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Abstract. LetG be a finite group. We say that a nontrivial elementary abelian 2-subgroup V of
G is of Sidki-type in G, if for each involution i in G, CV .i/ ¤ 1. A conjecture due to S. Sidki
(J. Algebra 39, 1976) asserts that if V is of Sidki-type inG, then V \O2.G/ ¤ 1. In this paper
we prove a stronger version of Sidki’s conjecture. As part of the proof, we also establish weak
versions of the saturation results of G. Seitz (Invent. Math. 141, 2000) for involutions in finite
groups of Lie type in characteristic 2. Seitz’s results apply to elements of order p in groups
of Lie type in characteristic p, but only when p is a good prime, and 2 is usually not a good
prime.
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Introduction

In the conference honoring the retirement of A. Mann which took place in Jerusalem
in May 2006, Said Sidki gave a talk in which he recalled a conjecture that he had
made in 1976 ([Si]). In this paper we prove his conjecture:

Theorem 1. Assume G is a finite group and V is a non-trivial elementary abelian 2-
subgroup ofG such that for each involution i 2 G,CV .i/ ¤ 1. ThenV \O2.G/ ¤ 1.

One way to view Theorem 1 is the following. For a finite group G let Inv.G/ be
the set of involutions of G and let I be the commuting graph on Inv.G/. Thus the
vertex set of I is Inv.G/with a; b 2 Inv.G/ adjacent in I if a and b commute. Now to
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any graph one can associate a combinatorial simplicial complex: the clique complex,
whose simplices are the cliques of the graph. LetK2.G/ be the clique complex of I.
Then Theorem 1 says that if there exists a simplex � in K2.G/ such that each vertex
in I is adjacent to some vertex of � , then h�i \O2.G/ ¤ 1.

Since the clique complex K2.G/ is homotopy equivalent to the Quillen complex
A2.G/ ofG at the prime 2 (cf. 5.2 in [A7]), Theorem 1 sheds some light on the Quillen
conjecture which asserts that for any prime p, Ap.G/ is contractible if and only if
Op.G/ ¤ 1. Indeed, Theorem 1 shows that the Quillen conjecture at the prime 2
is equivalent to the following statement: K2.G/ is contractible iff G possesses a
subgroup of Sidki type.

Since the hypothesis of Theorem 1 does not inherit well to homomorphic images,
we prove that V \O2.G/ ¤ 1 under a weaker hypothesis on V :

Theorem 2. Assume thatG is a finite group and V is a nontrivial elementary abelian
2-subgroup of G, such that whenever v 2 V inverts an element h of odd order in G
then CV .h/ ¤ 1. Then V \O2.G/ ¤ 1.

Notice that if h is an element of odd order inverted by v 2 V # then hv is an involution
inG, andCV .hv/ ¤ 1 iffCV .h/ ¤ 1. Thus ifV satisfies the hypothesis of Theorem 1,
then it also satisfies the hypothesis of Theorem 2; consequently Theorem 2 implies
Theorem 1.

In [Al], Alperin proved Theorem 1 for jV j � 4; indeed in this case a short and
elementary argument (Lemma 1.4) shows that Theorem 2 holds, but when jV j > 4we
know of no such argument to establish Theorem 2. The case jV j D 8 is interesting in
that Theorem 1 was proved by Sidki in [Si] when jV j D 8 using elementary means.

For the general case we show in Lemma 1.1 that if .G; V / satisfies the hypothesis
of Theorem 2, and K E G with V \K D 1, then .G=K; VK=K/ also satisfies this
hypothesis. This allows us to reduce the proof of Theorem 2 to the case where G is
almost simple (Proposition 1.14). Then we appeal to the classification of the finite
simple groups and results on the subgroup structure of such groups to complete the
proof.

Call a pair .G; V / that satisfies the hypothesis of Theorem 2 a Sidki pair. Let
.G; V / be a Sidki pair and suppose v 2 V # inverts an element x 2 G of odd order.
Set D WD hv; xi and C WD CG.D/. We observe that

(O1) .H; V / is a Sidki pair for all subgroups H � G with V � H (obvious);

(O2) .C; V \ C/ is a Sidki pair (Lemma 1.7);

(O3) if .G; V / is a minimal counter example to Theorem 2, and O2.C / contains a
unique involution t , then t is contained in V and htCG.v/i is elementary abelian
(Lemma 1.15 (2)).

These three observations are very useful in the proof of Theorem 2. We now describe
this proof in more detail. Suppose .G; V / is a minimal counter example to Theorem 2.
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Then G is an almost simple finite group; that is L D F �.G/ is a nonabelian finite
simple group. By the classification of the finite simple groups, L is an alternating
group, a finite group of Lie type, or one of 26 sporadic groups.

An easy argument (Theorem 2.1) shows that L is not an alternating group. In
Sections 3–6 we establish various results about strongly real elements in the auto-
morphism groups of sporadic groups and use observations (O1)–(O3) above to show
that L is not sporadic.

This reduces us to the case where L is a group of Lie type and characteristic p for
some prime p. We consider two subcases: p is odd and p is even.

In the odd characteristic case we employ a different strategy: assume X is an
almost simple finite group such that F �.X/ is a group of Lie type and odd character-
istic. Let W be a nontrivial elementary abelian 2-subgroup of X . Recall that proper
parabolic subgroups P andQ in F �.X/ are called opposite if P \Q is a Levi factor
of both P and Q. Let us denote by S.X;W / the collection of those W -invariant
sets S of proper parabolic subgroups of F �.X/ such that if P;Q 2 S are distinct,
then P and Q are opposites.

In Lemma 8.1 we show that, in a minimal counter example to Theorem 2, for all
P 2 S 2 S.G; V /, NV .P / D 1. Thus to eliminate the possibility that L is of Lie
type in odd characteristic it suffices to establish the following result, which may be
of independent interest:

Theorem 3. Assume X is an almost simple finite group such that F �.X/ is a group
of Lie type and odd characteristic. Assume W is a nontrivial elementary abelian
2-subgroup of X . Then:

(1) S.X;W / is nonempty.

(2) If jW j � 8, then there exists P 2 S 2 S.X;W / such that NW .P / ¤ 1.

This reduces the proof of Theorem 2 to the case where L is of Lie type and
characteristic 2. In this case we use observation (O1) and the fact that jV j > 4 to
“force” certain involutions v ofG to belong to V and then we (essentially) argue that
for some element x 2 G of odd order inverted by v, D WD hv; xi does not satisfy
observation (O2) or (O3). This is done by showing that certain involutions inL satisfy
a weak version of the saturation properties established by Seitz in [Se] for elements
of order p in groups of Lie type and characteristic p.

Unfortunately the results of Seitz only apply when p is a good prime, which
is almost never the case for p D 2. Thus we must supply proofs of these weak
saturation properties ourselves. These properties are of independent interest and their
description is somewhat technical; we first define the set S.Y; i/.

Let q be a power of 2, and assume that Y is a group such that either

Y D O20

.Y / is a group of Lie type over Fq with F �.Y / quasisimple, or

Y D 2F 4.2/
0 is the Tits group.



350 M. Aschbacher, R. Guralnick and Y. Segev

Let i 2 Inv.Y /, and define S.Y; i/ to be the set of pairs .K;U / such that

i 2 U � K � Y ;

U is an elementary abelian 2-group of order q and U � Z.CY .i//;

CY .K/ is a complement to O2.CY .i// in CY .i/;

Furthermore one of the following holds:

(i) K Š L2.q/;

(ii) Y Š Sz.q/ or 2F4.q/ with q > 2, or 2F4.2/
0, i is a long root involution in Y ,

and K Š Sz.q/, Sz.q/, or D10, respectively;

(iii) Y Š Spn.q/ or Y Š F4.q/, i is of type c2, respectively of type tu in Y , and
K Š L2.q

2/; in addition, if q D 2, then CY .K/ D CY .D/ for each dihedral
subgroup D10 Š D of K.

In this definition, and in Theorem 4 below, we use the notation and the description
of involutions in groups of Lie type and characteristic 2 from [ASe].

When Y 0 is of Lie type and characteristic p with p a good prime, Seitz [Se]
establishes many properties of elements i 0 of order p in Y 0, including the fact that an
appropriate analogue of S.Y 0; i 0/ is nonempty.

Theorem 4. Let q be a power of 2, and assume Y D O20

.Y / is an almost simple
group of Lie type over Fq , or Y D 2F 4.2/

0 is the Tits group. Let i be an involution
in Y . Then one of the following holds:

(1) S.Y; i/ is nonempty.

(2) Y Š Spn.q/ and i is of type cl for some even integer l > 2.

(3) Y Š �"
n.q/, n � 8, and i is of type cl for some even l > 2.

(4) Y Š E7.q/ and i is of type u or v.

(5) Y Š E8.q/ and i is of type v.

The exclusions in (2)–(5) of Theorem 4 may not be necessary. We do not need to
consider such involutions in proving Theorem 2, and did not immediately see how to
show S.Y; i/ ¤ ; for such involutions (except in case (3)), so we leave the question
open. However there do seem to be some serious difficulties involved with case (2).

To conclude the introduction we point out that Theorem 3 is proved in §8, the
proof of Theorem 4 is completed in §15, and the proof of Theorem 2 is completed
in §16. Our basic references are [A4] for notation and terminology involving finite
groups and [GLS3] for notation, terminology, and information about the finite simple
groups.
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1. Sidki pairs

In this sectionG is a finite group and V is a nontrivial elementary abelian 2-subgroup
of G.

Given a V -invariant subgroup H of G, define D.H; V / to be the set of .h; v/ 2
H�V such thath is of odd order andv invertsh. Let B.H; V / consist of those .h; v/ 2
D.H; V / such that CV .h/ D 1. Recall from the Introduction that the pair .G; V /
is a Sidki pair if B.G; V / is empty. Write P for the set of Sidki pairs. A minimal
counter example to Theorem 2 is a Sidki pair .G; V / such that O2.G/ \ V D 1, jGj
is minimal subject to this constraint, and jV j is minimal subject to both constraints.
Write Q for the set of minimal counter examples to Theorem 2.

Lemma 1.1. Assume .G; V / 2 P . Then:

(1) If V � H � G, then .H; V / 2 P .

(2) SupposeK E G with V \K D 1, and set G� D G=K. Then .G�; V �/ 2 P .

Proof. As B.H; V / � B.G; V /, (1) holds. Let x 2 G� be an element of odd order
and let y 2 V � be an involution that inverts x. ThenD WD hx; yi is a dihedral group
of order 2m, where m is odd, and there exists v 2 V with v� D y. Thus there exists
g 2 G such that D D hv�; .vg/�i. Let E D hv; vgi. Then there exists h 2 E of
odd order such that h� D x. Since v inverts h and .G; V / 2 P , CV .h/ ¤ 1. As
V \K D 1, CV .h/ Š CV .h/

� � CV �.h�/ D CV �.x/, so CV �.x/ ¤ 1.

Lemma 1.2. If .G; V / 2 P and jV j D 2, then V � O2.G/.

Proof. Assume otherwise. Then by the Baer–Suzuki Theorem (cf. 39.6 in [A4]),
a generator v of V inverts a nontrivial element x of odd order, and as jV j D 2,
CV .x/ D 1, contradicting .G; V / 2 P .

The following lemma, and Lemma 1.5 below, should be compared with Theo-
rem 2.1 in [Si].

Lemma 1.3. Assume .G; V / 2 P and E is of index 2 in V with .G;E/ … P . Then
V � O2.CG.E//.

Proof. Assume otherwise. Then jV j > 2 by 1.2. By hypothesis there is .x; e/ 2
B.G;E/, and as .G; V / 2 P , there is 1 ¤ v 2 CV .x/. As .x; e/ 2 B.G;E/,
CE .x/ D 1 so v 2 V � E. Hence by assumption, v … O2.CG.E//, so by the
Baer–Suzuki Theorem, there is g 2 CG.E/ such that y WD vvg is nontrivial of odd
order. Then .G; V g/ 2 P and .x; e/ 2 D.G; V g/, so there exists 1 ¤ u 2 CV g .x/.
As CE .x/ D 1, u D vga for some a 2 E. Then ya D vvga D vu centralizes x,
and y centralizes a, so also .ya/2 D y2 centralizes x. Then as jyj is odd, Œx; y� D 1.
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Therefore jxyj is odd and ev inverts xy, so there is 1 6D w 2 CV .xy/. Ifw 2 E then
xy D .xy/w D xwy, so w 2 CE .x/ D 1, a contradiction. Thus w D bv for some
b 2 E. Therefore xy D .xy/w D xby�1, so xb D xy2. Then as Œb; y� D 1,

x D xb2 D .xy2/b D xby2 D xy4;

contradicting jyj odd.

Lemma 1.4. If .G; V / 2 P and jV j � 4, then V \O2.G/ ¤ 1.

Proof. Assume otherwise and choose v 2 V #. By Baer–Suzuki, v inverts a nontrivial
element x of odd order in G. As .G; V / 2 P , there is 1 6D e 2 CV .x/. But by 1.2
and 1.3, V � O2.CG.e//, a contradiction.

Lemma 1.5. Assume that .G; V / 2 P , but for each maximal subgroup E of V ,
.G;E/ … P . Then V centralizes each V -invariant subgroup of G of odd order.

Proof. Let X be a V -invariant subgroup of G of odd order, and E the set of max-
imal subgroups of V . Then (cf. Exercise 8.1 in [A4]) X D hCX .E/ W E 2 Ei.
Furthermore, for E 2 E we have V � O2.CG.E// by hypothesis and 1.3, so
ŒCX .E/; V � � O2.CG.E// \X D 1, and hence V centralizes X .

Lemma 1.6. Let U � V be a nontrivial subgroup and let H be a U -invariant
subgroup of G. Then .HU;U / 2 P iff B.H;U / D ;.

Proof. As the 2-groupU acts onH ,O2.HU /DO2.H/, so B.H;U /D B.HU;U /.

Lemma 1.7. Assume .G; V / 2 P , let v 2 V and let x 2 G be an element of odd
order inverted by v. Set D WD hv; xi and C WD CG.D/. Then .C; C \ V / 2 P .

Proof. LetW WD C\V; and notice that since .G; V / 2 P ,W ¤ 1. Pick 1 ¤ w 2 W
and let y 2 C be an element of odd order inverted by w. Then vw inverts xy, so
there exists u 2 V # such that u 2 CV .xy/. Sincew; xy 2 CG.u/ also .xy/.xy/w D
xyxy�1 D x2 2 CG.u/. But jxj is odd, so u 2 C and hence u 2 W . Note that u
centralizes y, so we see that .C;W / 2 P .

Our goal in the remainder of the section is to prove that if .G; V / is a minimal
counter example to Theorem 2 then G is almost simple, and to obtain further results
on a minimal counter example. Thus in the remainder of the section we assume:

Hypothesis 1.8. .G; V / is a minimal counter example to Theorem 2.
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Lemma 1.9. Let 1 ¤ U � V and assume thatH is a nontrivialU -invariant subgroup
of G such that HU ¤ G.

(1) If CU .H/ D 1 and O2.H/ D 1, then .HU;U / … P .

(2) If U D V and O2.H/ D 1, then CV .H/ ¤ 1.

Proof. Notice that (2) is an immediate corollary of (1) because by Lemma 1.1 (1),
.HV; V / 2 P .

Assume the hypothesis of (1) with .HU;U / 2 P . Then by minimality ofG in Hy-
pothesis 1.8, U \O2.HU / ¤ 1, and so ŒU \O2.HU /;H� � O2.HU / \H D 1,
contradicting CU .H/ D 1.

Lemma 1.10. (1) If V � H < G, then V \O2.H/ 6D 1.

(2) If H is a proper subgroup of G of odd index, then 1 6D V \O2.K/ for some
K 2 HG .

Proof. Under the hypothesis of (1), .H; V / 2 P by 1.1 (1), so (1) follows from
minimality of G. Then (2) follows from (1) and Sylow’s Theorem.

Lemma 1.11. V centralizes each V -invariant subgroup of G of odd order.

Proof. This follows from the minimality of V in Hypothesis 1.8, and from 1.5.

Lemma 1.12. Let Xi � G be V -invariant subgroups of G for i D 1; 2, such that
X WD hX1; X2i D X1 �X2, O2.X/ D 1 and XiV ¤ G, then CV .X/ ¤ 1.

Proof. Assume that CV .X/ D 1 and set

V1 WD CV .X2/:

By Lemma 1.9 (2) V1 ¤ 1. Since CV1
.X1/ D 1, Lemma 1.9 (1) implies that

.X1V1; V1/ … P , so by Lemma 1.6 we may pick .h1; v1/ 2 B.X1; V1/. Set

V2 WD CV .h1/:

Then V2 \ V1 D 1 and hence CV2
.X2/ D V2 \ CV .X2/ D V2 \ V1 D 1. Hence,

again, we may choose .h2; v2/ 2 B.X2; V2/. Note that

CV .h1h2/ D CV .h1/ \ CV .h2/ D V2 \ CV .h2/ D CV2
.h2/ D 1:

However as X D X1 � X2 with hi 2 Xi , Œh1; h2� D 1 so h1h2 is inverted by v1v2,
contrary to our hypothesis that .G; V / 2 P .

Lemma 1.13. F.G/ D 1.
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Proof. Assume that O2.G/ ¤ 1. As .G; V / 2 Q, V \ O2.G/ D 1. Then we
conclude from Lemma 1.1 (2) and minimality of G that O2.G=O2.G// ¤ 1, which
is absurd.

Thus O2.G/ D 1. Assume that K WD F.G/ ¤ 1, and set G� WD G=K. As
O2.G/ D 1,K is of odd order, soV \K D 1. Thus .G�; V �/ 2 P by Lemma 1.1 (2).
Then by minimality of G, 1 ¤ V � \ O2.G

�/. Let U be the preimage in V of
V � \ O2.G

�/. As E.G/� � E.G�/, ŒU;E.G/� � K, so U centralizes E.G/
(cf. 31.6.3 in [A4]). Further V centralizes K by 1.11, so U centralizes F �.G/,
contradicting O2.G/ D 1.

We can now prove

Proposition 1.14. Assume that .G; V / is a minimal counter example to Theorem 2.
Then G is almost simple and G D VF �.G/.

Proof. We first claim that

(1) V acts transitively via conjugation on the components of G.

Let � be the set of components of G and let �1 be an orbit of V on �. Assume
that �2 D � n �1 is nonempty. Set Xi D h�i i, i D 1; 2 and note that we get a
contradiction to Lemma 1.12. This establishes (1).

Let L 2 �. We next claim that

(2) V1 WD NV .L/ ¤ 1.

Assume (2) fails and let q be an odd prime dividing jLj andQ1 2 Sylq.L/. Then
Q WD hQV

1 i is a V -invariant Sylow q-subgroup of F �.G/, and V is faithful on Q,
contrary to 1.11. This establishes (2).

We next show

(3) .LV1; V1/ 2 P .

First, for 1 ¤ x 2 L, CG.x/ � NG.L/. Thus if x has odd order and is inverted
by some v 2 V1, then CV .x/ ¤ 1, and since CV .x/ � NG.L/, CV .x/ � V1. So,
by 1.6, (3) is established.

