring � W G ! F � f1; : : : ; ng by the formula �.x/ D . .y�1

i x/; i/

for x 2 Hyi where G D `n
iD1Hyi is the decomposition of G into right H -cosets.

Assume that �0 D limk gk� is a-periodic for some a. Since allH -cosets are colored
by different colors, a must be in H . We may assume that all gk 2 yjH for some
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fixed j . Let a0 D y�1
j ayj . Since  is limit aperiodic, there is z 2 H such that

.y�1
j gk /.z/ ¤ .y�1

j gk /.a
0z/. We take x D yj z. Then for infinitely many

k, gk�.x/ D gk�.ax/. Note that gk�.x/ D �.g�1
k
yj z/ D  .g�1

k
yj z/ by the

definition of  and the choice y1 D e. Thus gk�.x/ D .y�1
j gk /.z/. On the

other hand gk�.x/ D gk�.ax/ D �.g�1
k
ayj z/ D �.g�1

k
yja

0z/ D .y�1
j gk /.a

0z/.
Contradiction.

Example. The following coloring of Z is not limit aperiodic:

�.n/ D
(
1 if n D ˙k2, k 2 N,

0 otherwise:

We consider the sequence of colorings m.x/ D �.xCm2/, m 2 Z�, and show that
the constant 0-coloring is the limit of m. We need to show that limm!1  m.x/ D 0

for every x 2 N. Since the equation x Cm2 D ˙k2 has only finitely many integral
solutions .m; k/, the result follows.

Since every weakly aperiodic coloring of Z is aperiodic, the existence of a limit
aperiodic coloring of Z follows from the existence of a non-periodic minimal set for
the shift action of Z on f0; 1gZ (see the above remark).

An explicit example of a limit aperiodic coloring of Z can be given by means of
the Morse–Thue sequence m W N ! f0; 1g.

Definition ([Mor], [T], Morse–Thue sequence m.i/). Consider the substitution rule
0 ! 01 and 1 ! 10. Then start from 0 to perform these substitutions:

0 ! 01 ! 0110 ! 01101001 ! � � � :
By taking the limit we obtain a sequence of 0’s and 1’s called the Morse–Thue se-
quence.

Theorem 1 ([HM], [T]). The Morse–Thue sequence contains no string of typeWWW
where W is any word in 0 and 1.

We consider the coloring � W Z ! f0; 1g defined as �.x/ D m.jxj/.
Proposition 2. The coloring � of Z is limit aperiodic.

Proof. Assume the contrary: there is a sequence fnkg tending to infinity and a 2 N
such that  .x C a/ D  .x/ where  .x/ D limk!1 �.x C nk/ for all x 2 Z.
We may assume that all nk > 0. Then there is k0 such that for all x 2 Œ1; 3a� and
all k > k0, we have  .x/ D �.x C nk/. Let W D  .1/ .2/ : : :  .a/. Note
that  .1/ .2/ : : :  .3a/ D WWW . On the other hand  .x/ D �.x C nk/ D
m.x C nk/ for x 2 Œ1; 3a�. Thus we have a “cube” WWW in the Morse–Thue
sequence. Contradiction.
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Actually this coloring of Z has the following stronger property: given n 2 Z n 0
and m 2 Z there exists a q 2 Z with jq �mj � 3jnj such that �.q/ ¤ �.q C n/.

One can ask whether every finitely generated group has a finite coloring with a
similar property.

Question. Let G be a finitely generated group, and let d be the word metric with
respect to a finite generating set. Does there exists a finite coloring � W G ! F and
a constant � > 0 such that for every element g 2 G n e and every h 2 G there exists
b 2 B�dg.h/.h/ with �.gb/ ¤ �.b/? Here dg.h/ D d.gh; h/ is the displacement of
g at h and Br.h/ is the distance ball of radius r with center h.

Such a coloring � is not g-invariant and one can see this aperiodicity already by
considering the coloring only on a distance ball Br.h/, where h is an arbitrary point
and the radius is a fixed constant times the displacement dg.h/. A coloring with this
property can be considered as a natural generalization of the Morse–Thue coloring
to the group G. Such a coloring is in some sense “as aperiodic as possible” and in
particular limit aperiodic.

2. Aperiodic coloring of hyperbolic groups

It is very plausible that every finitely generated group has limit aperiodic colorings by
finitely many colors. On the other hand a random coloring is not limit aperiodic. In
this section we construct such colorings for torsion-free finitely generated hyperbolic
groups.

