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Introduction

In the conference honoring the retirement of A. Mann which took place in Jerusalem
in May 2006, Said Sidki gave a talk in which he recalled a conjecture that he had
made in 1976 ([Si]). In this paper we prove his conjecture:

Theorem 1. Assume G is a finite group and V' is a non-trivial elementary abelian 2-
subgroup of G such that for each involutioni € G, Cy (i) # 1. Then VN 0,(G) # 1.

One way to view Theorem 1 is the following. For a finite group G let Inv(G) be
the set of involutions of G and let J be the commuting graph on Inv(G). Thus the
vertex set of 4 is Inv(G) with a, b € Inv(G) adjacentin d if @ and b commute. Now to
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any graph one can associate a combinatorial simplicial complex: the clique complex,
whose simplices are the cliques of the graph. Let K»(G) be the clique complex of J.
Then Theorem 1 says that if there exists a simplex ¢ in K,(G) such that each vertex
in 4 is adjacent to some vertex of o, then (o) N 02(G) # 1.

Since the clique complex K, (G) is homotopy equivalent to the Quillen complex
A2(G) of G at the prime 2 (cf. 5.2 in [A7]), Theorem 1 sheds some light on the Quillen
conjecture which asserts that for any prime p, 4,(G) is contractible if and only if
0,(G) # 1. Indeed, Theorem 1 shows that the Quillen conjecture at the prime 2
is equivalent to the following statement: K,(G) is contractible iff G possesses a
subgroup of Sidki type.

Since the hypothesis of Theorem 1 does not inherit well to homomorphic images,
we prove that V' N O,(G) # 1 under a weaker hypothesis on V:

Theorem 2. Assume that G is a finite group and V' is a nontrivial elementary abelian
2-subgroup of G, such that whenever v € V inverts an element h of odd order in G
then Cy(h) # 1. Then V N 02(G) # 1.

Notice that if / is an element of odd order inverted by v € V# then hv is an involution
inG,and Cy (hv) # Liff Cy (h) # 1. Thusif V satisfies the hypothesis of Theorem 1,
then it also satisfies the hypothesis of Theorem 2; consequently Theorem 2 implies
Theorem 1.

In [Al], Alperin proved Theorem 1 for |V| < 4; indeed in this case a short and
elementary argument (Lemma 1.4) shows that Theorem 2 holds, but when |V| > 4 we
know of no such argument to establish Theorem 2. The case || = 8 is interesting in
that Theorem 1 was proved by Sidki in [Si] when |V | = 8 using elementary means.

For the general case we show in Lemma 1.1 that if (G, V') satisfies the hypothesis
of Theorem 2, and K <0 G with VN K = 1, then (G/K, VK /K) also satisfies this
hypothesis. This allows us to reduce the proof of Theorem 2 to the case where G is
almost simple (Proposition 1.14). Then we appeal to the classification of the finite
simple groups and results on the subgroup structure of such groups to complete the
proof.

Call a pair (G, V') that satisfies the hypothesis of Theorem 2 a Sidki pair. Let
(G, V) be a Sidki pair and suppose v € V¥ inverts an element x € G of odd order.
Set D := (v, x) and C := Cg (D). We observe that

(O1) (H,V)is aSidki pair for all subgroups H < G with V' < H (obvious);
(02) (C,V N C)is aSidki pair (Lemma 1.7);

(03) if (G, V) is a minimal counter example to Theorem 2, and O,(C) contains a
unique involution 7, then ¢ is contained in V and (r€6®)) is elementary abelian
(Lemma 1.15 (2)).

These three observations are very useful in the proof of Theorem 2. We now describe
this proof in more detail. Suppose (G, V) is a minimal counter example to Theorem 2.
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Then G is an almost simple finite group; that is L = F*(G) is a nonabelian finite
simple group. By the classification of the finite simple groups, L is an alternating
group, a finite group of Lie type, or one of 26 sporadic groups.

An easy argument (Theorem 2.1) shows that L is not an alternating group. In
Sections 3—-6 we establish various results about strongly real elements in the auto-
morphism groups of sporadic groups and use observations (O1)—(O3) above to show
that L is not sporadic.

This reduces us to the case where L is a group of Lie type and characteristic p for
some prime p. We consider two subcases: p is odd and p is even.

In the odd characteristic case we employ a different strategy: assume X is an
almost simple finite group such that F*(X) is a group of Lie type and odd character-
istic. Let W be a nontrivial elementary abelian 2-subgroup of X. Recall that proper
parabolic subgroups P and Q in F*(X) are called opposite if P N Q is a Levi factor
of both P and Q. Let us denote by & (X, W) the collection of those W -invariant
sets S of proper parabolic subgroups of F*(X) such that if P, Q € S are distinct,
then P and Q are opposites.

In Lemma 8.1 we show that, in a minimal counter example to Theorem 2, for all
P e S e &8(G,V), Ny(P) = 1. Thus to eliminate the possibility that L is of Lie
type in odd characteristic it suffices to establish the following result, which may be
of independent interest:

Theorem 3. Assume X is an almost simple finite group such that F*(X) is a group
of Lie type and odd characteristic. Assume W is a nontrivial elementary abelian
2-subgroup of X. Then:

(1) 8(X, W) is nonempty.
(2) If|W| = 8, then there exists P € S € 8(X, W) such that Ny (P) # 1.

This reduces the proof of Theorem 2 to the case where L is of Lie type and
characteristic 2. In this case we use observation (O1) and the fact that |V| > 4 to
“force” certain involutions v of G to belong to V' and then we (essentially) argue that
for some element x € G of odd order inverted by v, D := (v, x) does not satisfy
observation (O2) or (O3). This is done by showing that certain involutions in L satisfy
a weak version of the saturation properties established by Seitz in [Se] for elements
of order p in groups of Lie type and characteristic p.

Unfortunately the results of Seitz only apply when p is a good prime, which
is almost never the case for p = 2. Thus we must supply proofs of these weak
saturation properties ourselves. These properties are of independent interest and their
description is somewhat technical; we first define the set &(Y, ).

Let g be a power of 2, and assume that Y is a group such that either

Y = 0% (Y) is a group of Lie type over F, with F*(Y') quasisimple, or
Y = 2F4(2) is the Tits group.



350 M. Aschbacher, R. Guralnick and Y. Segev

Leti € Inv(Y), and define &(Y, i) to be the set of pairs (K, U) such that
ieU<K<Y;
U is an elementary abelian 2-group of order ¢ and U < Z(Cy (i));
Cy (K) is a complement to O,(Cy (i)) in Cy (i);

Furthermore one of the following holds:

() K = La(g);

(i) Y = Sz(q) or 2F4(q) with ¢ > 2, or 2F4(2)’, i is a long root involution in Y,
and K = Sz(q), Sz(g), or D1y, respectively;

(iii) Y = Sp,(q) or Y = F4(q), i is of type ¢z, respectively of type fu in Y, and
K = L,(g?); in addition, if ¢ = 2, then Cy(K) = Cy (D) for each dihedral
subgroup Do = D of K.

In this definition, and in Theorem 4 below, we use the notation and the description
of involutions in groups of Lie type and characteristic 2 from [ASe].

When Y’ is of Lie type and characteristic p with p a good prime, Seitz [Se]
establishes many properties of elements i’ of order p in Y’, including the fact that an
appropriate analogue of G(Y’,i’) is nonempty.

Theorem 4. Let g be a power of 2, and assume Y = 02/(Y) is an almost simple
group of Lie type over Fy, or Y = 2F 4(2) is the Tits group. Let i be an involution
in Y. Then one of the following holds:

(1) &(Y,i) is nonempty.

(2) Y = Sp,(q) and i is of type c; for some even integer | > 2.
(3) Y = Q%(q), n = 8, and i is of type c; for some even | > 2.
4) Y = E7(q) and i is of type u or v.

(5) Y = Eg(q) and i is of type v.

The exclusions in (2)—(5) of Theorem 4 may not be necessary. We do not need to
consider such involutions in proving Theorem 2, and did not immediately see how to
show &(Y,i) # @ for such involutions (except in case (3)), so we leave the question
open. However there do seem to be some serious difficulties involved with case (2).

To conclude the introduction we point out that Theorem 3 is proved in §8, the
proof of Theorem 4 is completed in §15, and the proof of Theorem 2 is completed
in §16. Our basic references are [A4] for notation and terminology involving finite
groups and [GLS3] for notation, terminology, and information about the finite simple
groups.
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1. Sidki pairs

In this section G is a finite group and V' is a nontrivial elementary abelian 2-subgroup
of G.

Given a V -invariant subgroup H of G, define O (H, V) to be the set of (h,v) €
H xV suchthat & is of odd order and v inverts /. Let B(H, V') consist of those (4, v) €
D(H, V) such that Cy(h) = 1. Recall from the Introduction that the pair (G, V)
is a Sidki pair if 8(G, V) is empty. Write J for the set of Sidki pairs. A minimal
counter example to Theorem 2 is a Sidki pair (G, V) such that O,(G) NV =1, |G|
is minimal subject to this constraint, and |}/| is minimal subject to both constraints.
Write @ for the set of minimal counter examples to Theorem 2.

Lemma 1.1. Assume (G,V) € . Then:
() IfV < H <G, then (H,V) € P.
(2) Suppose K < GwithV NK =1, and set G* = G/K. Then (G*,V*) € .

Proof. As B(H,V) C B(G,V), (1) holds. Let x € G* be an element of odd order
and let y € V* be an involution that inverts x. Then D := (x, y) is a dihedral group
of order 2m, where m is odd, and there exists v € V with v* = y. Thus there exists
g € G such that D = (v*, (v8)*). Let E = (v, v¥). Then there exists 7 € E of
odd order such that #* = x. Since v inverts # and (G,V) € P, Cy(h) # 1. As
VNK=1,Cyph) = Cyh)* <Cpx(h*) = Cy=(x),so Cy=(x) # 1. O

Lemma 1.2. If (G,V) € P and |V| = 2, then V < 0»(G).

Proof. Assume otherwise. Then by the Baer—Suzuki Theorem (cf. 39.6 in [A4]),
a generator v of V' inverts a nontrivial element x of odd order, and as |V| = 2,
Cy(x) = 1, contradicting (G, V) € £. O

The following lemma, and Lemma 1.5 below, should be compared with Theo-
rem 2.1 in [Si].

Lemma 1.3. Assume (G,V) € P and E is of index 2 in V with (G, E) ¢ P. Then
V < 02(Cg(E)).

Proof. Assume otherwise. Then |[V| > 2 by 1.2. By hypothesis there is (x,e) €
B(G,E), and as (G,V) € P, thereis 1 # v € Cy(x). As (x,e) € B(G, E),
Ceg(x) = 1sov € V — E. Hence by assumption, v ¢ O(Cg(E)), so by the
Baer-Suzuki Theorem, there is g € Cg(E) such that y := vv€ is nontrivial of odd
order. Then (G, V&) € P and (x,e) € D(G, V¥), so there exists 1 # u € Cys(x).
As Cg(x) = 1, u = v8a for some @ € E. Then ya = vvéa = vu centralizes x,
and y centralizes a, so also (ya)? = y? centralizes x. Then as |y| is odd, [x, y] = 1.
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Therefore |xy| is odd and ev inverts xy, so thereis 1 # w € Cy(xy). If w € E then
xy = (xy)¥ = x"y,sow € Cg(x) = 1, a contradiction. Thus w = bv for some
b € E. Therefore xy = (xy)* = x?y~!, 50 x? = xy2. Thenas [b, y] = 1,

X = xb2 _ (xyz)b _ xby2 _ xy4,

contradicting |y| odd. O

Lemma 1.4. If (G,V) € P and |V| <4, then V N 0,(G) # 1.

Proof. Assume otherwise and choose v € V*. By Baer-Suzuki, v inverts a nontrivial
element x of odd order in G. As (G, V) € £, thereis | # ¢ € Cy(x). Butby 1.2
and 1.3, V < 0,(Cg(e)), a contradiction. O

Lemma 1.5. Assume that (G,V) € P, but for each maximal subgroup E of V,
(G,E) ¢ P. Then V centralizes each V -invariant subgroup of G of odd order.

Proof. Let X be a V-invariant subgroup of G of odd order, and & the set of max-
imal subgroups of V. Then (cf. Exercise 8.1 in [A4]) X = (Cx(E) : E € &).
Furthermore, for £ € & we have V < 0,(Cg(E)) by hypothesis and 1.3, so
[Cx(E),V] < 02(Cg(E)) N X =1, and hence V centralizes X. O

Lemma 1.6. Let U < V be a nontrivial subgroup and let H be a U -invariant
subgroup of G. Then (HU,U) € P iff B(H,U) = 0.

Proof. Asthe2-group U actson H, O?(HU) = O?(H),so B(H,U) = 8(HU,U).
O

Lemma 1.7. Assume (G,V) € P, letv € V and let x € G be an element of odd
order inverted by v. Set D := (v, x) and C := Cg(D). Then (C,C NV) € .

Proof. LetW := CNV,andnotice thatsince (G, V) € P, W # 1. Pickl #we W
and let y € C be an element of odd order inverted by w. Then vw inverts xy, so
there exists u € V# such thatu € Cy (xy). Since w, xy € Cg (u) also (xy)(xy)¥ =
xyxy~! = x2 € Cg(u). But |x|is odd, sou € C and hence u € W. Note that u
centralizes y, so we see that (C, W) € P. O

Our goal in the remainder of the section is to prove that if (G, V') is a minimal
counter example to Theorem 2 then G is almost simple, and to obtain further results
on a minimal counter example. Thus in the remainder of the section we assume:

Hypothesis 1.8. (G, V) is a minimal counter example to Theorem 2.
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Lemmal.9. Let1 #£ U < V and assume that H is a nontrivial U -invariant subgroup
of G such that HU # G.

(1) IfCy(H) =1and O2(H) = 1, then (HU,U) ¢ P.
2) IfU =V and O,(H) = 1, then Cy(H) # 1.
Proof. Notice that (2) is an immediate corollary of (1) because by Lemma 1.1 (1),
(HV,V)e P.
Assume the hypothesis of (1) with (H U, U) € &. Then by minimality of G in Hy-

pothesis 1.8, U N O,(HU) # 1,andso [U N O,(HU),H] < O,(HU)NH =1,
contradicting Cy (H) = 1. O

Lemma 1.10. () IfV < H < G, then V N O5(H) # 1.

(2) If H is a proper subgroup of G of odd index, then 1 # V N O,(K) for some
KeHS.

Proof. Under the hypothesis of (1), (H,V) € & by 1.1(1), so (1) follows from
minimality of G. Then (2) follows from (1) and Sylow’s Theorem. ]

Lemma 1.11. V centralizes each V -invariant subgroup of G of odd order.
Proof. This follows from the minimality of V' in Hypothesis 1.8, and from 1.5. [

Lemma 1.12. Let X; < G be V-invariant subgroups of G for i = 1,2, such that
X = (X1,X3) = X1 X X3, O2(X) =1and X;V # G, then Cy(X) # 1.

Proof. Assume that Cy(X) = 1 and set
V1 = CV(Xz)

By Lemma 1.9(2) V; # 1. Since Cy,(X;) = 1, Lemma 1.9(1) implies that
(X171, V1) ¢ &P, so by Lemma 1.6 we may pick (h1,v1) € B(X1, V7). Set

V2 = CV(hl)

Then V, N V; = 1 and hence Cy, (X2) = Vo N Cy(X3) = V2 N V7 = 1. Hence,
again, we may choose (&3, v3) € B(X2, V»). Note that

Cy(hihy) = Cy(h1) N Cy(hy) = Vo N Cy(hy) = Cy,(hy) = 1.

However as X = X; x X, with h; € X;, [hy,ha] = 1 s0 hih; is inverted by vyv,,
contrary to our hypothesis that (G, V) € 7. O

Lemma 1.13. F(G) = 1.
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Proof. Assume that 0,(G) # 1. As (G,V) € @, V N O,(G) = 1. Then we
conclude from Lemma 1.1 (2) and minimality of G that O,(G/O0»(G)) # 1, which
is absurd.

Thus O>(G) = 1. Assume that K := F(G) # 1, and set G* := G/K. As
0,(G) =1, K isof odd order,so VNK = 1. Thus (G*, V*) € £ by Lemma 1.1 (2).
Then by minimality of G, 1 # V* N O,(G*). Let U be the preimage in V of
V* N 02(G*). As E(G)* < E(G*), [U,E(G)] < K, so U centralizes E(G)
(cf. 31.6.3 in [A4]). Further V centralizes K by 1.11, so U centralizes F*(G),
contradicting O,(G) = 1. O

We can now prove

Proposition 1.14. Assume that (G, V) is a minimal counter example to Theorem 2.
Then G is almost simple and G = VF*(G).

Proof. We first claim that

(1) V acts transitively via conjugation on the components of G.

Let €2 be the set of components of G and let £2; be an orbit of V' on €2. Assume
that 2, = Q \ Q7 is nonempty. Set X; = (R2;), i = 1,2 and note that we get a
contradiction to Lemma 1.12. This establishes (1).

Let L € Q2. We next claim that

Q) Vi:=Ny(L) # 1.

Assume (2) fails and let ¢ be an odd prime dividing |L| and Q1 € Syl (L). Then
0 := (Q}/) is a V-invariant Sylow g-subgroup of F*(G), and V is faithful on Q,
contrary to 1.11. This establishes (2).

We next show

3) (LW, V) e .

First, for 1 # x € L, Cg(x) < Ng(L). Thus if x has odd order and is inverted
by some v € V7, then Cy(x) # 1, and since Cy(x) < Ng(L), Cy(x) < V7. So,
by 1.6, (3) is established.

If G = LV then the proposition holds, so we may assume otherwise. Then by
(3) and the minimality of G, Cy,(L) # 1. However as V is abelian, Cy, (L) <
Cy,(F*(G)) = 1by (1), a contradiction. O

Lemma 1.15. Assume u is an involution in G and x is a nontrivial element of odd
order inverted by u. Set D := (u, x) and suppose that either

(1) 02(Cs(D)) =1, or

(2) 0,(Cg (D)) contains a unique involution t, and eithert ¢ V or (t€6 ™) is not
elementary abelian.