If G D LV then the proposition holds, so we may assume otherwise. Then by
(3) and the minimality of G, CV1

.L/ ¤ 1. However as V is abelian, CV1
.L/ �

CV1
.F �.G// D 1 by (1), a contradiction.

Lemma 1.15. Assume u is an involution in G and x is a nontrivial element of odd
order inverted by u. Set D WD hu; xi and suppose that either

(1) O2.CG.D// D 1, or

(2) O2.CG.D// contains a unique involution t , and either t … V or htCG.u/i is not
elementary abelian.

Then u … V .



Elementary abelian 2-subgroups of Sidki-type in finite groups 355

Proof. Suppose u 2 V and let H D CG.u/, C D CG.D/, and h 2 H . Set
Wh D CV h.D/. By 1.7, .C;Wh/ 2 P , so by the minimality of G, Wh \O2.C / ¤ 1

and hence t 2 Wh. We have

t 2
\

h2H

Wh �
\

h2H

V h DW VH ;

so t 2 V and asVH is an elementary abelian normal subgroup ofH , htH i is elementary
abelian, a contradiction.

2. Alternating groups

In this section we prove:

Theorem 2.1. Assume .G; V / is a minimal counter example to Theorem 2. Then G
is not an alternating or symmetric group.

Let � D f1; : : : ; ng, S the symmetric group on �, and A the alternating group
on �. Assume .G; V / is a minimal counter example to Theorem 2 and G D S or A.
For X � S , write M.X/ for the set of points of � moved by X .

Lemma 2.2. (1) n � 5.

(2) V acts on no partition � D f�1; �2g of � with j�i j > 4 for i D 1; 2.

Proof. Part (1) follows from Proposition 1.14, which says that G is almost simple.
Suppose V acts on � as in (2), and let H D NG.�/. Then V � H < G with
O2.H/ D 1, contrary to 1.10.

Lemma 2.3. (1) M.v/ D � for each v 2 V #.

(2) Each orbit of V on � is regular.

(3) jV j � 8.

(4) n � 8.

Proof. Assume (1) fails and pick v 2 V # so that M.v/ 6D �, and m D jM.v/j is
maximal subject to this constraint. Then v inverts a cycle h 2 G of length m C 1.
Now .h; v/ 2 D.G; V /, so as B.G; V / D ;, there exists 1 6D u 2 CV .h/. Then
M.h/ � Fix.u/, so M.uv/ D M.u/ [M.v/ is of order mC jM.u/j > m. Further
uv fixes the fixed point of v on M.h/, so M.uv/ 6D �, contrary to the maximality
of m. Thus (1) is established.

Part (1) implies (2), while (3) follows from 1.4. By (2) and (3), n � 0 mod 8, so
(4) follows.
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Lemma 2.4. V is regular on �.

Proof. Let m D jV j. By 2.3 (2), V has r D n=m regular orbits of length m on �,
and we may assume r > 1. By 2.3 (3), m � 8. Let � be an orbit of V on �, and set
† D ��� and H D G�. Thus H is the alternating or symmetric group on †, and
as j†j � m � 8, O2.H/ D 1. Hence CV .H/ 6D 1 by 1.9 (2). But CV .H/ fixes †
pointwise, contrary to 2.3 (1).

Lemma 2.5. n D 8.

Proof. Let U be a subgroup of index 2 in V and � the set of orbits of U on�. As V
is regular on �, U has two orbits of length n=2 and V acts on � . Now the lemma
follows from 2.2 (2) and 2.3 (4).

We are now in a position to obtain a contradiction, establishing Theorem 2.1.
By 2.4 and 2.5, G Š L4.2/ and we may choose V to be the group of transvections
with a fixed axis P on the natural module M for G. Let v 2 V # and pick h of
order 3 in G inverted by v. Then dim.ŒM; h�/ D 2 and M D ŒM; h�C P . However
CV .h/ centralizes ŒM; h� and P , so CV .h/ centralizes M D ŒM; h�C P and hence
CV .h/ D 1. Thus .h; v/ 2 B.G; V /, for our contradiction.

3. Some strongly real elements in sporadic groups

In this section L is a sporadic group. Our notation for conjugacy classes in L come
from [GLS3], although we sometimes write ‘r’ rather than ‘rA’ ifL has a unique class
of elements of order r . The information about the normalizers of elements of prime
order inL comes from [GLS3] as well; sometimes the appeals to this information are
implicit rather than explicit.

For a group H we write Inv.H/ for the set of involutions of H and for x 2 H ,
NH .x/ WD NH .hxi/. Given L-invariant subsets A, B of G, we sometimes write
ŒA; B� D 1 to indicate that Œa; b� D 1 for some a 2 A and b 2 B . We write t  x to
indicate that the involution t inverts x, and write A B to indicate that a b for
some a 2 A and b 2 B .

Lemma 3.1. (1) LetM Š M24 and let� be a set of 24 points permuted transitively
by M . Then M has two classes of involutions 2A and 2B such that:

(a) For a 2 2A, CM .a/ Š L3.2/=D
3
8 and Fix.a/ is an octad in �.

(b) For b 2 2B , CM .b/ Š S5=E64 and b has no fixed point on �.

(c) 2B  11A.

(2) Let L Š M22, then 2C  11A.
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Proof. (1): Parts (a) and (b) appear in [A8, 21.1]. Let X � M be of order 11. As the
stabilizer L3.4/ in M of 3 points of � is an 110-group, jFix.X/j D 2 and X has two
orbits �i , i D 1; 2, of length 11 on �. An involution t 2 M that inverts X acts on
Fix.X/ and either fixes one point in �i for i D 1 and 2, or interchanges �1 and �2.
Thus jFix.t/j � 4, so t 2 2B .

(2): View Aut.L/ as the global stabilizer in M D M24 of two points. Let c 2
Inv.Aut.L// nL with c 11. By (1), c is in theM -class 2B . Thus 7 … �.CM .c//,
so c is of type 2C in Aut.L/.

Lemma 3.2. The following table lists groupsL and classes O and A in Aut.L/ such
that

(i) jOut.L/j D 2 and A is a class of outer involutions in Aut.L/;

(ii) for x 2 O, jCAut.L/.x/j is odd and A O.

L M12 M22 J3 O’N
O 11A 11A 19A 31A

A 2C 2C 2B 2B

Proof. Observe p D jxj is an odd prime, and from [GLS3], hxi 2 Sylp.L/, jCL.x/j
is odd, jOut.L/j D 2, and for each involution a 2 Aut.L/ nL, p … �.CL.a//. Thus,
by a Frattini argument, some involution t 2 Aut.L/ n L acts on hxi, and then, as
p … �.CL.t//, t inverts x.

Next, if L ¤ M22, then there is a unique class A of outer involutions in Aut.L/
so t 2 A and the lemma holds in this case. If L D M22 then the lemma follows from
Lemma 3.1 (2).

Lemma 3.3. The following table lists classes O and A in L such that for x 2 O,
jCL.x/j is odd and A O.

L J2 J3 J4 HS McL Ru O’N
O 7A 17A 23A 7A 5B 29A 11A

A 2B 2A 2B 2B 2A 2B 2A

Proof. The J3, McL and O’N entries of the table follow from the fact that these
groups have a unique class of involutions and from the structure of the normalizers
of subgroups of prime order in these groups.

J2: Let L Š J2 and let c be an outer involution in Aut.L/. Then K D CL.c/ Š
PGL2.7/ has Sylow 2-subgroup S Š D16 and two classes zK and tK of involutions,
with z 2-central in K. As Z.S/ contains a 2-central involution of G, z is 2-central
in G, and hence of type 2A. Then as non-2-central involutions of L of type 2B also
centralize outer involutions (cf. [GLS3, pg. 268]), t 2 2B . Finally t  7 in K.
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J4 WL Š J4 has two classes of elements of order 11 and two classes of involutions.
Further, for each t 2 Inv.L/, Sylow 11-subgroups of CL.t/ have order 11, so CL.t/

is transitive on its subgroups of order 11. Since each element of order 11 in L is
centralized by an involution, we conclude that:

(1) For X 2 fA;Bg, there exists a unique class 11X of elements of order 11 such
that Œ11X ; 2X� D 1. Further 11A 6D 11B .

Next letY be generated byy 2 11A. By [GLS3],NL.Y / Š .GL2.3/�Z5/=11
1C2

is strongly 11-embedded in L. Let Q D O11.NL.Y //. Then there is an involution
z 2 CL.Y / inverting Q=Y , and 3 2 �.CL.y; z//, so z 2 2A, since if z 2 2B then
3 … �.CCL.z/.y//. It follows from (1) that:

(2) 11X D 11X for X 2 fA;Bg.
Further as NL.Y / is strongly 11-embedded in L, each b 2 Q � Y is in 11B , and

z inverts some such elements, so:
(3) 2A 11B .
Let b 2 11B and v 2 CL.b/ \ 2B . Then CL.v/ is contained in a maximal

subgroup M Š M24=E211 , so it follows from the structure of M24 that b 2 NM .X/

for some X � M of order 23. Finally NL.X/ is Frobenius of order 23 � 22, so (2)
implies that 2B  23.

HS : Let L Š HS and let d 2 2D. Then K WD CL.d/ Š S8. Consider
the covering group OL of L, and let yK be the preimage of K in OL. By [GLS3],
Z WD Z. OL/ is of order 2, and the involutions in K n E.K/ lift in OL to elements of
order 4. As involutions of type 2A; 2B in L lift to involutions, elements of order 4
in OL, respectively, it follows that involutions in K n E.K/ are of type 2B . Since
L contains a unique class of elements of order 7, and an element of order 7 in K is
inverted by an involution of cycle type 23, we are done.

Ru: There are two classes of involutions in Ru and only Œ2B; 7� D 1. Next for
x 2 29, NL.x/ is Frobenius of order 29 � 14, and hence Inv.NL.x// 	 2B .

Lemma 3.4. IfL Š M12, then 2A 5A, 2B  5A, and for x 2 5A, Inv.CL.x// 	
2A.

Proof. First, L has two classes of involutions, 2A and 2B , and one class 5A of
elements of order 5. If t 2 2A, then t has no fixed points on the set � of 12 points
permuted byL, while s 2 2B fixes 4 points. FurtherL contains a transitive subgroup
K Š L2.11/ and for ! 2 �, K! is a Borel subgroup, so the involutions in K are in
the class 2A and inside K, 2A  5A. Next, 2B  5, inside L! Š M11. Finally,
since 5 … �.CL.2B//, Inv.CL.x// 	 2A.

Lemma 3.5. If L Š J2, then 2A 5A and for y 2 5A, Inv.CL.y// 	 2B .

Proof. By [GLS3], Œ2B; 5A� D 1, so since CL.y/ Š Z5 � A5, Inv.CL.y// 	 2B .
Let b 2 Inv.CL.y//. By [GLS3], CL.b/ Š E4 � A5, and Inv.CL.b// \ 2A D
Inv.E.CL.b///. Thus inside CL.b/, 2A 5A.
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Lemma 3.6. Assume L Š Co2, let x 2 5B , and set N WD NL.x/. Then:

(1) N Š F20 � S5, where F20 is the Frobenius group of order 20.

(2) If s 2 Inv.N / and CL.s; x/ Š S5, then s 2 2B .

(3) 2C  7A and for z 2 7A, Inv.CL.z// 	 2A [ 2B .

Proof. Part (1) appears in [GLS3]. Let t be a transposition in CL.x/. We claim that
t 2 2A. Set C WD CL.t/ and C � WD C=O2.C /. Then x� is of order 5 in C � such
that CC �.x�/ Š Z5 � S3. Now the claim follows from the structure of centralizers
of involutions in L. By the claim:

(i) Œ5B; 2A� D 1.
Next from Section 24 in [A8], there exists a subgroup HS Š K � L. Note thatK

contains a Sylow 5-subgroup of L, and then from the structure of the centralizers of
elements of order 5 in L and K:

(ii) For X 2 f5A; 5Bg, the K-class X is contained in the L-class X .
Similarly for u in the K-class 2B , CK.u/ contains an Aut.A6/-section, so:
(iii) The K-class 2B is contained in the L-class 2C .
Next from [GLS3], there existsS8 Š S � K. LetxS be an element of order 5 inS .

Then 3 2 �.CK.xS //, so xS is in the K-class 5B . Further there exists t 2 Inv.S/
centralizing x with CS .t/ Š Z2 � S6, so t is in theK-class 2B . Hence from (ii) and
(iii):

(iv) Œ5B; 2C � D 1.
Now for each t 2 Inv.L/, Sylow 5-subgroups of CL.t/ have order 5, so CL.t/ is

transitive on its subgroups of order 5. Hence by (i) and (iv), fory 2 5A,CL.y/\2A D
; D CL.y/ \ 2C , so:

(v) For y 2 5A, Inv.CL.y// � 2B .
If i is in the K-class 2B , then CK.i/ Š Z2 � Aut.A6/, so:
(vi) If t 2 Inv.K/ is a square in K, then t is in the K-class 2A.
Next an element y in theK-class 5A is centralized inK by an involution i which

is a square in CK.y/, so i is in theK-class 2A by (vi). By (ii), y is in the L-class 5A,
so by (v), i is in the L-class 2B . Thus we have shown:

(vii) The K-class 2A is contained in the L-class 2B .
By (ii), we may assume that x 2 K andNK.x/ Š F20 �A5. Let s be an involution

inNK.x/withCK.s; x/ Š A5. By (vi) and (vii), s is in theL-class 2B , so (2) follows.
It remains to prove (3). We may assume that z 2 K. By 3.3, z is inverted by an

involution j in the K-class 2B , so j is in the L-class 2C by (iii). Since for c 2 2C ,
7 … �.CL.c//, (3) follows.

Lemma 3.7. Let L Š He. Then:

(1) 2B  17 and jCAut.L/.x/j D 17, for x 2 17.

(2) Let x 2 5A. Then x is inverted by some element a in 2A with CL.a; x/ Š A5

and CAut.L/.a; x/ Š S5.
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Proof. Let a 2 2A. Then CL.a/ has a subgroup E4 � L3.4/ of index 2, so if u 2 L
with juj D 8, then u4 2 2B . Let y 2 17. Then NL.y/ is Frobenius of order 17 � 8,
so the first part of (1) follows, and the second is a consequence of [GLS3]. Part (2)
follows from 42.14 in [A8].

4. Sporadic groups in Theorem 2

In this section we begin to prove the following result.

Theorem 4.1. If .G; V / is a minimal counter example to Theorem 2, then F �.G/ is
not sporadic.

Assume that .G; V / is a minimal counter example to Theorem 2 withL D F �.G/
sporadic. By Proposition 1.14, G D VL. We begin with a series of reductions.

Lemma 4.2. Assume a is an involution inG and x is an element of odd order inverted
by a. Set D D ha; xi. Then each of the following imply that a … V :

(1) O2.CG.D// D 1.

(2) vG \ CG.D/ D ; for each v 2 V #.

Proof. Part (1) is sufficient by 1.15 (1). Further if a 2 V , then .x; a/ 2 D.G; V /, so
as .G; V / 2 P , CV .D/ ¤ 1; thus (2) is sufficient.

Lemma 4.3. Assume a is an involution inG and x is an element of odd order inverted
by a. Set D D ha; xi and assume O2.CG.D// has a unique involution t . Then each
of the following imply that a … V :

(1) O2.CG.a// D hai.
(2) htCG.a/i is not elementary abelian.

Proof. Part (2) is sufficient by 1.15 (2). Then (1) is sufficient by (2).

Lemma 4.4. V \ L 6D 1.

Proof. This follows as j Out.L/j � 2 and jV j � 8 by 1.4.

Lemma 4.5. L is not M11, M23, J1, Ly or F3.

Proof. For each of the groups, Out.L/ D 1, and L has one class aL of involutions.
We indicate a class O D xL of elements of odd prime order in L satisfying the
hypothesis of Lemma 4.2 (1), and appeal to that lemma.

L M11 M23 J1 Ly F3

O 5A 5A 7A 31A 19A



Elementary abelian 2-subgroups of Sidki-type in finite groups 361

Lemma 4.6. If L is M12, J3, or O’N, then G D L.

Proof. Let A D aL and O D xL be as in Lemma 3.2. Then, by Lemma 3.2 and
Lemma 4.2 (1), V \A D ;. But A is the unique class of outer involutions in Aut.L/,
so V 	 L. Thus the lemma follows as G D VL.

Lemma 4.7. L is not J3 or O’N.

Proof. Assume otherwise. By Lemma 4.6, G D L. Now L has a unique class of
involutions 2A, and Lemma 3.3 shows that the hypotheses of Lemma 4.2 (1) hold for
a 2 A D 2A and some x 2 O, completing the proof.

Lemma 4.8. L is not M12.

Proof. Assume L Š M12. By Lemma 4.6, G D L. Let x 2 5A, a 2 2A, and
b 2 2B . Then CL.x/ Š Z2 � Z5 and CL.a/ Š Z2 � S5. By 3.4, we may assume
that a x and b x. Then by 4.3 (1), V \ 2A D ;. Consequently V # 	 2B . But
by 3.4, Inv.CL.x// � 2A, so Lemma 4.2 (2) supplies a contradiction.

Lemma 4.9. L is not M22.

Proof. Assume L Š M22. By Lemma 3.2 and Lemma 4.2 (1), V \ 2C D ;. Next,
2A is the unique class of involutions in L, and x 2 5A is inverted in L, so 2A 5A.
Further 5 … �.CL.i// for i 2 2A [ 2B , so Inv.CAut.L/.x// 	 2C . Thus applying
Lemma 4.2 (2), V \ 2A D ;, contrary to 4.4.

Lemma 4.10. L is not M24.

Proof. Assume L Š M24. Then Out.L/ D 1, so G D L. An element of order 11
is self centralizing in L, so by 3.1 (1c) and 4.2 (1), V \ 2B D ;. Let x 2 3A. Then
N WD NL.x/ Š S3 � L3.2/, so if a 2 Inv.N / with CN .a; x/ Š L3.2/, then a
inverts x and a 2 2A because 7 2 �.CL.a// but CL.b/ is a 70-group for b in the
remaining class 2B of involutions. It follows from Lemma 4.2 (1) that V \ 2A D ;,
contradicting Inv.L/ D 2A [ 2B .

Lemma 4.11. L is not J2.

Proof. Assume L Š J2. Let x 2 7A. Then NL.x/ is Frobenius of order 42,
while Aut.L/ has a unique class 2C of outer involutions, and for c 2 2C , CL.c/ Š
PGL2.7/. In particular we may choose Œx; c� D 1 and for b 2 Inv.L/ inverting x,
cb … L, so cb 2 2C . Thus 2C  7A, so 2C \V D ; by 4.3 (1). ThereforeG D L.

Next, 3.3 together with Lemma 4.2 (1) imply that V \ 2B D ;. Finally by 3.5
and Lemma 4.2 (2), V \2A D ;, which is impossible since Inv.L/ D 2A[2B .
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Lemma 4.12. L is not J4.