In the sequel G is a finitely generated group, and k � k the norm with respect to a
finite set of generators.

Lemma 1. Let a 2 G be an element of infinite order in a hyperbolic group. Then
there is n D n.a/ such that for every g 2 G there is k � n with kgakk ¤ kgk.

Proof. It is known that the sequences fakg and fa�kg define two different points on
the Gromov boundary @1G of G. Let � W R ! K be a geodesic in the Cayley graph
K joining these two points. Note that the action of a on K leaves these points at
infinity invariant. Let d D d.e; im �/, then d.ak; im �/ D d.e; a�k im �/ � d C ı

for every k where G is ı-hyperbolic. The last inequality follows from the fact that
a degenerated triangle in K defined by the geodesics im � and a�k.im �/ is ı-thin.
Take n such that kank > 2kak C 10d C 14ı. Assume that there is g such that kgk D
kgak D kga2k D � � � D kgank. Consider the geodesic g.im �/. Let w 2 g.im �/

and w0 2 g.im �/ be the closest points in g.im �/ to g and gan respectively.
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Since the triangle he; w;w0i is ı-thin, the geodesic segment Œw;w0� contains a
point z such that d.z; y/ < ı and d.z; y0/ < ı where y 2 Œe; w� and y0 2 Œe; w0�.
Thus

2kzk � kyk � ky0k � 2ı: (1)

Denote by zk , k D 0; : : : ; n, a point in g.im �/ such that d.zk; ga
k/ � d C ı.

There is i such that z 2 Œzi ; ziC1� � g.im �/. Then d.z; gai / � 3d C 3ı C kak.
Thus

jgk D kgaik � kzk C 3d C 3ı C kak: (2)

In view of (1) and (2) and the facts jkwk � kgkj; jkw0k � kgkj � d C ı we obtain
a contradiction:

kank D d.g; gan/ � d.w;w0/C 2d C 2ı D d.w; z/C d.z; w0/C 2d C 2ı

� d.w; y/C d.y0; w0/C 2d C 4ı D kwk � kyk C kw0k � ky0k C 2d C 4ı

� 2kgk � kyk � ky0k C 4d C 6ı

� 2kzk � kyk � ky0k C 2kak C 10d C 12ı

� 2kak C 10d C 14ı: �

Example. The group Z2 does not have the above property with respect to
the generators .0;˙1/ and .˙1; 0/. Take a D .1;�1/ and gn D .n; n/. Then
k.n; n/ � k.1;�1/k D 2n for all k � n.

A geodesic segment in a finitely generated group is the corresponding sequence of
vertices in a geodesic segment in the Cayley graph. A geodesic segment Œx1; : : : ; xk�

is called radial if kx1k < kx2k < � � � < kxkk.
To construct limit aperiodic colorings we consider a square free sequence � W N !

f0; 1; 2g, i.e., a sequence which does not contain any subsequence of the form WW ,
where W is a word in 0; 1; 2. It is possible to construct a square free sequence in the
following way. Take the Thue–Morse sequence 0110100110010110 : : : and look at
the sequence of words of length 2 that appear: 01, 11, 10, 01, 10, 00, 01, 11, 10: : : :
Replace 01 by 0, 10 by 1, 00 by 2 and 11 by 2 to get the following: 021012021: : : :
Then this sequence is square-free [HM].

Theorem 2. Every finitely generated torsion-free hyperbolic group admits a limit
aperiodic coloring by 9 colors.

Proof. The set of colors will be the set of pairs .m; n/ where m; n 2 f0; 1; 2g. Let G
be a group taken with the word metric with respect to a finite generating set S . We
define �.g/ D .�.kgk/; kgk mod 3/ for every g 2 � .

Claim: Let Œx1; x2; : : : ; xk� be a radial geodesic segment. Let g 2 G be such that
�.xi / D �.gxi / for all i 2 f1; : : : kg. Assume in addition that d.gxi0 ; xi0/ < k=2

for some i0, 1 � i0 � k. Then kgxik D kxik for all i .
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We first show that Œgx1; : : : ; gxk� is also a radial geodesic segment. Since mul-
tiplication from the left is an isometry, Œgx1; : : : ; gxk� is a geodesic segment and in
particular �1 � kgxiC1k � kgxik � 1. Since g preserves the coloring we have
kgxiC1k � kgxik C 1 mod 3. These two relations imply kgxiC1k D kgxik C 1,
hence Œgx1; : : : ; gxk� is a radial geodesic segment and thus kgxik D kxik C q for
some fixed integer q. By our assumption jqj < k=2. Assume 0 < q. Since g
preserves the colors we obtain the equality

.�.kx1k/; : : : ; �.kxqk// D .�.kxqC1k/; : : : ; �.kx2qk//;
a contradiction to the square freeness of �. In a similar way we obtain a contradiction
if q < 0. This implies q D 0 and hence the claim.