Thenu ¢ V.
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Proof. Suppose u € V and let H = Cg(u), C = Cg(D), and h € H. Set
Wy = Cyn(D). By 1.7, (C, Wy,) € £, so by the minimality of G, Wj, N 0,(C) # 1
and hence ¢t € Wj,. We have

teﬂthﬂVh:VH,

heH heH

sot € V andas Vg is an elementary abelian normal subgroup of H, (¢ ) is elementary
abelian, a contradiction. OJ

2. Alternating groups
In this section we prove:

Theorem 2.1. Assume (G, V) is a minimal counter example to Theorem 2. Then G
is not an alternating or symmetric group.

Let 2 = {1,...,n}, S the symmetric group on €2, and A the alternating group
on Q. Assume (G, V') is a minimal counter example to Theorem 2 and G = S or A.
For X C S, write M(X) for the set of points of 2 moved by X.

Lemma 2.2. (1)n > 5.
(2) V acts on no partition I' = {Q1, 2} of Q with |Q;| > 4 fori =1,2.

Proof. Part (1) follows from Proposition 1.14, which says that G is almost simple.
Suppose V acts on I' as in (2), and let H = Ng(I'). Then V < H < G with
0,(H) = 1, contrary to 1.10. O

Lemma 2.3. (1) M(v) = Q for eachv € V*.
(2) Each orbit of V on Q is regular.
G [VI=3.
4 n =8

Proof. Assume (1) fails and pick v € V¥ so that M(v) # @, and m = |M(v)| is
maximal subject to this constraint. Then v inverts a cycle 2 € G of length m + 1.
Now (h,v) € D(G,V), so as B(G, V) = @, there exists | # u € Cy(h). Then
M(h) C Fix(u), so M(uv) = M(u) U M(v) is of order m + |M(u)| > m. Further
uv fixes the fixed point of v on M(h), so M(uv) # 2, contrary to the maximality
of m. Thus (1) is established.

Part (1) implies (2), while (3) follows from 1.4. By (2) and (3),» = 0 mod 8, so
(4) follows. ]
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Lemma 2.4. V is regular on S2.

Proof. Let m = |V|. By 2.3(2), V has r = n/m regular orbits of length m on 2,
and we may assume 7 > 1. By 2.3(3), m > 8. Let A be an orbit of V' on €2, and set
¥ =Q —Aand H = Ga. Thus H is the alternating or symmetric group on X, and
as |X| >m > 8, O,(H) = 1. Hence Cy(H) # 1 by 1.9(2). But Cy(H) fixes X
pointwise, contrary to 2.3 (1). O

Lemma 2.5. n = 8.

Proof. Let U be a subgroup of index 2 in V and I the set of orbits of U on 2. As V
is regular on 2, U has two orbits of length n/2 and V acts on I'. Now the lemma
follows from 2.2 (2) and 2.3 (4). O

We are now in a position to obtain a contradiction, establishing Theorem 2.1.
By 2.4 and 2.5, G = L4(2) and we may choose V' to be the group of transvections
with a fixed axis P on the natural module M for G. Let v € V* and pick h of
order 3 in G inverted by v. Then dim([M, h]) = 2 and M = [M, h] + P. However
Cy (h) centralizes [M, h] and P, so Cy (h) centralizes M = [M, h] + P and hence
Cy(h) = 1. Thus (h,v) € B(G, V), for our contradiction.

3. Some strongly real elements in sporadic groups

In this section L is a sporadic group. Our notation for conjugacy classes in L come
from [GLS3], although we sometimes write ‘r’ rather than ‘rA’ if L has a unique class
of elements of order . The information about the normalizers of elements of prime
order in L comes from [GLS3] as well; sometimes the appeals to this information are
implicit rather than explicit.

For a group H we write Inv(H ) for the set of involutions of H and for x € H,
Ng(x) := Ng({x)). Given L-invariant subsets A, B of G, we sometimes write
[A, B] = 1toindicate that [@,b] = 1 forsomea € Aand b € B. We write t ~> X to
indicate that the involution ¢ inverts x, and write A ~» B to indicate that a ~ b for
somea € Aand b € B.

Lemma 3.1. (1) Let M =~ M54 and let Q be a set of 24 points permuted transitively
by M. Then M has two classes of involutions 2A and 2B such that:

(a) Fora € 24, Cy(a) = L3(2)/ D3 and Fix(a) is an octad in 2.
(b) Forb € 2B, Cpr(b) = S5/ E¢4 and b has no fixed point on SQ.
(c) 2B » 11A.

(2) Let L = M>,, then 2C ~> 11A.
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Proof. (1): Parts (a) and (b) appear in [A8, 21.1]. Let X < M be of order 11. As the
stabilizer L3(4) in M of 3 points of €2 is an 11’-group, |Fix(X)| = 2 and X has two
orbits 2;,i = 1,2, of length 11 on 2. An involution ¢ € M that inverts X acts on
Fix(X) and either fixes one point in ; for i = 1 and 2, or interchanges 27 and 5.
Thus |Fix(¢)| < 4,s0t € 2B.

(2): View Aut(L) as the global stabilizer in M = M>4 of two points. Let ¢ €
Inv(Aut(L)) \ L with ¢ ~> 11. By (1), ¢ is in the M -class 2B. Thus 7 ¢ 7 (Cas(c)),
so ¢ is of type 2C in Aut(L). O

Lemma 3.2. The following table lists groups L and classes O and 4 in Aut(L) such
that

(1) |Out(L)| = 2 and A is a class of outer involutions in Aut(L);
(ii) for x € O, |Caw(r)(x)| is odd and A ~> O.

L | M| My |Js |ON
O | 114 | 114 | 194 | 314
A|12C |2C |2B |2B

Proof. Observe p = |x| is an odd prime, and from [GLS3], (x) € Syl,(L), |CL(x)|
is odd, |Out(L)| = 2, and for each involution a € Aut(L)\ L, p ¢ n(Cr(a)). Thus,
by a Frattini argument, some involution ¢ € Aut(L) \ L acts on {(x), and then, as
p ¢ 7w (Cr(t)), t inverts x.

Next, if L # M»,, then there is a unique class # of outer involutions in Aut(L)
sot € s and the lemma holds in this case. If L = M>, then the lemma follows from
Lemma 3.1 (2). O

Lemma 3.3. The following table lists classes O and A in L such that for x € 0O,
|Cr(x)| is odd and A ~> O.

L|Jy |Js Jy |HS |McL|Ru | ON
O |7TA | 17TA|23A|7A |5B | 294 | 114
A|2B |24 |2B |2B |24 |2B |24

Proof. The J3, McL and O’N entries of the table follow from the fact that these
groups have a unique class of involutions and from the structure of the normalizers
of subgroups of prime order in these groups.

J: Let L = J, and let ¢ be an outer involution in Aut(L). Then K = Cr(c) =
PGL,(7) has Sylow 2-subgroup S 22 D and two classes zX and X of involutions,
with z 2-central in K. As Z(S) contains a 2-central involution of G, z is 2-central
in G, and hence of type 2A. Then as non-2-central involutions of L of type 2B also
centralize outer involutions (cf. [GLS3, pg. 268]), ¢ € 2B. Finally f ~> 7 in K.
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Js 1 L = J4hastwo classes of elements of order 11 and two classes of involutions.
Further, for each ¢ € Inv(L), Sylow 11-subgroups of Cy (¢) have order 11, so Cr (¢)
is transitive on its subgroups of order 11. Since each element of order 11 in L is
centralized by an involution, we conclude that:

(1) For X € {A, B}, there exists a unique class 11y of elements of order 11 such
that [11x,2X] = 1. Further 114 # 11p.

Nextlet Y be generatedby y € 11A. By [GLS3], NL.(Y) == (GL,(3)xZs)/111 12
is strongly 11-embedded in L. Let @ = O11(Nr(Y)). Then there is an involution
z € Cp(Y) inverting Q/Y, and 3 € 7(Cr(y,z)), so z € 24, since if z € 2B then
3 ¢ n(Cc, (z)(y)). It follows from (1) that:

(2) 11y = 11X for X € {4, B}.

Further as N (Y) is strongly 11-embedded in L,eachb € Q — Y isin 11B, and
z inverts some such elements, so:

(3)24 » 11B.

Let b € 11B and v € Cr(b) N 2B. Then Cr(v) is contained in a maximal
subgroup M = Mj4/ E511, so it follows from the structure of M»4 that b € Nps(X)
for some X < M of order 23. Finally Nz (X) is Frobenius of order 23 - 22, so (2)
implies that 2B ~ 23.

HS: Let L =~ HS andlet d € 2D. Then K := Cr(d) =~ Sg. Consider
the covering group L of L, and let K be the preimage of K in L. By [GLS3],
Z := Z(L) is of order 2, and the involutions in K \ E(K) lift in L to elements of
order 4. As involutions of type 24, 2B in L lift to involutions, elements of order 4
in L, respectively, it follows that involutions in K \ E(K) are of type 2B. Since
L contains a unique class of elements of order 7, and an element of order 7 in K is
inverted by an involution of cycle type 23, we are done.

Ru: There are two classes of involutions in Ru and only [2B,7] = 1. Next for
x € 29, Np(x) is Frobenius of order 29 - 14, and hence Inv(Nz (x)) C 2B. O

Lemma3.4. [fL =~ My,, then2A ~> 5A4,2B ~> 54, andforx € 5A, Inv(Cr(x)) C
2A.

Proof. First, L has two classes of involutions, 24 and 2B, and one class 54 of
elements of order 5. If t € 24, then ¢ has no fixed points on the set €2 of 12 points
permuted by L, while s € 2B fixes 4 points. Further L contains a transitive subgroup
K =~ L,(11) and for v € 2, K, is a Borel subgroup, so the involutions in K are in
the class 24 and inside K, 24 ~> 5A. Next, 2B ~> 5, inside L, =~ Mj;. Finally,
since 5 ¢ 7 (Cr(2B)), Inv(Cr(x)) C 2A4. O

Lemma 3.5. If L = J,, then2A ~ 5A and for y € 54, Inv(C(y)) C 2B.

Proof. By [GLS3], [2B,5A4] = 1, so since Cp(y) =~ Zs x As, Inv(Cr(y)) C 2B.
Let b € Inv(Cr(y)). By [GLS3], Cr(b) = E4 x As, and Inv(Cr (b)) N 24 =
Inv(E(CL(b))). Thus inside Cr (b), 24 ~> 5A. O
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Lemma 3.6. Assume L = Co,, let x € 5B, and set N := Np(x). Then:
(1) N = Fy¢ x Ss, where Fyq is the Frobenius group of order 20.
) If s e Inv(N) and C(s,x) = Ss, then s € 2B.
(3) 2C » TA and for z € TA, Inv(Cr(z)) C 2A U 2B.

Proof. Part (1) appears in [GLS3]. Let ¢ be a transposition in Cr,(x). We claim that
t € 24. Set C := Cr(t) and C* := C/0O,(C). Then x* is of order 5 in C* such
that Cox(x*) == Zs x S3. Now the claim follows from the structure of centralizers
of involutions in L. By the claim:

(1) [5B,24] = 1.

Next from Section 24 in [A8], there exists a subgroup HS =~ K < L. Note that K
contains a Sylow 5-subgroup of L, and then from the structure of the centralizers of
elements of order 5 in L and K:

(ii) For X € {54, 5B}, the K-class X is contained in the L-class X.

Similarly for u in the K-class 2B, Ck (1) contains an Aut(Ag)-section, so:

(iii) The K-class 2B is contained in the L-class 2C.

Next from [GLS3], there exists Sg =~ § < K. Let x5 be anelement of order 5in S..
Then 3 € 7(Ck(xgs)), so xg is in the K-class 5B. Further there exists ¢ € Inv(S)
centralizing x with Cs(t) =~ Z, X Sg, so t is in the K-class 2B. Hence from (ii) and
(iii):

@iv) [5B,2C] = 1.

Now for each ¢ € Inv(L), Sylow 5-subgroups of Cy,(¢) have order 5, so Cr(¢) is
transitive on its subgroups of order 5. Hence by (i) and (iv), fory € 54, Cr(y)N2A4 =
¥ =Cr(y)Nn2C,so:

(v) For y € 54, Inv(Cr(y)) C 2B.

If i is in the K-class 2B, then Cx (i) = Z, x Aut(Ag), so:

(vi) If t € Inv(K) is a square in K, then ¢ is in the K-class 2A.

Next an element y in the K-class 54 is centralized in K by an involution i which
is a square in Cx (y), so i is in the K-class 24 by (vi). By (ii), y is in the L-class 54,
so by (v), i is in the L-class 2B. Thus we have shown:

(vii) The K-class 24 is contained in the L-class 2B.

By (ii), we may assume that x € K and Nk (x) = F,¢x As. Let s be an involution
in Nk (x) with Cg (s, x) = As. By (vi) and (vii), s is in the L-class 2B, so (2) follows.

It remains to prove (3). We may assume that z € K. By 3.3, z is inverted by an
involution j in the K-class 2B, so j is in the L-class 2C by (iii). Since for ¢ € 2C,
7 ¢ w(Cr(c)), (3) follows. O

Lemma 3.7. Let L =~ He. Then:
(1) 2B ~ 17 and |Cayr)(x)| = 17, for x € 17.

(2) Let x € 5A. Then x is inverted by some element a in 2A with Cr(a,x) =~ As
and Cpy(r)(a, x) = Ss.
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Proof. Leta € 2A. Then Cr (a) has a subgroup E4 X L3(4) of index 2,soifu € L
with |u| = 8, then u* € 2B. Let y € 17. Then Ny (y) is Frobenius of order 17 - 8,
so the first part of (1) follows, and the second is a consequence of [GLS3]. Part (2)
follows from 42.14 in [A8]. O

4. Sporadic groups in Theorem 2

In this section we begin to prove the following result.

Theorem 4.1. If (G, V) is a minimal counter example to Theorem 2, then F*(G) is
not sporadic.

Assume that (G, V') is a minimal counter example to Theorem 2 with L = F*(G)
sporadic. By Proposition 1.14, G = VL. We begin with a series of reductions.

Lemma 4.2. Assume a is an involution in G and x is an element of odd order inverted
by a. Set D = (a, x). Then each of the following imply thata ¢ V:

(1) 02(Cg(D)) = 1.

(2) v9 N Cg(D) = 0 for each v € V*.

Proof. Part (1) is sufficient by 1.15 (1). Further if a € V, then (x,a) € D(G, V), so
as (G,V) € 2, Cy(D) # 1; thus (2) is sufficient. O

Lemma 4.3. Assume a is an involution in G and x is an element of odd order inverted
by a. Set D = {(a, x) and assume O(Cg (D)) has a unique involution t. Then each
of the following imply thata ¢ V :

(1) 02(Cg(a)) = {(a).
(2) (t€6@D) s not elementary abelian.

Proof. Part (2) is sufficient by 1.15(2). Then (1) is sufficient by (2). ]
Lemmadd4. VN L #1.

Proof. This follows as | Out(L)| <2 and |V| > 8 by 1.4. O
Lemma 4.5. L is not M1, M3, J1, Ly or Fj.

Proof. For each of the groups, Out(L) = 1, and L has one class a’ of involutions.
We indicate a class @ = x’ of elements of odd prime order in L satisfying the
hypothesis of Lemma 4.2 (1), and appeal to that lemma.

L | My | My |Ji |Ly | F3
O |54 54 7A | 314 | 194
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Lemma 4.6. If L is M5, J3, or O’'N, then G = L.

Proof. Let A = a® and @ = xT be as in Lemma 3.2. Then, by Lemma 3.2 and
Lemma4.2 (1), VN A = 0. But 4 is the unique class of outer involutions in Aut(L),
so V C L. Thus the lemma follows as G = VL. O

Lemma 4.7. L is not J3 or O’N.

Proof. Assume otherwise. By Lemma 4.6, G = L. Now L has a unique class of
involutions 24, and Lemma 3.3 shows that the hypotheses of Lemma 4.2 (1) hold for
a € A = 2A and some x € 9, completing the proof. O

Lemma 4.8. L is not M.

Proof. Assume L =~ M;,;. By Lemma 4.6, G = L. Let x € 54, a € 24, and
b € 2B. Then Cp(x) =~ Z, X Zs and Cr(a) = Z, x S5. By 3.4, we may assume
thata ~» x and b » x. Thenby 4.3(1), V N2A4 = @. Consequently V* C 2B. But
by 3.4, Inv(CL(x)) € 24, so Lemma 4.2 (2) supplies a contradiction. O

Lemma 4.9. L is not M»,.

Proof. Assume L =~ M,,. By Lemma 3.2 and Lemma 4.2 (1), V N 2C = @. Next,
2 A is the unique class of involutions in L, and x € 54 is inverted in L, so 24 ~»> 5A4.
Further 5 ¢ 7(Cr(i)) fori € 24 U 2B, 50 Inv(Cay()(x)) C 2C. Thus applying
Lemma 4.2 (2), V N 24 = @, contrary to 4.4. [

Lemma 4.10. L is not M»4.

Proof. Assume L =~ M,,. Then Out(L) = 1, s0 G = L. An element of order 11
is self centralizing in L, so by 3.1 (Ic) and 4.2(1), V N 2B = @. Let x € 3A. Then
N = Np(x) = S3 x L3(2), soif a € Inv(N) with Cy(a,x) =~ L3(2), then a
inverts x and a € 2A because 7 € w(Cr(a)) but Cp(b) is a 7’-group for b in the
remaining class 2B of involutions. It follows from Lemma 4.2 (1) that V N 24 = @,
contradicting Inv(L) = 24 U 2B. O

Lemma 4.11. L is not J5.

Proof. Assume L =~ J,. Let x € 7A. Then Np(x) is Frobenius of order 42,
while Aut(L) has a unique class 2C of outer involutions, and for ¢ € 2C, Cr(c) =
PGL,(7). In particular we may choose [x,c] = 1 and for b € Inv(L) inverting x,
c¢b ¢ L,soch € 2C. Thus 2C ~ 7A4,s02C NV = @by 4.3 (1). Therefore G = L.