Proof. Assume L Š J4. Then Out.L/ D 1, so G D L. By Lemma 3.3 and
Lemma 4.2 (1), V \ 2B D ;.

Next from observation (3) in the treatment of J4 in 3.3, 2A  11B , while
observations (1) and (2) in that treatment imply that Inv.CL.y// 	 2B , for y 2 11B .
Thus V \ 2A D ; by 4.2 (2), contradicting Inv.L/ D 2A [ 2B .

Lemma 4.13. L is not Co1.

Proof. Assume L Š Co1. Then Out.L/ D 1, so G D L.
Let z 2 2A and H WD CL.z/. By 25.6 in [A8], Inv.O2.CL.z/// � 2A, so

by 1.10 (2), 2A \ V 6D ;.
Let x 2 3D. ThenNL.x/ Š S3 �A9, so there is an involution a inverting x with

CL.a; x/ Š A9. Then 34 divides jCL.a/j, so from the structure of centralizers of
involutions in L it follows that a 2 2A. Then since CL.a; x/ Š A9, Lemma 4.2 (1)
implies that V \ 2A D ;, a contradiction.

Lemma 4.14. L is not Co2.

Proof. Assume L Š Co2. Then Out.L/ D 1, so G D L.
Let x 2 3B , then M WD NL.x/ Š S3 � Aut.PSp4.3//. Thus if a 2 Inv.M/

with CM .a; x/ Š Aut.PSp4.3//, then a inverts x and as CL.a/ has an Sp4.3/-
section, a 2 2A. It follows from Lemma 4.2 (1) that V \ 2A D ;. Similarly
by 3.6 (2) there exists b 2 2B inverting x 2 5B such that CL.b; x/ Š S5, so by
Lemma 4.2 (1), V \ 2B D ;. Finally by 3.6 (3), there is c 2 2C inverting z 2 7A

with Inv.CL.c; z// � 2A [ 2B , so V \ 2C D ; by 4.2 (2), a contradiction.

Lemma 4.15. L is not Co3.

Proof. Assume L Š Co3. Since Out.L/ D 1, G D L. Let t 2 2A. Then t is a
2-central involution in L and CL.t/ Š 2Sp6.2/, so by 1.10 (2), V \ 2A ¤ ;. Let
x 2 5B , thenN WD NL.x/ Š F20 �A5, and hence for a 2 N , with CN .a; x/ Š A5,
a 2 2A, because a is a square in L. But now 4.2 (2) says that V \ 2A D ;, a
contradiction.

Lemma 4.16. L is not HS .

Proof. Assume L Š HS . From the proof of 3.6 (2), x 2 5B is inverted by a 2 2A

withCL.a; x/ Š A5, and from [GLS3], CAut.L/.a; x/ Š S5. Thus by Lemma 4.2 (1),
V \ 2A D ;.

Next by Lemma 3.3 there exists b 2 2B with b  y 2 7A. Now CAut.L/.y/

contains a unique involution d , and S WD CL.d/ Š S8. Then CL.d; b/ Š E4 � S4,
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so E.CL.b// D ŒE.CL.b//; d �. Hence by Lemma 4.3 (2), V \ 2B D ;. Now
Lemma 4.4 supplies a contradiction.

Lemma 4.17. L is not McL.

Proof. Let a 2 2A. Then CL.a/ Š 2A8 D F �.CAut.L/.a//. By Lemma 1.10 (2),
V \ 2A ¤ ;. By 3.3, a  x 2 5B , and O2.CAut.L/.x; a// D 1. Hence, from
Lemma 4.2 (1), it follows that V \ 2A D ;, a contradiction.

Lemma 4.18. L is not Suz.

Proof. Let z 2 2A and H WD CL.z/. Then z is a 2-central involution and Q D
O2.H/ D F �.CAut.L/.z// Š Q3

8, with H=Q Š ��
6 .2/ transitive on the involutions

i 2 Q � hzi, so jCH .i/j2 D .jH j2/=2 D 212. Thus as jCL.b/j2 < 212 for b 2 2B ,
Inv.Q/ � 2A, so V \ 2A 6D ; by 1.10 (2).

By [GLS3], H contains x 2 5A. As all involutions in CL.x/ are in E.CL.x// Š
A6, it follows that z y 2 CL.x/ of order 5. LetD WD hz; yi. ThenCL.D/\NL.x/

contains an F20-subgroup, so it follows from the structure of centralizers of elements
of order 5 in L that F �.CL.D// D E.CL.y//. But now 2A \ V D ; by 4.2 (1), a
contradiction.

Lemma 4.19. L is not He.

Proof. Assume L Š He. By 4.4, V \L 6D 1, while by 3.7 and 4.2 (1), neither of the
two classes 2A and 2B of involutions in L intersect V nontrivially.

Lemma 4.20. L is not Ru.

Proof. Assume L Š Ru. Since Out.L/ D 1, G D L. By Lemma 3.3 and
Lemma 4.2 (1), V \ 2B D ;.

Let x 2 5B . From [GLS3], N WD NL.x/ Š F20 �A5. If a 2 N is an involution
such that CL.a; x/ Š A5 and a inverts x then a 2 2A since jCL.t/j is not divisible
by 3 for t 2 2B . Hence by 4.2 (1), V \ 2A D ;, contradicting Inv.L/ D 2A [ 2B .

Lemma 4.21. Assume .G; V / is a minimal counter example to Theorem 2, such that
L D F �.G/ is sporadic. Then L is F5, F2, F1, or one of the three Fischer groups
F22, F23, or F24.

Proof. The remaining 20 sporadics were eliminated in earlier lemmas in this section.
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5. Some subgroups of the Monster

In this section M is the Monster F1. In addition to our usual appeals to [GLS3], we
also appeal to information contained in [GMS]. Our notation for the Fischer groups
comes from [A9].

First by [GLS3]:

Lemma 5.1. M has two classes 2A and 2B of involutions, and for a 2 2A,CM .a/ Š
2F2 is quasisimple, while for z 2 2B , CM .z/ Š Co1=D

12
8 .

Lemma 5.2. Let a 2 2A. Then:

(1) For b 2 2A, jabj � 6.

(2) Let 3Aa D fb 2 2A W CM .a; b/ Š F23g. Then 3Aa ¤ ; and CM .a/ is
transitive on 3Aa.

(3) Let b 2 3Aa, x WD ab, and H WD CM .x/. Then x 2 3A, H Š F24=Z3 is
quasisimple, and for t 2 Inv.H/ with CH .t/ Š Aut.F22/=Z2, t 2 2A.

(4) 2B  41A, and for y 2 41A, hyi is self centralizing in M .

(5) Letw 2 5A. Then CL.w/ D hwi �K, whereK Š F5. Further for t 2 Inv.K/
with CK.t/ Š Aut.HS /=Z2, we have t 2 2A.

Proof. Part (1) is a consequence of 3.4.9 and 3.7 in [GMS]. Part (2) is 3.4.8 in [GMS].
Let x0 2 3A and H0 WD CM .x0/. From [GLS3] it follows that H0 Š F24=Z3

and there is a0 2 Inv.M/ inverting x0 and inducing a 3-transposition on H0. Thus
CM .x0; a0/ Š F23, so a0 2 2A and a0x0 2 3Aa0

. Thus the first two remarks in (3)
hold. The third remark appears in 3.6.3 of [GMS].

Let y 2 41A. From [GLS3], hyi is self centralizing in M and inverted by some
involution i . By (1), i … 2A, so i 2 2B , establishing (4).

Finally, ifw 2 5A thenCL.w/ D hwi�K by [GLS3], whereK Š F5. Pick t as in
(5) and let J WD CM .t/ and J � WD J=hti. ThenCJ �.w�/ D hw�i�CK.t/

�, so from
the centralizers of elements of order 5 in Co1, t … 2B . Thus t 2 2A, establishing (5).

Lemma 5.3. Let L Š F2, a 2 2A, b 2 2B , and d 2 2D. Then:

(1) aL is a class of f3; 4g-transpositions of L.

(2) a x 2 3A with CL.a; x/ Š Aut.F22/.

(3) b y 2 5A with CL.b; y/ Š Aut.HS /.

(4) Inv.O2.CL.b/// � 2A [ 2B [ 2D.

(5) d  z 2 19A with CL.d; z/ D hui, where u 2 2A.
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Proof. Part (1) is well known, see [S, (3.14)], and it appears with (2) in the Notes forF2

in [GLS3]. Let y 2 5A. By [GLS3]NL.y/ Š F20 � Aut.HS /, so there is i 2 Inv.L/
inverting y with CL.i; y/ Š Aut.HS /. By (1), i … 2A, so as 11 … �.CL.i// for
i 2 2C [ 2D, (3) holds.

Part (4) appears in 3.6.3 in [S]. Let z 2 19A. From [GLS3], NL.z/ D hui � F ,
where u is an involution and F is Frobenius of order 19 � 18. As 19 2 �.CL.u//,
u 2 2A. Let i 2 Inv.F /; we claim that fi; iug \ 2D 6D ;. Suppose not and let
Y WD CL.u/. If i 2 Y 0, then by 3.6.2 in [S], fi; iug D f2A; 2Bg, while if i 2 Y �Y 0,
then fi; iug D f2A; 2C g by 3.18.1 in [S]. In either case we get a contradiction from
(1). Thus (5) holds.

Lemma 5.4. Let L Š F5 and A D Aut.L/. Then:

(1) Let c be an involution in A � L. Then c  x 2 3A and NA.x/ D hc; xi � S
with S Š S9.

(2) Let s 2 S be a transposition. Then a D cs 2 2A inverts x and CL.a; x/ Š S7.

(3) 2B  11A, and for y 2 11A, CL.y/ D hyi � hui, with u 2 2A.

Proof. Let x 2 3A. By [GLS3], NL.x/ is of index 2 in S3 � S9. Hence by a Frattini
argument, either NA.x/ D T � S with T Š S3 and S Š S9, or CA.CL.x// is of
order 2. The former holds as L is transitive on involutions in A � L, and for such
an involution c, CL.c/ Š S10. Thus (1) holds. Then by (1), CL.a; x/ Š S7, so as
CL.b/ has no A7-section for b 2 2B , (2) holds.

By 5.2 (5), we may take L D K � M as in that lemma, and pick t as in the
lemma. By the lemma, t is in theM -class 2A, so by 5.2 (1), jt t l j � 6 for l 2 L. But
by construction, t is in theL-class 2A, so t inverts no element ofL of order 11. Then
(3) follows from [GLS3].

Lemma 5.5. Assume .G; V / is a minimal counter example to Theorem 2, such that
L D F �.G/ is sporadic. Then L is one of the three Fischer groups F22, F23, or F24.

Proof. Assume otherwise. Then by 4.21, L is F1, F2, or F5. Suppose that L 6D G.
If L is F1 or F2, then Out.L/ D 1, so L Š F5. But by 5.4 (1) and 4.2 (1), c … V , for
any involution c 2 G � L, contradicting G D LV . Thus G D L.

Let I be the set of involutions fused into O2.CL.b// for b 2 2B if L D F2, and
let I D Inv.L/ otherwise. By 4.4 and 1.10 (2), V \ I 6D ;. Then by 5.2-5.4, for
i 2 I , either there exists x of odd prime order with i  x and O2.CL.i; x// D 1, or
L Š F5 and i 2 2B , or L Š F2 and i 2 2D. We conclude from 4.2 (1) that L Š F5

or F2 and V # � 2B or 2D, respectively. Now by 5.4 (3) and 5.3 (5), i  y 2 11A or
19A with CL.y; i/ D hui, and u 2 2A, for L Š F5 or F2, respectively. Now 4.2 (2)
supplies a contradiction and completes the proof.
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6. The Fischer groups

In this section L is one of the three Fischer groups Fn, n 2 I D f22; 23; 24g. Then
L D F �.M/, whereM D M.n/ is a group generated by a setD of 3-transpositions.
Indeed M D L unless n D 24, where jM W Lj D 2 and M D Aut.L/.

In addition to our usual appeals to [GLS3], we also appeal to the description of the
3-transposition group M in [A9]. Further we adopt Fischer’s standard notation for
3-transposition groups. For example if d 2 D, then d? D CD.d/,Dd D d? � fdg,
and Ad D D � d?. A subgroup K of M is a D-subgroup if K D hK \Di.

Lemma 6.1. (1) M has k classes of involutions, jm, 1 � m � k, where k D 3 with
n D 22 or 23, k D 4 if n D 24, and jm consists of the products of m commuting
members of D.

(2) jm D 2A, 2B , 2C for m D 1; 2; 3 if n D 22 or 23, while jm D 2C , 2A, 2D,
2B , for m D 1; 2; 3; 4, if n D 24.

(3) For d 2 D and a 2 Ad , x D ad 2 3A, and F �.CAut.L/.x// is a simple
orthogonal group over F3.

(4) If n D 24, then j4 29A and for y 2 29A, hyi is self centralizing in M .

(5) If n D 22, then j3 13A and for z 2 13A, hzi is self centralizing in Aut.L/.

(6) Let n D 22 and u 2 j2. Then u w 2 5A withCAut.L/.u;w/ D CL.u;w/�
hti, where CL.u;w/ Š S5 and t 2 2D with htCL.u/i not elementary abelian.

(7) If n D 24, then b 2 j2 inverts w 2 5A with CM .b; w/ Š S9.

Proof. Part (1) is 37.4 in [A9]. Then (2) follows from the tables in Chapter 15 of [A9].
Part (3) is part of the standard theory of 3-transposition groups; cf. 15.11 and 15.14
in [A9].

Assume n D 24. Then by 5.2 (3), the covering group OL of L is embedded as a
subgroup of the Monster F in such a way that an involution j 2 OL, whose image in
L is in j2, is in the F -class 2A. Thus by 5.2 (1), jjj l j � 6 for l 2 L. Thus y 2 29A
is not inverted by j . But from [GLS3], there is an involution i 2 L with i  y, so
as Inv.L/ � j2 [ j4, i 2 j4. Further hyi is self centralizing in Aut.L/, so (4) holds.

Suppose W � M has order 5. Then NM .W / D U � Y where U is Frobenius
of order 20 and Y Š S9, with Y \ D the set of transpositions in Y . In particular
the product b of two commuting members of Y \D inverts w0 of order 5 in Y , and
NM .W / \ CM .w

0; b/ D U � CY .w
0; b/, with CY .w

0; b/ Š S5. Thus b centralizes
O20

.CM .w
0//, so (7) holds.

Assume next that n D 22. By 39.1 in [A9], there is a D-subgroup K of L
isomorphic to �7.3/. Let W be the natural F3K-module and X a Levi factor of
the maximal parabolic of K stabilizing a totally singular 3-subspace of W . Then
X Š L3.3/ stabilizes a decomposition W D W0 ˚ W1 ˚ W2, where W0 is a point
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andW1 andW2 are totally singular 3-subspaces. NowX contains z 2 13A andNX .z/

contains g of order 3 such thatWi is a Jordan block of size 3 for g for i D 1; 2. Then,
in the notation of Section 38 of [A9], W �=W �2 is of rank 2 with singular points
Wi�=Wi�

2, so g is in the class 32C of K appearing in 38.15 in [A9]. Then by 39.7
in [A9], CD.g/ D ;. But for d 2 D and b 2 Dd , db 2 j2 and O2.CL.db// �
CL.d/, so Inv.CL.g// � j3. Therefore as g centralizes an involution i inverting z,
it follows that j3 13A, and (5) follows.

Next for t 2 2D, CL.t/ is a D-subgroup isomorphic to Aut.�C
8 .2//. Let Lt �

CL.t/withLt Š OC
8 .2/ and letU be the natural module forLt . WriteU D U1 ? U2

where the Ui are nondegenerate 4-subspaces of sign �1. Then the stabilizer in Lt

of U1 is L1 � L2 where Li D CLt
.U3�i / Š O.Ui / Š O�

4 .2/. In particular
there is wi of order 5 in Li inverted by ui D aibi ; the product of commuting 3-
transpositions, so ui 2 j2. Then NLt

.ui / D NL.ui / Š F20 � S5. Therefore
CAut.L/.ui ; wi / D CL.ui ; wi / � hti. Finally suppose T D htCL.ui /i is elementary
abelian. Then T D ht; ai ; bi i Š E8 as hai ; bi i is the maximal normal elementary
abelian subgroup of CL.ui /. But then CL.ui /

1 � CL.t/, a contradiction. This
establishes (6).

Lemma 6.2. If .G; V / is a minimal counter example to Theorem 2, thenL is not F22,
F23, or F24.

Proof. Assume L Š Fn for some n 2 I . By 6.1 (3) and Lemma 4.2 (1),D\V D ;.
Suppose n D 23. Then for d 2 D, d is 2-central in G and hd i D O2.CL.d//,

so V \ D 6D ; by 1.10 (2), contrary to the previous paragraph. Therefore n D 22

or 24. By 4.4, V \ L 6D 1, so as V \D D ;, it follows from 6.1 that V \ X ¤ ;
for X 2 fj2; j3g, X 2 fj2; j4g for n D 22, 24, respectively. Then it follows from
parts (4), (5), and (7) of 6.1 and 4.2 (1), that n D 22 and V \ L# � j2. Then 6.1 (6)
and 4.3 (2) supply our final contradiction.

Notice that Lemma 5.5 and Lemma 6.2 complete the proof of Theorem 4.1.

7. Maximal parabolics

In this section p is a prime andL is a group of Lie type in characteristic p of Lie rank
l � 1. That isL=Op.L/ is the central product of factors which are quasisimple groups
of Lie type and characteristic p, .S/L2.3/ if p D 3, or L2.2/, .S/U3.2/, 2B2.2/,
D10, or 2F4.2/

0 if p D 2. Write R.P / for the unipotent radical of a parabolic P
of L. Thus R.P / D Op.P /.

Lemma 7.1. If L D Op0

.L/ then L is not contained in a group of Lie type of
characteristic p and Lie rank less than l .
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Proof. Assume the embeddingL � G is a counter example with l minimal. Then the
Lie rank k ofG is less than l . If l D 1, then k D 0, soOp0

.G/ D Op.G/, impossible
as L D Op0

.L/ is of Lie rank 1, so Op.L/ 6D L. Thus l > 1. Passing to G=R.G/,
we may assume G is reductive.

Let P be a maximal parabolic of L, R D R.P /, and X D Op0

.P /. By the
Borel–Tits Theorem (cf. 3.1.3 in [GLS3]), there exists a proper parabolic Q of G
such that P � Q and R � R.Q/. Set Q� D Q=R.Q/ and Y D Op0

.Q/. Then Y �
andX� are of Lie type and characteristic p. FurtherX� D Op0

.X�/ is reductive and
as P is maximal, the Lie rank of X� is l � 1. As l > 1, l � 1 � 1. Further the Lie
rank r of Y � is at most k � 1, so r < l � 1. This is contrary to the minimal choice
of l , so the lemma is established.

ForX � L, let P .X/ be the set of proper parabolic subgroups ofL containingX .

Lemma 7.2. AssumeL is reductive and l > 1. LetX D Op0

.X/ be a subgroup ofL
of Lie type and Lie rank l � 1. Then:

(1) For each P 2 P .X/, P is a maximal parabolic and Op.X/ � R.P /.