Now assume that there is a sequence gl 2 G with kglk ! 1 such that the limit
liml!1 �.glx/ D  .x/ exists for every x 2 G.

Assume that there is b 2 G n feg such that  .x/ D  .bx/ for all x.
Let n be taken from Lemma 1 for a D b. We may assume that there is l0 such

that for l > l0,  .y/ D �.gly/ for all y 2 B4nkbk.e/. Consider a radial geodesic
segment x1; : : : ; xk of length k � 1 with k D 3nkbk and with endpoint xk D gl .
Such a segment clearly exists for all l large enough.

Let s be the smallest natural number such that kglb
sk ¤ kglk, thus s � n. Both

segments g�1
l
.Œx1; : : : xk�/ and g�1

l
.glb

sg�1
l
Œx1; : : : ; xk�/ lie in B4nkbk.e/. Thus

�.x/ D �.glg
�1
l
.x// D  .g�1

l
.x// D  .bsg�1

l
.x// D �.glb

sg�1
l
x/ for all x 2

Œx1; : : : ; xk�. Furthermore we compute d.glb
sg�1

l
xk; xk/ D d.glb

s; gl/ D kbsk �
nkbk < k=2. We apply the claim to g D glb

sg�1
l

to obtain the contradiction:
kglb

sk D kglb
sg�1

l
xkk D kxkk D kglk.

Remark. It is still an open problem whether every hyperbolic group contains a tor-
sion-free subgroup of finite index.

3. Aperiodic coloring of G -spaces

We note that in the definitions from the beginning of Section 1 one can replace a group
G by a space X with a G-action. Thus G acts on the space of colorings FX also via
.g�/.x/ D �.g�1x/. Let K be the kernel of the action. We call a coloring � of X
G-aperiodic if � ¤ g� for all g 2 G nK. Similarly one can define limitG-aperiodic
colorings of X as those colorings whose orbit G� has only G-aperiodic colorings in
its closure G� with respect to the product topology FX .

The following is an analog of Proposition 1.

Proposition 3. Let H � G be a finite index subgroup and let G act on X . Then X
admits a limit G-aperiodic coloring by finitely many colors if and only if it admits a
limit H -aperiodic coloring by finitely many colors.
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It is possible to extend Theorem 2 to the case of an isometric action on a hyperbolic
space X . We consider only the case when X is a simplicial tree. Thus every edge in
X has length equal to 1.

If x0 is a root ofX , we denote kxk D d.x; x0/ for x 2 X . We prove the following
analog of Lemma 1.

Lemma 2. Let G act on a simplicial rooted tree X and let a 2 G operate without
fixed points. Then for every g 2 G there is k � 2 with kgakx0k ¤ kgx0k.

Proof. Assume that kga2x0k D kgax0k D kgx0k. Because d.gx0; gax0/ D
d.hgx0; hgax0/ D d.gax0; ga

2x0/ for h D gag�1, the points z D gx0, h.z/ D
gax0, and h2.z/ D ga2x0 have a common predecessor y in the tree which is the com-
mon midpoint of the geodesic segments Œz; h.z/� and Œh.z/; h2.z/�. Then hy D y and
hence g�1y is a fixed point for a: a.g�1y/ D g�1y. This contradicts the assumption.

Let x0 2 X be a base point in a tree X . We consider the coloring of the set of
vertices of X defined as in the proof of Theorem 2: �.x/ D .�.kxk/; kxk mod 3/.

Proposition 4. Suppose that a group G acts by isometries on a simplicial tree X
with the above coloring � and let  2 G�. Then b ¤  for every b 2 G with
unbounded orbit fbkx0 j k 2 Ng. Moreover, b ¤  on the orbit Gx0.

Proof. First we note that a similar claim as in the proof of Theorem 2 holds:
Let Œz1; : : : ; zk� be a radial geodesic segment inX . Let g 2 G such that �.gzi / D

�.zi / for all i and d.gzi0 ; zi0/ < k=2 for some i0, 1 � i0 � k. Then kgzik D kzik.
The proof is exactly the same as in Theorem 2.
Assume that there is a sequence gl 2 G with kglk ! 1 with the limit g�1

l
�

equal to a b-periodic coloring  such that fbkx0g is infinite. That is the limit
limk!1 �.gkx/ D  .x/ exists for every x 2 X .