Next, 3.3 together with Lemma 4.2 (1) imply that V' N 2B = @. Finally by 3.5
and Lemma 4.2 (2), V N2A = @, which is impossible since Inv(L) = 2AU2B. O
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Lemma 4.12. L is not J4.

Proof. Assume L =~ J4. Then Out(L) = 1, s0 G = L. By Lemma 3.3 and
Lemma4.2(1),V N2B = @.

Next from observation (3) in the treatment of J4 in 3.3, 24 ~ 11B, while
observations (1) and (2) in that treatment imply that Inv(Cr (y)) C 2B, for y € 11B.
Thus V N 2A4 = @ by 4.2 (2), contradicting Inv(L) = 24 U 2B. O

Lemma 4.13. L is not Cos.

Proof. Assume L =~ Coy. ThenOut(L) = 1,50 G = L.

Let z € 24 and H := Cr(z). By 25.6 in [A8], Inv(O,(CL(z))) € 24, so
by 1.10(2),24 NV # @.

Let x € 3D. Then N (x) = S3 X Ag, so there is an involution a inverting x with
Cr(a,x) = Ao. Then 3* divides |Cy (a)|, so from the structure of centralizers of
involutions in L it follows that a € 2A4. Then since Cr (a, x) = Ay, Lemma 4.2 (1)
implies that V' N 24 = @, a contradiction. O

Lemma 4.14. L is not Co,.

Proof. Assume L =~ Co,. Then Out(L) = 1,50 G = L.

Let x € 3B, then M := Np(x) = S3 x Aut(PSp,(3)). Thus if a € Inv(M)
with Cpr(a,x) = Aut(PSp,(3)), then a inverts x and as Cr(a) has an Sp,(3)-
section, a € 2A. It follows from Lemma 4.2(1) that V N 24 = @. Similarly
by 3.6 (2) there exists b € 2B inverting x € 5B such that Cr (b, x) = Ss, so by
Lemma 4.2 (1), V N 2B = @. Finally by 3.6 (3), there is ¢ € 2C inverting z € 74
with Inv(Cr(c,z)) C2AU2B,so V N2C = @ by 4.2(2), a contradiction. O

Lemma 4.15. L is not Cos.

Proof. Assume L =~ Cos. Since Out(L) = 1,G = L. Lett € 2A. Thent is a
2-central involution in L and Cr,(¢) = 2Spe(2), so by 1.10(2), V N 2A4 # @. Let
x € 5B,then N := Np(x) =~ F,9 X As, and hence fora € N, with Cy (a, x) = As,
a € 2A, because a is a square in L. But now 4.2(2) says that V N 24 = @, a
contradiction. O

Lemma 4.16. L is not HS.

Proof. Assume L =~ HS. From the proof of 3.6 (2), x € 5B is inverted by a € 24
with Cp (a, x) = As, and from [GLS3], Cay(z) (@, x) = Ss. Thus by Lemma 4.2 (1),
VN24 =40.

Next by Lemma 3.3 there exists b € 2B with b v y € TA. Now Cay(r)(y)
contains a unique involution d, and S := Cp(d) =~ Sg. Then Cr(d,b) = E4 X Sa4,
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so E(Cr(b)) = [E(CL(b)),d]. Hence by Lemma 4.3(2), V N 2B = 0. Now
Lemma 4.4 supplies a contradiction. O

Lemma 4.17. L is not McL.

Proof. Leta € 2A. Then Cp(a) = 243 = F*(Cawr)(a)). By Lemma 1.10(2),
VN24 # 0. By33,a v x € 5B, and O2(Cpy(r)(x,a)) = 1. Hence, from
Lemma 4.2 (1), it follows that V N 24 = @, a contradiction. ]

Lemma 4.18. L is not Suz.

Proof. Let z € 2A and H := Cr(z). Then z is a 2-central involution and Q =
O2(H) = F*(Cawr)(2)) = Qg, with H/Q == Q¢ (2) transitive on the involutions
i €Q—{(z),50|Cg(i)|2 = (|[H|2)/2 = 2'2. Thus as |C(b)|» < 2'2 for b € 2B,
Inv(Q) C 24,50 VN2A # @by 1.10(2).

By [GLS3], H contains x € 5A4. As all involutions in Cz (x) are in E(CL(x)) =
Ag,itfollowsthatz »> y € Cr(x)oforder5S. Let D := (z, y). Then Cr.(D)NNp(x)
contains an F,o-subgroup, so it follows from the structure of centralizers of elements
of order 5 in L that F*(Cr(D)) = E(CL(y)). Butnow 2A NV = @by 4.2(1),a
contradiction. O

Lemma 4.19. L is not He.

Proof. Assume L =~ He. By 4.4,V N L # 1, while by 3.7 and 4.2 (1), neither of the
two classes 24 and 2B of involutions in L intersect V' nontrivially. O

Lemma 4.20. L is not Ru.

Proof. Assume L =~ Ru. Since Out(L) = 1, G = L. By Lemma 3.3 and
Lemma4.2(1),V N2B = 0.

Let x € 5B. From [GLS3], N := Np(x) = F,¢ X As. If a € N is an involution
such that Cy (a, x) = As and a inverts x then a € 24 since |Cr (¢)| is not divisible
by 3 fort € 2B. Hence by 4.2(1), V N 24 = @, contradicting Inv(L) = 24 U 2B.

O

Lemma 4.21. Assume (G, V') is a minimal counter example to Theorem 2, such that
L = F*(G) is sporadic. Then L is Fs5, F,, Fy, or one of the three Fischer groups
Fr, F23, or F2a.

Proof. The remaining 20 sporadics were eliminated in earlier lemmas in this section.

O
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5. Some subgroups of the Monster

In this section M is the Monster F;. In addition to our usual appeals to [GLS3], we
also appeal to information contained in [GMS]. Our notation for the Fischer groups
comes from [A9].

First by [GLS3]:

Lemma 5.1. M has two classes 2A and 2 B of involutions, and fora € 24, Cpr(a) =
2F; is quasisimple, while for z € 2B, Cy(z) = Coy/Dg>.

Lemma 5.2. Leta € 2A. Then:
(1) Forb € 24, |ab| < 6.
(2) Let 34, = {b € 24 : Cy(a,b) = Fr3}. Then 34, # @ and Cy(a) is
transitive on 3A,.
(3) Letb € 34,4, x := ab, and H := Cpyp(x). Then x € 3A, H = Fy4/Z3 is
quasisimple, and for t € Inv(H) with Cg (t) = Aut(F22)/Z>, t € 2A.
(4) 2B v 41A, and for y € 41A, (y) is self centralizing in M.

(5) Letw € 5A. Then Cp(w) = (w) x K, where K =~ Fs5. Further fort € Inv(K)
with Ck (t) = Aut(HS)/Z,, we have t € 2A.

Proof. Part (1) is aconsequence of 3.4.9 and 3.7 in [GMS]. Part (2) is 3.4.8 in [GMS].

Let xo € 34 and Hy := Cps(x0). From [GLS3] it follows that Hy = F>4/7Z3
and there is ag € Inv(M) inverting x¢ and inducing a 3-transposition on Hy. Thus
Cum(x0.a0) = Fr3,50a9 € 24 and agxg € 3A4,. Thus the first two remarks in (3)
hold. The third remark appears in 3.6.3 of [GMS].

Let y € 41A. From [GLS3], (y) is self centralizing in M and inverted by some
involution i. By (1),i ¢ 2A, soi € 2B, establishing (4).

Finally,if w € 54 then Cr (w) = (w)x K by [GLS3], where K =~ F5. Pickf asin
(5)andletJ := Cpy(t) and J* := J/{t). Then Cy+(w*) = (w*) x Cg (¢t)*, so from
the centralizers of elements of order 5 in Coy,t ¢ 2B. Thust € 2A, establishing (5).

O

Lemma 5.3. Let L =~ F»,a € 2A, b € 2B, and d € 2D. Then:
(1) a® is a class of {3, 4}-transpositions of L.
(2) a »» x € 3Awith Cr(a, x) = Aut(F2y).
(3) b~ ye5AwithCr(b,y) =~ Aut(HS).
4) Inv(0O2(Cr(b))) C2AU2B U2D.
(5) d v ze€19AwithCr(d, z) = (u), where u € 2A.
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Proof. Part(1)is well known, see [S, (3.14)], and it appears with (2) in the Notes for F;
in [GLS3]. Let y € 54. By [GLS3] N (y) = F,0 x Aut(HS), so thereisi € Inv(L)
inverting y with Cr (i, y) =~ Aut(HS). By (1),i ¢ 24, so as 11 ¢ 7(Cr(i)) for
i €2C U 2D, (3) holds.

Part (4) appears in 3.6.3 in [S]. Let z € 194. From [GLS3], Np(z) = (u) x F,
where u is an involution and F is Frobenius of order 19 - 18. As 19 € n(Cr (1)),
u € 2A. Leti € Inv(F); we claim that {i,iu} N 2D # . Suppose not and let
Y :=Cr(u). Ifi € Y/, thenby 3.6.2in[S], {i,iu} = {24,2B}, whileifi € Y — Y,
then {i,iu} = {24,2C} by 3.18.1 in [S]. In either case we get a contradiction from
(1). Thus (5) holds. O

Lemma 5.4. Let L =~ Fs and A = Aut(L). Then:

(1) Let ¢ be an involutionin A — L. Then ¢ ~> x € 3A and Ny(x) = {c,x) x S
with S = So.

(2) Lets € S be a transposition. Thena = c¢s € 2A inverts x and Cr (a, x) = S7.
(3) 2B » 114, and fory € 114, Cr(y) = (y) x (u), withu € 2A.

Proof. Let x € 3A. By [GLS3], N (x) is of index 2 in S35 x Sg. Hence by a Frattini
argument, either Na(x) = T x S with T = S3 and S =~ Sy, or C4(Cr(x)) is of
order 2. The former holds as L is transitive on involutions in 4 — L, and for such
an involution ¢, Cr(¢) = S19. Thus (1) holds. Then by (1), Cr(a,x) = S7, so as
Cr.(b) has no A-section for b € 2B, (2) holds.

By 5.2(5), we may take L = K < M as in that lemma, and pick ¢ as in the
lemma. By the lemma, ¢ is in the M -class 24, so by 5.2(1), |¢¢!| < 6 for [ € L. But
by construction, ¢ is in the L-class 24, so ¢ inverts no element of L of order 11. Then
(3) follows from [GLS3]. O

Lemma 5.5. Assume (G, V) is a minimal counter example to Theorem 2, such that
L = F*(G) is sporadic. Then L is one of the three Fischer groups F», Fa3, or Fay.

Proof. Assume otherwise. Then by 4.21, L is Fy, F,, or F5. Suppose that L # G.
If Lis Fy or F»,then Out(L) = 1,80 L =~ F5. Butby 5.4 (1) and 4.2(1),c ¢ V, for
any involution ¢ € G — L, contradicting G = LV. Thus G = L.

Let I be the set of involutions fused into O,(Cr (b)) for b € 2B if L = F,, and
let I = Inv(L) otherwise. By 4.4 and 1.10(2), V NI # @. Then by 5.2-5.4, for
i € I, either there exists x of odd prime order with i »> x and O,(CL(i,x)) = 1, or
L~ Fsandi € 2B,or L =~ F, andi € 2D. We conclude from 4.2 (1) that L =~ F5
or F> and V* C 2B or 2D, respectively. Now by 5.4 (3) and 5.3 (5),i » y € 114 or
194 with Cr(y,i) = (u), and u € 2A4, for L =~ F5 or F,, respectively. Now 4.2 (2)
supplies a contradiction and completes the proof. O
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6. The Fischer groups

In this section L is one of the three Fischer groups F,,, n € I = {22,23,24}. Then
L = F*(M), where M = M (n) is a group generated by a set D of 3-transpositions.
Indeed M = L unless n = 24, where |M : L| =2 and M = Aut(L).

In addition to our usual appeals to [GLS3], we also appeal to the description of the
3-transposition group M in [A9]. Further we adopt Fischer’s standard notation for
3-transposition groups. For example if d € D, thend* = Cp(d), Dy = d+—{d},
and Ay = D — d~+. A subgroup K of M is a D-subgroup if K = (K N D).

Lemma 6.1. (1) M has k classes of involutions, j,, 1 <m <k, where k = 3 with
n=220r23 k = 4ifn = 24, and j,, consists of the products of m commuting
members of D.

(2) jm = 24, 2B, 2C form = 1,2,3 ifn = 22 or 23, while jm, = 2C, 24, 2D,
2B, form = 1,2,3,4, ifn = 24.

(3) Ford € D anda € Ag, x = ad € 3A, and F*(Cay(r)(x)) is a simple
orthogonal group over IF3.

@) If n = 24, then j4 ~> 294 and for y € 294, (y) is self centralizing in M.

(5) Ifn = 22, then j3 ~> 13A andforz € 13A, (z) is self centralizing in Aut(L).

(6) Letn = 22andu € jp. Thenu ~> w € SAwith Cayr)(u, w) = Cp(u, w) x
(t), where Cp(u, w) = Ss and t € 2D with (t°L®) not elementary abelian.

() Ifn = 24, then b € j, inverts w € 54 with Cpr (b, w) = So.

Proof. Part(1)is 37.41in [A9]. Then (2) follows from the tables in Chapter 15 of [A9].
Part (3) is part of the standard theory of 3-transposition groups; cf. 15.11 and 15.14
in [A9].

Assume n = 24. Then by 5.2 (3), the covering group L of L is embedded as a
subgroup of the Monster F in such a way that an involution j € L, whose image in
L isin js, is in the F-class 2A. Thus by 5.2 (1), | jj!| < 6for! € L. Thus y € 294
is not inverted by j. But from [GLS3], there is an involution i € L with i ~> y, so
asInv(L) C jo U ja,i € j4. Further (y) is self centralizing in Aut(L), so (4) holds.

Suppose W < M has order 5. Then Ny (W) = U x Y where U is Frobenius
of order 20 and ¥ =~ Sy, with Y N D the set of transpositions in Y. In particular
the product b of two commuting members of Y N D inverts w’ of order 5 in Y, and
Ny(W)N Cy(w',b) = U x Cy(w', b), with Cy (w’, b) = Ss. Thus b centralizes
0% (Cy(w")), so (7) holds.

Assume next that n = 22. By 39.1 in [A9], there is a D-subgroup K of L
isomorphic to 27(3). Let W be the natural 3 K-module and X a Levi factor of
the maximal parabolic of K stabilizing a totally singular 3-subspace of W. Then
X = L3(3) stabilizes a decomposition W = Wy & W) & W,, where W is a point
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and W; and W, are totally singular 3-subspaces. Now X contains z € 134 and Nx (z)
contains g of order 3 such that I; is a Jordan block of size 3 for g fori = 1,2. Then,
in the notation of Section 38 of [A9], W/ W62 is of rank 2 with singular points
W;6/W;62, so g is in the class 3% of K appearing in 38.15 in [A9]. Then by 39.7
in [A9], Cp(g) = @. Butford € D and b € Dy, db € j, and O*(Cr(db)) <
Cr(d), soInv(Cr(g)) C js3. Therefore as g centralizes an involution i inverting z,
it follows that j3 ~> 134, and (5) follows.

Next for t € 2D, Cr(t) is a D-subgroup isomorphic to Aut(Q§(2)). Let L; <
Cr(t)with L, =~ O; (2) and let U be the natural module for L,. Write U = U; L U,
where the U; are nondegenerate 4-subspaces of sign —1. Then the stabilizer in L;
of Uy is Ly x Ly where L; = Cr,(Us—;) = O(U;) = O, (2). In particular
there is w; of order 5 in L; inverted by u; = a;b;, the product of commuting 3-
transpositions, so u; € j,. Then Np,(u;) = Np(u;) = F>9 x Ss. Therefore
Cauw(r)(ui, w;) = Cp(u;, w;) x (t). Finally suppose T = (t€L @y is elementary
abelian. Then T = (¢, a;,b;) = Eg as {(a;, b;) is the maximal normal elementary
abelian subgroup of Cr(u;). But then Cr(u;)* < Cr(¢), a contradiction. This
establishes (6). O

Lemma 6.2. If (G, V') is a minimal counter example to Theorem 2, then L is not F5,
F»3, or Fg.

Proof. Assume L == F, forsomen € I. By 6.1 (3)and Lemma4.2(1), DNV = @.

Suppose n = 23. Then for d € D, d is 2-central in G and (d) = O,(Cr(d)),
so VN D # @by 1.10(2), contrary to the previous paragraph. Therefore n = 22
or24. By44,VNL #1,soas VN D =@,it follows from 6.1 that V N X # @
for X € {ja, j3}, X € {ja2, ja} for n = 22, 24, respectively. Then it follows from
parts (4), (5), and (7) of 6.1 and 4.2 (1), that n = 22 and V N L* C j,. Then 6.1 (6)
and 4.3 (2) supply our final contradiction. 0

Notice that Lemma 5.5 and Lemma 6.2 complete the proof of Theorem 4.1.

7. Maximal parabolics

In this section p is a prime and L is a group of Lie type in characteristic p of Lie rank
[ > 1. Thatis L/ O, (L) is the central product of factors which are quasisimple groups
of Lie type and characteristic p, (S)L,(3) if p = 3, or L,(2), (S)Us(2), 2B»(2),
Do, or 2F4(2) if p = 2. Write R(P) for the unipotent radical of a parabolic P
of L. Thus R(P) = O,(P).

Lemma 7.1. If L = OP (L) then L is not contained in a group of Lie type of
characteristic p and Lie rank less than 1.
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Proof. Assume the embedding L < G is a counter example with / minimal. Then the
Lierank k of G islessthan/. If [ = 1,thenk = 0, so Op/(G) = 0,(G), impossible
as L = OP'(L) is of Lie rank 1, so O,(L) # L. Thus [ > 1. Passing to G/R(G),
we may assume G is reductive.