(2) If Op.X/ 6D 1, then P .X/ D fP.X/g is a set of size one, P.X/ is a maximal
parabolic, and Op.X/ � R.P.X//.

(3) If jP .X/j > 1, then Op.X/ D 1, and for all distinct P;Q 2 P .X/, P and Q
are opposite maximal parabolics.

Proof. Suppose P 2 P .X/ and set Y D Op0

.P /, R D R.P /, and Y � D Y=R.
Then X� D Op0

.X�/ is of Lie rank l � 1 and Y � is of Lie rank at most l � 1, so
by 7.1, Y � is of rank l � 1, so P is a maximal parabolic. Suppose Op.X

�/ 6D 1.
Then by Borel–Tits, there is a proper parabolic P0 of P such that X � P0 and
S WD Op.X/ � R.P0/. But then Op0

.P0=R.P0// is of Lie rank less then l � 1,
contrary to 7.1. Thus Op.X

�/ D 1, so Op.X/ � R, establishing (1).
Next suppose (2) fails, and choose a counter example X such that S is maximal

(recall S D Op.X/). Let K D NL.S/. By Borel–Tits, there exists P 2 P .K/ with
S � R D R.P /. To complete the proof of (2), it suffices to show P .X/ D fP g,
so assume otherwise and let Q 2 P .X/ � fP g and T D R.Q/ \ P . Then X acts
on T , so XT D Op0

.XT / is of Lie type with P;Q distinct members of P .XT /.
Therefore T D S by maximality of S .

Suppose S D R.Q/. By (1), P and Q are maximal parabolics, so as S D R.Q/

we have Q D K. Then reversing the roles of P and Q, by symmetry S D R \Q,
and as P 6D Q, S 6D R. But then S < NR.S/ � R \Q D S , a contradiction.

Therefore S 6D R.Q/, so S < NR.Q/.S/ � R.Q/ \ P D S . This contradiction
establishes (2).

Finally suppose P;Q are distinct members of P .X/. Then Op.X/ D 1 by (2).
Suppose P and Q are not opposites. Then 1 6D S WD R.P / \Q is X -invariant, so
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Y D SX is of Lie type with Y D Op0

.Y / and S D Op.Y / 6D 1. As P;Q 2 P .Y /,
this contradicts (2). Thus (3) holds.

Let T .L/ be the set of sets T of maximal parabolic subgroups of L such that for
all distinct P;Q in T , P and Q are opposites.

Lemma 7.3. AssumeL is reductive, l > 1, andX D Op0

.X/ is a reductive subgroup
of L of Lie type and Lie rank l . Let Y be the set of subgroups Y D Op0

.Q/ such that
Q is a maximal parabolic of X . Then:

(1) For each Y 2 Y, P .Y / D fP.Y /g is a set of size one, P.Y / is a maximal
parabolic, and Op.Y / � R.P.Y //.

(2) Suppose T 2 T .X/. Then S D fP.Y / W Y 2 T g 2 T .L/.

Proof. Let Y 2 Y. Then Y D Op0

.Y / � L is of Lie type and Lie rank l � 1 with
Op.Y / 6D 1, so (1) follows from 7.2 (2).

Assume the hypothesis and notation of (2). Let Q1;Q2 2 T be distinct, and set
Yi WD Op0

.Qi /. Then Y1;2 WD Y1 \ Y2 D Op0

.Q1 \ Q2/, where Q1 \ Q2 is a
common Levi factor ofQ1 andQ2. NowP.Yi / 2 P .Y1;2/ for i D 1; 2, so by 7.2 (3),
either P.Y1/ D P.Y2/ or P.Y1/ and P.Y2/ are opposites. Thus (2) holds.

Lemma 7.4. Assume X D Op0

.X/ is a subgroup of L of Lie type and characteristic
p of the same Lie rank as Op0

.L/. Then R.X/ � R.L/.

Proof. FirstX D Op0

.X/ � Op0

.L/, and ifOp0

.L/ D R.L/ the lemma is trivial, so
we may assume the Lie rank ofOp0

.L/ is positive. Thus replacing L byOp0

.L/, we
may assume L D Op0

.L/, so by hypothesis, X is of Lie rank l . Similarly replacing
L by L=R.L/, we may assume L is reductive and R D R.X/ 6D 1, and it remains to
derive a contradiction.

By the Borel–Tits Theorem, there is P 2 P .X/. Now applying 7.1 to X in the
role of L, we have a contradiction.

8. Chev.p/, p odd

In this section we assumeG is an almost simple finite group such thatL D F �.G/ 2
Chev.p/ is of Lie type and odd characteristic p, and G D LV for some nontrivial
elementary abelian 2-subgroup V of G.

Let S D S.L; V /be the set of nonemptyV -invariant setsS of parabolic subgroups
of L, such that for all distinct P;Q 2 S , P and Q are opposites. In particular
Op.P / \ Q D 1. Let yS D yS.L; V / consist of those S 2 S such that for some
P 2 S , NV .P / 6D 1.
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Lemma 8.1. Suppose S 2 S and there exists P 2 S with NV .P / 6D 1. Then there
exists .h; v/ 2 B.G; V / with h a p-element, so .G; V / … P .

Proof. Assume otherwise and let R be the radical of P and U D NV .P /. Then
U is faithful on R, so (e.g. by 1.14 and 1.6) there is .h; u/ 2 B.R;U /, and h is a
p-element. As .h; u/ … B.G; V / there is 1 6D v 2 CV .h/. As .h; u/ 2 B.R;U /,
v … U , soP 6D P v . Then h D hv 2 R\Rv , impossible asP 6D P v , soR\Rv D 1

as P and P v are opposites.

Lemma 8.2. Assume L is of Lie rank 1. Then:

(1) The set S of Borel subgroups of L is in S .

(2) If m2.V / > 2, then S 2 yS .

Proof. Part (1) is trivial. Suppose S … yS , and let I be the set of involutions in Aut.L/
acting on no member of S . Then V # � I. But if L is 2G2.q/ or U3.q/, then I is
empty. Hence L Š L2.q/. Therefore I consists of the involutions in L if q � �1
mod 4, while I consists of the involutions inducing outer-diagonal automorphisms
on L if q � 1 mod 4. In particular, m2.V / � m2.L/ D 2, completing the proof
of (2).

Theorem 8.3. (1) S.L; V / 6D ;.

(2) If m2.V / � 3, then yS.L; V / 6D ;.

(3) .G; V / … P .

In the remainder of the section assume that .G; V / is a counter example to Theo-
rem 8.3 with G of minimal order. Observe that (2), 8.1, and 1.4 imply (3), so (1) or
(2) fails.

As (1) or (2) fails it follows from 8.2 that:

Lemma 8.4. The Lie rank of L is greater than 1.

Let V � T 2 Syl2.G/. See [A2] for the definition of the set of fundamental
subgroups of L, and the set Fun.T / of fundamental subgroups of L associated to T .
By 8.4 and [A2], Fun.T / is nonempty and T -invariant. Also, from [A2] we have:

Lemma 8.5. Let K 2 Fun.T /. Then:

(1) K Š SL2.q/, where L is defined over Fq .

(2) Sylp.K/ consists of centers of long root subgroups ofL. Thus forX 2 Sylp.K/,
NL.X/ is a proper parabolic of L.

(3) If L is not Ln.q/ with n > 2, then for distinct X; Y 2 Sylp.K/, NL.X/ and
NL.Y / are opposite maximal parabolics.
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(4) If L is Ln.q/ with n > 2, then for distinct X; Y 2 Sylp.K/, M.X/ and M.Y /
are opposite maximal parabolics, where M.Z/ is the stabilizer in L of the
center of Z in the action of L on its projective geometry.

Lemma 8.6. V acts on no member of Fun.T /.

Proof. Assume V acts on K 2 Fun.T / and set S D fM.X/ W X 2 Sylp.K/g, where
M.X/ is defined in 8.5 (4) if L is Ln.q/, and M.X/ D NL.X/ otherwise. By 8.5,
S 2 S , and if m2.V / > 2, then 1 6D NV .M.X// for some X 2 Sylp.K/ by 8.2, so

S 2 yS . But this contradicts the choice of V .

Lemma 8.7. L is not L"
3.q/, G2.q/, 3D4.q/, or E7.q/.

Proof. Assume otherwise. Then by Theorem 2 in [A2], eitherT acts on some member
of Fun.T /, or L Š G2.q/, with q an odd power of 3, and V — L. By 8.6, the latter
holds. Let v 2 V � L and Y D CL.v/. Then Y Š 2G2.q/. For Q 2 Syl3.Y /
let B.Q/ D NL.O

30

.CL.Z.Q////. Then B.Q/ is a Borel subgroup of L. Further
for P 2 Syl3.Y / � fQg, B.P / and B.Q/ are opposites. Namely A D R.B.Q// \
R.B.P // centralizes hZ.Q/;Z.P /i D Y , so the remark follows as CG.Y / D hvi.
Thus S D fB.Q/ W Q 2 Syl3.Y /g 2 yS , contrary to the choice of V .

Lemma 8.8. L is not L"
n.q/ or PSpn.q/ for n > 4.

Proof. Assume otherwise and letM be the natural module for OL D SL"
n.q/ or Spn.q/.

For K 2 Fun.T /, let yK be the preimage of K in OL and zK D Op0

. yK/. Then zK
is a fundamental subgroup of OL, and we abuse notation and write K for zK. Let
� D fK1; : : : ; Kmg be an orbit of V on Fun.T /. By 8.6, m > 1. Let U be a
complement to the kernel of the action of V on�,D D h�i, and J D Op0

.CD.U //.
From [A2], ŒM;D� D M1 ? � � � ? Mm and Mi D ŒM;Ki � is the natural module for
Ki . Then J Š SL2.q/ is a full diagonal subgroup of D with ŒM; J � D ŒM;D�, and
for X 2 Sylp.J /, ŒM;X� D ŒM1; X� ? � � � ? ŒMm; X� is an m-dimensional totally
singular subspace of M . Set P.X/ D NL.ŒM;X�/. Then P.X/ is a parabolic with
NG.X/ � NG.P.X//. Further for distinct X; Y 2 Sylp.J /, ŒM;X� \ CM .Y / D 0,
so P.X/ and P.Y / are opposites.

As V acts on D and V is abelian, V acts on J . Thus S D fP.X/ W X 2
Sylp.J /g 2 yS , contrary to the choice of V .

Lemma 8.9. L is not P�"
n.q/ for n � 5.

Proof. Assume otherwise, and let L be the image in PGL.M/ of the orthogonal
group OL acting on its natural module M , regarded as an orthogonal space over Fq .
Let� D �O.M/ be the group of semilinear maps preserving the orthogonal spaceM ,
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G�.M/ the group of similarities of M , and GO.M/ the group of isometries of M .
These groups are discussed in Section 15 of [A1]. Further (cf. 15.1 in [A1]) as
G D LV for some 2-group V , G is the image of some yG � � in P�.M/. As in
the proof of the previous lemma, we abuse notation and identify each fundamental
subgroup K of L with the fundamental subgroup of OL mapping onto K under the
natural map. We recall some facts from Section 15 of [A1].

Let K 2 Fun.T / and z D z.K/ the involution in K. Then there exists a unique
K 0 2 Fun.T / � fKg with z.K 0/ D z.K/. Indeed ŒM; z� is a 4-dimensional space of
sign C and KK 0 D Op0

.O.ŒM; z�//.
Suppose v 2 G is an involution with Kv D K 0, and let v be the image of Ov 2 � .

Then Op0

.CKK0.v// D J Š L2.q/. Let X 2 Sylp.J /.
Assume first that Ov 2 G�.M/. Then from 15.8 in [A1], the action of v on KK 0

agrees with that of some involution inGO.M/, and J acts as�3.q/ on ŒM; z�. Thus
ŒM; z� D ŒM; J � ? M0 is the orthogonal direct sum of a nonsingular point M0

with a 3-dimensional orthogonal space ŒM; J �, X is a short root subgroup of L, and
M.X/ WD CŒM;J �.X/ D ŒM;X;X� is a singular point ofM , so P.X/ D NL.M.X//

is a parabolic subgroup of L withNG.X/ � NG.P.X//. Further for distinct X; Y 2
Sylp.J /, M.X/ is not orthogonal to M.Y /, so P.X/ and P.Y / are opposites.

So assume instead that Ov … G�.M/. Then Ov D �t where � induces an involutory
field automorphism on K and K 0, and t is a reflection with Kt D K 0. In this case J
acts as ��

4 .q
1=2/ on the Fq1=2-subspace CŒM;z�. Ov/ of ŒM; z�, so M.X/ WD CM .X/

is again a singular point of M , and P.X/ has the same properties as in the previous
case.

Let � D fK1; : : : ; Kmg be an orbit of V on Fun.T /. By 8.6, m > 1. Let U be a
complement to the kernel of the action of V on�,D D h�i, and J D Op0

.CD.U //.
There are two cases:

(i) For 1 � i � m, K 0
i … �.

(ii) For 1 � i � m, K 0
i 2 �.

From the discussion above, ŒM;D� D M1 ? � � � ? Mr , where r D m in case (i),
and in case (ii), r D m=2 and we can choose notation so that K 0

i D KiCr , where the
indices are read modulo r . FurtherMi D ŒM;Ki � is a 4-dimensional orthogonal space
of sign C1, and the sum of two natural modules for Ki . In case (ii), Mi D ŒM;K 0

i �.
In case (i), J Š SL2.q/ is a full diagonal subgroup of D with ŒM; J � D

ŒM;D�, and for X 2 Sylp.J /, ŒM;X� D ŒM1; X� ? � � � ? ŒMm; X� is a 2m-
dimensional totally singular subspace of M . Set P.X/ D NL.ŒM;X�/. Then P.X/
is a parabolic with NG.X/ � NG.P.X//. Further for distinct X; Y 2 Sylp.J /,
ŒM;X� \ ŒM; Y �? D 0, so P.X/ and P.Y / are opposites.

In case (ii), there is w 2 U such that for each 1 � i � r , Kw
i D K 0

i . Let
Ji D Op0

.CKi K0

i
.w//. From our earlier discussion, Ji Š L2.q/. Let E D hJi W

1 � i � ri. Then J is a full diagonal subgroup of E. Let X 2 Sylp.J /, Xi

the projection of X on Ji , and write M.Xi / for the singular point of Mi defined
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above. Then M.X/ D M.X1/ ? � � � ? M.Xr/ is an r-dimensional totally singular
subspace of M . Set P.X/ D NL.M.X//. Again NG.X/ � NG.P.X//, and for
distinct X; Y 2 Sylp.J /, P.X/ and P.Y / are opposites.

As V acts on D and V is abelian, V acts on J . Thus S D fP.X/ W X 2
Sylp.J /g 2 S . Then as 1 6D U � NG.P.X//, S 2 yS , contrary to the choice of V .
This completes the proof of the lemma.

Lemma 8.10. L is F4.q/, E"
6.q/, or E8.q/.

Proof. By 8.3, the Lie rank of L is greater than 1. Hence if L is L"
n.q/ or PSpn.q/,

then by 8.7, n � 4. Then by 8.8, n D 4. Thus L is P�"
m.q/ form D 5 or 6, contrary

to 8.9. Thus if L is classical, then L is P�"
n.q/ for some n > 6, contrary to 8.9.

Therefore L is exceptional. Now the lemma follows from 8.7.

We recall from Definition 4.1.8 in [GLS3] that an involution z 2 L is of parabolic
type ifOp0

.CL.z// D Op0

.P \P 0/ for some pairP;P 0 of opposite maximal parabol-
ics. Also z is of equal rank type if Op0

.CL.z// has the same Lie rank as L.

Lemma 8.11. (1) L has a unique class zL of 2-central involutions.

(2) Let Lz D CL.z/. Then either

(i) L is F4.q/ or E8.q/, z is of equal-rank type, Lz is quasisimple, hzi D Z.Lz/,
and Lz is Spin9.q/ or �C

16.q/, respectively.

(ii) L is E"
6.q/, z is of parabolic type, and Op0

.Lz/ Š Spin"
10.q/.

(3) We may assume V � CG.z/.

Proof. Parts (1) and (2) are a consequence of Theorem 4.5.1 in [GLS3]. By (1), z is
2-central in G, so (3) follows.

Lemma 8.12. L is not E"
6.q/.

Proof. Assume otherwise. Choose z as in 8.11 and letLz D CL.z/. Thus V � Gz D
CG.z/. By 8.11 (2), z is of parabolic type. Let S D P .Op0

.Lz//, in the notation
of Section 7. Then S is V -invariant, and by 7.2 (3), S 2 yS , contrary to the choice
of V .

Lemma 8.13. L is not F4.q/ or E8.q/.

Proof. Assume otherwise. Choose z as in 8.11 and let Lz D CL.z/. Thus V �
Gz D CG.z/. By 8.11 (2), z is of equal-rank type. By minimality of jGj, there
is Sz 2 yS.VLz; V /. Indeed from 8.11 (2i), Lz is Spin9.q/ or �C

16.q/, while from
the treatment of these groups in 8.9, the members of Sz are maximal parabolics
of Lz . Thus for Y 2 Sz , P .Y / D fP.Y /g is a set of size one by 7.3 (1). Set
S D fP.Y / W Y 2 Szg. By 7.3 (2), S 2 yS , contrary to the choice of V .
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Observe that 8.10, 8.12, and 8.13 complete the proof of Theorem 8.3. Further,
Theorem 8.3 implies Theorem 3, and deals with those minimal counter examples to
Theorem 2 whose generalized Fitting subgroup is of Lie type and odd characteristic.

9. Classical groups in characteristic 2

In this section q � 2 is a power of 2, and M is an n-dimensional vector space over
F WD Fq .

Given an involution u 2 GL.M/ and a 2 F , define

U.a/ WD 1C a.uC 1/ 2 End.M/;

and set
Rt.u/ D RtGL.M/.u/ D fU.a/ W a 2 F g:

Observe that:

Lemma 9.1. (1) For each involution u 2 GL.M/, the map a 7! U.a/ is an isomor-
phism of the additive group of F with the subgroup Rt.u/ of GL.M/.

(2) Rt.u/ � Z.CGL.M/.u//.

As in Section 4 of [ASe], for 1 � l � n=2, write jl for the set of all involutions
u 2 GL.M/ such that dim.ŒM; u�/ D l . From 4.1 in [ASe]:

Lemma 9.2. jl , 1 � l � n=2, is the set of conjugacy classes of involutions in SL.M/.

Pick 1 � l � n=2 and let V;W be F -spaces of dimension 2, l , respectively. Set
K WD SL.V /, L1 WD GL.W /, M1 WD V ˝W , and let � W K � L1 ! GL.M1/ be
the tensor product representation. Let u be an involution in K and U the radical of
the Borel subgroup of K containing u. Observe that RtGL.V /.u/ D U , and that an
easy calculation from linear algebra shows U� D RtGL.M1/.u�/.

