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Fillings, finite generation and direct limits of relatively
hyperbolic groups
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Abstract. We examine the relationship between finitely and infinitely generated relatively
hyperbolic groups. We observe that direct limits of relatively hyperbolic groups are in fact
direct limits of finitely generated relatively hyperbolic groups. We combine this observation
with known results to prove the Strong Novikov Conjecture for some exotic groups constructed
by Osin.
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1. Introduction

This paper is about the relationship between finitely generated and infinitely generated
relatively hyperbolic groups. Most definitions and characterizations of relatively
hyperbolic groups [8], [7], [3], [25], [6] assume finite generation at the outset. One
exception is that of Osin [19]. In this definition, a group, finitely presented relative to
a system of subgroups, is hyperbolic relative to that system if and only if the relative
isoperimetric function is linear. (See Section 2 for definitions.)

Of interest to conjectures such as the Baum–Connes Conjecture and the Novikov
Conjecture are ‘exotic’ groups, which may be used to test these conjectures. One
way to build such exotic groups is by taking direct limits of hyperbolic groups, a
method brought to great prominence by Olshanskii (see, for example, [15]). However,
hyperbolic groups are known to satisfy the Baum–Connes Conjecture (this is due to
Mineyev andYu [13]), and the rational injectivity of the Baum–Connes assembly map
is preserved by direct limits. This implies the Novikov Conjecture for groups built as
direct limits of hyperbolic groups.

�The first author was supported in part by NSF Grant DMS-0504251. The second author was supported
in part by an NSF Mathematical Sciences Postdoctoral Research Fellowship. Both authors thank the NSF
for their support. We also thank Mark Sapir for asking us questions which led to the results in this paper,
Guoliang Yu for help on the (Strong) Novikov Conjecture, and the referee for several useful comments.
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There are by now many results of the form: Suppose that U is a property which im-
plies the Novikov Conjecture (or the Strong Novikov Conjecture, or the Baum–Connes
Conjecture), and suppose that G is a (finitely generated) group which is hyperbolic
relative to groups satisfying U. Then G satisfies U. (See, for example, [17], [5], [20]).

It appears then that finitely generated relatively hyperbolic groups are not a rea-
sonable place to search for counterexamples to these conjectures, for likely one would
have to build the pathology into the parabolic subgroups, and relative hyperbolicity
would be irrelevant. In [16], Osin constructs groups with some remarkable properties
as direct limits of infinitely generated relatively hyperbolic groups. One might think
that these more flexible constructions might be of some help in building counterexam-
ples to the Strong Novikov Conjecture. The main result of this paper (see Theorem 13)
shows that this is probably not the case: Behavior exotic enough to defy the Strong
Novikov Conjecture would have to be built into the finitely generated subgroups of
the parabolic subgroups.

An outline of this paper is as follows: In Section 2 we introduce the notion of
the finitely generated core of a relatively hyperbolic group (this concept is implicit
in [19]). In Section 3 we explain how the main result in Osin’s paper [18] about Dehn
filling in relatively hyperbolic groups follows from the version where the relatively
hyperbolic groups are assumed to be finitely generated. (In [10] the authors proved this
finitely generated version under the additional assumption that the group is torsion-
free.) In Section 4 we record some simple observations about direct limits of relatively
hyperbolic groups. In particular, a direct limit of relatively hyperbolic groups is in fact
the direct limit of finitely generated relatively hyperbolic groups. In Section 5 we use
the main result of Section 4 (along with known results about uniform embeddability
and the Strong Novikov Conjecture) to deduce the main result of this paper: that many
of the remarkable groups constructed in [16] satisfy the Strong Novikov Conjecture
(see Theorem 13).

2. The finitely generated core

Everything in this section is also contained in [19]; only the term finitely generated
core is new.

Suppose that G is a group with a family of subgroups fH�g�2ƒ, so that G has a
finite relative presentation

G D hS; fH�g�2ƒ j Ri; (1)

where S is the finite relative generating set, and

R � F .S/ � .��2ƒH�/

is a finite set of defining relations. Here F .S/ denotes the free group on the letters S .
We briefly recall the meaning of (1) from [19]. Let H D S

�2ƒ H� be the disjoint
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union of the subgroups fH�g. For each �, let R� be the collection of words in the
alphabet H� which represent the identity in H�. The relative presentation (1) is
shorthand for the (non-relative) presentation

G D hS [ H j R [ Rƒi; (2)

where Rƒ D S
�2ƒ R�. If D is a van Kampen diagram over the presentation (2),

then it has a relative area which is the number of 2-cells in the diagram labelled by
elements of R. Let w be a word in the alphabet S [ H which represents the identity
in G. The relative area of w is the smallest relative area of any van Kampen diagram
over (2) whose boundary is labelled by w.