Let P be a maximal parabolic of L, R = R(P), and X = OP/(P). By the
Borel-Tits Theorem (cf. 3.1.3 in [GLS3]), there exists a proper parabolic Q of G
such that P < Q and R < R(Q). Set 0* = Q/R(Q) and Y = O?'(Q). Then Y'*
and X * are of Lie type and characteristic p. Further X* = O (X*) is reductive and
as P is maximal, the Lie rank of X*is/ — 1. As/ > 1,/ — 1 > 1. Further the Lie
rank r of Y* is at most k — 1, so r < [ — 1. This is contrary to the minimal choice
of [, so the lemma is established. O

For X < L,let (X) be the set of proper parabolic subgroups of L containing X .

Lemma 7.2. Assume L is reductive and ] > 1. Let X = OP (X) be a subgroup of L
of Lie type and Lie rank | — 1. Then:

(1) Foreach P € P(X), P is a maximal parabolic and O,(X) < R(P).

(2) If Op(X) # 1, then P(X) = {P(X)} is a set of size one, P(X) is a maximal
parabolic, and O,(X) < R(P(X)).

(3) If|P(X)| > 1, then Oyp(X) = 1, and for all distinct P, Q € P(X), P and Q
are opposite maximal parabolics.

Proof. Suppose P € P(X) andset Y = OP (P), R = R(P), and Y* = Y/R.
Then X* = OP (X*) is of Lie rank / — 1 and Y * is of Lie rank at most / — 1, so
by 7.1, Y* is of rank /[ — I, so P is a maximal parabolic. Suppose O,(X*) # 1.
Then by Borel-Tits, there is a proper parabolic Py of P such that X < Py and
S = 0,(X) < R(Py). But then OP'(Py/R(Py)) is of Lie rank less then [ — 1,
contrary to 7.1. Thus O,(X™*) =1, so O,(X) < R, establishing (1).

Next suppose (2) fails, and choose a counter example X such that S is maximal
(recall § = O,(X)). Let K = N1 (S). By Borel-Tits, there exists P € (K) with
S < R = R(P). To complete the proof of (2), it suffices to show P(X) = {P},
so assume otherwise and let Q0 € P(X) —{P}and T = R(Q) N P. Then X acts
onT,so XT = OF (XT) is of Lie type with P, Q distinct members of (X T).
Therefore T = S by maximality of S.

Suppose S = R(Q). By (1), P and Q are maximal parabolics, so as S = R(Q)
we have Q = K. Then reversing the roles of P and Q, by symmetry S = RN Q,
andas P # Q,S # R. Butthen S < Ng(§) < RN Q = §, a contradiction.

Therefore S # R(Q),s0 S < Ngr(g)(S) < R(Q) N P = S. This contradiction
establishes (2).

Finally suppose P, Q are distinct members of (X ). Then O,(X) = 1 by (2).
Suppose P and Q are not opposites. Then 1 # S := R(P) N Q is X-invariant, so
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Y = SX is of Lie type with ¥ = O”'(Y)and S = 0,(Y) # 1. As P, Q € P(Y),
this contradicts (2). Thus (3) holds. O

Let 7 (L) be the set of sets T of maximal parabolic subgroups of L such that for
all distinct P, Q in T, P and Q are opposites.

Lemma 7.3. Assume L is reductive, | > 1, and X = OP'(X) is a reductive subgroup
of L of Lie type and Lie rank 1. Let Y be the set of subgroups Y = OP (Q) such that
Q is a maximal parabolic of X. Then:

(1) ForeachY € ¥, P(Y) = {P(Y)} is a set of size one, P(Y) is a maximal
parabolic, and O,(Y) < R(P(Y)).

(2) Suppose T € T(X). Then S ={P(Y):Y € T} € T(L).

Proof. LetY € Y. Then Y = OP (Y) < L is of Lie type and Lie rank / — 1 with
O0,(Y) # 1, s0 (1) follows from 7.2 (2).

Assume the hypothesis and notation of (2). Let Q1, Q> € T be distinct, and set
Y; := OP(Q;). Then Yy, := Y, N Y, = 0P (Q1 N Q,), where 01 N Qs is a
common Levi factor of Q@ and Q. Now P(Y;) € P (Y1) fori = 1,2,s0by 7.2(3),
either P(Y7) = P(Y3) or P(Y7) and P(Y>) are opposites. Thus (2) holds. O

Lemma 7.4. Assume X = OP (X)) is a subgroup of L of Lie type and characteristic
p of the same Lie rank as OP'(L). Then R(X) < R(L).

Proof. First X = O (X) < OP'(L), andif O?'(L) = R(L) the lemma is trivial, so
we may assume the Lie rank of O?'(L) is positive. Thus replacing L by O?' (L), we
may assume L = OP'(L), so by hypothesis, X is of Lie rank /. Similarly replacing
L by L/R(L), we may assume L is reductive and R = R(X) # 1, and it remains to
derive a contradiction.

By the Borel-Tits Theorem, there is P € #(X). Now applying 7.1 to X in the
role of L, we have a contradiction. O

8. Chev(p), p odd

In this section we assume G is an almost simple finite group such that L = F*(G) €
Chev(p) is of Lie type and odd characteristic p, and G = LV for some nontrivial
elementary abelian 2-subgroup V of G.

Let& = &(L, V) bethe setof nonempty V-invariant sets S of parabolic subgroups
of L, such that for all distinct P, Q € S, P and Q are opposites. In particular
Op(P)NQ =1. Letd = §(L,V) consist of those S € & such that for some
P eS,Ny(P)# 1.
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Lemma 8.1. Suppose S € & and there exists P € S with Ny (P) # 1. Then there
exists (h,v) € B(G, V) with h a p-element, so (G,V) ¢ P.

Proof. Assume otherwise and let R be the radical of P and U = Ny (P). Then
U is faithful on R, so (e.g. by 1.14 and 1.6) there is (h,u) € B(R,U), and h is a
p-element. As (h,u) ¢ B(G,V) thereis 1 # v € Cy(h). As (h,u) € B(R,U),
vg U,soP # PY. Thenh = h’ € RN R, impossibleas P # PV, so RNRY =1
as P and PV are opposites. O

Lemma 8.2. Assume L is of Lie rank 1. Then:
(1) The set S of Borel subgroups of L isin §.
) Ifma(V) > 2, then S € 8.

Proof. Part (1) is trivial. Suppose S ¢ 8, and let J be the set of involutions in Aut(L)
acting on no member of S. Then V# C 4. Butif L is 2G,(q) or Us(q), then J is
empty. Hence L =~ L,(q). Therefore d consists of the involutions in L if ¢ = —1
mod 4, while 4 consists of the involutions inducing outer-diagonal automorphisms
on L if g =1 mod 4. In particular, m,(V) < my(L) = 2, completing the proof
of (2). O

Theorem 8.3. (1) 8(L,V) # 0.
() Ifmy(V) = 3, then 8(L, V) # 0.
3) (G, V) ¢ P.

In the remainder of the section assume that (G, V') is a counter example to Theo-
rem 8.3 with G of minimal order. Observe that (2), 8.1, and 1.4 imply (3), so (1) or
(2) fails.

As (1) or (2) fails it follows from 8.2 that:

Lemma 8.4. The Lie rank of L is greater than 1.

Let V < T € Syl,(G). See [A2] for the definition of the set of fundamental
subgroups of L, and the set Fun(T") of fundamental subgroups of L associated to 7.
By 8.4 and [A2], Fun(T') is nonempty and 7 -invariant. Also, from [A2] we have:

Lemma 8.5. Let K € Fun(T). Then:
(1) K = SL»(q), where L is defined over F.

(2) Syl,(K) consists of centers of long root subgroups of L. Thus for X € Syl,,(K),
Ni(X) is a proper parabolic of L.

(3) If L is not Ln(q) with n > 2, then for distinct X, Y € Syl,(K), NL(X) and
Np(Y) are opposite maximal parabolics.
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(4) If L is Ln(q) withn > 2, then for distinct X, Y € Syl,(K), M(X) and M(Y)
are opposite maximal parabolics, where M(Z) is the stabilizer in L of the
center of Z in the action of L on its projective geometry.

Lemma 8.6. V acts on no member of Fun(T).

Proof. Assume V acts on K € Fun(T') and set § = {M(X) : X € Syl,(K)}, where
M(X) is defined in 8.5 (4) if L is L,(q), and M(X) = Nr(X) otherwise. By 8.5,
S € &, and if ma(V) > 2, then 1 # Ny (M(X)) for some X € Syl,(K) by 8.2, so
S € 8. But this contradicts the choice of V. O

Lemma 8.7. L is not L5(q), Ga(q), >D4(q), or E7(q).

Proof. Assume otherwise. Then by Theorem 2 in [A2], either T acts on some member
of Fun(T), or L = G,(q), with g an odd power of 3, and V £ L. By 8.6, the latter
holds. Letv € V — L and Y = Cr(v). Then Y = 2G;,(gq). For Q € Syl;(Y)
let B(Q) = Nz(0%(CL(Z(0Q)))). Then B(Q) is a Borel subgroup of L. Further
for P € Syl;(Y) —{Q}, B(P) and B(Q) are opposites. Namely A = R(B(Q)) N
R(B(P)) centralizes (Z(Q), Z(P)) = Y, so the remark follows as Cg(Y) = (v).
Thus S = {B(Q) : Q € Syl5(Y)} € &, contrary to the choice of V. O

Lemma 8.8. L is not L¢(q) or PSp,(q) forn > 4.

Proof. Assume otherwise and let M be the natural module for L = SL; (q) or Sp,, (q)
For K € Fun(T), let K be the > preimage of K in Land K = 07 (K) Then K
is a fundamental subgroup of L, and we abuse notation and write K for K. Let
A = {Kj,...,Ky,} be an orbit of V' on Fun(7). By 8.6, m > 1. Let U be a
complement to the kernel of the action of V on A, D = (A),and J = O?' (Cp(U)).
From [A2], [M,D] =My L --- L M,, and M; = [M, K;] is the natural module for
K;. Then J = SL;(qg) is a full diagonal subgroup of D with [M, J] = [M, D], and
for X € Syl,(J), [M, X] = [My, X] L --- L [M, X] is an m-dimensional totally
singular subspace of M. Set P(X) = Np([M, X]). Then P(X) is a parabolic with
Ng(X) < Ng(P(X)). Further for distinct X, Y € Syl,(J), [M, X] N Cp (Y) =0,
so P(X) and P(Y) are opposites.

As V acts on D and V is abelian, V acts on J. Thus § = {P(X) : X €
Syl,(J)} € &, contrary to the choice of V. O

Lemma 8.9. L is not PQ(q) forn > 5.
Proof. Assume otherwise, and let L be the image in PGL(M) of the orthogonal

group L acting on its natural module M, regarded as an orthogonal space over F,.
LetI' = T'O(M) be the group of semilinear maps preserving the orthogonal space M,
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G*(M) the group of similarities of M, and GO(M) the group of isometries of M.
These groups are discussed in Section 15 of [Al]. Further (cf. 15.1 in [A1]) as
G = LV for some 2-group V, G is the image of some G <Tin PI'(M). Asin
the proof of the previous lemma, we abuse notation and identify each fundamental
subgroup K of L with the fundamental subgroup of L mapping onto K under the
natural map. We recall some facts from Section 15 of [A1].

Let K € Fun(T) and z = z(K) the involution in K. Then there exists a unique
K’ € Fun(T) — {K} with z(K’) = z(K). Indeed [M, z] is a 4-dimensional space of
sign + and KK’ = 02 (O([M, 2])).

Suppose v € G is an involution with K¥ = K’, and let v be the image of 0 € T'.
Then O”' (Cxg(v)) = J = La(q). Let X € Syl (J).

Assume first that © € G*(M). Then from 15.8 in [A1], the action of v on KK’
agrees with that of some involution in GO(M ), and J acts as 23(q) on [M, z]. Thus
[M,z] = [M,J] L My is the orthogonal direct sum of a nonsingular point M,
with a 3-dimensional orthogonal space [M, J], X is a short root subgroup of L, and
M(X) := Cip,n(X) = [M, X, X]is asingular point of M, so P(X) = Np(M(X))
is a parabolic subgroup of L with Ng(X) < Ng(P(X)). Further for distinct X, Y €
Syl,(J), M(X) is not orthogonal to M(Y'), so P(X) and P(Y) are opposites.

So assume instead that © ¢ G*(M). Then ¥ = ot where ¢ induces an involutory
field automorphism on K and K’, and ¢ is a reflection with K? = K’. In this case J
acts as Qz(ql/z) on the IF;1/2-subspace Cipy,71(0) of [M, z], so M(X) := Cy(X)
is again a singular point of M, and P (X) has the same properties as in the previous
case.

Let A = {Kq,..., Ky} be an orbit of V on Fun(7'). By 8.6, m > 1. Let U be a
complement to the kernel of the action of V on A, D = (A),and J = 0% (Cp(U)).
There are two cases:

(i) Forl <i <m, K| ¢ A.

(i)For1 <i <m, K] € A.

From the discussion above, [M, D] = M; L --- 1 M,, where r = m in case (i),
and in case (ii), 7 = m/2 and we can choose notation so that K/ = K;,, where the
indices are read modulo r. Further M; = [M, K;]is a4-dimensional orthogonal space
of sign +1, and the sum of two natural modules for K;. In case (ii), M; = [M, Kl’]

In case (i), / = SLy(gq) is a full diagonal subgroup of D with [M,J] =
[M, D], and for X € Syl,(J), [M,X] = [My,X] L --- L [Mp, X]is a 2m-
dimensional totally singular subspace of M. Set P(X) = Np([M, X]). Then P(X)
is a parabolic with Ng(X) < Ng(P(X)). Further for distinct X,Y € Syl,(J),
[M,X]N[M,Y]* =0,s0 P(X) and P(Y) are opposites.

In case (ii), there is w € U such that foreach 1 < i < r, K}’ = Klf. Let
Ji = Op/(CKl,KI( (w)). From our earlier discussion, J; = L,(q). Let E = (J; :
I <i < r). Then J is a full diagonal subgroup of E. Let X € Syl,(J), X;

the projection of X on J;, and write M(X;) for the singular point of M; defined
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above. Then M(X) = M(X;) L --- L M(X,) is an r-dimensional totally singular
subspace of M. Set P(X) = Np(M(X)). Again Ng(X) < Ng(P(X)), and for
distinct X, Y € Syl,(J), P(X) and P(Y) are opposites.

As V acts on D and V is abelian, V acts on J. Thus § = {P(X) : X €
Syl,(J)} € 8. Thenas 1 # U < Ng(P(X)), S € &, contrary to the choice of V.
This completes the proof of the lemma. O

Lemma 8.10. L is F4(q), E{(q), or Eg(q).

Proof. By 8.3, the Lie rank of L is greater than 1. Hence if L is L, (¢) or PSp,(q),
then by 8.7,n > 4. Then by 8.8, n = 4. Thus L is P Q¢ (q) for m = 5 or 6, contrary
to 8.9. Thus if L is classical, then L is PQ¢(g) for some n > 6, contrary to 8.9.
Therefore L is exceptional. Now the lemma follows from 8.7. O

We recall from Definition 4.1.8 in [GLS3] that an involution z € L is of parabolic
nypeif 0P (Cr(z)) = OF (PN P’) for some pair P, P’ of opposite maximal parabol-
ics. Also z is of equal rank type if OP (Cr(z)) has the same Lie rank as L.

Lemma 8.11. (1) L has a unique class z* of 2-central involutions.
(2) Let L, = Cp(z). Then either
(1) L is F4(q) or Eg(q), z is of equal-rank type, L is quasisimple, {(z) = Z(L;),
and L is Sping(q) or Q{¢(q), respectively.
(ii) L is E{(q), z is of parabolic type, and 07 (L,) = Spiny(q).
(3) We may assume V < Cg(2).

Proof. Parts (1) and (2) are a consequence of Theorem 4.5.1 in [GLS3]. By (1), z is
2-central in G, so (3) follows. ]

Lemma 8.12. L is not EZ(q).

Proof. Assume otherwise. Choose zasin8.11andlet L, = Cz(z). ThusV < G, =
Cg(z). By 8.11(2), z is of parabolic type. Let S = !P(OAI’/(LZ)), in the notation
of Section 7. Then § is V-invariant, and by 7.2 (3), S € &, contrary to the choice
of V. O

Lemma 8.13. L is not F4(q) or Eg(q).

Proof. Assume otherwise. Choose z as in 8.11 and let L, = Cr(z). Thus V <
G, = Cg(z). By 8.11(2), z is of equal-rank type. By minimality of |G|, there
is S, € g(VLz, V). Indeed from 8.11(2i), L is Sping(g) or QTG(q), while from
the treatment of these groups in 8.9, the members of S, are maximal parabolics
of L;. Thus for Y € S;, P(Y) = {P(Y)} is a set of size one by 7.3(1). Set
S={PX):Y €S;}. By7.3(2), S € &, contrary to the choice of V. O
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Observe that 8.10, 8.12, and 8.13 complete the proof of Theorem 8.3. Further,
Theorem 8.3 implies Theorem 3, and deals with those minimal counter examples to
Theorem 2 whose generalized Fitting subgroup is of Lie type and odd characteristic.

9. Classical groups in characteristic 2

In this section ¢ > 2 is a power of 2, and M is an n-dimensional vector space over
F =T,
Given an involution ¥ € GL(M) and a € F, define

U(@):=1+a(u+1) € End(M),

and set
Rt(u) = Rtgrmy(u) ={U(a) : a € F}.

Observe that:

Lemma 9.1. (1) For each involution u € GL(M), the map a — U(a) is an isomor-
phism of the additive group of F with the subgroup Rt(u) of GL(M).

(2) Rt(u) < Z(Cgrm)(u)).

As in Section 4 of [ASe], for 1 <[/ < n/2, write j; for the set of all involutions
u € GL(M) such that dim([M, u]) = [. From 4.1 in [ASe]:

Lemma9.2. j;, 1 <[ < n/2, isthe set of conjugacy classes of involutions in SL(M).

Pick 1 <1 <n/2 andlet V, W be F-spaces of dimension 2, /, respectively. Set
K :=SL(V),L; :=GL(W),M; :=V @ W,andletnm : K x L; — GL(M;) be
the tensor product representation. Let u be an involution in K and U the radical of
the Borel subgroup of K containing u. Observe that Rtgy(y)(¥) = U, and that an
easy calculation from linear algebra shows Umr = Rigy (m,)(um).