Regard M1 as a subspace of M and choose a complement M2 to M1 in M .
Extend � to a representation 	 W K �L1 ! GL.M/ by decreeing that g	jM2

D 1 for
g 2 K � L1. Then as U� D RtGL.M1/.u�/, also U	 D RtGL.M/.u	/. Identify K
and L1 with their images in GL.M/ under the injection 	. Then K centralizes L1,
and each of these subgroups centralizes

L2 WD CGL.M/.M1/ \NGL.M/.M2/:

By construction, u 2 jl . Further, from 4.3 in [ASe], Lu WD L1L2 \ SL.M/ is a Levi
factor of CSL.M/.u/. Next CGL.M/.K/ acts on M1 D ŒM;K� and M2 D CM .K/,
so CSL.M /.K/ D L2CG.K/, where G WD CGL.M/.M2/ \ NGL.M/.M1/. By 27.14
in [A4], L1 D CGL.M1/.K/. Together with 9.1 (2) these observations imply:
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Lemma 9.3. u 2 jl and .K;U / 2 S.SL.M/; u/.

Recall that S.Y; i/ was defined in the Introduction, for Y a group of Lie type in
characteristic 2, and i an involution in Y . Indeed CGL.M/.L2/ D Z.L2/G, and by
27.14 in [A4], CGL.M1/.L1/ D KZ.GL.M1//, so:

Lemma 9.4. KZ.SL.M// D CSL.M/.Lu/.

Therefore
K D K.u/ WD O20

.CSL.M/.Lu//

is canonically defined by u, up to conjugation in CSL.M/.u/.
Let A WD Aut.F / and pick a basis BX for each X 2 fV;W;M2g. Then B D

BV ˝ BW [ BM2
is a basis for M , and if † WD f�a W a 2 Ag is the group of field

automorphisms of GL.M/ determined by B then † acts on K, L1, and L2, and we
may choose notation so that † centralizes u. Further † induces a group of field
automorphisms on K, L1, and L2.

Similarly let 
 be the transpose-inverse map on GL.M/ determined byB . Then 

is a graph automorphism of SL.M/ acting on K, L1 and L2, and 
 induces an inner
automorphism on K, and graph automorphisms on L1 and L2. We conclude:

Lemma 9.5. CAut.SL.M//.K/ D htiLu, where t 2 
Lu induces a graph automor-
phism on Lu.

Given a form f on a vector spaceN , writeO.N; f / for the isometry group of the
form.

Next let fX be a bilinear or sesquilinear form on X for X 2 fV;W;M2g. Then
f1 D fV ˝ fW is the unique form on M1 such that

f1.v1 ˝ w1; v2 ˝ w2/ D fV .v1; v2/fW .w1; w2/;

for vi 2 V and wi 2 W (cf. Section 9 in [A3]). Indeed by parts (2) and (3) of 9.1
in [A3], if fX is symplectic, unitary, for X 2 fV;W g, then so is f1. Further if fX

is symmetric or unitary and nondegenerate then by 9.1.1 in [A3], so is f1. If fV is
symplectic, then

f1.v ˝ w; v ˝ w/ D fV .v; v/fW .w;w/ D 0 � fW .w;w/ D 0;

so f1 is symplectic. Let fM D f1 C fM2
, and observe by construction M1 is

nondegenerate and M2 D M?
1 . We have shown:

Lemma 9.6. (1) If fV , fW , and fM2
are unitary, then so is fM .

(2) If fV and fM2
are symplectic, and fW is symmetric and nondegenerate, then

fM is symplectic.

(3) In either case M1 is nondegenerate and M2 D M?
1 .
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If fV is symplectic let Kf D K, and observe that K D Sp.V; fV / preserves
fV . If q D q2

0 is a square and fV is unitary, let Kf D K \ O.V; fV /. Then
Kf Š L2.q0/ and we choose notation so that u 2 Kf . Let L1;f D L1 \O.W; fW /

and L2;f D L2 \O.M2; fM2
/. Then by 9.2 in [A3]:

Lemma 9.7. Kf , L1;f , and L2;f are subgroups of O.M; fM /.

First assume fM is unitary. Then O.M; fM / D GU.M/ is the general unitary
group onM , and SU.M/ D SL.M/\GU.M/ is the special unitary group. We abuse
notation and write jm for jm \ GU.M/. By 6.1 in [ASe]:

Lemma 9.8. jl , 1 � l � n=2, is the set of conjugacy classes of involutions in SU.M/,
and u 2 jl .

Let Uf WD U \ Kf . Thus Uf is a Sylow 2-subgroup of Kf Š L2.q0/ and
from 9.1 (2), Uf D RtGU.M/.u/, so Uf � Z.CGL.U /.u//. By construction, Kf

centralizes Li;f for i D 1; 2, L1;f D GU.W; fW / Š GUl.q0/, and L2;f D
GU.M2; fM2

/ Š GUn�2l.q0/. Then arguing as in the proof of 9.3, using 6.2 in [ASe]
in place of 4.3 in [ASe], we conclude:

Lemma 9.9. If u 2 jl , then .Kf ; Uf / 2 S.SU.M/; u/.

Further GU.M/ is the centralizer in GL.M/ of the graph-field automorphism 
� ,
where � is the involution in †. Hence † Š Out.SL.M//, h�i D C†.Kf /, †=h�i
induces the group of field automorphisms on Kf , and (in the language of 2.5.13
in [GLS3]) � induces a graph automorphism on SU.M/.

Next assume fV , fW , and fM2
satisfy the hypothesis of 9.6 (2), so that fM is

symplectic by that lemma. ThenO.M; fm/ D Sp.M/ is the symplectic group onM ,
and in particular contained in SL.M/. From 7.7 in [ASe]:

Lemma 9.10. The set of conjugacy classes of involutions in Sp.M/ is al ; cl , bk ,
1 � l; k � n=2, l even, k odd.

The notation is explained in Section 7 of [ASe]. In particular dim.Œi;M �/ D l for
i 2 xl and x 2 fa; b; cg. Thus u 2 xl for some x 2 fa; b; cg. Moreover x 2 fb; cg
iff there exists x 2 M such that fM .x; xu/ 6D 0.

Suppose x2 2 V � CV .u/ so that x2u D x2 C x1 for some x1 2 ŒV; u� and
fV .x1; x2/ 6D 0. Let w 2 W . Then .x2 ˝ w/u D x2 ˝ w C x1 ˝ w, and fM .x2 ˝
w; .x2 ˝ w/u/ 6D 0 iff

0 6D fM .x2 ˝ w; x1 ˝ w/ D fV .x2; x1/fW .w;w/;

so as fV .x1; x2/ 6D 0, u 2 al iff fW .w;w/ D 0 for all w 2 W iff fW is symplectic.
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We now make a choice of the form fW . We just saw that u 2 al iff fW is
symplectic. Further L2;f D O.M2; fM2

/ D Sp.M2/ Š Spn�2l.q/, and L1;f D
O.W; fW / D Sp.W / Š Spl.q/ as fW is symplectic. Then arguing as in the proof
of 9.3, using 7.9 in [ASe] in place of 4.3 in [ASe], we conclude:

Lemma 9.11. If u 2 al , then .K;U / 2 S.Sp.M/; u/.

To obtain elements of bl and cl we choose fW to have an orthonormal basis BW .
Then fW is not symplectic, so by an earlier remark, u 2 bl , cl for l odd, even,
respectively. Set z WD P

w2BW
w. If l is odd then z is nonsingular andW D z˚ z?

with z? symplectic, so L1;f Š O.W; fW / Š Sp.z?/ Š Spl�1.q/. Then arguing as
in the proof of 9.3, using 7.10 in [ASe] in place of 4.3 in [ASe], we conclude:

Lemma 9.12. If u 2 bl , then .K;U / 2 S.Sp.M/; u/.

Finally if l is even, then z is singular with z?=hzi symplectic, so O.W; fW / Š
Spl�2.q/=Eql�1 , and hence O2.CSp.M/.K// 6D 1. Thus in this case .K;U / …
S.Sp.M/; u/, so we must look elsewhere for members of S.Sp.M/; u/when u 2 cl .
However as we are only interested in proving Theorem 4, we need only consider in-
volutions in c2.

Take l D 2 and let E be a quadratic extension of F . As in Section 7 of [A3],
there is an E-structure ME on M1 and a sympletic form fE on ME , such that
fV D TrE

F B fE . Let KE D O.ME ; fE / Š Sp2.E/ Š L2.q
2/. Then from

7.2.6 in [A3], KE � Sp.M1/. For uE an involution in KE , dim.ŒM; uE �/ D 2

and uE inverts an element of order q2 C 1, so uE … a2 since the root elements
in a2 only invert elements of odd order dividing q2 � 1. Therefore uE 2 c2, so
we may take u 2 KE . Indeed if RtSL.ME/.u/ D fUE .e/ W e 2 Eg then U D
RtK.u/ D fUE .a/ W a 2 F g � KE . Further KE is irreducible on M1 D ŒM;KE �,
so CSp.M /.KE / D L2;f Š Spn�4.q/. Finally if q D 2 and u 2 D � KE with
D Š D10, then Sp.M1/ Š S6 so CSp.M1/.D/ D 1, and hence CSp.M/.D/ D L2;f .
Then, as usual, arguing as in the proof of 9.3, using 7.11 in [ASe] in place of 4.3
in [ASe], we conclude:

Lemma 9.13. If u 2 c2, then .KE ; U / 2 S.Sp.M/; u/.

If n 6D 4, then from [GLS3], † Š Out.Sp.M//. Further † induces a group of
field automorphisms onK,KE ,L1;f , andL2;f . When n D 4, Out.Sp.M// is cyclic
with † of index 2, and for t 2 Aut.Sp.M// whose image is not in †, t is nontrivial
on the Dynkin diagram of Sp.M/.

Finally we consider the orthogonal groups. LetQ be a quadratic form onM with
associated symplectic form fM . ThenO.M;Q/ D O".M/, where " is the sign ofQ.
Note that in particular,O".Q/ � Sp.M/. Now n is even, and we may assume n � 6.
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Let G WD �".M/ be the commutator group of O".M/. Then G Š �"
n.q/ is simple

of index 2 in O".M/ Š O"
n.q/. We abuse notation and write xl for the intersection

xl \O".M/ of the class xl in Sp.M/ withO".M/, for x 2 fa; b; cg. Then from 8.5,
8.11, and 8.12 in [ASe]:

Lemma 9.14. (1) The set of conjugacy classes of involutions inO".M/ is al ; cl , bk ,
1 � l; k � n=2, l even, k odd, with " D C1 for an=2.

(2) al and cl are contained in �".M/, but bk is not.

(3) al and cl are classes in �".M/, except that an=2 splits into two �C.M/-
classes, with t and s conjugate in �C.M/ iff ŒM; s� and ŒM; t � are conjugate.

In Theorem 4 we are only concerned with involutions in the simple group�".M/,
which by 9.14 are of type al and cl . Further in Theorem 4 we do not need to consider
cl for l > 2.

First we may take u of type al ; hence l is even and fW is symplectic. By 9.1.4
in [A3], there is a unique quadratic form Q1 on M1 with associated bilinear form f1

such that Q1.v ˝ w/ D 0 for all v 2 V and w 2 W . By 9.5 in [A3], .M1;Q1/

is of sign C1. Pick a quadratic form Q2 on M2 of sign ", and let Q D Q1 C Q2.
Then Q is a quadratic form on M of sign " with symplectic form fM . Note if
n D 2l , then Q D Q1 is of sign C1, which is forced by 9.14 (1). By 9.2.4 in [A3],
K � L1;f Š L2.q/ � Spl.q/ preserves Q and hence is contained in �".M/. Let
L2;Q D �.M2;Q2/ Š �"

n�2l
.q/, so that L2;Q � �".M/ centralizes K and L1;f .

As usual, arguing as in the proof of 9.3, using 8.6 in [ASe] in place of 4.3 in [ASe],
we conclude:

Lemma 9.15. If u 2 al , then .K;U / 2 S.O".M/; u/.

This time Aut.�".M// is �O".M/, which is O".M/ extended by †, unless
dim.M/ D 8 and " D C1, where Aut.�".M// D �O".M/h�i, for a graph auto-
morphism � of order 3. Further† induces field automorphisms onK,L1;f andL2;Q,
and when l D 2, a suitable transvection in O".M/ centralizes KL1;f and induces a
transvection on L2;Q. Thus for u D a2, O2.C�O".M/.K// D 1.

Lemma 9.16. Let u 2 c2, M� a nonsingular point of ŒM; u�, and Y WD NG.M�/.
Assume q > 2 or n > 6.

(1) There is .K�; U�/ 2 S.Y; u/.

(2) .K�; U�/ 2 S.G; u/.

(3) ŒM;K�� is 3-dimensional with fM -radicalM�, and for x 2 M D M?� ,Mx D
hM�; xi is a nondegenerate 4-dimensional orthogonal space, such that for each
involution tx 2 O".M/ inducing a transvection on Mx with center M�, tx
centralizes K�.
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(4) C�O".M /.K�CG.K�// D ht�i, where t� 2 O".M/ is the transvection with
center M�.

Proof. First, Y acts faithfully as Sp. zM/ Š Spn�2.q/ on zM WD M?� =M�. In partic-
ular u is of type b1 in Y , so (1) follows from 9.12, and from the proof of that lemma,
Y� D CY .K�/ Š Spn�4.q/.

NextCG.u/ � G0, whereG0 is the stabilizer inG of the unique singular pointM0

in ŒM; u�. FurtherR WD R.G0/ is abelian andCG.u/ D RL0 whereL0 Š Spn�4.q/.
Thus Y� Š L0, so U� � CR.Y�/ D CR.L0/ D Z.CG.u//. Let Y1 WD CG.K�/.
Then R1 WD O2.Y1/ is Y�-invariant, so as CG.u/ D Y�R, R1 � R. Then as q > 2

or n > 6, each nontrivial Y�-submodule of R intersects U� nontrivially. Thus either
R1 D 1 orU1 D U� \R1 6D 1. In the latter caseK� D hUK�

1 i � R1, a contradiction.
Thus (2) holds.

Further by construction, the first remark in (3) holds. Thus for x 2 M D M?� ,
Mx D hM�; xi is a nondegenerate 4-dimensional orthogonal space, and for each
involution tx 2 O".M/ inducing a transvection onMx with centerM�, tx centralizes
the stabilizer K� of M� in �.Mx/, completing the proof of (3). Then (4) follows
from an easy calculation.

Observe that, collecting the results in this section, we have shown:

Theorem 9.17. Theorem 4 holds when F �.Y / is a classical group.

We close this section with two results useful in the proof of Theorem 2.

Lemma 9.18. Assume G D O".M/ with n � 6, and let u 2 c2. Then u 2 D � G

with D Š D2.q2C1/ such that C�O".M/.D/ Š O�"
n�4.q/.

Proof. Let M D M1 ? M2 where M1 is a nondegenerate 4-dimensional subspace
of sign �1. Then M2 D M?

1 is of dimension n � 4 and sign �", and K1 WD
CG.M2/ Š O.M1;Q/ Š O�

4 .q/ is L2.q
2/ extended by a field automorphism.

Further Inv.E.K1// � c2, so we may take u 2 D � K1 with D Š D2.q2C1/. As
D is irreducible on M1, CG.D/ D CG.M1/ Š O.M2;Q/ Š O�"

n�4.q/. Hence the
lemma holds.

Lemma 9.19. Assume L D SL.M/ Š Ln.2/ with n 2 f5; 6g. Let G D Aut.L/ and

 2 G a graph automorphism of L such that CL.
/ Š Sp4.q/, Sp6.q/, for n D 5, 6,
respectively. Then 
 2 D � G such that D Š D2m, and:

(1) If n D 5, then m D 31 and CG.D/ D 1.

(2) If n D 6, then m D 7 and CG.D/ Š L2.8/.
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Proof. LetE be a field extension ofF D F2 of degree r , where r D 5, 3, for n D 5; 6,
respectively. Then M admits the structure ME of an n=r-dimensional E-space, and
the stabilizer Y in L of that structure is isomorphic to �L.ME /.

Suppose first that n D 5. Then Y is X Š E# Š Z31 extended by Aut.E/ Š Z5.
Further X 2 Syl31.L/ and Y D NL.X/, so by a Frattini argument, G D LNG.X/.
By 19.8 and 19.9 in [ASe], all involutions in G � L are conjugate to 
 . Then as
31 … �.CL.
//, some conjugate of 
 inverts X , so that (1) holds.

So assume n D 6. Here Y0 WD O2.Y / D X � W , with X Š E# Š Z7 and
W D E.Y / Š L2.8/. Further Y is Y0 extended by an element f of order 3 inducing
a field automorphism on X and W . Now L is transitive on such subgroups, and
Aut.W / D W hf i, so by a Frattini argument, there exists an involution t inverting X
and centralizingW hf i. Finally from 19.8 and 19.9 in [ASe], all involutions inG�L
centralizing an L2.8/-subgroup of L are conjugate to 
 , so (2) holds.

10. Chev .2/

In this section we assume the following hypothesis:

Hypothesis 10.1. G is an almost simple finite group with F �.G/ D L a group of
Lie typeG.q/ over a field of even order q, or L is the Tits group and q D 2. Letˆ be
a root system for L and l the Lie rank of L. Given ˛ 2 ˆ, let yU˛ be the root group
of ˛, U˛ D �1. yU˛/, K.˛/ D hU˛; U�˛i, and X.˛/ D CL.K.˛//.

Lemma 10.2. Assume l > 1 and let ˛ 2 ˆ. Assume either ˛ is a long root, or
L Š Sp2l.q/ and ˛ is a short root. Set K D K.˛/, X D X.˛/, and pick u 2 U #

˛ .
Then:

(1) Either K Š L2.q/ or L Š 2F 4.q/ and K Š Sz.q/, or L is the Tits group
and K Š D10. In any event HK D NK.U˛/ \NK.U�˛/ Š Zq�1 is a Cartan
subgroup of the Borel subgroup NK.U˛/ of K.

(2) P D P.˛/ D NL.U˛/ is a parabolic subgroup ofL, and ifL is notLn.q/ then
P is a maximal parabolic.

(3) X �HK D P \ P.�˛/ is a Levi factor of P .

(4) CL.u/ D R.P /X and .K;U˛/ 2 S.L; u/.

(5) Assume G D LV for some elementary abelian 2-group V . Then either

(i) O2.CG.K// D 1, or

(ii) L Š L3.q/ with q � 4, or L4.2/, and O2.CG.K// D h
i, where 

induces a graph automorphism on L.
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Proof. Parts (1) and (2) are well known; for instance see Example 3.2.6 in [GLS3].
Let P 0 D P.�˛/. We claim that P and P 0 are opposite parabolics. Namely

conjugating in the Weyl group of L, we may assume ˛ is the root of highest height,
or L Š Sp2l.q/ and ˛ is the short root of highest height. Then, in the notation of
Section 47 of [A4], and in particular in the notation before 47.4 in [A4], P D PJ

for some subset J of the set � of simple roots for some ordering of ˆ, R.P / D
VJ D hU� W � 2  J i, and LJ D hUˇ ; U�ˇ W ˇ 2  J i. Then P 0 D V�JL�J

and L�J D LJ , while VJ \ V�J D 1, so using the Bruhat decomposition (cf. 47.2
in [A4])

P \ P 0 D LJHKVJ \ LJHKV�J D LJHK.LJHKVJ \ V�J /

D LJHK.VJ \ V�J / D LJHK D Y;

where Y WD LJHK is a Levi factor of P and P 0. This establishes the claim.
As U D U˛ and U 0 D U�˛ are normal in P and P 0, respectively, Y acts on

K D hU;U 0i. Further HK � Y and HK Š AutL.U /, so Y D HKCY .U /. Then as
CAut.K/.U /\NAut.K/.U

0/ D 1,CY .U / D CY .K/ D Y \X . ThusY D HK.X\Y /.
On the other handX � NL.U /\NL.U

0/ D P\P 0 D Y , soX D X\Y , completing
the proof of (3).