Definition 1. A group with finite relative presentation G D hS; fH�g�2ƒ j Ri is
hyperbolic relative to the collection of subgroups fH�g�2ƒ if the relative isoperimetric
function is linear, in the following sense: There is a constant C so that every word of
length n in the alphabet S [ H which represents the identity in G can be filled by a
van Kampen diagram of relative area at most C n.

Given a relative presentation as in (1), each r 2 R can be written in normal form
as some product

r D w1h1 : : : wnhn

with each wi a word in the free group F .S/ and each hi in H�i
for some �i 2 ƒ.

Let � be the set of nontrivial elements of
S

� H� which occur in one of these normal
forms. Since � is finite, the set I D f� 2 ƒ j H� \ � ¤ ;g is also finite. For each
i 2 I , � \ Hi (finitely) generates some H 0

i < Hi . Let G0 be the subgroup of G

generated by S [ .
S

i2I H 0
i /. We call G0 the finitely generated core of G associated

to the presentation hS; fH�g�2ƒ j Ri. (The finitely generated core is highly non-
unique; see Remark 5.) The next three lemmas are contained in the statement and
proof of Theorem 2.44 in [19]. (In Osin’s statement, the finitely generated core is
called Q.) The second is straightforward; the first and third can be proved using
simple variations on the arguments in Section 3.

Lemma 2. If G0 is the finitely generated core of G coming from the finite relative
presentation hS; fH�g�2ƒ j Ri, then G0 has a finite relative presentation

G0 D hS; fH 0
i gi2I j Ri: (3)

.Note that

R � F .S/ � .�i2I H 0
i / � F .S/ � .��2ƒH�/;

so the presentation in (3) is at least well defined./
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Lemma 3. If G is given by the finite relative presentation hS; fH�g�2ƒ j Ri, and
G0 D hS; fH 0

i gi2I j Ri is the corresponding finitely generated core of G, as in the
first paragraph, then

G D G0 � .��2ƒnI H�/

where G0 is the subgroup of G generated by S [ .
S

i2I Hi /.

Lemma 4. G D hS; fH�g�2ƒ j Ri is hyperbolic relative to fH�g�2ƒ if and only if
its finitely generated core G0 is hyperbolic relative to fH 0

i gi2I .

Remark 5. If G has a finite relative presentation

G D hS; fH�g�2ƒ j Ri
and T � G is finite, then there is obviously a finite relative presentation

G D hS [ T; fH�g�2ƒ j R0i
for some (finite) set of relators R0 containing R. Thus given the finite set T � G,
there is always a finitely generated core containing T . This observation will be used
in Section 4.

3. Fillings and cores

In [18], Osin proved the following theorem:

Theorem 6 ([18], Theorem 1.1). Suppose that G is hyperbolic relative to the system
of subgroups fH�g�2ƒ. Then there is a finite set B � S

� H� so that if fK�g�2ƒ is
a collection of subgroups so that for each � 2 ƒ, we have

(1) K� C H�, and

(2) K� \ B D ;,

then

(1) the natural map �� W H�=K� ! G=hhS� K�ii is an injection, and

(2) G=hhS� K�ii is hyperbolic relative to f��.H�=K�/g�2ƒ.

(Here hhSii is the normal subgroup generated by the set S .)

In [10], we proved the same theorem, with the additional assumptions that G is
torsion-free and that the (finitely many) parabolic subgroups are finitely generated.

The torsion-free assumption in [10] is technical, and will not be addressed here.
However, we remarked in [10], Remark 1.5, that if one can prove Theorem 6 under
the additional assumptions that ƒ is finite and each H� is finitely generated, then the
full statement follows. This is the content of this section.
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Proposition 7. If Theorem 6 holds with the additional hypotheses that ƒ is finite and
that H� is finitely generated for each � 2 ƒ, then Theorem 6 holds in full generality.