Since the orbit bmx0 is infinite we can apply Lemma 2 fora D b. Let Œy1; : : : ; y8k�

be a radial segment with y1 D x0 where k D 6kb.x0/k. By the definition of the point-
wise limit we may assume that there is l0 such that for l > l0,  .y/ D �.gly/ for all
y 2 Œy1; : : : ; y8k�[bŒy1; : : : ; y8k�[b2Œy1; : : : ; y8k�. Then the imagegl Œy1; : : : ; y8k�

contains either a radial segment Œz1; : : : ; zk� of length k � 1 with zk D gl.x0/ (first
case) or it contains a radial segment Œz1; : : : ; z6k� with d.z1; gl.x0// < k (second
case).

Let s be the smallest natural number such that kglb
sx0k ¤ kglx0k. Thus s � 2.

Then �.x/ D �.glg
�1
l
.x// D  .g�1

l
.x// D  .bsg�1

l
.x// D �.glb

sg�1
l
x/ for

all x 2 Œz1; : : : ; zk�. Furthermore, in the first case we compute d.glb
sg�1

l
zk; zk/ D

d.bsx0; x0/ D kbsx0k � 2kbx0k < k=2. We apply the claim to g D glb
sg�1

l
with

i0 D k to obtain the contradiction: kglb
sx0k D kglb

sg�1
l
zkk D kzkk D kglx0k.
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In the second case

d.z1; glb
sg�1

l z1/ � d.z1; gl.x0//C d.gl.x0/; glb
s.x0//

C d.glb
s.x0/; glb

sg�1
l z1/

� 2k C 2kb.x0/k � 3k:

We apply the claim with g D glb
sg�1

l
, i0 D 1, and 6k instead of k. Let i be such

that glyi D z1. Then kzik D kglx0k. Since �.kglb
syi�1k/ D �.kglyi�1k/ ¤

�.kglyik � 1/, we obtain that kglb
syi�1k ¤ kglyik � 1 D kz1k � 1. Hence

kglb
syi�1k D kz1kC1 and kglb

sx0k D kz1kCi�1. Then we obtain a contradiction:
kglb

sx0k D kz1kCi�1 D kglb
sg�1

l
z1kCi�1 D kglb

sg�1
l
zik D kzik D kglx0k.

As a consequence we obtain the following.

Corollary 1. Suppose that a group G acts on a rooted simplicial tree X such that
Gx0 is a full orbit. Then there is a limit G-aperiodic coloring of X by 9 colors.
Moreover, the restriction of this coloring to the orbit Gx0 is also limit G-aperiodic.

Theorem 3. Suppose that a groupG acts by isometries on simplicial treesX1; : : : ; Xn

in such a way that the induced action on the product
Q
Xi is free. Then G admits a

limit aperiodic coloring by 9n colors.

Proof. First we note that the fixed point theorem for CAT(0) spaces implies that G
must be torsion-free.

LetKi be the kernel of the representationG ! Aut.Xi / and letGi D G=Ki . We
fix a base point xi

0 in each tree and consider colorings �i W Xi ! Fi , jFi j D 9 from
Proposition 4. This defines a map � W Q

Xi ! Q
Fi . Let �0 W G ! Q

Fi be the
restriction to the orbit: �0.g/ D �.gx0/ where x0 D .x1

0 ; : : : ; x
n
0 /.

Assume that  D lim g�1
k
�0 is a-periodic: a .x/ D  .x/, a 2 G n feg. Then

 D . 1; : : : ;  n/ where  i D lim g�1
k
�0

i and �0
i D �i jGxi

0
. Since a operates

without fixed points on X , there exists i such that a has no fixed points on Xi . Then
a ¤  by Proposition 4, which contradicts our assumption.

We recall the definition of Coxeter groups. A Coxeter matrix M D .mij / is a
symmetric square matrix with 1’s on the diagonal and all other entries from NC D
f0g [ N. A Coxeter group � with a generating set S is a group with a presentation

hS j .uv/mij D 1; mij 2 M i
where M is a Coxeter matrix. Here we use the convention a0 D 1. Traditionally the
literature on Coxeter groups uses 1 instead of 0.

A Coxeter group is called right-angled if all mij with i ¤ j are 0 or 2.
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Theorem 4. Every Coxeter group� admits a limit aperiodic coloring by finitely many
colors.