By choice of ˛ and the Chevalley commutator relations, U is in the center of the
Sylow 2-subgroup S D hUˇ W ˇ 2 ˆCi of L. Thus (cf. 47.7 in [A4]) setting Lu WD
O20

.CL.u//,LuH is a parabolic subgroup ofL. By construction,P D R.P /XHK �
LuH , so if P is maximal then P D LuH and Lu D CP .u/ D R.P /X . If P is not
maximal, then L Š Ln.q/ by (2), where it is well known that U D RtL.u/ so that
P D LuH and LuR.P /X . Therefore U � Z.CL.u//, so (4) follows from (3).

We next prove (5), so assume G D LV for some elementary abelian 2-group V .
We adopt the terminology in 2.5.13 of [GLS3] when discussing involutory automor-
phisms of L. As O2.X/ D 1, O2.CL.K// D 1 by (4), so we may assume V — L.
If G contains a field or graph-field automorphism (excluding L of type B2 or F4),
then some involutory field or graph-field automorphism � acts as a field automor-
phism on K, and hence CLh�i.K/ D X . Therefore (5) (i) holds unless G contains a
graph automorphism 
 (or graph-field in the case of B2 and F4). Therefore we may
assumeL isL"

n.q/, Sp4.q/,D
"
m.q/,m � 4, F4.q/, orE"

6.q/. IfL is Sp4.q/ or F4.q/

then NLh�i.K/ � L, and hence (5) (i) holds. Thus we may assume we are in one of
the remaining cases, where some involutory graph automorphism 
 centralizes K.

Suppose L Š L"
3.q/. As l > 1, " D C1. Then K D CL.
/, so 
 inverts X and

(5) (i) holds unless X D 1. In that event q � 4 and (5) (ii) holds.
In the remaining cases, O20

.X/ D M is of Lie type over Fq , and described in
12.1 in [ASe]. Further 
 induces a graph automorphism on M , so 
 induces an outer
automorphism on M unless L Š L"

4.q/, where M 2 KL is centralized by 
 . In
the first case (5) (i) holds, so we may assume the latter. Then from 19.9 in [ASe],
CL.
/ Š Sp4.q/, so M D CX .
/. Therefore 
 inverts O.X/, so (5) (i) holds unless
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O.X/ D 1. AsO.X/ is of order q�", we conclude that (5) (ii) holds whenO.X/ D 1,
completing the proof of (5).

Lemma 10.3. Suppose L is Sz.q/, let u be an involution in L, and U D Z.R.B//

where B is a Borel subgroup of L containing u. Then .L; U / 2 S.L; u/.

Proof. This is essentially immediate from the definitions.

Lemma 10.4. AssumeL is exceptional and either l D 2 orL is the Tits group. Then:

(1) L Š G2.q/, 3D4.q/, 2F4.q/, or the Tits group.

(2) L has two classes of involutions; the long and short root involutions.

(3) Let u 2 U˛ be a short root involution. If L is not 3D4.q/ set K D K.˛/ and
U D U˛ . If L is 3D4.q/ let U D fU˛.a/ W a 2 Fqg and K D hU; s˛i, where
s˛ is the reflection through ˛. Then .K;U / 2 S.L; u/.

(4) Let GDLV for some elementary abelian 2-group V . Then O2.CG.K//D1.

Proof. Part (1) follows by inspection of the list of groups of Lie type, and (2) appears
in Section 18 of [ASe].

The proof of (3) is similar to that of parts (3) and (4) of 10.2. First choose ˛ to be
the short root of highest height. From Section 18 of [ASe], CL.u/ � P D PJ is a
maximal parabolic of L such that P D R.P /H0LJ , where LJ Š L2.q/ centralizes
U , andH0 is a Cartan subgroup ofK.˛/. ThenLJ D hUˇ ; U�ˇ i centralizesK.˛/ D
hU˛; U�˛i. On the other hand as in the proof of 10.2 (3),P andP 0 D P�J are opposite
parabolics, so CL.K/ � P \P 0 D LJH0, and hence CL.K/ D LJCH0

.U / D LJ .
This establishes (3).

Assume the hypothesis of (4). By (3) we may assume j Out.L/j is even, so L
is not 2F4.q/. Similarly (4) holds for the Tits group, as its automorphism group is
2F4.2/. Finally ifL isG2.q/ or 3D4.q/ and j Out.L/j is even then from 19.1 in [ASe],
jG W Lj D 2 and each involution inG�L is a field automorphism. In particular some
field automorphism of order 2 induces a field automorphism of order 2 on K, so (4)
holds.

During much of the remainder of the paper we will assume the following hypoth-
esis:

Hypothesis 10.5. Hypothesis 10.1 holds with L an exceptional group and l � 4;
that is L is F4.q/, E"

6.q/, E7.q/, or E8.q/. Adopt the notation on page 5 of [ASe]
for labeling the simple roots ˛i , i 2 I D f1; : : : ; lg in ˆ, and adopt the notation on
page 4 of [ASe] for labeling parabolics PS , S � I . In particular QS D R.PS / is
the radical of PS , and LS D O20

. NLS /, where NLS is a Levi factor of PS . Let � be the
root of highest height and let U D U� , K D K.�/, and X D X.�/. Let HK be the
Cartan subgroup of K defined in 10.2 (1).
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Lemma 10.6. Assume ˛ 2 ˆ is a long root and let U D U˛ , K D K.˛/, and
X D X.˛/. Let u 2 U # and t 2 X be involutions, and t 2 Kt � X with K Š Kt .
Set v D ut , let Kv be the full diagonal subgroup of K �Kt , and Y D CX .Kt /. Let
P be a parabolic subgroup of L such that CL.v/ � P , set R D R.P /, and assume
that

(1) O20

.CP .v/=O2.CR.v/// andO20

.Y / are reductive groups of Lie type and even
characteristic of the same Lie rank.

(2) U � Z.CR.P /.v//.

Then O2.CL.Kv// D 1.

Proof. By definition, X D CL.K/, so as Kv is a full diagonal subgroup of K �Kt

and Kt � X , we have CX .Kv/ D CX .Kt / D Y . In particular Y � H D CL.Kv/.
SupposeQ D O2.H/ 6D 1. Then UYQ � CL.v/ D CP .v/. SetM D O20

.CP .v//,
M � D M=CR.v/ and Y0 D O20

.Y /. By (1), Y0 is reductive, so O2.Y0/ D 1 and
hence Y �

0 Š Y0. By (1), M � is reductive so O2.M
�/ D 1 and hence O2.CL.v// D

CR.v/. FurtherM � and Y �
0 have the same Lie rank by (1), so asQ� is a Y -invariant

2-subgroup of M �, it follows from 7.4 that Q� D 1. Thus Q � CR.v/, so by
(2), u centralizes Q. Then as CL.u/ D CL.U /, U centralizes Q, so K D hUKv i
centralizes Q. Therefore Q � CL.K/ D X , so Q � O2.CX .Kv// D O2.Y /,
contradicting Y reductive.

11. E"
6

.q/

In this section we assume Hypothesis 10.5 with L D E"
6.q/ and adopt the following

notation.

Notation 11.1. LetF D Fq , Fq2 , for " D C1, �1, respectively. Let OLbe the universal

group of type E6.F / and M a faithful 27-dimensional F OL-module. The module M
is described in detail in [A5]. Let yG be OL extended by field automorphisms, so that
yG � �L.M/. Regard L as the image of the subgroup OL� of fixed points on OL of
� 2 Aut. OL/ under the projective map, where � D 1 if " D C1 and � is a graph-field
automorphism if " D �1. Let yK be a fundamental subgroup of OL and yX D C OL. yK/.
Then K, X are the image of yK� , yX� in L, respectively.

Lemma 11.2. (1) P.�/ D Pr , where r D 2; 1 for " D C1, �1, respectively. Thus
L1 D X Š SL"

6.q/.

(2) Qr Š q1C20 is special with center U .

(3) If " D C1, thenL6 Š �C
10.q/andQ6 Š Eq16 is a spin module forL6. Further

Q2 \Q6 is of rank 11, and L2;6 Š SL5.q/ acts naturally on Q6=.Q2 \Q6/.
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(4) If " D �1, then L4 Š ��
8 .q/, Q4 Š q8C16 is special, Z.Q4/ is the natural

module for L4, and Q4=Z.Q4/ is a spin module.

Proof. From the discussion in Sections 14 and 15 in [ASe],Pr D P.�/,Qr Š q1C20,
andLr Š L"

6.q/. ThenL1 D X by 10.2 (3) establishing (1) and (2). Part (4) follows
from 4.6 in [CKS], and the first statement in (3) appears in 3.14 in [A5]. The second
follows as the radical of P2;6 \ X is the natural module for L2;6 Š SL5.q/, and
Q2;6 D Q2Q6.

Lemma 11.3. (1)Lhas three classes of involutions with representativesui , 1 � i � 3,
denoted by x, y, z in 15:1 of [ASe] when " D C1, and t , u, v in 14:1 of [ASe] when
" D �1, respectively. Further u1 2 U .

(2) Let mi D dim.ŒM; ui �/. Then m1 D 6, m2 D 10, and m3 D 12.

(3) The involutions in X are of type ji , 1 � i � 3.

(4) ui is L-conjugate to a member of ji for 1 � i � 3.

(5) Let Ji , 1 � i � 3, be commuting fundamental subgroups of X , J4 D K, and
� D fJi W 1 � i � 4g. Then NL.�/ induces Sym.�/ on �.

(6) LetN6 be the natural module forX and for i an involution inX and g 2 L, set
RtL.i

g/ D RtGL.N6/.i/
g . Then RtL.ig/ is well defined and RtL.ig/ � Z.CL.i

g//.

Proof. Part (1) is 14.1 and 15.1 in [ASe], while (3) follows from 11.1 (1), 9.2, and 9.8.
Define� as in (5), and letXi D CL.Ji /. Then� D fJig[.�\Xi /, andNXi

.�/

induces the symmetric group S3 on � � fJig, so (5) follows.
Assume for the moment that " D C1. We abuse notation and write K;X for

yK, yX . As observed in Section 4 of [A6], the members i of j1 are the root involutions
inX , andRtL.i/ is the root group of i inL. Then (6) holds for the involutions i 2 jm

form D 2; 3 by 4.4 and 4.5 in [A6]. From page 167 in [A5], ŒK;M� is the sum of six
copies of the natural module for K, so m.ŒM; i�/ D 6 for i an involution in K, and
hence m1 D 6 by (5). Also m2 D 10 and m3 D 12 by 4.1 and 4.2 in [A6]. Thus (2)
holds in this case. From 4.3 in [A6], each involution inL is conjugate to an involution
in jm for a unique m. Following Section 4 in [A6], call such involutions involutions
of type m. The isomorphism type of the centralizers of involutions of type 2 appears
in 4.6 of [A6], and comparing this to 15.5 in [ASe], the involution y in 15.1 of [ASe]
is of type 2. Then as involutions of type 1 and the involution x in 15.1 of [ASe] are
root involutions, it follows that the involution z in 15.1 of [ASe] is of type 3. Thus
(4) holds in this case.

We have established the lemma when " D C1. When " D �1, we may choose �
to act on yK, yX , and yKi , and then to centralize um 2 jm. Then um 2 OL� is in
the class jm in X D yX� Š SU6.q/, so (2) and (4) hold when " D �1, modulo
verifying the correspondence between the um and t; u; v in (1). As dim.Œum;M �/ 6D
dim.Œuk;M �/ for m 6D k, um, 1 � m � 3 are representatives for the three classes of
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involutions in L. The graph-field automorphism � induces a field automorphism on
C OL.u2/=O1.C OL.u2// Š Sp6.q

2/, so CL.u2/=O1.CL.u2// Š Sp6.q/, and hence
u2 is conjugate to the involution u in 14.3 of [ASe]. This verifies the correspondence
between our two labelings of involutions, and completes the proof of (1). Part (6)
follows as RtL.i/ D Rt OL.i/� .

Lemma 11.4. For 1 � m � 3, let um 2 jm and Um D RtL.um/. Then:

(1) There exist Km � X with .Km; Um/ 2 S.X; um/.

(2) CL.um/ D CL.Km/O2.CL.um//, so if O2.CK.um// D 1, then .Km; Um/ 2
S.L; um/.

(3) O2.CG.Km// � L.

Proof. Part (1) was established in 9.16. In particular Km Š L2.q/ and um 2 Um Š
Eq . By 11.3 (6), Um � Z.CL.um//. Thus to establish (2), it remains to show that
CL.Km/ is a supplement to O2.CL.um// in CL.um/. By 10.2 (4), we may assume
m D 2 or 3.

First take m D 3. Then the discussion in Section 9 (or 4.3 and 6.2 in [ASe]) says
that CX .K3/ Š L"

3.q/. Set B3 WD KCX .K3/. Then B3 Š L2.q/ � L"
3.q/, and by

14.3 and 15.5 in [ASe], B3 is a complement to O2.CL.u3// in CL.u3/, so (2) holds
when m D 3.

Next suppose that m D 2. Then from the discussion in Section 9 (or 4.3 and 6.2
in [ASe]),CX .K2/ Š GL2.q/�L2.q/, soB2 WD KCX .K2/ Š GL2.q/�L2.q/

2. Let
Y D O20

.CL.u2// and Y � D Y=O2.Y /. By 14.3 and 15.5 in [ASe], Y � Š Sp6.q/.
Let� D fJi W 1 � i � 4g be as in 11.3 (5). From the discussion in Section 9, we may
takeK2 to be a full diagonal subgroup of J1J2. Then by 11.3 (5), there is g 2 NL.�/

with Kg
2 a full diagonal subgroup of J1J4 D KJ1. Let Y g

0 D CX .K
g
2 /. Then

Y
g

0 D CX .J1/ Š GL"
4.q/ from Section 9. Hence Y �

0 Š �"
6.q/, and NY �.Y �

0 / Š
O"

6.q/ is the unique maximal overgroup of Y �
0 in Y �. Also B0 D O2.O20

.B2// —
Y0O2.CL.u2// asBg

0 does not centralizeKJ1. ThereforeCL.K2/
� D Y �, and hence

CL.K2/ is a supplement to O2.CL.u2// in CL.u2/, completing the proof of (2).
Suppose " D C1. Then Aut.L/ is L extended by ƒ � h
i, where ƒ is a group

of field automorphisms and 
 is a graph automorphism. Further we may chooseƒ to
induce a group of field automorphisms onKm, and from 19.7 in [ASe],CL.
/ Š F4.q/

and we may choose 
 to centralize K and induce a graph automorphism on X with
Ji � CX .
/ Š Sp6.q/ for each Ji 2 �. Then from 9.5, 
 centralizes Km and
induces a graph automorphism on CX .Km/, and on Y0 when m D 2. Thus (3) holds
in this case. On the other hand when " D �1, L is the image of OL� and � D 

,
where 
 induces an involutory field automorphism on OL. Then Out.L/ is cyclic with

 inducing the involutory graph automorphism on L, so from the discussion above, 

is faithful on CL.Km/, and hence (3) holds again.
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Lemma 11.5. .K2; U2/ 2 S.L; u2/ and O2.CG.K2// D 1.

Proof. By 11.4 it suffices to show that O2.CL.u2// D 1.
As we saw during the proof of 11.4, Kg

2 � KJ1 for some g 2 NL.�/, so
v2 WD u

g
2 D w1w4 for somewi 2 Ji . Suppose for the moment that " D C1. Choose

notation so thatw1 2 V D R.P2;6/\X . From 11.2 (3),V is a complement toQ2\Q6

in Q6. Thus v2 2 Q6, and from the proof of 11.4, CX .K
g
2 / D CX .J1/ Š L4.q/.

From 15.4 and 15.5 in [ASe], CL.v2/ � P 2 PL
6 , and O20

.CL.v2//=O2.CL.v2// Š
Sp6.q/. Then as CX .J1/ and Sp6.q/ both are of Lie rank 3, and CX .J1/ acts on
Q6 � CL.v2/, it follows from 7.4 that Q6 � O2.CL.v2//. Then as Q6 is weakly
closed in P6 with respect to L, CL.v2/ � P6. Now 10.6 completes the proof in this
case.

Finally suppose " D �1. Then � induces a field automorphism on yK2 and
O20

.C OL. yK2//, so

O20

.CL.K2// D O20

.C OL. yK2/� / Š Sp6.q/

as yK2 D hK2; yU2i and yU2 � Z.C OL.u2//.

Lemma 11.6. Let s D 4; 2 for " D C1, �1, respectively, g 2 Ps � Pr , I D UU g ,
E D Qr \Qg

r , and Y WD hQr ;Q
g
r i. Then:

(1) Qs D .Qr \Qs/.Q
g
r \Qs/ and Y=Qs Š L2.q/.

(2) Ls D .Y \Ls/�Yr;s withYs WD Y \Ls Š L2.q/ andLr;s Š SL3.q/�SL3.q/

or SL3.q
2/ for " D C1, �1, respectively.

(3) I D Z.Qs/ is the natural module for Ys .

(4) ŒY; E� D I and E=I is a tensor product module of order q9 for Lr;s .

(5) Qs=E is the tensor product of the natural module for Ys and the dual of E=I
for L1;6.

(6) There exists v3 2 uL
3 with v3 2 E � I , such that CQs

.v3/ D O2.CL.v3//,
CLs

.v3/ D Ys � CLr;s
.v3/, and CLr;s

.u3/ Š SL"
3.q/.

(7) .K3; U3/ 2 S.L; u3/ and O2.CG.K3// D 1.

Proof. Parts (1)–(5) follow from the standard theory of large special groups; see
for example 8.15 in [A8]. From 15.4 and 14.2 in [ASe], there is v3 2 uL

3 such
that CL.v3/ � Ps with O2.CL.v3// D CQs

.v3/, and O20

.CL.v3//=O2.CL.v3// as
described in (6). From the action of Ls on Qs described in (1)–(5), it follows that
v3 2 E.

Suppose for the moment that " D C1 and consider the parabolic X4 D X \ P4

of X . Then W D R.X4/ Š Eq9 is the tensor product module for L2;4 Š SL3.q/ �
SL3.q/. From 11.3 (4), we may pick u3 2 W \ j3, and from Section 4 in [ASe],



Elementary abelian 2-subgroups of Sidki-type in finite groups 387

B4 WD CL2;4
.u3/ Š SL3.q/ and W is the adjoint module for B4. Then KB4 is

contained in a Levi factorL0
2;4 in P 0

4 2 PL
4 with CL.u3/ � P 0

4, completing the proof
of (6) in this case.