Regard M, as a subspace of M and choose a complement M, to My in M.
Extend 7 to a representation p : K x Ly — GL(M) by decreeing that gp|p7, = 1 for
g € K x Ly. Then as Unr = Rigrm,)(um), also Up = Rigrr)(up). Identify K
and L with their images in GL(M ) under the injection p. Then K centralizes L,
and each of these subgroups centralizes

Ly := CoLmy(M1) N NeLny (M).

By construction, u € j;. Further, from 4.3 in [ASe], L, := L1L, NSL(M) isaLevi
factor of Cspar)(u). Next Corar)(K) acts on My = [M, K] and M, = Cp(K),
SO CSL(M)(K) = L,Cg(K), where G := CGL(M)(MZ) N NGL(M)(MI)- By 27.14
in [A4], L1 = Cgr(m,)(K). Together with 9.1 (2) these observations imply:
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Lemma 9.3. u € j; and (K,U) € G(SL(M), u).

Recall that &(Y, i) was defined in the Introduction, for ¥ a group of Lie type in
characteristic 2, and i an involution in Y. Indeed Cg(ar)(L2) = Z(L2)G, and by
27.14 in [A4], Corm,)(L1) = KZ(GL(M))), so:

Lemma 94. KZ(SL(M)) = Cspar)(Lu).

Therefore )

K = K(u) := 0% (CsLary(Lw))
is canonically defined by u, up to conjugation in Csp (ar)(u).

Let A := Aut(F) and pick a basis By for each X € {V, W, M>}. Then B =
By ® Bw U By, is a basis for M, and if ¥ := {0, : a € A} is the group of field
automorphisms of GL(M) determined by B then X acts on K, L1, and L,, and we
may choose notation so that 3 centralizes u. Further ¥ induces a group of field
automorphisms on K, L, and L.

Similarly let ¢ be the transpose-inverse map on GL(M ) determined by B. Then t
is a graph automorphism of SL(M) acting on K, L; and L,, and t induces an inner
automorphism on K, and graph automorphisms on L; and L,. We conclude:

Lemma 9.5. Caysur))(K) = (t)Ly, wheret € tL,, induces a graph automor-
phism on L,,.

Given a form f on a vector space N, write O(N, f') for the isometry group of the
form.

Next let fx be a bilinear or sesquilinear form on X for X € {V, W, M5}. Then
f1 = fr ® fw is the unique form on M; such that

S1(v1 @ wi,v2 @ wa) = fy(v1,v2) fw (Wi, w2),

for v; € V and w; € W (cf. Section 9 in [A3]). Indeed by parts (2) and (3) of 9.1
in [A3], if fx is symplectic, unitary, for X € {V, W}, then so is f1. Further if fy
is symmetric or unitary and nondegenerate then by 9.1.1 in [A3], sois f. If fy is
symplectic, then

N @w.v@w) = fy(v.v) fww, w) =0- fww. w) =0,

so fi1 is symplectic. Let fyy = fi + fu,, and observe by construction M; is
nondegenerate and M, = M IL We have shown:

Lemma 9.6. (1) If fv, fw, and fa, are unitary, then so is fy.

() If fv and fu, are symplectic, and fw is symmetric and nondegenerate, then
fum is symplectic.
(3) In either case M is nondegenerate and M, = M IJ'
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If fy is symplectic let Ky = K, and observe that K = Sp(V, fy) preserves
fv. If ¢ = g3 is a square and fy is unitary, let Ky = K N O(V, fy). Then
Ky = L>(qo) and we choose notation so thatu € K¢. Let Ly, r = L1 N O(W, fw)
and Ly ¢y = Lo N O(M>, fm,). Then by 9.2 in [A3]:

Lemma 9.7. Ky, L, s, and L, s are subgroups of O(M, fpr).

First assume fj is unitary. Then O(M, fyr) = GU(M) is the general unitary
groupon M ,and SU(M) = SL(M)NGU(M) is the special unitary group. We abuse
notation and write j,, for j, N GU(M). By 6.1 in [ASe]:

Lemma9.8. j;, 1 <[ <n/2, istheset of conjugacy classes of involutions in SU(M),
andu € jj.

Let Ur := U N Ky. Thus Uy is a Sylow 2-subgroup of Ky = L>(go) and
from 9.1(2), Ur = Riguwm)(u), so Us < Z(CsLw)(u)). By construction, Ky
centralizes L; y fori = 1,2, L,y = GU(W, fw) = GU;(qo), and L, 5 =
GU(Ma3, fum,) = GU,_5;(qo). Then arguing as in the proof of 9.3, using 6.2 in [ASe]
in place of 4.3 in [ASe], we conclude:

Lemma 9.9. Ifu € jj, then (K¢, Uy) € &(SUM), u).

Further GU (M) is the centralizer in GL(M) of the graph-field automorphism o,
where o is the involution in X. Hence ¥ = Out(SL(M)), (o) = C=(Ky), X/(0)
induces the group of field automorphisms on K¢, and (in the language of 2.5.13
in [GLS3]) o induces a graph automorphism on SU(M).

Next assume fy, fw, and fy, satisfy the hypothesis of 9.6 (2), so that fys is
symplectic by that lemma. Then O(M, f,;) = Sp(M) is the symplectic group on M,
and in particular contained in SL(M). From 7.7 in [ASe]:

Lemma 9.10. The set of conjugacy classes of involutions in Sp(M) is a;, cj, by,
1 <l,k<n/2, [ even, k odd.

The notation is explained in Section 7 of [ASe]. In particular dim([i, M]) = [ for
i €x;and x € {a,b,c}. Thus u € x; for some x € {a,b,c}. Moreover x € {b,c}
iff there exists x € M such that fas (x, xu) # 0.

Suppose x; € V — Cy(u) so that xou = xp + x; for some x; € [V, u] and
fr(x1,x2) #0. Letw € W. Then (x; @ w)u = x, @ w + x; @ w, and far(x2 ®
w, (x2 @ w)u) # 0 iff

0# fu(x2®@w,x;1 @w) = fr(xz,x1)fw(w,w),

soas fy(x1,x2) #0,u € a; iff fiy(w,w) = 0forall w € W iff fy is symplectic.
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We now make a choice of the form fyr. We just saw that u € a; iff fy is
symplectic. Further L, 5 = O(Ma, fu,) = Sp(M3) = Sp,_5;(q), and L; 5 =
OV, fw) = Sp(W) = Sp;(q) as fw is symplectic. Then arguing as in the proof
of 9.3, using 7.9 in [ASe] in place of 4.3 in [ASe], we conclude:

Lemma 9.11. Ifu € a;, then (K,U) € &(Sp(M), u).

To obtain elements of b; and ¢; we choose fy to have an orthonormal basis By .
Then fy is not symplectic, so by an earlier remark, u € b;, ¢; for [ odd, even,
respectively. Setz := ), cp, w. If [ is odd then z is nonsingularand W = z @ zt
with z+ symplectic, so Lyf=O0W, fw) = Sp(z1) = Sp;_;(¢). Then arguing as
in the proof of 9.3, using 7.10 in [ASe] in place of 4.3 in [ASe], we conclude:

Lemma 9.12. Ifu € by, then (K,U) € &(Sp(M), u).

Finally if [ is even, then z is singular with z1/(z) symplectic, so O(W, fw) =
Sp1_2(q)/ E4i—1, and hence O2(Csymr)(K)) # 1. Thus in this case (K,U) ¢
&(Sp(M), u), so we must look elsewhere for members of S(Sp(M ), u) whenu € ¢;.
However as we are only interested in proving Theorem 4, we need only consider in-
volutions in ¢,.

Take [ = 2 and let E be a quadratic extension of F'. As in Section 7 of [A3],
there is an E-structure Mg on M; and a sympletic form fg on Mg, such that
fr = Trfj: o fg. Let Kg = O(Mg, fg) = Sp,(E) =~ Ly(¢?). Then from
7.2.6 in [A3], Kg < Sp(M;). For ug an involution in Kg, dim([M,ug]) = 2
and u g inverts an element of order q2 + 1, so ug ¢ a, since the root elements
in a, only invert elements of odd order dividing g> — 1. Therefore ug € ¢, so
we may take u € Kg. Indeed if Risppm,)(u) = {Ug(e) : e € Ej then U =
Rtx(u) = {Ug(a) : a € F} < Kg. Further Kg is irreducible on M = [M, Kg],
s0 Cspm)(KE) = Loy = Sp,_4(q). Finallyifg = 2andu € D < Kg with
D = Do, then Sp(M1) = S¢ 50 Csp(a,)(D) = 1, and hence Csyar)(D) = Ly .
Then, as usual, arguing as in the proof of 9.3, using 7.11 in [ASe] in place of 4.3
in [ASe], we conclude:

Lemma 9.13. Ifu € c3, then (Kg.U) € S(Sp(M), u).

If n #£ 4, then from [GLS3], ¥ =~ Out(Sp(M)). Further ¥ induces a group of
field automorphisms on K, Kg, L r,and L, . Whenn = 4, Out(Sp(M)) is cyclic
with X of index 2, and for ¢t € Aut(Sp(M)) whose image is not in X, ¢ is nontrivial
on the Dynkin diagram of Sp(M).

Finally we consider the orthogonal groups. Let Q be a quadratic form on M with
associated symplectic form fjs. Then O(M, Q) = O%(M), where ¢ is the sign of Q.
Note that in particular, O¢(Q) < Sp(M). Now n is even, and we may assume n > 6.
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Let G := Q*(M) be the commutator group of O°(M). Then G = QF(q) is simple
of index 2 in O%(M) = Of(q). We abuse notation and write x; for the intersection
x; N O%(M) of the class x; in Sp(M) with O¢(M), for x € {a, b, c}. Then from 8.5,
8.11, and 8.12 in [ASe]:

Lemma 9.14. (1) The set of conjugacy classes of involutions in O¢(M) is ay, c;, by,
1 <Il,k <n/2 1 even, k odd, with e = +1 for ay».
(2) a; and c; are contained in Q¥(M ), but by, is not.

(3) a; and c; are classes in Q°(M), except that an;, splits into two QT (M)-
classes, with t and s conjugate in QT (M) iff [M, s] and [M, t] are conjugate.

In Theorem 4 we are only concerned with involutions in the simple group Q2¢(M),
which by 9.14 are of type a; and ¢;. Further in Theorem 4 we do not need to consider
¢y forl > 2.

First we may take u of type a;; hence [ is even and fy is symplectic. By 9.1.4
in [A3], there is a unique quadratic form Q; on M; with associated bilinear form f;
such that Q1(v @ w) = Oforallv € V and w € W. By 9.5 in [A3], (M1, Q1)
is of sign +1. Pick a quadratic form Q, on M, of sign ¢, and let Q = Q; + Q».
Then Q is a quadratic form on M of sign ¢ with symplectic form f3s. Note if
n = 2[,then Q = Q; is of sign +1, which is forced by 9.14 (1). By 9.2.4 in [A3],
K x Ly, = La(q) x Sp;(¢q) preserves O and hence is contained in Q°(M). Let
Ly g = QMa, 02) = Q;_,,(q), so that L 9 < Q2°(M) centralizes K and L .
As usual, arguing as in the proof of 9.3, using 8.6 in [ASe] in place of 4.3 in [ASe],
we conclude:

Lemma 9.15. Ifu € a;, then (K,U) € G(0O*(M), u).

This time Aut(2®(M)) is ['O?*(M), which is O(M) extended by X, unless
dim(M) = 8 and ¢ = +1, where Aut(Q°(M)) = T'O(M)(£), for a graph auto-
morphism & of order 3. Further X induces field automorphisms on K, L, s and L5 o,
and when / = 2, a suitable transvection in O®(M) centralizes KL, s and induces a
transvection on L o. Thus for u = as, O2(Cro=m)(K)) = 1.

Lemma 9.16. Let u € ¢, My a nonsingular point of [M,u), and Y := Ng(My).
Assume q > 2 orn > 6.
(1) Thereis (K«, Ux) € G(Y, u).
2) (K«,Uyx) € &(G,u).
(3) [M, K] is 3-dimensional with fy;-radical M, and for x € M = M}, My =
(M., x) is a nondegenerate 4-dimensional orthogonal space, such that for each

involution t, € O°(M) inducing a transvection on My with center My, tx
centralizes K.
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4) Cro=m)(K«Cg(K+)) = (t«), where t, € O°(M) is the transvection with
center M.

Proof. First, Y acts faithfully as Sp(M) = Sp,—»(g) on M = ML/M,. In partic-
ular u is of type by in Y, so (1) follows from 9.12, and from the proof of that lemma,
Yi = Cy(Kx) = Sp,_4(q)-

Next Cg (1) < Gy, where Gy is the stabilizer in G of the unique singular point M,
in [M, u]. Further R := R(Gy) is abelian and Cg (u) = RLo where Lo = Sp,,_4(q).
Thus Yy = Lg, so Ux < Cr(Yyx) = Cr(Lo) = Z(Cg(u)). Let Y1 := Cg(K).
Then R; := O,(Y7) is Y«-invariant, so as Cg(u) = Y« R, R; < R. Thenas g > 2
or n > 6, each nontrivial Y,-submodule of R intersects U, nontrivially. Thus either
R; =1lorU; = U«sNR; # 1. Inthe latter case Ky = (UlK*) < R;,acontradiction.
Thus (2) holds.

Further by construction, the first remark in (3) holds. Thus for x ¢ M = Mj-,
M, = (M,,x) is a nondegenerate 4-dimensional orthogonal space, and for each
involution ¢, € O®(M ) inducing a transvection on M, with center M, ¢, centralizes
the stabilizer K, of M, in (M), completing the proof of (3). Then (4) follows
from an easy calculation. O

Observe that, collecting the results in this section, we have shown:
Theorem 9.17. Theorem 4 holds when F*(Y) is a classical group.
We close this section with two results useful in the proof of Theorem 2.

Lemma 9.18. Assume G = O°(M) withn > 6, and letu € c;. Thenu € D < G
with D = Dy 241y such that Croe ) (D) = 0, °4(q).

Proof. Let M = M; L M, where M; is a nondegenerate 4-dimensional subspace
of sign —1. Then M, = MlL is of dimension n — 4 and sign —¢, and K; =
Co(My) =~ O(M1,Q) = 0;(q) is L2(¢?) extended by a field automorphism.
Further Inv(E(K1)) C ¢, so we may take u € D < K; with D =~ Djg241y- As
D is irreducible on My, Cg(D) = Cg(M;) = O(M>, Q) = 0,°,(q). Hence the
lemma holds. O

Lemma 9.19. Assume L = SL(M) =~ L, (2) withn € {5,6}. Let G = Aut(L) and
© € G a graph automorphism of L such that Cp(t) = Sp,(q), Spe(q), forn =5, 6,
respectively. Then t € D < G such that D = Dj,,, and:

(1) Ifn =5, thenm = 31 and Cg(D) = 1.
) Ifn =6,thenm = 7and Cg(D) = L,(8).
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Proof. Let E be afield extension of F = IF, of degree r, wherer = 5,3, forn = 5, 6,
respectively. Then M admits the structure Mg of an n/r-dimensional E-space, and
the stabilizer Y in L of that structure is isomorphic to 'L(ME).

Suppose first that n = 5. Then Y is X =~ E* =~ 73, extended by Aut(E) == Zs.
Further X € Syls;(L) and Y = N (X), so by a Frattini argument, G = LNg(X).
By 19.8 and 19.9 in [ASe], all involutions in G — L are conjugate to t. Then as
31 ¢ n(CL(7)), some conjugate of t inverts X, so that (1) holds.

So assume n = 6. Here Yy := O%(Y) = X x W, with X =~ E* =~ Z; and
W = E(Y) = L,(8). Further Y is Y, extended by an element f of order 3 inducing
a field automorphism on X and W. Now L is transitive on such subgroups, and
Aut(W) = W{f), so by a Frattini argument, there exists an involution ¢ inverting X
and centralizing W { f'). Finally from 19.8 and 19.9 in [ASe], all involutions in G — L
centralizing an L, (8)-subgroup of L are conjugate to 7, so (2) holds. O

10. Chev (2)
In this section we assume the following hypothesis:

Hypothesis 10.1. G is an almost simple finite group with F*(G) = L a group of
Lie type G(q) over a field of even order ¢, or L is the Tits group and g = 2. Let ® be
a root system for L and / the Lie rank of L. Given o € P, let Uy, be the root group
of a, Uy = 21(Uy), K(a) = (Uy, U—g), and X () = CL(K()).

Lemma 10.2. Assume | > 1 and let « € ®. Assume either « is a long root, or
L = Sp,;(q) and « is a short root. Set K = K(a), X = X(@), and pick u € U},
Then:

(1) Either K = Ly(q) or L = 2F4(q) and K = Sz(q), or L is the Tits group
and K = Dyg. In any event Hx = Ng(Uy) N Nx(U—y) = Zgy—1 is a Cartan
subgroup of the Borel subgroup Nk (Uy) of K.

(2) P = P(x) = Np(Uy) is a parabolic subgroup of L, and if L is not L, (q) then
P is a maximal parabolic.

(3) X x Hx = P N P(—a) is a Levi factor of P.

4) Cr(u) = R(P)X and (K, Uy) € G(L,u).

(5) Assume G = LV for some elementary abelian 2-group V. Then either
() 02(Cg(K)) =1, 0r

(1)) L = L3(q) with q < 4, or L4(2), and O,(Cg(K)) = (t), where t
induces a graph automorphism on L.
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Proof. Parts (1) and (2) are well known; for instance see Example 3.2.6 in [GLS3].