Proof. Since every Coxeter group contains a finite index torsion-free subgroup, in
view of Proposition 1 it suffices to prove it for a finite index subgroup. We apply
Januszkiewicz’s construction of equivariant isometric embedding of a torsion-free
finite index normal subgroup � 0 � � into the finite product of trees [DJ] and then
apply Theorem 3.

LetK be the Cayley graph of a Coxeter group .�; S/. For every generator c 2 S ,
every conjugate w D gcg�1, g 2 � , acts on K by reflection. Let Mw be the set of
fixed points of w. We call it the wall (or mirror) of the reflection w. Clearly, uMw is
a wall for all u and w. Therefore � acts on the set of all walls W . According to [DJ]
all walls can be partitioned in finitely many classes W D W1 [� � �[Wm such that the
walls from each class Wi form a vertex set of a simplicial tree Ti . Moreover, all sets
Wi are invariant under a normal finite index subgroup � 0 which acts by isometries on
each Ti in such a way that the � 0-action on the product

Qm
iD1 Ti is free.

Theorem 5. The set W of all walls in a Coxeter group admits a limit �-aperiodic
coloring by finitely many colors.

Proof. On every tree Ti we consider a coloring from Proposition 4 with 9 each time
different colors. Thus we use 9m colors. This defines a coloring � D S

�i of W . Let
 be a limit coloring of W . Then, clearly, D S

 i where each i is a limit coloring
for �i . Let b 2 � 0. Since the action of � 0 on the product

Qm
iD1 Ti is free and b is

of infinite order, we obtain that b has an infinite orbit on some Ti . By Proposition 4
b i ¤  i and hence b ¤  . Proposition 3 completes the proof.

4. Space of tilings

We recall a definition of tiling of a metric space from [BW]. LetX be a metric space.
A set of tiles .T ;F / is a finite collection of n-dimensional complexes t 2 T and a
collection of subcomplexes f 2 F of dimension < n, together with an opposition
function o W F ! F , o2 D id. A space X is tiled by the set .T ;F / if

(1) X D S
� t�, where each t� is isometric to one of the tiles in F ;

(2) t� n S
f 2t�

D Int.t�/ in X for every �;

(3) If Int.t� [ t�0/ ¤ Int.t�/ [ Int.t�0/, then t� and t�0 intersect along f 2 t� and
o.f / 2 t�0 ;

(4) there are no free faces of t�.
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Strictly speaking a tiling of X is a collection ˛ D f��g of isometries �� W t� ! t ,
t 2 T , satisfying the above axioms. For every tiling ˛ there is a minimal (or reduced)
set of tiles .T˛;F˛/ � .T ;F /.

LetX be a metric space with a base pointx0. Assume that diam t � 1 for all t 2 T .
Let ˛ be a tilingX D S

� t� ofX . We denote by ˛n the set ft� j t� � Bn.x0/g where
Br.x/ stands for the closed ball of radius r centered at x. For a metric space Y we
denote by expY the space of compact subsets of Y taken with the Hausdorff metric.
Also for m 2 N denote by expm Y the m-th hyperpower of Y , i.e., the subspace of
expY that consists of subsets of cardinality � m. Note that ˛n defines a point in
exp.expBn.x0//. Actually, there is k D k.n/ such that ˛n lies in expk.expBn.x0//.
Clearly, the sequence ˛n completely defines the tiling ˛.

The space of tilings was defined by many authors (see for example [BBG], [S],
[SW]). Here we give an alternative definition. Let tl.X; T / denote the set of all
T -tilings of X . We introduce the topology on tl.X; T / as a subspace topology:

tl.X; T / �
1Y

nD1

exp.expBn.x0//:

Let F be a finite family of compact subsets in a metric space Y . We denote by expF Y

the subspace of expY whose points are isometric copies of elements of F .
Note that tl.X; T / � Q1

nD1 expk.n/ expT .Bn/.
The following proposition is well known [S].

Proposition 5. The space tl.X; T / is compact.

Proof. Since expT .Bn/ is compact, it suffices to show that tl.X; T / is a closed subset
in

Q1
nD1 expk.n/ expT .Bn/. For that it suffices to show that the set f˛n j ˛ 2 tl.X; T /g

is closed in expk.n/ expT .Bn/ for every n. We leave this to the reader.