FurtherK2 D O20

.CX .B4//,O20

.CX .K3// D B4, andK3 centralizesKB4. Sup-
pose O2.CL.K3// D R 6D 1. Then as R is normalized by KB4, R � O2.CL.u3//.
If 1 6D I 0 \R, then as K is irreducible on I 0, I 0 � R. But then K3 � CL.I

0/ � P 0,
contradicting u3 2 Q0

4. Hence I 0 \ R D 1. Similarly CW .K3/ D 1 and W and
I 0 contain all proper KB4-submodules of E 0, so E 0 \ R D 1. Then as KB4 is irre-
ducible on Q00 D CQ0

4
.u3/=E

0, it follows that Q00 D CQ0

4
.K3/E, so Q00 � CL.K3/

as E 0 D ˆ.Q00/. This contradiction shows that O2.CL.K3// D 1, and then (7)
follows from 11.4.

Finally suppose " D �1. Then taking fixed points of � on OL, we conclude (6) and
(7) also hold in this case.

12. F4.q/

In this section we assume Hypothesis 10.5 with L D F4.q/, and adopt the following
notation.

Notation 12.1. As in 11.1, let F D Fq , OL be the universal group of type E6.F /,
andM a faithful 27-dimensional F OL-module. We regard L as the image of the fixed
points OL� Š Z. OL/�F4.q/ of a graph automorphism 
 of OL. Let yK be a fundamental
subgroup of OL, yX D C OL. yK/, and define O� D f OJ W 1 � i � 4g as in 11.3 (5). Choose

notation so that 
 centralizes O�. Then 
 induces a graph automorphism on yX andK,
Ji , X , � are the images of yK, OJi , yX� , O� in L, respectively. Recall from 11.3 (6) that
N6 is the natural module for yX D SL.N6/, and observe X D Sp.N6/.

Lemma 12.2. (1) P.�/ D P1, so L1 D X Š Sp6.q/.

(2) Q1 D EJ , where E Š Eq7 is the orthogonal module for X Š SO7.q/,
J Š q1C8 is special with ŒJ; E� D 1 and Z.J / D U D CE .X/, and Q1=E is the
spin module for X .

Proof. From the discussion after 13.1 in [ASe], P1 D P.�/ and L1 Š Sp6.q/. Then
L1 D X by 10.2 (3), establishing (1). Part (2) follows from 4.5 in [CKS].

Lemma 12.3. (1) L has four classes of involutions with representatives ul , us , uc ,
v, denoted by t , u, tu, v in 13:1 of [ASe], respectively. Further ul 2 U and us are
long and short root involutions, respectively.

(2) The involutions in X are of type b1, a2, c2, and b3.

(3) The L-conjugates of ul , us , uc , v in X ,are in b1, a2, c2, b3, respectively.
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(4) NL.�/ induces Sym.�/ on �.

(5) Let r D r1 : : : r4 with ri 2 Ji and r2
i D 1. Set !.r/ D jfi W ri 6D 1gj. Then r

is conjugate in L to ul , uc , v for !.r/ D 1; 2; 3, respectively.

Proof. The first part of (1) is 13.1 in [ASe], while (2) is 9.10. Moreover b1, a2 are
the long, short root involutions of X , and from Table 1 on page 5 of [ASe], these
root involutions are also long, short root involutions inL, in the respective case. This
completes the proof of (1).

The proof of (4) is the same as that of 11.3 (5).
LetXi WD CX .Ji /,Ui a root group in Ji , V D R.CX .U1// andV 0 D R.CX1

.U //,
and Y D CX .J1/. Then NJ1

.U1/V Y and HKV
0Y are parabolics in X and X1,

respectively. Set P �
1 D P1=Q1. From 12.2 (2), V 00 D CQ1

.J1/ D CE .J1/ Š Eq5 .
On the other hand the Lie rank of J1Y and L1 is 3, so .V 0/� D 1 by 7.4. Thus
V 0 � V 00 and hence V 0 D V 00 as jV 0j D q5 D jV 00j. Then from the representation
of Y on V 0, the involutions in V 0 of type c2 in X1 are in the third class of 2-central
involutions in P1, i.e. those which are not root involutions. As uc belongs to this
class, it follows that c2 � uL

c .
From 12.1, X D yX� with b1 � j1, a2; c2 � j2, and b3 � j3. Define mi as

in 11.3 (2). Then as m3 6D m1 or m2, b3 is in the fourth L-class vL of involutions
of L, completing the proof of (3).

Finally (5) follows from (3) and (4).

Lemma 12.4. For x 2 fuc ; vg let Ux D RtL.x/. Then for x 2 fuc ; vg:

(1) There exist Kx � X with .Kx; Ux/ 2 S.X; x/.

(2) .Kx; Ux/ 2 S.L; x/.

(3) O2.CG.Kx// D 1.

Proof. Part (1) was established in 9.16. In particular Kv Š L2.q/, Kuc
Š L2.q

2/,
and x 2 Ux Š Eq . From the construction of Kx in Section 9, Ux D RtSp.N6/.x/,
and from 12.1, RtSp.N6/.x/ D RtSL.N6/.x/. Thus from 11.3 (6), Ux D Rt OL.x/ �
Z.CL.x//. Thus to establish (2), it remains to show that CL.Km/ is a complement to
O2.CL.x// in CL.x/. Set R WD O2.CL.Kx//.

First take x D v. Then the discussion in Section 9 (or 7.10 in [ASe]) says that
CX .Kv/ Š L2.q/. Set Bv WD KCX .Kv/. Then Bv Š L2.q/ � L2.q/, and by 13.3
in [ASe], Bv is a complement to O2.CL.v// in CL.v/. Thus to complete the proof
of (2) in this case, we may assume R 6D 1 and it remains to derive a contradiction.
By Borel–Tits, NL.R/ � P a parabolic of L. As L2.q/

3 Š KvBv � NL.R/, we
conclude P is a conjugate of P1 or P4. Thus KvB3 centralizes some root group U0,
so

U0 � CL.KvB3/ � CL.K/ \ CL.KvCX .Kv// D CX .KvCX .Kv// D 1
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as Kv 2 S.X; v/ and CX .Kv/ Š L2.q/. This completes the proof of (2) when
x D v.

Next take x D uc . Now (cf. Table 4.1 in [GL]) there exists a subgroup Y of L
isomorphic to Sp8.q/ and generated by root groups. Conjugating in Aut.L/ we may
assume long root groups of Y are long root groups ofL, and then thatK is such a root
group. Then CY .K/ Š Sp6.q/ Š X , so CY .K/ D X . HenceKx � X � Y and x is
of type c2 in Y by 12.3. Hence (cf. 9.13), Bx WD CY .Kx/ Š Sp4.q/. Then by 13.3
in [ASe] Bx is a complement to O2.CL.x// in CL.x/. If R 6D 1, then by Borel–Tits,
KxBx � NL.R/ � P for some proper parabolic P of L. This is impossible as no
proper parabolic has an .L2.q

2/ � Sp4.q//-section. Hence (2) is established.
Finally we prove (3). By (2) we may assume G 6D L. From 19.3 in [ASe],

Out.L/ is cyclic, and then as G D LV , 19.5 in [ASe] says that G D Lhti where t is
an involution inducing a field or graph-field automorphism onL, with q a square in the
first case. If t is a field automorphism, then AutG.Kx/ contains a field automorphism
not in AutL.Kx/, so CG.Kx/ � L. If t is a graph-field automorphism, then from
19.5 in [ASe], CL.t/ Š 2F 4.2/ is of Lie rank 2, so it does not containKxCL.Kx/ of
Lie rank 3 by 7.1, so again CL.KxCL.Kx// D 1.

Lemma 12.5. For each involution x 2 L, there exist .Kx; Ux/ 2 S.L; x/, and
O2.CG.Kx// D 1.

Proof. The lemma follows from 10.2 if x is a long root involution, and hence also
whenx is a short root involution, as long and short root involutions are fused in Aut.L/.
Thus by 12.3, we may assume x 2 fuc ; vg, where the lemma follows from 12.4.

13. E7.q/

In this section we assume Hypothesis 10.5 with L D E7.q/.

Lemma 13.1. (1) P.�/ D P1. Thus L1 D X Š �C
12.q/.

(2) Q1 Š q1C32 is special with center U .

(3) L7 Š E6.q/ and Q7 Š Eq27 is the 27-dimensional Fq-module for L7,
discussed in 11.1. Further Q1 \Q7 Š Eq17 , and L1;7 Š �C

10.q/ acts naturally on
the complement W D Q7 \X D R.P1;7 \X/ to Q1 \Q7 in Q7.

Proof. From the discussion in Section 16 in [ASe], P1 D P.�/, Q1 Š q1C32, and
L1 Š �C

12.q/. Then L1 D X by 10.2 (3), establishing (1) and (2). From the Dynkin
diagram for L, L7 Š E6.q/, and then as jE6.q/j2 D q36 and jE7.q/j D q63,
jQ7j D q27. Then as 27 is the minimal dimension of a faithfulL7 Fq-module, and all
such modules are quasiequivalent, the first statement in (3) holds. The second follows
as the radical of P1;7 \X is the natural module for L1;7 Š �C

10.q/.
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Lemma 13.2. (1) L has five classes of involutions.

(2) P7 controls fusion in Q7.

(3) P7 has three orbits on involutions in Q7 with representatives ui , 1 � i � 3,
denoted by x, y, u in 16:1 of [ASe].

(4) u1 2 U and U is a singular point in Q7.

(5) u2 and u3 are in brilliant and dark points of Q7, respectively.

(6) Let W1 D U and Wi , i D 2; 3 be root groups in the orthogonal space W
for L1;7 in 13.1 .3/, which are not orthogonal in that space. Let wi be an involution
in Wi . Then we may pick u1 D w1, u2 D w1w2, and u3 D w1w2w3.

(7) CL.u3/ D CP7
.u3/ contains Q7 and CL.u3/=Q7 Š F4.q/.

Proof. Part (1) is 16.1 in [ASe]. As the radical Q7 is weakly closed and abelian, (2)
follows from 7.7 in [A8].

By 13.1 (3), Q7 is the 27-dimensional module for L7 Š E6.q/. That module
is described in detail in [A5]; we adopt the terminology from [A5] in discussing the
module. In particular the first statement in (3) follows from 3.16.1 in [A5], which
says P7 has three orbits on the Fq-points of the Fq-module Q7, namely the singular,
brilliant, and dark points. The torus HK is transitive on vectors in each point. The
�C

10.q/-parabolic P1;7 stabilizes a singular point, which is therefore U . Thus from
16.20 in [ASe], u1 2 U is the involution denoted by x in that lemma. From 13.1 (3),
Q1 \ Q7 is of dimension 17; this is the subspace U� of [A5]. Let U D W1 and
pick root groups Wi , i D 2; 3 in Q7 such that fW1; W2; W3g is special as defined on
page 164 of [A5]. In particular Wi — Wj� for i 6D j . We may choose Wi , i D 1; 2,
to be root groups in the complement W to U� defined in 13.1 (3). The condition
W3 — W2� is equivalent toW2 andW3 not orthogonal in the orthogonal spaceW for
L1;7. Set u2 D u1w2 for some involution w2 2 W2; this is the involution denoted
by y in 16.20 of [ASe], since u2 is diagonal in the product of two commuting root
groups U and W2 such that W2 — O2.NL.U //, and (cf. the proof of 12.1 in [ASe])
L is transitive on such involutions. From [A5], u2 is contained in a brilliant point
of Q7.

Finally let u3 D u1w2w3 for some involution w3 2 W3. From [A5], u3 is
contained in a dark point of Q7, and hence (cf. 8.14 in [A5]) CP7

.u3/=Q7 Š F4.q/.
From 16.20 in [ASe], only the centralizer of the involution denoted by u in that
lemma contains an F4.q/-section, so u3 is in that class. Then by 16.19 in [ASe],
CL.u3/ D CP7

.u3/.
We have verified (1)–(7), so the proof of the lemma is complete.

Lemma 13.3. Let M be the 12-dimensional orthogonal space over Fq for X , and
M D M1 ? M2 ? M3 an orthogonal decomposition with each Mi a 4-dimensional
nondegenerate subspace of sign �1. For 1 � i � 3, let Ji ; J

0
i be the fundamental
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subgroups of X with Mi D ŒM; Ji � D ŒM; J 0
i �, and let � D fJi ; J

0
i ; K W 1 � i � 3g,

and D D h�i. Then:

(1) D D Q
J 2� J is the direct product of members of� andNL.D/=D acts faith-

fully as L3.2/ on� preserving a projective plane � on� in which fK; Ji ; J
0
i g,

1 � i � 3 are the lines through K.

(2) Let r D r1 : : : r7 with ri 2 Di , � D fD1; : : : ;D7g, and r2
i D 1. Set ı.r/ D

fDi W ri 6D 1g. Then r is L-conjugate to u1; u2 if jı.r/j D 1; 2 respectively,
and is conjugate to u3 if ı.r/ is a line in � .

Proof. Working inK �X ,D is the direct product of the seven copies of L2.q/ in�.
Further X D CL.K/ and from the structure of X D �C

12.q/, CX .D \ X/ D 1, so
CL.D/ D 1. NextNX .D/=.D \X/ acts faithfully as S4 on�� fKg, and preserves
the partition ffJi ; J

0
i g W 1 � i � 3g, and similarly NL.J1/ \ NL.D/ is transitive

on � � fJ1g, so (1) follows. Then (2) follows from (1) and the description of ui

in 13.2 (6).

Lemma 13.4. Pick u3 as in 13.2 .6/ and notation as in 13.3. Pick W2 � J1 and
W3 � J 0

1. Then:

(1) There exists S3 Š S � NL.D/ \ CL.u3/ faithful on ı WD fK; J1; J
0
1g such

that the involution s 2 S fixing K is in X .

(2) Set K3 WD CKJ1J 0

1
.S/ and let u3 2 U3 2 Syl2.K3/. Then .K3; U3/ 2

S.L; u3/.

(3) O2.CL.KCL.K/// D 1.

Proof. Observe that NX .D/ is the wreath product of J1 with S4. Then pick S to be
a conjugate of an S3-subgroup of a wreath complement to D \ X in NX .D/ such
that S is transitive on ı; this is possible by 13.3. This establishes (1).

Let Y WD CL.u3/. By 13.2 (7), Q7 D O2.Y / and Y � WD Y=Q7 Š F4.q/. Next
CX .K3/ D CX .Ks/, whereKs is the projection ofK3 on J1J

0
1. ThusKs D CJ1J 0

1
.s/.

From 9.17, BK WD CX .Ks/ Š Sp8.q/. As S is transitive on ı there is also an S -
conjugateB1 ofBX in CL.J1/ centralizingK3, and asBK centralizesW1 but notW1,
B�

X 6D B�
1 . Then as B�

X Š Sp8.q/ is maximal in Y � Š F4.q/, Y � D hBX ; B1i� �
Y �

3 , where Y3 WD CL.K3/. Set R WD O2.Y3/. Then R � Q7 and U3 � CQ7
.Y3/,

so as CQ7
.Y3/ is of order q and Y3 is irreducible on Q7=CQ7

.Y3/, it follows that
U3 D Z.Y / and either R D 1 or R is a complement to U3 in Q7. But in the latter
case K3 acts on Q7 D CL.R/, contradicting U3 � Q7. This completes the proof
of (2).

Finally from 19.2 in [ASe], all involutions in Aut.L/�L are field automorphisms,
and such an involution induces a field automorphism on Y �, so (3) holds.
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Lemma 13.5. (1) L6 Š L2.q/ ��C
10.q/ and Q6 Š q10C32 is special.

(2) Z6 D Z.Q6/ Š Eq10 admits the structure of a 10-dimensional orthogonal
space over Fq , preserved by L6, and L6 induces �C

10.q/ on this space.

(3) We may take u2 D u1w2 where W2 is the root group of X such that X6 D
X \ P6 D NX .W2/, and w2 2 W2.

(4)u2 is a nonsingular point in the orthogonal spaceZ6 andCL.u2/DQ6CL6
.u2/

with CL6
.u2/ Š L2.q/ � Sp8.q/.

(5) Let W2 � J1, s an involution in NL.�/ with cycle .K; J1/, K2 D CKJ1
.s/,

and u 2 U2 2 Syl2.K2/.Then .K2; U2/ 2 S.L; u2/.

(6) O2.CG.K2// D 1.

Proof. Parts (1) and (2) are established during the discussion on page 60 of [ASe].
Part (3) follows from 13.2 (6). Arguing as usual, R.X6/ Š q1C12 is a complement to
Q1 \Q6 inQ6, soW2 D ˆ.R.X6// � ˆ.Q6/ D Z6. IndeedW2 is a complement to
Q1 \Z6 in Z6, andQ1 \Z6 is the subspace of the orthogonal space Z6 orthogonal
to U . Thus u2 D u1w2 is a nonsingular point in Z6, so CL6

.u2/ Š L2.q/� Sp8.q/.
From 13.2 (3), u2 is the involution y of 16.1 in [ASe], so from the description of
CL.y/ in 16.20 of [ASe], Y WD CL.u2/ D CP6

.u2/. Thus (4) holds.
Adopt the notation of (5). ThenCX .K2/ D CX .J1/ Š L2.q/��C

8 .q/ by 10.2 (3).
Then CX .K2/ and Y � WD Y=Q6 Š L2.q/ � Sp8.q/ have the same Lie rank, so
O2.CL.K2// D 1 by 10.6.

Next by 13.3, there is g 2 NL.�/ with Kg
2 � J1J

0
1. Then ug

2 is of type c2 in
X and sg 2 X centralizes Kg

2 , so by 9.14, CX .K
g
2 / Š Sp8.q/. It follows from

(4) that KCX .K2/ is a complement to Q6 in CL.u2/. Further from the action of
B WD CL6

.u2/ on Q6, CQ6
.B/ � Z6, so U3 � Z.CL.u2//, completing the proof

of (5).
Recall from 19.3 in [ASe] that each involution in Aut.L/ � L induces a field

automorphism on L, and hence also on Y �, so (6) follows.

14. E8.q/

In this section we assume Hypothesis 10.5 with L D E8.q/.

Lemma 14.1. (1) P.�/ D P8. Thus L8 D X Š E7.q/.

(2)Q8 Š q1C56 is special with centerU andQ8=U is the faithful 56-dimensional
FqX -module.

Proof. From the discussion in Section 17 in [ASe], P8 D P.�/, Q8 Š q1C56, and
L8 Š E7.q/. Then L8 D X by 10.2 (3), establishing (1). Up to quasiequivalence,
E7.q/ has a unique faithful 56-dimensional Fq-module, so (2) follows.
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Lemma 14.2. (1) L has four classes of involutions.

(2) Each involution inQ8 is conjugate in L to ui for some 1 � i � 3, denoted by
x, y, z in 17:1 of [ASe], respectively.

(3) u1 2 U .

