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Abstract. Let G be a finite group. The solvable residual of G, denoted by Res.G/, is the
smallest normal subgroup of G such that the respective quotient is solvable. We prove that every
finite non-trivial group G with a trivial Fitting subgroup satisfies the inequality jRes.G/j >

jGjˇ , where ˇ D log.60/=log.120.24/1=3/ � 0:700265861. The constant ˇ in this inequality
can not be replaced by a larger constant.
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1. Introduction

All groups in this paper are finite. We use the standard notation Z.G/, ˆ.G/ , F.G/

and k.G/ for the centre, the Frattini subgroup, the Fitting subgroup and the number
of conjugacy classes of G, respectively. The solvable residual of G, Res.G/, is the
smallest normal subgroup of G such that the respective quotient is solvable; this is
the minimal term in the derived series of G. The nilpotent residual, U.G/, is defined
similarly, and, of course, the commutator subgroup G0 is the abelian residual of G.
As usual, we denote by Sn and An the symmetric and alternating groups on n letters.

In [5] and [7] the authors obtained the following bounds for the commutator
subgroup and the nilpotent residual:

Theorem A. Let G be a non-abelian group such that ˆ.G/ D 1. Then

jG0j > ŒG W Z.G/�1=2:
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Theorem B. Let G be a non-abelian group such that ˆ.G/ D 1 and let U D U.G/,
the nilpotent residual of G. If G is of odd order, then

jU j > .2ŒG W Z.G/�/1=2;

and if G is of even order not divisible by a Mersenne or a Fermat prime, then

jU j > ŒG W Z.G/�1=2:

Other related results may be found in [1], [5], [7], [8] and [9]. In their recent pa-
per [6], Guralnick and Robinson proved that k.G/ � .jF.G/jjGj/1=2, which implies
the inequality of Theorem A under the assumption that F.G/ D 1.

In this paper we prove a respective result for Res.G/:

Theorem C. Let G ¤ 1 be a group such that F.G/ D 1. Then

jRes.G/j > jGj2=3:

More precisely,
jRes.G/j > jGjˇ ;

where ˇ D log.60/=log.120.24/1=3/ � 0:700265861.

Theorem C improves the result of Proposition 2.4 in [7] (jRes.G/j > jGj1=2 if
F.G/ D 1). In the proof of Theorem C we use the method of that proposition and
the classification of the finite non-abelian simple groups. Both proofs rely heavily on
J. D. Dixon’s Theorem 3 in [3], where it is shown that the order of a solvable subgroup
of Sn is bounded by 24.n�1/=3. The proof of this and related results can be also found
in Section 5.8 of [4]; see also [11].

Remark 1. The assumption F.G/ D 1 can not be omitted in Theorem C. Further-
more, it is not enough to assume ˆ.G/ D 1 in Theorem C (unlike Theorem A and
Theorem B). Indeed, by taking a direct product of a “large” elementary abelian group
and a simple non-abelian group, one can find examples of non-solvable groups G

satisfying ˆ.G/ D 1 and jRes.G/j < jGj", for any " > 0.

Remark 2. The choice of the constant ˇ given in Theorem C is best possible, as the
following example shows.

Example 1 (see [4], Exercise 5.8.6). Let H D A5 Š PSL.2; 4/. Then jH j D 60

and jAut.H/j D 120. Denote L4 D S4, L16 D L4 wr L4, and by induction:
L4k D L4k�1 wr L4 for every integer k � 2. Then L4k is a solvable subgroup of
S4k of order 24.4k�1/=3.
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Denote m D 4k and let Gm D Aut.H/ wr Lm. Then Gm is a subgroup of
Aut.H m/ (see [12], Lemma 9.24), and one can verify that F.Gm/ D 1. Further-
more, we have Res.Gm/ D Inn.H/m, and so jRes.Gm/j D 60m, while jGmj D
120m24.m�1/=3.

Let ˇm D log.60/=log.120.24/
m�1
3m /. Then jRes.Gm/j D jGmjˇm . Since fˇmg

is a decreasing sequence and since limm!1 ˇm D ˇ, we have that for every " > 0

there exists an integer m such that jRes.Gm/j < jGmjˇC". Thus the choice of ˇ in
Theorem C is best possible.

2. Proof of Theorem C

We will make use of the following proposition:

Proposition D. Let S be a non-abelian simple group. Then, for every positive inte-
ger ˛,

..24/
˛�1
3˛ jOut.S/j/ ˇ

1�ˇ < jS j;
where ˇ D log.60/=log.120.24/.1=3//.

Proof. Since the sequence f˛�1
3˛

g is an increasing sequence which converges to 1=3,
it suffices to show that

..24/1=3jOut.S/j/ ˇ
1�ˇ � jS j:

We note first that if jOut.S/j D 2; 3 or 4, then, for the above inequality to hold,
it suffices that the value of jS j will be at least 60, 155 and 304, respectively. Note
further that 241=3 < 2:9 and ˇ

1�ˇ
< 2:4. We will use the above values in the sequel.

In the following, we refer to tables 5.1.A, 5.1.B and 5.1.C in [10].
First, observe that if S is sporadic or alternating, then jOut.S/j � 2, with the

exception jOut.A6/j D 4 (see [2], remark on p. ix and Table 1). Then, since jS j � 60

and jA6j D 360, we are done in this case.
Hence, we are left with the simple groups of Lie type over a field of q elements.