Proof. Let G D hS; fH�g�2ƒ j Ri and G0 the finitely generated core of G relative to
hS; fH�g�2ƒ j Ri. By Lemma 2, hS; fH 0

i gi2I j Ri is a relative presentation for G0.
Lemma 3 implies that G splits as a free product

G D G0 � .��2ƒnI H�/

where G0 is the subgroup of G generated by S [ .
S

i2I Hi /. Arbitrarily filling
peripheral subgroups H� for � … I does not affect the free product structure of G (or
relative hyperbolicity). We may therefore assume that ƒ D I , and so G D G0.

Lemma 4 implies that G0 is hyperbolic relative to fH 0
i gi2I , so we may apply the

finitely generated version of Theorem 6 to G0. Let B be the finite subset of
S

� H 0
�

of “forbidden” elements for peripheral fillings of G0 coming from Theorem 6 in the
finitely generated case. We show that B also suffices as the set of forbidden elements
for G.

For each i 2 I , let Ki C Hi satisfy Ki \ B D ;. The following is obvious:

Claim 7.1. If K 0
i D Ki \ H 0

i , then K 0
i C H 0

i and K 0
i \ B D ;.

Let N be the normal closure of
S

i Ki in G, and let N 0 be the normal closure
of

S
i K 0

i in G0. Write xHi for the image of Hi under the quotient map G ! G=N ,
and write xH 0

i for the image of H 0
i under the quotient map G0 ! G0=N 0. Theorem 6

in the finitely generated case and Claim 7.1 together imply that G0=N 0 is hyperbolic
relative to f xH 0

i gi2I .
We will show that G0=N 0 is a finitely generated core of G=N ; Lemma 4 and

Claim 7.3 (below) then imply the proposition.
We introduce some notation in this paragraph. Let H be the disjoint union of the

Hi for i 2 I and let RI be the collection of words representing the identity in some
Hi . Finally, let K be the disjoint union of the Ki for i 2 I . The quotient group G=N

has the presentation

G=N D hS [ H j R [ RI [ Ki (4)

which can also be written as the relative presentation

G=N D hS; fHigi2I j R [ Ki:
Let w 2 F .S/� .�i2I Hi / be a word which is trivial in G=N . There is a van Kampen
diagram over (4) for w containing five possible kinds of two-cells:

(1) R-cells,

(2) H 0-cells: cells representing relations in H 0
i for some i 2 I ,
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(3) K 0-cells: cells representing elements of K 0
i < G for some i 2 I ,

(4) H n H 0-cells: cells representing relations in Hi for some i 2 I which involve
some elements of Hi n H 0

i , and

(5) K n K 0-cells: cells representing elements of Ki n K 0
i for some i 2 I .

The first three kinds of 2-cells will be called good, the last two bad. A bad patch P

is a maximal union of bad 2-cells, subject to the condition that the interior of P is
connected.

Each edge of the van Kampen diagram is labelled by some element of
S [ .

S
i Hi n f1g/. Edges of the van Kampen diagram will be called good if they

are labelled by elements of S [ .
S

i H 0
i /; otherwise they are bad. Every bad 2-cell

has at least one bad edge in its boundary, whereas good 2-cells have no bad edges in
their boundary.

The point of the good/bad notation is that if we can modify a van Kampen diagram
so that it contains only good 2-cells, then it follows that its boundary represents the
trivial element of G0=N 0.

Claim 7.2. For each i 2 I , the natural map from H 0
i =K 0

i to G=N is injective.

Proof. Let w 2 H 0
i be in the kernel of the map to G=N , and let D be a van Kampen

diagram for w as described above. (In particular @D consists of a single good edge.)
If this van Kampen diagram can be modified to contain only good 2-cells, then w is
in the kernel of the natural map from H 0

i to G0=N 0, and thus by the finitely generated
version of Theorem 6 we have w 2 K 0

i .
Let P be any bad patch. Note that all the 2-cells in P have boundary labels in a

single subgroup Hj , for some j 2 I which may be different from i .

Subclaim 7.2.1. Each component of @P represents an element of H 0
j .

Proof. If not, then there is some bad edge in @P . This edge can only be adjacent to
another bad 2-cell (in which case P is not maximal) or to the boundary of the van
Kampen diagram itself. Since the boundary of the van Kampen diagram is labelled
only by good edges, we derive a contradiction.

We now suppose P is a bad patch which is innermost in the following sense:
No other bad patch is separated from the boundary of the van Kampen diagram by
the interior of P . It is evident that if there are any bad patches, then at least one is
innermost. Let cP be the outermost boundary of P .