Proof. Part (1) is 17.1 in [ASe]. Let zQ8 D Q8=U . By 14.1 (2), zQ8 is the 56-
dimensional module for X Š E7.q/. The orbits of X on zQ8, and centralizers in
X of representatives, are listed in 4.3 of [LS]. In particular if i 2 Q7 � U is an
involution, then each nonabelian composition factor of CX .Qi/ is a section of CL.i/.
We compare the factors from [LS] of CX .Qi/ to the factors of CL.i/ in 17.15 of [ASe],
and conclude only conjugates of x, y, and z can be contained in Q8, since the
only nonabelian composition factor of CL.u/ is Sp8.q/, which does not contain the
nonabelian composition factor of CX .j / for any j 2 zQ8. Thus (2) holds.

From the definition of x in Section 17 of [ASe], x D u1 is a root element, so (3)
holds.

Lemma 14.3. Let�0 be the set of seven fundamental subgroups ofX defined in 13.3
and set � WD �0 [ fKg. For 1 � i � 3 let Ii be the set of involutions in h�i
projecting nontrivially on exactly i members of �. Then NL.�/ is 3-transitive on �
and transitive on Ii for each 1 � i � 3.

Proof. From 13.3, NX .�
0/ is 2-transitive on �0, so NL.�/ is 3-transitive on � by

our usual argument. Hence the lemma follows.

Lemma 14.4. (1) L1 Š �C
14.q/ and Q1 Š q14C64 is special.

(2) Z1 D Z.Q1/ Š Eq14 admits the structure of a 14-dimensional orthogonal
space over Fq , preserved by L1, and L1 induces �C

14.q/ on this space.

(3) We may take u2 D u1w2 where W2 is the root group of X such that X1 D
X \ P1 D NX .W2/, and w2 2 W2. In particular, in the language of 14.3, we may
choose W2 � J 2 �0, so u2 2 I2.

(4)u2 is a nonsingular point in the orthogonal spaceZ1 andCL.u2/DQ1CL1
.u2/

with CL1
.u2/ Š Sp12.q/.

(5) Let K2 D CKJ .s/ for s an involution in NL.�/ with cycle .K; J /, and u2 2
U2 2 Syl2.K2/. Then .K2; U2/ 2 S.L; u2/.

(6) O2.CG.K2// D 1.

Proof. Parts (1) and (2) are established during the discussion on page 69 of [ASe].
From 14.2 (2), u2 is conjugate to the involution y of 17.1 in [ASe], and from

the definition of y in Section 17 of [ASe], u2 is diagonal in the product of two
commuting root groups U and W2 such that W2 — O2.NL.U //. Thus as L is
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transitive on such involutions (cf. the proof of 12.1 in [ASe]), we may choose u2

as in (3). Arguing as usual, R.X1/ Š q1C32 is a complement to Q1 \ Q8 in Q1,
so W2 D ˆ.R.X1// � ˆ.Q1/ D Z1. Indeed W1 is a complement to Q8 \ Z6

in Z1, and Q8 \ Z6 is the subspace of the orthogonal space Z1 orthogonal to U .
Thus u2 D u1w2 is a nonsingular vector in Z1, so CL1

.u2/ Š Sp12.q/. From the
description of CL.y/ in 17.15 of [ASe], Y WD CL.u2/ D CP1

.u2/. Thus (4) holds.
Define .K2; U2/ as in (5) and let B2 WD CL.K2/. Then CX .K2/ D CX .J / Š

�C
12.q/ is of Lie rank 6, as is Y � WD Y=O2.Y / Š Sp12.q/, so O2.B2/ D 1 by 10.6.

By 14.3, there is g 2 NL.�/ with Kg
2 � JJ2 for some J2 2 �0 � fJ g. As Kg D

CJJ g .sg/, Kg 2 S.X; u
g
2 / so X2 WD CX .K

g
2 / Š L2.q/ � Sp8.q/ by 13.5. Then

B WD .KX2/
g�1 � B2 and NY �.CX .K2/

�/ Š OC
12.q/ is the unique maximal

overgroup in Y � of CX .K2/
� Š �C

12.q/. Hence as OC
12.q/ contains no copy of

B Š L2.q/
2 �Sp8.q/, it follows thatB2 D CL.K2/. As CQ1

.CL1
.u2// is of order q

it follows that U2 D CQ1
.B2/ D Z.CL.u2//, so (5) holds. Finally by 19.2 in [ASe],

each involution in Aut.L/ � L induces a field automorphism on L, so (6) follows as
usual.

Lemma 14.5. Let g 2 P7 � P8, I D UU g , E D Q8 \ Q
g
8 , and J D hQ8;Q

g
8 i.

Then:

(1) Q7 D .Q8 \Q7/.Q
g
8 \Q7/ and J=Q7 Š L2.q/.

(2) L7 D .J \ L7/ � L7;8 with J7 D J \ L7 Š L2.q/ and L7;8 Š E6.q/.

(3) I D Z.Q7/ is the natural module for J7.

(4) ŒJ; E� D I and E=I is the 27-dimensional module for L7;8.

(5) Q7=E is the tensor product of the natural module for J7 and the dual of E=I
for L7;8.

(6) We may choose u3 2 E � I , such that CP7
.u3/ D CL.u3/, CL7

.u3/ D J7 �
CL7;8

.u3/, and CL7;8
.u3/ Š F4.q/.

(7) There exists K3 2 S.L; u3/.

(8) O2.CG.K3// D 1.

Proof. The proof is similar to that of 11.6. Parts (1)–(5) follow from the standard
theory of large special groups; see for example 8.15 in [A8]. By 14.2 (2), u3 is fused to
the involution z of 17.1 in [ASe]. Thus from 17.14 in [ASe], we may takeCL.u3/ � P7

with O2.CL.u3// D CQ7
.u3/, and O20

.CL.u3//=O2.CL.u3// as described in (6).
From the action of Ls onQs described in (1)–(5), it follows that u3 2 E, completing
the proof of (6).

Let X7 D X \ P7 and W D R.X7/. As L7;8 Š E6.q/, from 13.2 (7) there is an
involution v3 2 W such that CX .v3/ D CX7

.v3/ with CX .v3/=W Š F4.q/. Further
by 13.4, there isKv 2 S.X; v3/. ThusCL.Kv/ containsKCX .Kv/ Š L2.q/�F4.q/.
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Now from the structure of CX .v3/ and the list of centralizers in 17.15 in [ASe],
v3 2 uL

3 . Thus there exists g 2 L with vg
3 D u3. Let K3 WD K

g
v . We have shown

that CL.K3/ contains a subgroup Y D K4 � Y0 where K4 D Kg is a fundamental
subgroup of L, and Y0 D CX .Kv/

g Š F4.q/. Hence K4Y0 is a complement to
O2.CL.u3// in CL.u3/ by (6).

Suppose O2.CL.K3// D R 6D 1. As the complement Y to O2.CL.u3// acts on
R, R � Q7. From the description of the action of L7 on Q7 in (1)–(5) and the
description of the action of E6 on its 27-dimensional module in [A5]:

(i) K4 is irreducible on I .
(ii) zE D E=I D zW g , and W g D U3 �W3 and Y0 is irreducible on W3.
(iii) Q�

7 D Q7=E D CQ7
.u3/

� �Q� where jQ�j D q2 and Y is irreducible on
both factors.

We argue as in the proof of 11.6 to derive a contradiction: First I \R D 1 by (i)
and asK3 — P7 D NL.I /. Second, as all Y -submodules ofE not containing I either
are contained in U3 or contain W3, R \E D 1 as R \W g D 1. Therefore third, by
(iii), R� D CQ7

.u3/
�, so as ˆ.CQ7

.u3// � E, CQ7
.u3/ D R, a contradiction.

Hence O2.CL.K3// D 1. Moreover we have also shown that U3 D Z.CL.u3//,
so (7) holds. Finally (8) follows from (7) as usual.

15. The proof of Theorem 4

In this section we complete the proof of Theorem 4. Thus we assume the hypothesis
of that Theorem: G D O20

.G/ is an almost simple group of Lie type over Fq , or the
Tits group. Set L WD F �.G/ and let i be an involution in L.

If L is a classical group, then Theorem 4 holds by Theorem 9.17. Thus we may
assume L is exceptional. In particular the pair .G;L/ satisfies Hypothesis 10.1, with
l the Lie rank of L.

If l D 1 then L Š Sz.q/, a case handled in 10.3. Then 10.4 handles the case
l D 2. Thus we may assume l > 3, so L satisfies Hypothesis 10.5.

If i is a long root involution, then the pair .L; i/ satisfies Theorem 4 by 10.2 (4).
Suppose L is E"

6.q/. Then by 11.2, L has three classes of involutions with represen-
tatives ui , 1 � i � 3. The involution u1 is a root involution, a case already treated,
while Theorem 4 holds for the involutions u2 and u3 by 11.5 and 11.6.

Theorem 4 holds whenL isF4.q/ by 12.5. SupposeL isE7.q/. By 13.2 (1),L has
five classes of involutions, described in 16.1 of [ASe]. The classes with representatives
z and v appear in case (4) of Theorem 4. By 13.2 (3), the remaining classes have
representatives ui , 1 � i � 3, corresponding to the classes x; y; u of 16.1 in [ASe],
respectively. By 13.2 (4), u1 is a root involution, while Theorem 4 holds for u2 and u3

by 13.5 and 13.4.
This leaves the case L Š E8.q/. By 14.2 (1), L has four classes of involutions,
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described in 17.1 of [ASe]. The class with representative v appears in case (5) of
Theorem 4. By 14.2 (2), the remaining classes have representatives ui , 1 � i � 3,
corresponding to the classes x; y; z of [ASe]. By 14.2 (3), u1 is a root involution,
while Theorem 4 holds for u2 and u3 by 14.4 and 14.5.

This completes the proof of Theorem 4.

16. The proof of Theorem 2

In this section we complete the proof of Theorem 2. Thus we assume the pair .G; V /
is a minimal counter example to Theorem 2, as defined in Section 1. Then by Propo-
sition 1.14:

Lemma 16.1. G is almost simple and G D LV , where L D F �.G/.

Lemma 16.2. L is group of Lie type over Fq , for some power q of 2. Hence the pair
.G;L/ satisfies Hypothesis 10.1.

Proof. By Theorem 2.1,G is not an alternating or symmetric group. By Theorem 4.1,
L is not sporadic. Finally by Theorem 8.3 (3), L is not a group of Lie type and odd
characteristic. Thus the lemma follows from the classification of the finite simple
groups.

Lemma 16.3. L is not L3.2/, L"
4.2/, Sp4.2/

0, or G2.2/
0.

Proof. As A8 Š L4.2/, L is not L4.2/ by 2.1. Similarly as L3.2/ Š L2.7/,
Sp4.2/

0 Š L2.9/, G2.2/
0 Š U3.3/, and U4.2/ Š PSp4.3/, L is none of these

groups by 8.3.

Lemma 16.4. (1) V \ L 6D 1.

(2) Suppose i is an involution in L, .K;U / 2 S.L; i/, and O2.CG.K// � L.
Then i … V .

(3) There exists an involution u 2 V \ L such that for each K 2 S.L; u/,
O2.CG.K// — L.

Proof. From 2.5.12 in [GLS3],m2.Out.L// � 2. On the other hand, by 1.4 we have
m2.V / > 2, so (1) holds.

Assume the hypothesis of (2). Then from the definition of S.L; i/ in the Intro-
duction, one of the following holds:

(a) K Š L2.q/ or Sz.q/, or
(b) K Š L2.q

2/ with q > 2, or
(c) q D 2 and K Š D10, or
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(d) i is of type c2 in Spn.2/ or F4.2/ and K Š L2.4/.
PickD to be a dihedral subgroup ofK of order 2m containing u, wherem > 1 is

odd in case (a),m D q2 C 1 in case (b), andm D 5 in case (c) and (d). We first claim
thatCG.D/ D CG.K/. In case (d) this holds by case (iii) of the definition of S.L; i/.
In case (c) D D K. In the remaining cases, K D hU;Di and CL.i/ D CL.U /, so
the claim holds in those cases too.

Next, by definition of S.L; i/, H D CL.K/ is a complement to O2.CL.i// in
CL.i/, so O2.H/ D 1. Thus as O2.CG.K// � L, also O2.CG.K// D 1. Then
O2.CG.D// D 1 by the claim, so (2) follows from 1.15 (1).

Finally (1) and (2) imply (3).

Lemma 16.5. (1) V acts on a parabolic P of L, where

(i) P is the stabilizer of a singular point in the natural module for L if L is an
orthogonal group �"

n.q/, n � 8;

(ii) P is a maximal V -invariant parabolic of L if L is Sp4.q/ or F4.q/ and G is
nontrivial on the Dynkin diagram of L;

(iii) O20

.P=R.P // Š E6.q/ if L is E7.q/;

(iv) P D NL.U˛/ for ˛ 2 ˆ a long root in the remaining cases.

(2) V \R.P / 6D 1.

(3) If L Š Sp4.q/ and G is nontrivial on the Dynkin diagram of L then all
involutions in V �L are graph-field involutions, and all those in V \L are of type c2.

(4) If L Š L"
n.q/, then V contains an involution of type j2.

(5) IfL is symplectic andG is trivial on the Dynkin diagram ofL, or ifL Š �"
n.q/

with n � 8, then V contains an involution of type c2.

Proof. The normalizer inG of the parabolic listed in (1) contains a Sylow 2-subgroup
of G, so (1) follows.

Because l > 1 and the groups in 16.3 are excluded by that lemma, by inspection,
eitherL Š L3.4/ orO2.NG.P // D O2.P / D R.P /. In the former case, (2) follows
from 16.4 (1), and in the latter case, (2) follows from 1.10 (1).

In the remaining parts, we adopt the notation for involutions in L from earlier
sections, and for outer involutions from [GLS3]. Assume the hypothesis of (3). Then
since G D LV , V — L. Now (cf. 19.5 in [ASe]) all involutions in G � L are
graph-field automorphisms, so V contains a graph-field automorphism 
 . Then as
CL.
/ Š Sz.q/ has all involutions in c2, (3) follows.

We claim that V contains no long root involutions, and if L is symplectic, V
contains no short root involutions. For if i is such an involution, then by 10.2 (4) there
is .K;U / 2 S.L; i/, so O2.CG.K// — L by 16.4 (2). Then by 10.2 (5) and 16.3,
L Š L3.4/ and O2.CG.K// D h
i, where 
 induces a graph automorphism on L.
But h
CL.i/i is not elementary abelian, contrary to 1.15. Thus the claim is established.
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In cases (4) and (5), we will show that all other involutions in R D R.P / are of
type j1 and c2, in the respective case, to complete the proof of the lemma. Namely
let M be the natural module for OL, the covering group of L, and identify involutions
v in L with those in OL, so that we can consider dim.ŒM; v�/. If L Š Ln.q/ then R is
generated by transvections, so dim.ŒM; r�/ � 2 for all r 2 R. Then as jm is the class
of involutions j with dim.ŒM; j �/ D m, and the root involutions are the transvections,
the lemma follows in this case. In the remaining cases, P is the parabolic stabilizing
a singular point M0 of M , and R centralizes the chain 0 < M0 < M?

0 < M , so
dim.ŒM; r�/ � 2 for r 2 R. Moreover from Section 9, the involutions j in L with
dim.ŒM; j �/ � 2 are of type j1 and j2 ifL is unitary, and of type b1, a2, and c2 ifL is
symplectic or orthogonal, with no involutions in L of type b1 when L is orthogonal.
Further when L is unitary, the long root involutions are the transvections, when L is
symplectic the root involutions are those of type b1 and a2, while if L is orthogonal
the root involutions are of type a2. Hence (4) and (5) follow.

Lemma 16.6. L is exceptional.

Proof. Assume otherwise; then L is classical. If L Š Sp4.q/ and V is nontrivial
on the Dynkin diagram, then by 16.5 (3), V contains an involution u of type c2

and each involution in G � L is a graph-field automorphism. Then by Theorem 4,
there is .K;U / 2 S.L; u/. From the proof of 16.4 (2), CG.K/ D CG.D/ for a
suitable dihedral subgroup D of order 2m containing u with m odd, so by 1.15,
there is t 2 V � L centralizing K. This is impossible as t induces a graph-field
automorphism, so CL.t/ Š Sz.q/, and Sz.q/ contains no copy of L2.q

2/.
Thus the hypothesis of part (4) or (5) of 16.5 is satisfied, so from that lemma, V

contains u of type j2 or c2. By Theorem 4, there is .K;U / 2 S.L; u/, and from the
discussion in Section 9, O2.CG.K// � L unless L Š L"

4.q/, Ln.2/, n 2 f5; 6g, or
�"

n.q/, and CG.KJ / D h
i, where J D CL.K/ and 
 is a graph automorphism of
L in the first two cases, and a transvection in O"

n.q/ in the last case. By 1.15, 
 2 V .
AsL"

4.q/ Š �"
6.q/, we can subsume this case in the last case. So consider the last

case. From 9.18, 
 2 D Š D2.q2C1/ with CG.D/ Š O�"
n�2.q/, so 1.15 contradicts


 2 V .
Similarly ifL Š Ln.2/ for n D 5 or 6, then by 9.19, 
 2 D Š D2m withm D 31

or 7, and CG.D/ Š 1 or Aut.L2.8//, for n D 5, 6, respectively, contrary to 1.15.
This completes the proof.

Lemma 16.7. V does not contain a long root involution.

Proof. Let u be a long root involution. By 10.2 (3) there is .K;U / 2 S.L; u/, and
by 16.5 and 10.2 (5), O2.CG.K// D 1. Now 16.4 (2) completes the proof.

Lemma 16.8. L is not exceptional.
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Proof. Assume L is exceptional. Suppose first L is not E7.q/ or E8.q/. In this case
we show:

(a) For each involution u of L, which is not a long root involution, there is K 2
S.L; u/ with O2.CG.K// D 1.

Observe that this suffices by 16.4 (3) and 16.7.
If l D 1, then L Š Sz.q/ and all involutions in L are long root involutions, so

(a) holds trivially. If l D 2, then (a) follows from 10.4. If L is F4.q/ then (a) follows
from 12.5. Finally if L is E"

6.q/ then by 11.3 (1) all involutions of L which are not
root involutions are conjugate to u2 or u3, so (a) follows from 11.5 and 11.6 (7).

Therefore L is E7.q/ or E8.q/. Adopt the notation in 10.5. Let P D Pl and
Q D Ql . Then NG.P / D NG.Q/ contains a Sylow 2-subgroup of G, so we may
take V � NG.Q/, and then as Q D O2.NG.P //, V \ Q 6D 1 by 1.10 (1). Then
by 16.4 (2) and 16.7, it suffices to show:

(b) For each involution u 2 Qwhich is not a root involution, there isK 2 S.L; u/
with O2.CG.K// � L.

From 13.2 (3) and 14.2 (2), the involutions in Q are conjugate to ui for some
1 � i � 3. Further u1 is a root involution. Then 13.4, 13.5, 14.4 and 14.5 show that
(b) holds. This completes the proof of the lemma.

Observe that 16.6 and 16.8 supply a contradiction, which completes the proof of
Theorem 2.
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