LetG � Iso.X/ be a subgroup of the group of isometries ofX . ClearlyG acts on
tl.X; T /. We say that a tiling ˛ 2 tl.X; T / is strongly G-aperiodic if g˛ ¤ ˛ for all
g 2 G nfeg. A tiling ˛ is called aperiodic if the group Iso.˛/ � Iso.X/ of isometries
of ˛ does not act cocompactly on X . A tiling ˛ is limit strongly G-aperiodic if
every tiling ˇ 2 G˛ is strongly aperiodic. If G D Iso.X/ we use the terms strongly
aperiodic and limit strongly aperiodic.

5. Aperiodic tiling of the Davis complex

Here we recall the definition of the Davis complex [D1]. Let � be a Coxeter group
with generating set S . The nerve N D N.�; S/ is the simplicial complex defined in
the following way. The vertices ofN are elements of S . Different vertices s1; : : : ; sk
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span a simplex � if and only if the set fs1; : : : ; skg generates a finite subgroup ��

of � . By N 0 we denote the barycentric subdivision of N . The cone C D ConeN 0
over N 0 is called a chamber for � . The Davis complex X D X.�; S/ is the image
of a simplicial map q W � �C ! X defined by the following equivalence relation on
the vertices: a � v� 	 b � v� provided that a�1b 2 �� where � is a simplex in N
and v� is the barycenter of � . We identify C with the image q.e � C/. The group
� acts simplicially on X with the orbit space equivalent to the chamber. Thus the
Davis complex is obtained by gluing the chambers 	C , 	 2 � along their boundaries.
Note that X admits an equivariant cell structure with the vertices X .0/ equal to the
cone points of the chambers and with the 1-skeleton X .1/ isomorphic to the Cayley
graph of � . A conjugate r D wsw�1 of every generator s 2 S is a reflection. The
fixed point set Mr of a reflection r is called the wall of r . Note that walls defined
in Section 3 are obtained from the walls in Davis’ complex by the restriction to the
Cayley graph.

Proposition 6. Every finite coloring � W W ! F of the set of walls of the Davis
complex X defines a tiling x� of X with o.f / D f .

Proof. The set of tiles T of x� is the set of chambers with all possible colorings of
their faces. The set of faces F is the set of all possible colored faces of the chambers.
Set o.f / D f . Then all conditions hold.

We call the tiling x� a tiling by the coloring �.
Let .T ;F / be a set of tiles. A function w W F ! Z is called a weight function if

w.o.f // D �w.f / for every f 2 F . We recall a definition from [BW].

Definition. A finite set of tiles .T ;F / is unbalanced if there is a weight function w
such that

P
f 2t w.f / > 0 for all t 2 T .

It is called semibalanced if
P

f 2t w.f / � 0 for all t 2 T .

We call a set of tiles strictly balanced if for every nontrivial weight function w
there are tiles tC and t� such that

P
f 2tC

w.f / > 0 and
P

f 2t�
w.f / < 0.

A tiling is called strictly balanced (unbalanced ) if its minimal set of tiles is strictly
balanced (unbalanced).

We now associate to every wall in the Davis complex an orientation. A wall
divides the Davis complex into two components. Roughly speaking the orientation
says which of the components is left and which is right. Let x� be a tiling of the
Davis complex X by the coloring � of the walls with the set of tiles .T ;F /. The
orientations of the walls define a new tiling �0 of X with the set of tiles .T 0;F 0/,
where F 0 D FC [F� and FC and F� are copies of F . The face f 2 t� has sign C if
Int.t�/ is left of the wall and has sign � if Int.t�/ is right of the wall. The opposition
function o W F 0 ! F 0 maps fC to f�. We call such tiling a geometric resolution of
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a tiling by coloring. This new tiling is not a tiling by coloring anymore. A geometric
meaning of this resolution is that we deform all faces of a given color and a given
sign in the same direction by the same pattern. For the faces of the same color but of
opposite sign we take the opposite deformation.

The following is obvious.

Lemma 3. Assume that a coloring � W W ! F is limit aperiodic. Then the tiling by
coloring x� as well as any of its geometric resolutions is limit strongly aperiodic.

Note that in the Davis complex every wall has a canonical orientation, by deciding
that the base chamber C is in the left component. Thus we can indicate the chosen
orientation itself by a sign. A wall gets the sign C if the orientation of the wall is the
canonical one and the sign � otherwise.

In [BW] unbalanced tilings of some nonamenable spaces are constructed. In
particular all hyperbolic Coxeter groups admit such tilings. We can derive this fact
using geometric resolutions.