We claim that the sub-diagram bounded by cP can be modified so that every 2-cell
has all its boundary labels in Hj . If P is simply connected, this is immediate. Suppose
then that the innermost bad patch P is not simply connected. Some component c of
@P bounds a disk D containing only good 2-cells, since P is innermost. Moreover, c
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consists only of good edges. Reading the labels of the edges of c gives some word wc

in the alphabet S [ .
S

i H 0
i /, and the disk D is itself a van Kampen diagram for wc in

G0=N 0. By Subclaim 7.2.1, wc represents some element of H 0
j < G0. The disk D is

a demonstration that it represents the trivial element of G0=N 0. Since H 0
j =N 0

j injects
into G0=N 0 by assumption, it follows that wc represents an element of N 0. The disk
D may therefore be replaced by a single K 0-cell. Applying this argument in turn to
each inner boundary component of P , we fill cP entirely by 2-cells with boundary
labels in Hj .

Let wP be the word in S [ .
S

i H 0
i / given by the labels of cP . By the previous

paragraph, wP represents the trivial element of Hj =Kj . Moreover, by Subclaim 7.2.1,
it lies in H 0

j . Since H 0
j =K 0

j injects into Hj =Kj , wP represents an element of K 0
j . We

therefore can replace the bad patch P (and any disks attached to its interior) with a
single K 0-cell, thus reducing the number of bad cells in the van Kampen diagram.
Iterating this procedure, all bad cells can be removed, and Claim 7.2 follows.

Claim 7.3. For each i 2 I , the natural map from Hi=Ki to G=N is injective.

Proof. We now assume that w 2 Hi n H 0
i and suppose that w lies in N . Again we

can build a van Kampen diagram D for w, this time with boundary equal to a single
bad edge. We argue as in Claim 7.2: First, there is a single outermost bad patch (since
@D is a single bad edge), and the boundary of each other bad patch is an element of
some H 0

j . We now reduce the number of bad patches until D contains a single bad
patch and no R-cells. It follows that w is already trivial in Hi=Ki , and Claim 7.3 is
proved.

We now turn to the proof of Proposition 7. By Claim 7.3, we can regard each
Hi=Ki as a subgroup of G=N . The subgroup N of G is the normal closure of the setS

Ki , so we obtain a finite relative presentation

G=N D hS; fHi=Kigi2I j xRi; (5)

where xR is the image of R in F .S/ � .�i2I Hi=Ki / under the obvious map from
F .S/ � .�i2I Hi /. It remains to observe that (regarding H 0

i =K 0
i as a subgroup of

Hi=Ki ) the group G0=N 0 is the finitely generated core coming from the presenta-
tion (5),

G0=N 0 D hS; fH 0
i =K 0

igi2I j xRi:
This completes the proof of Proposition 7.

4. Direct limits of relatively hyperbolic groups

Direct limits of groups are a particularly good way of building finitely generated groups
with interesting properties. This idea was developed by Olshanskii [15] with direct
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limits of hyperbolic groups, and recently by Osin [16] for direct limits of relatively
hyperbolic groups. We are interested in the relatively hyperbolic construction.

Definition 8. Suppose that fGigi2N is a sequence of groups, and f�i W Gi ! GiC1g
is a sequence of homomorphisms.

Let X D Q
i2N Gi be the Cartesian product of the Gi . Define a subset ƒ � X as

follows:

ƒ D f.gi / j there exists J such that for all j � J; gj C1 D �j .gj /g:
Put an equivalence relation ‘�’ on ƒ so that .gi / D .hi / if there is some K so that
for all k � K we have gk D hk .

Let L D ƒ= �. The group operation on X descends to L, and L is a group, called
the direct limit of f.Gi ; �i /g.

Remark 9. Using the definition above, if the groups Gi are countable then so is the
limit L. If one were to allow more general directed systems then this would no longer
be the case. However, in order to understand the constructions from [16], the above
definition is sufficient.

We will need the following lemma.

Lemma 10. Suppose that G is a countable relatively hyperbolic group. Then the
collection of .nontrivial/ parabolic subgroups of G is countable.

Proof. Let ƒ be the index set for the parabolic subgroups fH�g�2ƒ of G. We suppose
that each H� is nontrivial. We have to show that ƒ is countable.