Let P/ = P(—«a). We claim that P and P’ are opposite parabolics. Namely
conjugating in the Weyl group of L, we may assume « is the root of highest height,
or L = Sp,;(¢g) and « is the short root of highest height. Then, in the notation of
Section 47 of [A4], and in particular in the notation before 47.4 in [A4], P = Py
for some subset J of the set & of simple roots for some ordering of ®, R(P) =
Vi = (Uy .y € lﬂ]), and Ly = (Uﬂ, U_lg : ,3 S WJ) Then P/ = V_;L_j
and L_y = Ly, while V; N V_; = 1, so using the Bruhat decomposition (cf. 47.2
in [A4])

PNP =L;HkV;NL;HgV_j = LyHg(LyHgVynNV_y)
=LyjHk(VyNV_y)=L;jHg =Y,

where Y := Lj Hg is a Levi factor of P and P’. This establishes the claim.

AsU = Uy and U’ = U_, are normal in P and P’, respectively, ¥ acts on
K = (U,U’). Further Hx <Y and Hg = Auty (U),s0 Y = HgCy(U). Then as
Caunk)(U)NNawk)(U') = 1,Cy (U) = Cy(K) =Y NX. ThusY = Hg(XNY).
Onthe otherhand X < N (U)NNp(U’) = PNP’ =Y,s0X = XNY,completing
the proof of (3).

By choice of o and the Chevalley commutator relations, U is in the center of the
Sylow 2-subgroup S = (Ug : B € ®T) of L. Thus (cf. 47.7 in [A4]) setting L, :=
0% (Cr(u)), L, H is aparabolic subgroup of L. By construction, P = R(P)XHg <
L, H,soif P is maximal then P = L, H and L, = Cp(u) = R(P)X. If P is not
maximal, then L = L,(g) by (2), where it is well known that U = R1y (u) so that
P =L,H and L,R(P)X. Therefore U < Z(Cr(u)), so (4) follows from (3).

We next prove (5), so assume G = LV for some elementary abelian 2-group V.
We adopt the terminology in 2.5.13 of [GLS3] when discussing involutory automor-
phisms of L. As 0,(X) = 1, 02(Cr(K)) = 1 by (4), so we may assume V £ L.
If G contains a field or graph-field automorphism (excluding L of type B, or Fy),
then some involutory field or graph-field automorphism o acts as a field automor-
phism on K, and hence Cy,(5)(K) = X. Therefore (5) (i) holds unless G contains a
graph automorphism 7 (or graph-field in the case of B, and Fj). Therefore we may
assume L is L} (q), Sp4(q), D;,(q), m > 4, F4(q), or E¢(q). If Lis Sp,(q) or F4(q)
then Nz (r)(K) < L, and hence (5) (i) holds. Thus we may assume we are in one of
the remaining cases, where some involutory graph automorphism 7 centralizes K.

Suppose L = L5(q). Asl > 1,& = +1. Then K = Cr(7), so T inverts X and
(5) (i) holds unless X = 1. In that event ¢ < 4 and (5) (ii) holds.

In the remaining cases, 0% (X) = M is of Lie type over F4, and described in
12.1 in [ASe]. Further 7 induces a graph automorphism on M, so t induces an outer
automorphism on M unless L =~ L%(q), where M € KT is centralized by 7. In
the first case (5) (i) holds, so we may assume the latter. Then from 19.9 in [ASe],
Cr(7) = Spy(q), so M = Cx(t). Therefore t inverts O(X), so (5) (i) holds unless
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O(X) = 1. As O(X) isof order g—e, we conclude that (5) (ii) holds when O(X) = 1,
completing the proof of (5). O

Lemma 10.3. Suppose L is Sz(q), let u be an involution in L, and U = Z(R(B))
where B is a Borel subgroup of L containing u. Then (L,U) € G(L,u).

Proof. This is essentially immediate from the definitions. O

Lemma 10.4. Assume L is exceptional and either | = 2 or L is the Tits group. Then:
(1) L == Ga(q), >D4(q), 2F4(q), or the Tits group.
(2) L has two classes of involutions, the long and short root involutions.

(3) Let u € Uy be a short root involution. If L is not 3D4(q) set K = K(a) and
U =Uy. IfLis®*Dy4(q) let U = {Uy(a) : a € F;} and K = (U, s4), where
Sq Is the reflection through a. Then (K,U) € G(L, u).

(4) Let G =LYV for some elementary abelian 2-group V. Then O,(Cg(K)) =1.

Proof. Part (1) follows by inspection of the list of groups of Lie type, and (2) appears
in Section 18 of [ASe].

The proof of (3) is similar to that of parts (3) and (4) of 10.2. First choose « to be
the short root of highest height. From Section 18 of [ASe], C(u) < P = Py isa
maximal parabolic of L such that P = R(P)HyL y, where L j = L,(q) centralizes
U, and Hy is a Cartan subgroup of K(ct). Then L; = (Ug, U_g) centralizes K («) =
(Uy, U—_q). Onthe other hand as in the proof of 10.2 (3), P and P’ = P_ are opposite
parabolics, so Cr (K) < P N P’ = LjHy, and hence C(K) = L;Cq,(U) = L.
This establishes (3).

Assume the hypothesis of (4). By (3) we may assume | Out(L)| is even, so L
is not 2F4(qg). Similarly (4) holds for the Tits group, as its automorphism group is
2F4(2). Finally if L is Go(g) or > D4(q) and | Out(L)| is even then from 19.1 in [ASe],
|G : L| = 2 and each involution in G — L is a field automorphism. In particular some
field automorphism of order 2 induces a field automorphism of order 2 on K, so (4)
holds. O

During much of the remainder of the paper we will assume the following hypoth-
esis:

Hypothesis 10.5. Hypothesis 10.1 holds with L an exceptional group and [ > 4;
that is L is F4(q), E¢(q), E7(q), or Eg(q). Adopt the notation on page 5 of [ASe]
for labeling the simple roots «;, i € I = {1,...,[} in ®, and adopt the notation on
page 4 of [ASe] for labeling parabolics Ps, S C I. In particular Qs = R(Ps) is
the radical of Pg,and Lg = 0? (Z s ), where L is a Levi factor of Pg. Let & be the
root of highest height and let U = Ug, K = K(§), and X = X(§). Let Hk be the
Cartan subgroup of K defined in 10.2 (1).
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Lemma 10.6. Assume a € ® is a long root and let U = U,, K = K(«), and
X = X(«). Letu € U* and t € X be involutions, andt € K, < X with K =~ K.
Set v = ut, let Ky be the full diagonal subgroup of K x Ky, and Y = Cx(K;). Let
P be a parabolic subgroup of L such that Cp(v) < P, set R = R(P), and assume
that

(1) 0% (Cp(v)/02(Cr(v))) and O% (Y) are reductive groups of Lie type and even
characteristic of the same Lie rank.

(2) U < Z(Cgr(p)(v)).
Then O,(CL(Ky)) = 1.

Proof. By definition, X = Cr(K), so as K, is a full diagonal subgroup of K x K,
and K; < X, we have Cx(K,) = Cx(K;) = Y. Inparticular Y < H = Cp(Ky).
Suppose Q = O5(H) # 1. Then UYQ < C(v) = Cp(v). Set M = 0% (Cp (v)),
M* = M/Cgr(v) and Yy = 0% (Y). By (1), Yy is reductive, so O,(Yy) = 1 and
hence Y = Yy. By (1), M* is reductive so O>(M*) = 1 and hence 0,(Cr(v)) =
Cr(v). Further M* and Y’ have the same Lie rank by (1), so as Q* is a Y -invariant
2-subgroup of M*, it follows from 7.4 that Q* = 1. Thus Q@ < Cg(v), so by
(2), u centralizes Q. Then as Cr (1) = Cr(U), U centralizes Q, so K = (UKXv)
centralizes Q. Therefore Q < Cp(K) = X, s0 Q < 0,(Cx(Ky)) = 0(Y),
contradicting Y reductive. O

11. E{(q)

In this section we assume Hypothesis 10.5 with L = E{(g) and adopt the following
notation.

Notation11.1. Let F =, Iqu, fore = +1, —1, respectively. Let I be the universal

group of type E¢(F) and M a faithful 27-dimensional F L-module. The module M
1s described in detail in [A5]. Let G be L extended by ﬁeld automorphisms, so that
G <TL (M ). Regard L as the image of the subgroup La of fixed points on L of
o€ Aut(L) under the projective map, where 0 = l if ¢ = +1 and o is a graph-field
automorphism if ¢ = —1. Let K be a fundamental subgroup of Land X = C; (K ).

Then K, X are the image of KG, X in L, respectively.

Lemma 11.2. (1) P(§) = Py, wherer = 2,1 for ¢ = +1, —1, respectively. Thus
(2) O, = q'*20 is special with center U.
(3)Ife = +1,then Lg = Qf’o(q) and Q¢ = E 16 is aspinmodule for Le. Further
02N Qg isof rank 11, and Ly 6 = SLs(q) acts naturally on Qe/(Q2 N Q).
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(4)Ife = —1, then Ly = Q5 (q), Q4 = ¢®1'% is special, Z(Q4) is the natural
module for L4, and Q4/Z(Q4) is a spin module.

Proof. From the discussion in Sections 14 and 15in [ASe], P, = P(£), O, = ¢'*2°,
and L, = L%(q). Then L = X by 10.2(3) establishing (1) and (2). Part (4) follows
from 4.6 in [CKS], and the first statement in (3) appears in 3.14 in [A5]. The second
follows as the radical of P, ¢ N X is the natural module for L, ¢ = SLs(g), and

02,6 = 0206. O

Lemma 11.3. (1) L has three classes of involutions with representativesu;, 1 <i <3,
denoted by x, y, z in 15.1 of [ASe] when ¢ = +1, and t, u, v in 14.1 of [ASe] when
& = —1, respectively. Further uy € U.

(2) Let m; = dim([M, u;]). Then my = 6, my = 10, and mz = 12.

(3) The involutions in X are of type j;, 1 <i < 3.

(4) u; is L-conjugate to a member of j; for1 <i < 3.

(5) Let J;, 1 <i <3, be commuting fundamental subgroups of X, J4 = K, and
A={J;:1<i <4} Then N (A) induces Sym(A) on A.

(6) Let N¢ be the natural module for X and fori an involutionin X and g € L, set
Rt1.(i8) = RigrL(ng) (i)8. Then Rty (i%) is well defined and Rt (i¥) < Z(CL(i¥)).

Proof. Part(1)is 14.1 and 15.1 in [ASe], while (3) follows from 11.1 (1), 9.2, and 9.8.

Define A asin (5),and let X; = Cr(J;). Then A = {J;}U(ANX;), and Nx, (A)
induces the symmetric group S3 on A — {J;}, so (5) follows.

Assume for the moment that ¢ = +1. We abuse notation and write K, X for
K , X. As observed in Section 4 of [A6], the members i of j; are the root involutions
in X, and Rty (i) is the root group of i in L. Then (6) holds for the involutions i € j,,
form = 2,3 by 4.4 and 4.5 in [A6]. From page 167 in [A5], [K, M] is the sum of six
copies of the natural module for K, so m([M,i]) = 6 for i an involution in K, and
hence m; = 6 by (5). Also m, = 10 and m3 = 12 by 4.1 and 4.2 in [A6]. Thus (2)
holds in this case. From 4.3 in [A6], each involution in L is conjugate to an involution
in j,, for a unique m. Following Section 4 in [A6], call such involutions involutions
of type m. The isomorphism type of the centralizers of involutions of type 2 appears
in 4.6 of [A6], and comparing this to 15.5 in [ASe], the involution y in 15.1 of [ASe]
is of type 2. Then as involutions of type 1 and the involution x in 15.1 of [ASe] are
root involutions, it follows that the involution z in 15.1 of [ASe] is of type 3. Thus
(4) holds in this case.

We have established the lemma when ¢ = +1. When ¢ = —1, we may choose o
to act on K X and K,, and then to centralize u,, € j,. Then u, € L(7 is in
the class j, in X = X =~ SUe(q), so (2) and (4) hold when ¢ = —1, modulo
verifying the correspondence between the u,, and ¢, u, v in (1). As dim([u,, M]) #
dim([ug, M]) form # k, u,, 1 < m < 3 are representatives for the three classes of
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involutions in L. The graph-field automorphism o induces a field automorphism on
C; (42)/ 0oo(C (12)) = Spg(g?). 50 CL(12)/ Ooo(CL(u2)) = Spg(q). and hence
U5 is conjugate to the involution u in 14.3 of [ASe]. This verifies the correspondence
between our two labelings of involutions, and completes the proof of (1). Part (6)
follows as Ry (i) = Rt} (i)o- O

Lemma 11.4. For1 <m <3, letuy, € jy, and Uy, = Rty (Up). Then:
(1) There exist K, < X with (K, Uy) € G(X, up).

(2) CL(um) = CL(Km) O2(CL(um)), so if O2(Ck(um)) = 1, then (K, Up) €
G(L,um).

(3) 02(C6(Km)) = L.

Proof. Part (1) was established in 9.16. In particular K,,, =~ L»(q) and u,, € Uy, =
E,;. By 11.3(6), Uy < Z(Cr(4m)). Thus to establish (2), it remains to show that
Cr(K;,) is a supplement to O,(Cr(4y,)) in Cr(uy,). By 10.2(4), we may assume
m = 2or3.

First take m = 3. Then the discussion in Section 9 (or 4.3 and 6.2 in [ASe]) says
that Cx (K3) = L5(q). Set B3 := KCx(K3). Then B3 = L,(q) x L5(g), and by
14.3 and 15.5 in [ASe], B3 is a complement to O,(Cr (u3)) in Cr(u3), so (2) holds
when m = 3.

Next suppose that m = 2. Then from the discussion in Section 9 (or 4.3 and 6.2
in[ASe]), Cx (K2) = GL2(q)xL2(q), 50 B> := KCx (K>) = GLa(q)x L2(g)*. Let
Y = 0%(Cr(uz)) and Y* = Y/O,(Y). By 14.3 and 15.5 in [ASe], Y * = Spe(q).
Let A ={J; : 1 <i <4}beasin11.3(5). From the discussion in Section 9, we may
take K, to be a full diagonal subgroup of J;J,. Then by 11.3 (5), thereis g € Np(A)
with K5 a full diagonal subgroup of J1Js = KJ;. Let Y§ = Cx(K35). Then
Y§ = Cx(J1) = GLj(g) from Section 9. Hence Yy =~ Q¢(g), and Ny=(Y) =
O&(q) is the unique maximal overgroup of Y in Y*. Also By = 0%(0% (By)) £
Yo O05(Cr(uy)) as Bg does not centralize KJ;. Therefore Cy (K>)* = Y *, and hence
CL(K>) is a supplement to O,(Cp (u3)) in Cr (u2), completing the proof of (2).

Suppose ¢ = +1. Then Aut(L) is L extended by A x (), where A is a group
of field automorphisms and 7 is a graph automorphism. Further we may choose A to
induce a group of field automorphisms on K, and from 19.7in [ASe], Cp. (t) = F(q)
and we may choose 7 to centralize K and induce a graph automorphism on X with
Ji < Cx(tr) = Spg(g) for each J; € A. Then from 9.5, t centralizes K, and
induces a graph automorphism on Cx (K, ), and on Yy when m = 2. Thus (3) holds
in this case. On the other hand when ¢ = —1, L is the image of i,g and 0 = 1A,
where A induces an involutory field automorphism on L. Then Out(L) is cyclic with
7 inducing the involutory graph automorphism on L, so from the discussion above, t
is faithful on Cr, (K,,), and hence (3) holds again. ]
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Lemma 11.5. (Kz, Uz) S @(L, uz) and Oz(CG(Kz)) =1

Proof. By 11.4 it suffices to show that O,(Cyr (u3)) = 1.

As we saw during the proof of 11.4, Kzg < KJ; for some g € Np(A), so
Uy = u§ = wjwy for some w; € J;. Suppose for the moment that ¢ = +1. Choose
notationsothatw; € V = R(P2,6)NX. From11.2(3), V isacomplementto Q>N Qs
in Q6. Thus v, € Qg, and from the proof of 11.4, Cx(K5) = Cx(J1) = L4(q).
From 15.4 and 15.5in [ASe], Cr(v2) < P € PL, and 02/(CL(v2))/02(CL(v2)) o~
Spg(q). Then as Cx(J1) and Spg(q) both are of Lie rank 3, and Cx(J;) acts on
Q¢ < CL(v3), it follows from 7.4 that Q¢ < O,(Cr(v2)). Then as Q¢ is weakly
closed in Pg with respect to L, Cr (v2) < Pe. Now 10.6 completes the proof in this
case.

Finally suppose ¢ = —1. Then o induces a field automorphism on 122 and
0% (C; (K2)). 50

0% (CL(K2)) = 0% (C; (K2)o) = Spe(q)
as Ko = (K, U>) and Us < Z(C; (u2)). O

Lemma 11.6. Lets = 4,2 for e = +1, —1, respectively, g € Py — P, I = UUS,
E=0,N0% andY :=(Q,, Qf). Then:
(1) Qs =(0,NONQFNQs)and Y/ Qg = La(q).
(2) Ly =Y NLy)xY,swithYs :=YNLs = Ly(q) and L, = SL3(q)xSL3(q)
or SL3(q?) for e = +1, —1, respectively.
(3) I = Z(Qy) is the natural module for Y.
(4) Y, E] = I and E/I is a tensor product module of order q° for L, .

(5) Qs/E is the tensor product of the natural module for Yy and the dual of E /1
for L.

(6) There exists v3 € ug with v3 € E — I, such that Co (v3) = 02(Cr(v3)),
Cr,(v3) = Y5 x Cp, ,(v3), and Cp, , (u3) = SL3(q).

(7) (K3,Us) € ©(L,u3) and 02(Cg(K3)) = 1.

Proof. Parts (1)—(5) follow from the standard theory of large special groups; see
for example 8.15 in [A8]. From 15.4 and 14.2 in [ASe], there is v; € ug such
that Cr(v3) < Py with 02(CL(v3)) = Co,(v3), and 02 (CL(v3))/ 02(CL(v3)) as
described in (6). From the action of L on @ described in (1)—(5), it follows that
vz € E.

Suppose for the moment that ¢ = 41 and consider the parabolic X4 = X N Py
of X. Then W = R(X4) = E o is the tensor product module for L, 4 = SL3(q) x
SL3(g). From 11.3 (4), we may pick us € W N j3, and from Section 4 in [ASe],
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By := Cp, ,(u3) = SL3(q) and W is the adjoint module for B4. Then KBy is
contained in a Levi factor L) , in P, € PE with Cr,(u3) < P, completing the proof
of (6) in this case.