Proposition 7. Every coloring of the walls for a hyperbolic Coxeter group admits an
unbalanced geometric resolution.

Proof. We assign C to every wall. The hyperbolicity implies that for every chamber
C 0 the numbers of faces of C 0 whose walls separate C 0 from the base chamber C is
strictly less than the number of faces whose walls do not separate C 0 and C . Then
for every chamber C 0 the faces whose walls do not separate C 0 from C obtain the
sign C, all other faces obtain the sign �. We define a weight function by sending a
positive face to C1 and a negative face to �1.

We note that every unbalanced tiling is aperiodic. This fact can be derived formally
from Proposition 4.1 [BW]. Since the proof there has some omissions we present a
proof below.

Proposition 8. Let .T ;F / be the set of tiles of a geometric realization of a tiling by
coloring of the Davis complex X of a Coxeter group � . Suppose that the set of tiles
.T ;F / is unbalanced. Then any .T ;F /-tiling ˛ is aperiodic.

Proof. LetG be a group of isometries of ˛. ThenG � � . HenceG is a matrix group.
By Selberg’s lemma it contains a torsion-free subgroup G0 of finite index. Then the
orbit space X=G0 is compact and admits a .T ;F /-tiling. (Note that by taking X=G
as in [BW] we cannot always obtain a tiling because of free faces.) Then we obtain
a contradiction:

0 <
X

t2X=G0

X
f 2t

w.f / D
X

f 2X=G0

.w.f /C w.o.f /// D 0:
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Theorem 6. For every Coxeter group � and for every coloring � W W ! F with
the property that walls of the same color do not intersect, there is a strictly balanced
geometric resolution. Additionally, every limit tiling of this resolution is strictly
balanced.

Proof. First we construct a strictly balanced geometric resolution of �. Consider the
set of walls Wc D ��1.c/ of the same color c 2 F . Since walls of the same color
do not intersect, they are ordered by level from the base chamber. (The level ‘lev’ is
defined by induction. If one removes the walls Wc from X , the space is divided into
components. Walls from Wc that bound the component of the base chamber are of
level one. Then drop the walls of level one and repeat the procedure to get new walls
of level one and call them to be of level two and so on.) We give the walls Wc signs
in an alternating fashion by the level .�1/lev.M/: � C � C � C � C � � � � :

We show that this geometric resolution is strictly balanced. Letw W FC [F� ! Z
be a nontrivial weight function with w.fC/ D �w.f�/. We show that there are
chambers CC and C� such thatX

f 2CC

w.f / > 0 and
X

f 2C�

w.f / < 0:

Because of the symmetry it suffices to show the first inequality. Sincew is nontrivial,
there exists a face f 0 which is the common face of two adjacent tiles t� and t�0 such
that w.f 0/ ¤ 0. Let M0 denote the wall that contains f 0. Now there are four cases
corresponding to the parity of the sign ofw.f 0C/ and the sign ofM0. We discuss only
one, and to be fair not the easiest of the cases: w.f 0C/ > 0 and the orientation of M0

is negative.
We assume that f 0 in t� has the sign � and in t�0 has the sign C. We take a

number k larger than the number of walls separating t�0 and the base chamber C . Let
c 2 F be a color. We call c even if w.cC/ > 0, odd if w.cC/ < 0, and neutral if
w.cC/ D 0. We define

W2k
ev D fM 2 W j �.M/ is even and lev.M/ D 2kg;

W2kC1
odd D fM 2 W j �.M/ is odd and lev.M/ D 2k C 1g;

WkC1
0 D fM 2 W j �.M/ is neutral and lev.M/ D k C 1g:

Claim 1: The set of walls W2k
ev [ W2kC1

odd [ WkC1
0 [ fM0g bounds a bounded set

D containing the chamber t�0 .
Clearly, it bounds a convex set in the Hadamard spaceX . If it is unbounded, then

there is a geodesic ray from t�0 to the visual boundary which does not intersect any of
our mirrors. Since we have only finitely many colors, there is a color c such that this
ray intersects infinitely many walls of this color. By the choice of k the first of this
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crossed walls has level � kC 1. To get to infinity the ray must cross walls of color c
with all levels � k C 1. Thus one of the intersected walls is contained in our set.