Let G0 be a finitely generated core of G, and suppose that G0 is hyperbolic relative
to fH 0

i gi2I .
By Lemma 3 we have

G D G0 � .��2ƒnI H�/;

where G0 is hyperbolic relative to fHigi2I . A countable group cannot contain un-
countably many nontrivial free factors, so ƒ n I is countable, which implies that ƒ

is countable, as required.

Proposition 11. Suppose that G is a group which is isomorphic to a direct limit

of groups fGi

�i�! GiC1 j i 2 Ng so that each Gi is countable and hyperbolic
relative to some collection of proper subgroups Pi . Then for every i , there exists
a finite relative presentation Presi of Gi with respect to Pi and homomorphisms
�0

i W G0
i ! G0

iC1 such that G is isomorphic to the direct limit of finitely generated

groups fG0
i

�0

i�! G0
iC1 j i 2 Ng, where G0

i is the finitely generated core of Gi

associated to Presi for each i .
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Proof. Suppose that G is the direct limit of f.Gi ; �i /g where �i W Gi ! GiC1, and
the Gi are all relatively hyperbolic.

Let Pi D fP i
1 ; P i

2 ; : : : g be the parabolic subgroups of Gi , and Xi a finite relative
generating set for Gi with respect to Pi .

The group G is countable, so let fg0; g1; g2; : : : g be an enumeration of its elements.
For each i � 0, let j.i/ be the least number so that (i) j.i/ � j.i � 1/ C 1; and (ii)
the image of Gj.i/ in G contains fg0; : : : ; gig. Since we may pass to a subsequence
without changing the limit, for ease of notation we will suppose that j.i/ D i .

Let Yi D fgi
0; : : : ; gi

i g be a subset of Gi so that the map from Gi to G sends gi
l

to gl .
We will define a collection of finitely generated subgroups G0

i of Gi , and homo-
morphisms �0

i W G0
i ! G0

iC1 so that (i) the direct limit of f.G0
i ; �0

i /g is G; and (ii) each
G0

i is relatively hyperbolic. In fact, the map �0
i will be the restriction of �i to G0

i , and
we will use the notation �i for this map also.

Define G0
0 to be the finitely generated core of G0 with respect to a finite relative

presentation with the relative generating set Z0 D X0 [ Y0.
Suppose that, for r < i , we have defined G0

r (with finite relative generating set Zr ,
and finitely many finitely generated parabolics) and �0

r�1. We define G0
i as follows:

Let Wi D �i�1.Zi�1/ 2 Gi , and let Zi D Wi [ Xi [ Yi . The set Zi is a finite
relative generating set for Gi , so there is some finite relative presentation Presi D
hZi ; Pi j Ri i. Define G0

i to be the finitely generated core of Gi associated to Presi .
By Lemma 4, the group G0

i is hyperbolic relative to its finitely many nontrivial
intersections with the elements of Pi , and these intersections are themselves finitely
generated.

We claim that the direct limit of f.G0
i ; �i /g is isomorphic to G. Let L be the direct

limit of f.G0
i ; �i /g. Since each G0

i is a subgroup of Gi , and the map �i W G0
i ! G0

iC1

is a restriction of the homomorphism �i W Gi ! GiC1, there is an obvious map
� W L ! G. We construct the inverse map ��1 W G ! L as follows: suppose
that g 2 G. Then there is some i so that g D gi . Then the choice of j.i/ (and
the renumbering above) implies that for all j � i there is an element g

j
i 2 Gj so

that g
j
i maps to g under the canonical map from Gj to G. But then g

j
i 2 G0

j and

�j .g
j
i / D g

j C1
i . We set ��1.g/ to be the sequence .1; : : : ; 1; gi

i ; giC1
i ; : : : /, where

the first i � 1 terms of this sequence are the identity element. It is clear that ��1 is
the inverse of � , and we have proved the proposition.

5. Some examples of Osin and the (Strong) Novikov Conjecture

In [16], Osin gives constructions of groups satisfying some remarkable properties.
We show that if the input to these constructions is a uniformly embeddable group



338 D. Groves and J. F. Manning

then the Strong Novikov Conjecture1 holds for the output. In particular were these
constructions to yield a counterexample to the Strong Novikov Conjecture, then the
input group must already have been rather exotic.