Further K, = 0% (Cx(B4)), 0% (Cx (K3)) = Ba, and K5 centralizes K By. Sup-
pose O»(Cr(K3)) = R # 1. Then as R is normalized by KB4, R < 0,(Cr(u3)).
If 1 # I' N R, then as K is irreducible on I/, I’ < R. Butthen K3 < Cr(I') < P/,
contradicting u3 € Q4. Hence I’ N R = 1. Similarly Cw (K3) = 1 and W and
I’ contain all proper K B4-submodules of E’, so E’ N R = 1. Then as K By is irre-
ducible on Q" = CQa(u3)/E’, it follows that Q" = Co,(K3)E, so Q0" < CL(K3)
as E' = ®(Q"). This contradiction shows that O,(Cr(K3)) = 1, and then (7)
follows from 11.4.

Finally suppose ¢ = —1. Then taking fixed points of o on L, we conclude (6) and
(7) also hold in this case. O

12. Fy(q)

In this section we assume Hypothesis 10.5 with L = F4(g), and adopt the following
notation.

Notation 12.1. As in 11.1, let F = F,, L be the universal group of type E¢(F),
and M a faithful 27-dimensional F L-module. We regard L as the image of the fixed
points L.~Z (I:) X F4(q) of a graph automorphism 7 of L. Let K be a fundamental
subgroup of L, X = Ci(f), and define A = {f 11 <i <4}asin11.3(5). Choose
notation so that t centralizes A. Then 7 induces a graph automorphism on X and K ,
Ji, X, A are the images of K , fi, X T A in L, respectively. Recall from 11.3 (6) that
N is the natural module for X = SL(Ng), and observe X = Sp(Ns).

Lemma 12.2. (1) P(§) = Py, so L1 = X = Spg(9).

(2) 01 = EJ, where E = E7 is the orthogonal module for X = S07(q),
J = q'"8 is special with [J,E] = 1 and Z(J) = U = Cg(X), and Q1/E is the
spin module for X .

Proof. From the discussion after 13.1 in [ASe], P; = P(§) and L = Spg(g). Then
L1 = X by 10.2 (3), establishing (1). Part (2) follows from 4.5 in [CKS]. ]

Lemma 12.3. (1) L has four classes of involutions with representatives uj, Us, U,
v, denoted by t, u, tu, v in 13.1 of [ASe], respectively. Further u; € U and ug are
long and short root involutions, respectively.

(2) The involutions in X are of type by, a,, ¢3, and bs.
(3) The L-conjugates of uj, us, uc, v in X,are in by, as, ca, bs, respectively.
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(4) N (A) induces Sym(A) on A.
(S)Letr =ry...rqgwithr; € J; and rl-2 = 1. Setw(r) = |{i : r; # 1}|. Thenr
is conjugate in L to uj, uc, v for o(r) = 1,2, 3, respectively.

Proof. The first part of (1) is 13.1 in [ASe], while (2) is 9.10. Moreover by, a, are
the long, short root involutions of X, and from Table 1 on page 5 of [ASe], these
root involutions are also long, short root involutions in L, in the respective case. This
completes the proof of (1).

The proof of (4) is the same as that of 11.3 (5).

Let X; := Cx(J;), U; arootgroupin J;, V = R(Cx (U;))and V' = R(Cx, (U)),
and Y = Cx(J1). Then Ny, (U;)VY and HgV'Y are parabolics in X and Xy,
respectively. Set P = P;/Q. From 12.2(2), V" = Cg,(J1) = Cg(J1) = Es.
On the other hand the Lie rank of J,Y and L; is 3, so (V')* = 1 by 7.4. Thus
V' < V" and hence V' = V" as |V'| = ¢°> = |V”|. Then from the representation
of Y on V', the involutions in V’ of type ¢, in X are in the third class of 2-central
involutions in Py, i.e. those which are not root involutions. As u. belongs to this
class, it follows that ¢, C uCL

From 12.1, X = )?t with by C ji, az,ca C ja, and b3 C j3. Define m; as
in 11.3(2). Then as m3 # m; or my, bs is in the fourth L-class vZ of involutions
of L, completing the proof of (3).

Finally (5) follows from (3) and (4). O

Lemma 12.4. For x € {u., v} let Uy = Rty (x). Then for x € {uc,v}:
(1) There exist Ky < X with (K, Uy) € &6(X, x).
(2) (Kx,Ux) € B(L, x).
(3) 02(Cg(Kx)) = 1.

Proof. Part (1) was established in 9.16. In particular K, = L(q), Ky, = L2(g?),
and x € Uy = E;. From the construction of K in Section 9, Uy = Rigy(n)(X),
and from 12.1, Rispng)(x) = Rispng)(x). Thus from 11.3(6), Uy = Rit;(x) <
Z(Cr(x)). Thus to establish (2), it remains to show that Cy,(K},) is a complement to
02(Cr(x)) in Cr(x). Set R := O(CL(Ky)).

First take x = v. Then the discussion in Section 9 (or 7.10 in [ASe]) says that
Cx(Ky) = Ls(q). Set By := KCx(Ky). Then B, = L,(gq) x L2(gq), and by 13.3
in [ASe], B, is a complement to O,(Cr(v)) in Cr(v). Thus to complete the proof
of (2) in this case, we may assume R # 1 and it remains to derive a contradiction.
By Borel-Tits, Nz (R) < P a parabolic of L. As L,(q)® = K,B, < NL(R), we
conclude P is a conjugate of Py or P4. Thus K, B3 centralizes some root group Uy,
o)

Uo < CL(KyB3) < CL(K) N CL(KyCx (Ky)) = Cx (KyCx (Ky)) =1



Elementary abelian 2-subgroups of Sidki-type in finite groups 389

as K, € G(X,v) and Cx(K,) =~ Ly(q). This completes the proof of (2) when
X =v.

Next take x = u.. Now (cf. Table 4.1 in [GL]) there exists a subgroup Y of L
isomorphic to Spg(q) and generated by root groups. Conjugating in Aut(L) we may
assume long root groups of Y are long root groups of L, and then that K is such a root
group. Then Cy (K) = Spg(q) = X,s0Cy(K) = X. Hence Ky < X <Y and x is
of type ¢ in Y by 12.3. Hence (cf. 9.13), By := Cy(Kx) = Sp,(g). Then by 13.3
in [ASe] By is a complement to O,(Cr (x)) in Cr(x). If R # 1, then by Borel-Tits,
KxByx < Nr(R) < P for some proper parabolic P of L. This is impossible as no
proper parabolic has an (L»(¢?) x Sp,(g))-section. Hence (2) is established.

Finally we prove (3). By (2) we may assume G # L. From 19.3 in [ASe],
Out(L) is cyclic, and then as G = LV, 19.5 in [ASe] says that G = L(¢) where ¢ is
an involution inducing a field or graph-field automorphism on L, with ¢ a square in the
first case. If 7 is a field automorphism, then Autg (K ) contains a field automorphism
not in Autz (Ky), so Cg(Kx) < L. If t is a graph-field automorphism, then from
19.5in [ASel], Cr.(t) = 2 F 4(2) is of Lie rank 2, so it does not contain K, Cr (K) of
Lie rank 3 by 7.1, so again Cr (K, Cr(Kx)) = 1. 0

Lemma 12.5. For each involution x € L, there exist (Kx,Uyx) € &(L,x), and
OZ(CG(Kx)) =1L

Proof. The lemma follows from 10.2 if x is a long root involution, and hence also
when x is a short root involution, as long and short root involutions are fused in Aut(L).
Thus by 12.3, we may assume x € {u., v}, where the lemma follows from 12.4. [J

13. E7(q)
In this section we assume Hypothesis 10.5 with L = E7(q).

Lemma 13.1. (1) P(§) = P;. Thus L; = X = Q1,(q).
(2) 01 = q'32 is special with center U.

(3) L7 = Ee(q) and Q7 = E 27 is the 27-dimensional Fg-module for L7,
discussed in 11.1. Further Q1 N Q7 = Epi7, and L7 = Qf‘o(q) acts naturally on
the complement W = Q7N X = R(P17NX)to Q1N Q7in Q7.

Proof. From the discussion in Section 16 in [ASe], P; = P(§), Q1 = ¢' ™32, and
L) = Q;Lz(q). Then L; = X by 10.2 (3), establishing (1) and (2). From the Dynkin
diagram for L, L; = Eg(q), and then as |Eg(q)|> = ¢>% and |E7(¢)| = ¢,
|Q7| = ¢*. Then as 27 is the minimal dimension of a faithful L, [F,-module, and all
such modules are quasiequivalent, the first statement in (3) holds. The second follows
as the radical of P17 N X is the natural module for L; 7 = Q}Lo(q). O
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Lemma 13.2. (1) L has five classes of involutions.
(2) Py controls fusion in Q7.

(3) Py has three orbits on involutions in Q7 with representatives u;, 1 <i <3,
denoted by x, y, u in 16.1 of [ASe].

(@) uy € U and U is a singular point in Q7.
(5) uy and us are in brilliant and dark points of Q7, respectively.

(6) Let Wy = U and W;, i = 2,3 be root groups in the orthogonal space W
for Ly 7in 13.1(3), which are not orthogonal in that space. Let w; be an involution
in W;. Then we may pick u; = wq, Uy = wWiWs, and Uz = W{WrW3.

(7) CL(u3) = Cp,(u3) contains Q7 and Cr(u3)/ Q7 = Fa(q).

Proof. Part (1) is 16.1 in [ASe]. As the radical Q7 is weakly closed and abelian, (2)
follows from 7.7 in [A8].

By 13.1(3), Q7 is the 27-dimensional module for L7 =~ Eg(g). That module
is described in detail in [A5]; we adopt the terminology from [AS5] in discussing the
module. In particular the first statement in (3) follows from 3.16.1 in [AS], which
says P7 has three orbits on the IF,-points of the IF,-module Q7, namely the singular,
brilliant, and dark points. The torus Hg is transitive on vectors in each point. The
Q27,(q)-parabolic Py 7 stabilizes a singular point, which is therefore U. Thus from
16.20 in [ASe], u; € U is the involution denoted by x in that lemma. From 13.1 (3),
Q1 N Q7 is of dimension 17; this is the subspace UA of [A5]. Let U = W and
pick root groups W;, i = 2,3 in Q7 such that {Wy, W,, W3} is special as defined on
page 164 of [A5]. In particular W; £ W; A fori # j. We may choose W;,i = 1,2,
to be root groups in the complement W to UA defined in 13.1(3). The condition
Ws £ W, A is equivalent to W, and W3 not orthogonal in the orthogonal space W for
L1,7. Set up = ujw, for some involution wy € W;; this is the involution denoted
by y in 16.20 of [ASe], since u, is diagonal in the product of two commuting root
groups U and W, such that W, £ O,(NL(U)), and (cf. the proof of 12.1 in [ASe])
L is transitive on such involutions. From [AS5], u5 is contained in a brilliant point
of Q7.

Finally let us = ujw,ws; for some involution w3 € W3. From [AS], us is
contained in a dark point of 07, and hence (cf. 8.14 in [A5]) Cp, (u3)/ Q7 = Fa(q).
From 16.20 in [ASe], only the centralizer of the involution denoted by u in that
lemma contains an F4(g)-section, so u3 is in that class. Then by 16.19 in [ASe],
CrL(u3) = Cp,(u3).

We have verified (1)—(7), so the proof of the lemma is complete. ]

Lemma 13.3. Let M be the 12-dimensional orthogonal space over I, for X, and
M = M, 1L M, L M3 an orthogonal decomposition with each M; a 4-dimensional
nondegenerate subspace of sign —1. For 1 < i < 3, let J;, J] be the fundamental
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subgroups of X with M; = [M, J;] = [M,J!], andlet A = {J;,J/, K : 1 <i <3},
and D = (A). Then:

(1) D =11 en J is the direct product of members of A and Ni,(D)/ D acts faith-
fully as L3(2) on A preserving a projective plane T" on A in which {K, J;, J/},
1 <i < 3 are the lines through K.

(2) Letr =ry...rywithr; € Djy A = {D1,..., D7}, and r? = 1. Set §(r) =
{D; : ri # 1}. Then r is L-conjugate to uy,us if |6(r)| = 1,2 respectively,
and is conjugate to us if §(r) is aline in I.

Proof. Working in K x X, D is the direct product of the seven copies of L,(g) in A.
Further X = Cp(K) and from the structure of X = Q7,(¢), Cx(D N X) = 1, s0
Cr(D) = 1. Next Nx(D)/(D N X) acts faithfully as S4 on A — {K}, and preserves
the partition {{J;, J/}: 1 < i < 3}, and similarly Nz (J1) N Np(D) is transitive
on A — {J;}, so (1) follows. Then (2) follows from (1) and the description of u;
in 13.2 (6). O

Lemma 13.4. Pick us as in 13.2(6) and notation as in 13.3. Pick W, < J; and
W3 < J{. Then:

(1) There exists S3 = S < Np(D) N Cr(u3) faithful on § := {K, Jy, J{} such
that the involution s € S fixing K is in X.

(2) Set K3 = CKJIJ{(S) and let uz € Us € Syl,(K3). Then (K3,Uz) €
6(L,M3).

(3) O2(CL(KCL(K))) = 1.

Proof. Observe that Ny (D) is the wreath product of J; with S4. Then pick S to be
a conjugate of an S3-subgroup of a wreath complement to D N X in Nx (D) such
that S is transitive on §; this is possible by 13.3. This establishes (1).

LetY := Cp(u3). By 13.2(7), Q7 = Ox(Y)and Y* := Y/ Q7 =~ F4(q). Next
Cx (K3) = Cx(Kj), where Kj is the projection of K3 on J; J{. Thus Ks = Cy, 7! (s).
From 9.17, Bx := Cx(K;s) = Spg(g). As S is transitive on § there is also an S-
conjugate B; of By in Cr (J1) centralizing K3, and as By centralizes W; but not W,
By # B{. Then as By = Spg(g) is maximal in Y'* = F4(q), Y™ = (Bx, B)* <
Y, where Y3 := Cr(K3). Set R := O»(Y3). Then R < Q7 and U3 < Cg,(Y3),
so as Cp,(Y3) is of order ¢ and Y3 is irreducible on Q7/Cg,(Y3), it follows that
Us; = Z(Y) and either R = 1 or R is a complement to Uz in Q7. But in the latter
case K3 acts on Q7 = Cr(R), contradicting Us < Q. This completes the proof
of (2).

Finally from 19.2 in [ASe], all involutions in Aut(L)— L are field automorphisms,
and such an involution induces a field automorphism on Y *, so (3) holds. ]
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Lemma 13.5. (1) Ls = L1(q) x Q{y(¢q) and Qs = q'°+32 is special.

(2) Zs = Z(Qs6) = E 10 admits the structure of a 10-dimensional orthogonal
space over By, preserved by L¢, and L induces QTO (q) on this space.

(3) We may take uy, = uyw, where W, is the root group of X such that X¢ =
XN P6 = NX(Wz), and wo € Ws.

(4) uy is anonsingular point in the orthogonal space Z¢ and Cp (u2) = Q6Cr (12)
with Cpg(uz) = La(q) x Spg(g).

(5) Let Wy < Ji, s an involution in N (A) with cycle (K, J1), K» = Cky, (5),
andu € U, € Sylz(Kz).Thel’l (Kz, Uz) S @(L, uz).

(6) 02(C(K3)) = 1.

Proof. Parts (1) and (2) are established during the discussion on page 60 of [ASe].
Part (3) follows from 13.2 (6). Arguing as usual, R(Xs) = ¢'*!2 is a complement to
01N Qgin Qg,50 W5 = O(R(Xg)) < P(Q¢) = Zs. Indeed W, is a complement to
01N Zgin Zg, and Q1 N Zg is the subspace of the orthogonal space Z¢ orthogonal
to U. Thus u» = ujw, is a nonsingular point in Zg, so Cr(u2) = L2(q) X Spg(q).
From 13.2 (3), u, is the involution y of 16.1 in [ASe], so from the description of
Cr(y)in 16.20 of [ASe], Y := Cr(u2) = Cp.(u2). Thus (4) holds.

Adopt the notation of (5). Then Cx (K>) = Cx (Jy) = Lz(q)xQ;’(q) by 10.2 (3).
Then Cx(K>) and Y* := Y/Qe = La(q) x Spg(q) have the same Lie rank, so
0,(CL(K3)) = 1 by 10.6.

Next by 13.3, there is g € Np(A) with K5 < J1J|. Then uj is of type ¢, in
X and s € X centralizes K5, so by 9.14, Cx(K5) = Spg(q). It follows from
(4) that KCx(K>) is a complement to Qg in Cr (u3). Further from the action of
B := Cr (uz) on Qg¢, Co(B) < Ze, so Uz < Z(Cr(u3)), completing the proof
of (5).

Recall from 19.3 in [ASe] that each involution in Aut(L) — L induces a field
automorphism on L, and hence also on Y *, so (6) follows. O

14. Eg(q)
In this section we assume Hypothesis 10.5 with L = Eg(q).

Lemma 14.1. (1) P(€) = Ps. Thus Ly = X = E(q).

(2) Qg = q' ™38 is special with center U and Qg U is the faithful 56-dimensional
Fy X -module.

Proof. From the discussion in Section 17 in [ASe], Pg = P(§), Qg = ¢' ™3¢, and
Lg = E7(q). Then Lg = X by 10.2 (3), establishing (1). Up to quasiequivalence,
E7(q) has a unique faithful 56-dimensional [F,-module, so (2) follows. O
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Lemma 14.2. (1) L has four classes of involutions.

(2) Each involution in Qg is conjugate in L to u; for some 1 < i < 3, denoted by
x, y, z in 17.1 of [ASe], respectively.

B u el.