Claim 2: If f occurs as a face of a tile t� � D such that f � @D, thenw.f / � 0.
We consider four cases.
(i) If Mf D M0, then t� lies on the same side of M0 as t�0 . Then w.f / D

w.f 0C/ > 0.
(ii) If f is a neutral face, then w.f / D 0 anyway.
(iii) If f is of even color, then f is contained in a wallM from W2k

ev and t� lies on
the same side of the wallMf as the base chamber sinceM has orientation C. Hence
f as a face of t� gets the sign C. Therefore w.f / D w.fC/ > 0.

(iv) A similar argument applies in the case that f is of odd color.
According to Claim 1 we haveD D Sk

iD1 Ci where C1; : : : ; Ck is a finite collec-
tion of chambers. Then

kX
iD1

X
f 02Ci

w.f 0/ D
X

f 02@D

w.f 0/ � 0

by Claim 2. Since f 0C is in the last set of faces, we see that the expression is indeed
> 0. Therefore,

P
f 02Ci

w.f 0/ > 0 for some i .
This finishes the proof of the first step. Thus we have constructed a strictly balanced

geometric resolution of �.
Actually the above proof shows more: If we choose for any given color c an

orientation of walls Wc in the alternating way C � C � C � � � � or � C � C � C � � �
(and maybe for different colors in a different way), then the resulting geometric
resolution is strictly balanced. Let us call such choice of orientations allowed. The
levels of walls depend on the base chamber. If we define levels with respect to a
different chamber, all parities of the levels will be either preserved or changed to the
opposite. As a consequence we obtain the following: if the orientation of the tiling
by the coloring � is allowed, then also the orientation of the tiling by the coloring g�
is allowed for every g 2 � . Thus also all limit tilings of the tiling constructed in the
step 1 are strictly balanced.

Corollary 2. For every Coxeter group � there is a strictly balanced strictly aperiodic
tiling of the Davis complex such that every limit tiling is strictly balanced and strictly
aperiodic.

Proof. We apply Theorem 6 to a coloring from Theorem 5.

Note that in the proof of Corollary 2 we used that � is the isometry group of the
Davis complex.

In 2-dimensional jigsaw tiling puzzles a geometric resolution is usually realized
by adding rounded tabs out on the sides of the pieces with corresponding blank cuts
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into intervening sides to receive the tabs of adjacent pieces. This procedure destroys
the convexity of the pieces. We show that in the case of the hyperbolic plane H2

we can modify this construction to obtain aperiodic and strictly balanced tilings with
convex tiles. Compare also the papers [MM], [Moz].

Theorem 7. (1) For every n � 3 there is a strictly balanced limit strongly aperiodic
tiling of H2 by convex 2n-gons.

(2) For every n � 3 there is a finite set of tiles .T ;F / that consists of convex
2n-gons with a limit strongly aperiodic tiling of H2 such that every .T ;F /-tiling of
H2 is aperiodic.

Proof. (1) Identify H2 with the Davis complex for the right-angled Coxeter group �
generated by reflections at a regular right-angled 2n-gon. Coloring the sides of the
2n-gon in two colors a and b in an alternating fashion induces a coloring of the walls
 W W ! fa; bg such that the walls of the same color do not intersect. The walls
of the same color c define a tree Tc with an action of � on it such that the induced
�-action on the product Ta � Tb is free (see [BDS] or [DJ]). By Theorem 3 we can
refine  to a limit aperiodic coloring  W W ! fai ; bigiD1;:::;9. We apply Theorem 6
to obtain a limit strictly balanced geometric resolution �0. By Lemma 3 it will be
a limit strongly �-aperiodic tiling. It is easy to see that the tiling is limit strongly
aperiodic with respect to the entire isometry group of H2.

Now we define a modification of the tiling �0. Consider a vertex of a translate of
the 2n-gon. It is the intersection point of an ai -wall with a bj -wall. Denote it byOij .
The orientations on these walls define a local coordinate system. We move the vertex
Oij by a small amount using these coordinates. We choose small different numbers
dij , i; j 2 f1; : : : ; 9g and moveOij to the distance dij in the direction of the diagonal
of the positive quadrant. After this deformation we obtain a finite number of new
convex tiles, which (for generic deformations) only allow tilings of H2 compatible
with the matching rule defined by �0. The new tiling has all desired properties.

(2) We take the above coloring � of the walls and take a geometric resolution from
Proposition 7. Apply Proposition 8 to complete the proof.

An interesting question is under what conditions the set of tiles .T ;F / of a geo-
metric resolution �0 of a tiling by coloring of the Davis complex X is (strongly)
aperiodic. Clearly, it is strongly aperiodic whenever its orbit ��0 in tl.X; T / is dense.
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