Uniform embeddability for groups was introduced by Gromov in [9]. However, it
is now more common to use the following more general notion:

Definition 12. Let .X; d1/ and .Y; d2/ be metric spaces. A map i W X ! Y is a
uniform embedding if there are unbounded increasing functions �1; �2 W RC ! RC
so that for all x; x0 2 X ,

�1.d1.x; x0// � d2.i.x/; i.x0// � �2.d1.x; x0//:

A countable group G is called uniformly embeddable if there is a uniform embedding
of G into a Hilbert space.

In the terminology of Roe [21], Chapter 11, a group is uniformly embeddable if it
admits a coarse embedding into Hilbert space. The connection between uniform em-
beddability and the Novikov Conjecture was established in [26], where the Novikov
Conjecture was proved for a uniformly embeddable group whose classifying space
has the homotopy type of a finite CW complex. The finiteness assumption is re-
moved in [24], where the Strong Novikov Conjecture is established for all uniformly
embeddable groups.

In the statement below, �.K/ is the set of (finite) orders of elements of a group K.
A group G is said to be verbally complete if the equation w.x1; : : : ; xn/ D g has
a solution in G, for any g 2 G, and for w any (freely reduced, nonempty) word
in any number of free variables. (In particular, every element of such a group is a
commutator, has roots of all orders, and so on.)

Theorem 13. Given any uniformly embeddable countable group G, there exist
2-generated groups H1 and H2 satisfyingW
(1) G embeds in H1 and in H2.

(2) H1 and H2 satisfy the Strong Novikov Conjecture.

(3) �.H1/ D �.G/ and any two elements of H1 with the same order are conjugate.

(4) H2 is verbally complete; moreover, if G is torsion-free, then so is H2.

Before giving the proof of Theorem 13, we should remark that the construction
(and most of the theorem) is due to Denis Osin in [16]; the sole innovation here is
that point (2) can be guaranteed.

If we start with an infinite torsion-free uniformly embeddable group (like Z), then
Theorem 13 yields:

1by which we mean that the Baum–Connes assembly map is injective (see [1], [27])
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Corollary 14. There exists a 2-generated, infinite, torsion-free group G which has
two conjugacy classes and satisfies the Strong Novikov Conjecture.

Corollary 15. There exists a 2-generated, infinite, torsion-free group G which is
verbally complete and satisfies the Strong Novikov Conjecture.

The following proposition is used in the proof of Theorem 13.

Proposition 16. If G is a uniformly embeddable group then G can be embedded into
countable groups R1 and R2 so thatW
(1) Finitely generated subgroups of R1 and R2 are uniformly embeddable.

(2) �.R1/ D �.G/ and all elements of the same order are conjugate.

(3) R2 is verbally complete.

Proof. For R1 satisfying (2), we use a construction of Higman, Neumann, and Neu-
mann [11] (see Lyndon and Schupp [12], Theorem IV.3.3). Let G0 D G. Suppose
Gi�1 has been defined, and let f. j̨ ; ǰ / j j 2 Ng be the set of pairs of elements in
Gi�1 so that the orders of j̨ and ǰ are equal. Define Gi by the presentation:

Gi D hGi�1; fti;j gj 2N j t�1
i;j j̨ ti;j D ǰ ; j 2 Ni;

and define R1 D S
i2N Gi to be the direct limit of these groups.

For R2 satisfying (3), we refer to the construction in [16]. We will use only the
following facts:

� The group R2 is also a union of subgroups Ui for i 2 Z�0, and U0 D G.

� If i � 1, then UiC1 is an amalgamated free product of Ui with infinitely many
groups fF i

j gj 2N , where each F i
j is either a free group or a one-relator group

with torsion, and each amalgamating subgroup is cyclic.

It remains only to prove that finitely generated subgroups of R1 and R2 are uni-
formly embeddable. We prove both simultaneously. Let H be a finitely generated
subgroup of R1 or R2. If H < R1, then we will set Vi D Gi for each i ; if H < R2, we
set Vi D Ui . The group H is contained in Vi for some i 2 N. If i D 0, we are done,
since subgroups of uniformly embeddable groups are clearly uniformly embeddable.
We may suppose by induction that finitely generated subgroups of Vi�1 are uniformly
embeddable. Free groups and one relator groups with torsion are word hyperbolic
([14]; see [12], Theorem IV.5.5); their finitely generated subgroups therefore have
finite asymptotic dimension (this is a result of Gromov; see [22]), and are therefore
uniformly embeddable (see [21], Chapter 11). Thus Vi is a graph of groups with
cyclic edge groups and uniformly embeddable vertex groups. The group H inherits
a graph of groups decomposition from Vi ; the edge groups are again cyclic. Since H

is finitely generated, the graph of groups decomposition of H has a finite underlying
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graph. Also, since H is finitely generated and the edge groups of the (finite) graph
of groups are finitely generated, the vertex groups of the graph of groups are finitely
generated. Thus by induction the vertex groups are uniformly embeddable. Now we
may apply a theorem of Dadarlat and Guentner [4] to deduce that H is uniformly
embeddable.