Proof. Part (1) is 17.1 in [ASe]. Let O = Qg/U. By 14.1(2), Qs is the 56-
dimensional module for X =~ E5(q). The orbits of X on Qg, and centralizers in
X of representatives, are listed in 4.3 of [LS]. In particular if i € Q7 — U is an
involution, then each nonabelian composition factor of Cy (7) is a section of Cz (i).
We compare the factors from [LS] of Cx (17) to the factors of Cy, (i) in 17.15 of [ASe],
and conclude only conjugates of x, y, and z can be contained in Qg, since the
only nonabelian composition factor of Cr,(u) is Spg(q), which does not contain the
nonabelian composition factor of Cx (j) for any j € Q g. Thus (2) holds.

From the definition of x in Section 17 of [ASe], x = u; is a root element, so (3)
holds. O

Lemma 14.3. Let A’ be the set of seven fundamental subgroups of X defined in 13.3
and set A == AN U{K}. For1 < i < 3 let I; be the set of involutions in (A)
projecting nontrivially on exactly i members of A. Then N, (A) is 3-transitive on A
and transitive on I; for each 1 <i < 3.

Proof. From 13.3, Nx (A’) is 2-transitive on A’, so Nz (A) is 3-transitive on A by
our usual argument. Hence the lemma follows. O

Lemma 14.4. (1) L; = Q{,(q) and Q1 = ¢'**%* is special.

(2) Z1 = Z(Q1) = E 14 admits the structure of a 14-dimensional orthogonal
space over Fy, preserved by L1, and L induces Qa (q) on this space.

(3) We may take uy, = uyw, where Wy is the root group of X such that X, =
X N Py = Nx(W,), and w, € W,. In particular, in the language of 14.3, we may
choose Wy < J € A/, souy € I,.

(4) uy is anonsingular point in the orthogonal space Z1 and Cr (u2) = Q1Cpr, (u2)
with Cp, (u2) = Spy,(q).

(5) Let K, = Cg(s) for s an involution in Ny, (A) with cycle (K, J), and u, €
U, € Sylz(Kz) Then (Kz, U2) (S @(L, Mz).

(6) 02(C(K3)) = 1.

Proof. Parts (1) and (2) are established during the discussion on page 69 of [ASe].
From 14.2(2), u, is conjugate to the involution y of 17.1 in [ASe], and from

the definition of y in Section 17 of [ASe], u, is diagonal in the product of two

commuting root groups U and W, such that W, £ O(Np(U)). Thus as L is



394 M. Aschbacher, R. Guralnick and Y. Segev

transitive on such involutions (cf. the proof of 12.1 in [ASe]), we may choose u;
as in (3). Arguing as usual, R(X1) = ¢'™32 is a complement to Q; N Qg in Q1,
so W = ®(R(X1)) < ®(Q1) = Z;. Indeed W is a complement to Qg N Zg
in Z;, and Qg N Zg is the subspace of the orthogonal space Z; orthogonal to U.
Thus u, = uw, is a nonsingular vector in Z;, so Cr, (u2) = Sp;,(g). From the
description of Cr (y) in 17.15 of [ASe], Y := Cr(u2) = Cp, (u2). Thus (4) holds.
Define (K5, U,) as in (5) and let B, := Cr(K3). Then Cx(K3) = Cx(J) =
sz(q) is of Lie rank 6, as is Y* := Y/ 0,(Y) = Sp;,(g), so O2(B2) = 1 by 10.6.
By 14.3, there is g € Np(A) with K5 < JJ, for some J, € A’ —{J}. As K¢ =
Cryz(s8), K& € G(X,uf) so Xp := Cx(K5) = L»(q) x Spg(q) by 13.5. Then
B = (I(Xz)g_1 < B and Ny« (Cx(K3)*) =~ 01+2(q) is the unique maximal
overgroup in Y* of Cx(K2)* = Q,(q). Hence as O;,(q) contains no copy of
B =~ L»(q)* x Spg(q), it follows that By = C(K2). As Cg, (Cr, (u2)) is of order ¢
it follows that U, = Cg, (B2) = Z(Cr(u2)), so (5) holds. Finally by 19.2 in [ASe],
each involution in Aut(L) — L induces a field automorphism on L, so (6) follows as
usual. O

Lemma 14.5. Let g € P, — Pg, | = UUS, E = QgN Qg, and J = (Qs, Qg).
Then:

(1) Q7 =(QsN 07)(Qg N Q) and J/ Q7 = La(q).

(2) Ly =(J NLy)xLygwithJ; =J NLy; = Ly(q) and L73 = E¢(q).

(3) I = Z(Q7) is the natural module for J7.

4) [J,E]l =1 and E/I is the 27-dimensional module for L7 g.

(5) Q7/E is the tensor product of the natural module for J7 and the dual of E /1
for L.

(6) We may choose us € E — I, such that Cp,(u3) = Cr(u3), Cr,(u3z) = J7 x
CrL,¢(u3), and Cp, 4 (u3) = Fu(q).

(7) There exists K3 € ©(L,usz).

(8) 02(C(K3)) = 1.

Proof. The proof is similar to that of 11.6. Parts (1)—(5) follow from the standard
theory of large special groups; see for example 8.15 in [A8]. By 14.2 (2), u3 is fused to
the involution z of 17.1in [ASe]. Thus from 17.14 in [ASe], we may take Cr, (u3) < Py
with 0,(Cr(u3)) = Co,(u3), and 0% (Cr.(u3))/0>(Cr (u3)) as described in (6).
From the action of L on Qg described in (1)—(5), it follows that u3 € E, completing
the proof of (6).

Let X7 = X N P;and W = R(X7). As L7 3 = Eg(g), from 13.2 (7) there is an
involution v3 € W such that Cx (v3) = Cx,(v3) with Cx (v3)/ W = F4(q). Further
by 13.4, thereis K, € &(X, v3). Thus Cr (K,) contains KCx (Ky) = L,(q)x Fa(q).
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Now from the structure of Cx (v3) and the list of centralizers in 17.15 in [ASe],
v3 € ug Thus there exists g € L with v§ = uj. Let K3 := K&. We have shown
that Cr (K3) contains a subgroup ¥ = K4 x Yy where K4 = K¥ is a fundamental
subgroup of L, and Yy = Cx(Ky,)® = F4(q). Hence K4Y is a complement to
02(CL(u3)) in CL(u3) by (6).

Suppose O,(Cr(K3)) = R # 1. As the complement Y to O,(Cr(u3)) acts on
R, R < Q7. From the description of the action of L7 on Q7 in (1)-(5) and the
description of the action of E¢ on its 27-dimensional module in [AS]:

(i) K4 is irreducible on 1.

(ii) E = E/I = Wg, and W& = Us x W5 and Y is irreducible on Wj.

(ii)) 0% = Q7/E = Cg,(u3)* x Q* where |Q*| = ¢ and Y is irreducible on
both factors.

We argue as in the proof of 11.6 to derive a contradiction: First / N R = 1 by (i)
andas K3 £ P7 = Np(I). Second, as all Y -submodules of E not containing / either
are contained in U3 or contain W3, RN E = 1 as R N W& = 1. Therefore third, by
(iii), R* = Co,(u3)*, soas ®(Cp,(u3)) < E, Cp,(u3) = R, a contradiction.

Hence 0,(Cr(K3)) = 1. Moreover we have also shown that U; = Z(Cpr(u3)),
so (7) holds. Finally (8) follows from (7) as usual. ]

15. The proof of Theorem 4

In this section we complete the proof of Theorem 4. Thus we assume the hypothesis
of that Theorem: G = 02 (G) is an almost simple group of Lie type over [F, or the
Tits group. Set L := F*(G) and let i be an involution in L.

If L is a classical group, then Theorem 4 holds by Theorem 9.17. Thus we may
assume L is exceptional. In particular the pair (G, L) satisfies Hypothesis 10.1, with
[ the Lie rank of L.

If ] = 1then L =~ Sz(g), a case handled in 10.3. Then 10.4 handles the case
| = 2. Thus we may assume / > 3, so L satisfies Hypothesis 10.5.

If i is a long root involution, then the pair (L, i) satisfies Theorem 4 by 10.2 (4).
Suppose L is E{(q). Then by 11.2, L has three classes of involutions with represen-
tatives u;, 1 < i < 3. The involution u; is a root involution, a case already treated,
while Theorem 4 holds for the involutions u, and u3 by 11.5 and 11.6.

Theorem 4 holds when L is F4(g) by 12.5. Suppose L is E7(g). By 13.2 (1), L has
five classes of involutions, described in 16.1 of [ASe]. The classes with representatives
z and v appear in case (4) of Theorem 4. By 13.2(3), the remaining classes have
representatives u;, 1 <i < 3, corresponding to the classes x, y, u of 16.1 in [ASe],
respectively. By 13.2 (4), u; is aroot involution, while Theorem 4 holds for u#, and u3
by 13.5 and 13.4.

This leaves the case L =~ Eg(q). By 14.2 (1), L has four classes of involutions,
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described in 17.1 of [ASe]. The class with representative v appears in case (5) of
Theorem 4. By 14.2 (2), the remaining classes have representatives u;, 1 <i < 3,
corresponding to the classes x, y, z of [ASe]. By 14.2(3), u; is a root involution,
while Theorem 4 holds for 4, and u3 by 14.4 and 14.5.

This completes the proof of Theorem 4.

16. The proof of Theorem 2

In this section we complete the proof of Theorem 2. Thus we assume the pair (G, V')
is a minimal counter example to Theorem 2, as defined in Section 1. Then by Propo-
sition 1.14:

Lemma 16.1. G is almost simple and G = LV, where L = F*(G).

Lemma 16.2. L is group of Lie type over [F4, for some power q of 2. Hence the pair
(G, L) satisfies Hypothesis 10.1.

Proof. By Theorem 2.1, G is not an alternating or symmetric group. By Theorem 4.1,
L is not sporadic. Finally by Theorem 8.3 (3), L is not a group of Lie type and odd
characteristic. Thus the lemma follows from the classification of the finite simple
groups. O

Lemma 16.3. L is not L3(2), L(2), Sp4(2)’, or G2(2)'.

Proof. As Ag =~ L4(2), L is not L4(2) by 2.1. Similarly as L3(2) = L,(7),
Sp4(2) = L3(9), G2(2) =~ U;(3), and Us(2) = PSp,(3), L is none of these
groups by 8.3. O

Lemma 16.4. (1) VN L # 1.
(2) Suppose i is an involution in L, (K,U) € &(L,i), and O,(Cg(K)) < L.
Theni ¢ V.

(3) There exists an involution u € V N L such that for each K € &(L,u),
0,(Cg(K)) £ L.

Proof. From 2.5.12 in [GLS3], m,(Out(L)) < 2. On the other hand, by 1.4 we have
ma (V) > 2, so (1) holds.

Assume the hypothesis of (2). Then from the definition of (L, i) in the Intro-
duction, one of the following holds:

(a) K = Ly(g) or Sz(g), or

(b) K = Ly(g?) withq > 2, or

(c)g =2and K = Dy, or
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(d) i is of type ¢3 in Sp,,(2) or F4(2) and K = L,(4).

Pick D to be a dihedral subgroup of K of order 2m containing u, where m > 11is
odd in case (a), m = g% + 1 in case (b), and m = 5 in case (c) and (d). We first claim
that Cg (D) = Cg(K). In case (d) this holds by case (iii) of the definition of &(L, ).
In case (¢) D = K. In the remaining cases, K = (U, D) and Cr(i) = Cr(U), so
the claim holds in those cases too.

Next, by definition of &(L,i), H = Cr(K) is a complement to O(Cr(i)) in
Cr(i), so Ox(H) = 1. Thus as 0,(Cg(K)) < L, also 0,(Cg(K)) = 1. Then
0,(Cg (D)) = 1 by the claim, so (2) follows from 1.15 (1).

Finally (1) and (2) imply (3). Ll

Lemma 16.5. (1) V acts on a parabolic P of L, where

(1) P is the stabilizer of a singular point in the natural module for L if L is an
orthogonal group Q25 (q), n > 8;

(ii) P is a maximal V -invariant parabolic of L if L is Sp,(q) or F4(q) and G is
nontrivial on the Dynkin diagram of L;

(iii) 0% (P/R(P)) = Eq(q) if L is E7();
(iv) P = NL(Uy) for a € ® a long root in the remaining cases.
Q) VNR(P)#1.

(3) If L = Spyu(q) and G is nontrivial on the Dynkin diagram of L then all
involutions in V — L are graph-field involutions, and all those in V N L are of type c;.

WA IfL = L (g), then V contains an involution of type j».

(5) If L is symplectic and G is trivial on the Dynkin diagram of L, orif L = Q¢ (q)
withn > 8, then V contains an involution of type c».

Proof. The normalizer in G of the parabolic listed in (1) contains a Sylow 2-subgroup
of G, so (1) follows.

Because / > 1 and the groups in 16.3 are excluded by that lemma, by inspection,
either L = L3(4) or O2(Ng(P)) = O2(P) = R(P). Inthe former case, (2) follows
from 16.4 (1), and in the latter case, (2) follows from 1.10 (1).

In the remaining parts, we adopt the notation for involutions in L from earlier
sections, and for outer involutions from [GLS3]. Assume the hypothesis of (3). Then
since G = LV, V £ L. Now (cf. 19.5 in [ASe]) all involutions in G — L are
graph-field automorphisms, so V' contains a graph-field automorphism 7. Then as
Cr (1) = Sz(q) has all involutions in ¢;, (3) follows.

We claim that V' contains no long root involutions, and if L is symplectic, V
contains no short root involutions. For if i is such an involution, then by 10.2 (4) there
is (K,U) € &(L,i), s0 02(Cg(K)) £ L by 16.4(2). Then by 10.2(5) and 16.3,
L =~ L3(4) and O,(Cg(K)) = (t), where t induces a graph automorphism on L.
But (€L @ )) is not elementary abelian, contrary to 1.15. Thus the claim is established.
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In cases (4) and (5), we will show that all other involutions in R = R(P) are of
type j1 and c¢», in the respective case, to complete the proof of the lemma. Namely
let M be the natural module for L, the covering group of L, and identify involutions
v in L with those in L, so that we can consider dim([M,v]). If L = L,(q) then R is
generated by transvections, so dim([M, r]) < 2 forall r € R. Then as j,, is the class
of involutions j with dim([M, j]) = m, and the root involutions are the transvections,
the lemma follows in this case. In the remaining cases, P is the parabolic stabilizing
a singular point My of M, and R centralizes the chain 0 < M, < MOJ- < M, so
dim([M, r]) < 2 for r € R. Moreover from Section 9, the involutions j in L with
dim([M, j]) < 2are of type j; and j, if L is unitary, and of type b1, a,, and c; if L is
symplectic or orthogonal, with no involutions in L of type b; when L is orthogonal.
Further when L is unitary, the long root involutions are the transvections, when L is
symplectic the root involutions are those of type b; and a,, while if L is orthogonal
the root involutions are of type a,. Hence (4) and (5) follow. ]

Lemma 16.6. L is exceptional.

Proof. Assume otherwise; then L is classical. If L = Sp,(g) and V' is nontrivial
on the Dynkin diagram, then by 16.5(3), V' contains an involution u of type c»
and each involution in G — L is a graph-field automorphism. Then by Theorem 4,
there is (K,U) € &(L,u). From the proof of 16.4(2), Cq(K) = Cg(D) for a
suitable dihedral subgroup D of order 2m containing u with m odd, so by 1.15,
there is t € V — L centralizing K. This is impossible as ¢ induces a graph-field
automorphism, so Cr(t) = Sz(g), and Sz(q) contains no copy of L>(g?).

Thus the hypothesis of part (4) or (5) of 16.5 is satisfied, so from that lemma, V
contains u of type j, or ¢. By Theorem 4, there is (K, U) € &(L, u), and from the
discussion in Section 9, 0»(Cg(K)) < L unless L = L3(q), L,(2), n € {5,6}, or
Q¢ (q), and Cg(KJ) = (r), where J = Cr(K) and 7 is a graph automorphism of
L in the first two cases, and a transvection in O;,(¢) in the last case. By 1.15, 7 € V.

As L(q) = Q¢(q), we can subsume this case in the last case. So consider the last
case. From 9.18, 7 € D = Dj(,24y with Cg(D) = 0,7%,(¢), so 1.15 contradicts
Tel.

Similarly if L = L,(2) forn = 5o0r6,thenby9.19,t € D = D,,, withm = 31
or 7, and Cg(D) = 1 or Aut(L,(8)), for n = 5, 6, respectively, contrary to 1.15.
This completes the proof. O

Lemma 16.7. V does not contain a long root involution.

Proof. Let u be a long root involution. By 10.2 (3) there is (K, U) € &(L,u), and
by 16.5 and 10.2 (5), 02(Cg(K)) = 1. Now 16.4 (2) completes the proof. O

Lemma 16.8. L is not exceptional.
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Proof. Assume L is exceptional. Suppose first L is not £E7(q) or Eg(q). In this case
we show:

(a) For each involution u of L, which is not a long root involution, there is K €
G(L,u) with O,(Cg(K)) = 1.

Observe that this suffices by 16.4 (3) and 16.7.

If | = 1, then L =~ Sz(g) and all involutions in L are long root involutions, so
(a) holds trivially. If [ = 2, then (a) follows from 10.4. If L is F4(q) then (a) follows
from 12.5. Finally if L is E¢(q) then by 11.3 (1) all involutions of L which are not
root involutions are conjugate to u, or u3, so (a) follows from 11.5 and 11.6 (7).

Therefore L is E7(q) or Eg(q). Adopt the notation in 10.5. Let P = P; and
O = Q;. Then Ng(P) = Ng(Q) contains a Sylow 2-subgroup of G, so we may
take V < Ng(Q), and then as Q = O>(Ng(P)), VN Q # 1 by 1.10(1). Then
by 16.4 (2) and 16.7, it suffices to show:

(b) For each involution # € Q which is not a root involution, there is K € &(L, u)
with 0,(Cg(K)) < L.

From 13.2(3) and 14.2(2), the involutions in Q are conjugate to u; for some
1 <i < 3. Further u; is a root involution. Then 13.4, 13.5, 14.4 and 14.5 show that
(b) holds. This completes the proof of the lemma. O

Observe that 16.6 and 16.8 supply a contradiction, which completes the proof of
Theorem 2.
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