Remark 17. Note that the proposition implies that R1 and R2 are uniformly embed-
dable, since countable locally uniformly embeddable groups are uniformly embed-
dable by [4].

The hypothesis and conclusion of uniform embeddability in Proposition 16 may
be strengthened to finite asymptotic dimension, by applying theorems of Osin [17]
and Bell and Dranishnikov [2] in place of the theorems of Dadarlat and Guentner
quoted above.

Proof of Theorem 13. We do not describe Osin’s constructions here, but refer the
reader to [16], particularly to the overview in Section 2 of his paper.

The groups H1 and H2 are built as direct limits of (infinitely generated) relatively
hyperbolic groups, with peripheral subgroup R1 or R2, respectively. At each stage the
term in the direct limit is hyperbolic relative to R1 or R2 from the above proposition.
The finitely generated cores of these terms are therefore hyperbolic relative to finitely
generated subgroups of R1 or R2; these finitely generated subgroups are uniformly
embeddable by Proposition 16. The cores are thus hyperbolic relative to uniformly
embeddable subgroups; by the main result of [5] they are themselves uniformly em-
beddable. Thus, if � is such a finitely generated core, then by [24, Theorem 6.1],
the Baum–Connes assembly map with coefficients is injective (with any separable �-
C �-algebra coefficients). In particular, the Baum–Connes assembly map (with trivial
coefficients) is injective for each such � , i.e. the finitely generated core � satisfies
the Strong Novikov Conjecture.

We have exhibited H1 and H2 as direct limits of groups satisfying the Strong
Novikov Conjecture. By [23, Proposition 2.4], the Strong Novikov Conjecture is
stable under taking direct limits, so H1 and H2 themselves satisfy the Strong Novikov
Conjecture.

By the main result of [4], the class of countable groups which are uniformly
embeddable is closed under direct limits of groups (where all of the maps are injective).
It is clear from Lemma 4 and Remark 5 that if G is a countable relatively hyperbolic
group with parabolic subgroups fHigi2I then G is the direct limit of an increasing
collection of finitely generated cores of G, each of which is hyperbolic relative to a
collection of finitely generated subgroups of finitely many of the Hi . Therefore, we
have the following generalization of the main result of [5].

Proposition 18. Suppose that G is a .countable but not necessarily finitely generated/

group which is hyperbolic relative to a .not necessarily finite/ collection of subgroups
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fHigi2I , and suppose that each of the Hi is uniformly embeddable. Then G is
uniformly embeddable.

Remark 19. We feel that it is worth remarking that although Proposition 11 proves
that in theory Osin could have built his examples without using infinitely generated
relatively hyperbolic groups, it is very difficult to see how to do this directly, and in
any case infinitely generated relatively hyperbolic groups certainly make the proof
conceptually easier.

References

[1] P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory
of group C �-algebras. In C �-algebras: 1943–1993 (San Antonio, TX, 1993), Con-
temp. Math. 167, Amer. Math. Soc., Providence, RI, 1994, 240–291. Zbl 0830.46061
MR 1292018

[2] G. Bell and A. Dranishnikov, On asymptotic dimension of groups acting on trees. Geom.
Dedicata 103 (2004), 89–101. Zbl 02069061 MR 2034954

[3] B. Bowditch, Relatively hyperbolic groups. Preprint 1999.
www.maths.soton.ac.uk/staff/Bowditch/preprints.html

[4] M. Dadarlat and E. Guentner, Constructions preserving Hilbert space uniform em-
beddability of discrete groups. Trans. Amer. Math. Soc. 355 (2003), 3253–3275.
Zbl 1028.46104 MR 1974686

[5] M. Dadarlat and E. Guentner, Uniform embeddability of relatively hyperbolic groups.
Preprint 2005. arXiv:math.GR/0501495
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