As in [10], we denote q D pf , where p is a prime. We start with the simple classical
groups and consider the following cases:

I) S D An�1.q/ (i.e. S D PSLn.q/), n � 2. Here

jS j D 1

d
q

n.n�1/
2

nY
iD2

.qi � 1/ and jOut.S/j D
(

df if n D 2

2df if n � 3

where d D .n; q � 1/.
We consider first the case n � 3. Using the fact that d � q � 1 and by the remark

at the beginning of the proof, it suffices to show that .2:9 � 2.q � 1/f /2:4 � jS j.
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Since the left hand side of the inequality is independent of n and since the right hand
side is an increasing function of n, it suffices to show that .2:9 � 2.q � 1/f /2:4 �

1
q�1

q3.q2 � 1/.q3 � 1/ D 1
q�1

.q � 1/2q3.q C 1/.q2 C q C 1/, and in particular, it is

enough to show that .2:9 � 2.q � 1/f /2:4 � .q � 1/q6. Hence, it suffices to show that
.5:8f /2:4 � q4:6 D p4:6f . This inequality holds for all integers p � 2 and f � 1

with the only exception p D 2 and f D 1 (i.e. q D 2). However, in that case we
have jOut.S/j D 2, jS j D 168 and the result follows.

Consider now the case n D 2. Since S is not simple for q D 2; 3, we consider
the case q � 4. Since jOut.S/j D 2 for q D 4; 5; 7 (while of course jS j � 60),
and since jOut.S/j � 4 for q � 25 (while jS j � 304 for q � 8), it is enough
to check the case q � 27. As before, it suffices to show that .2:9 � df /2:4 �
jS j D 1

d
q.q2 � 1/ D 1

d
pf .p2f � 1/. If p D 2 then d D 1 and (by the above

considerations) f � 5, while the last inequality reduces to .2:9f /2:4 � 2f .22f � 1/

which holds for every f � 5. Therefore, we may assume that p � 3. Furthermore, if
p D 3 or 5 then f � 3, while f � 1 otherwise. Since the inequality .5:8f /2:4 �
1
2
pf .p2f � 1/ holds when either p D 3 or 5 and f � 3 or p � 7 and f � 1, the

result follows.

II) S D 2An�1.q/ D Un.q/ (n � 2). Here we have

jS j D 1

d
q

n.n�1/
2

nY
iD2

.qi � .�1/i / and jOut.S/j D
(

df if n D 2

2df if n � 3

where d D .n; q C 1/.
If n D 2, then jS j and jOut.S/j are the same as in the previous case. Assume

now that n D 3. Then jS j D 1
d

q3.q2 � 1/.q3 C 1/, where d 2 f1; 3g. If q D 2 then
jS j D 72 and S is not simple. When q � 3 it is enough to set d D 3 (the “worst
case”) and check the inequality .2:9 � 2 � 3f /2:4 � 1

3
q7 D 1

3
p7f , which is easily

verified for every p � 3; f � 2. When p D 3 and f D 1 we have jOut.S/j D 2,
and so we may apply the remark at the beginning of the proof.

If n � 4, then it is enough to check (the “worst case” d D q C 1) that .2:9 � 2 �
.q C 1/f /2:4 � 1

qC1
q6.q2 � 1/.q3 C 1/.q4 � 1/. Thus it certainly suffices to check

that .5:8 � 2qf /2:4 � q12, i.e. .5:8 � 2pf f /2:4 � p12f for every p � 2; f � 1. This
inequality is easily verified and so we are done in this case.

III) Either S D PSp2m.q/ D Cm.q/ (where m � 2) or S D �2mC1.q/ D Bm.q/

(where m � 2 and q is odd). Here we have

jS j D 1

d
qm2

mY
iD1

.q2i � 1/ and jOut.S/j D
(

2f if m D 2

df if m � 3

with d D .2; q � 1/ if S D PSp2m.q/, while d D 2 if S D �2mC1.q/. Except the
case S D PSp4.q/ (where m D 2) with q even, it is clear that jS j exceeds jPSLm.q/j,
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while jOut.S/j does not exceed jOut.PSLm.q//j. Thus, with the above exception, the
validity of the required inequality follows by the arguments given in case I. However,
in the case S D PSp4.q/ we have jOut.S/j D 2f and jS j D p4f .p2f �1/.p4f �1/.
Since the inequality .2:9 � 2f /2:4 � p4f .p2f � 1/.p4f � 1/ holds for every p � 2

and f � 1 (it suffices to check the case p D 2 and f D 1), the checking of this case
is completed.

IV) Either S D P �C
2m.q/ D Dm.q/, where m � 3 and

jS j D 1

d
qm.m�1/.qm � 1/

m�1Y
iD1

.q2i � 1/ and jOut.S/j D
(

2df if m ¤ 4

6df if m D 4

with d D .4; qm � 1/, or S D P ��
2m.q/ D 2Dm.q/, where m � 2 and

jS j D 1

d
qm.m�1/.qm C 1/

m�1Y
iD1

.q2i � 1/ and jOut.S/j D 2df

with d D .4; qm C 1/.
We notice that in this case some of the groups are isomorphic to groups discussed

in previous cases (see [2], p. xii). However, for the convenience of the reader we
provide a direct argument for all the groups considered.

Consider first the case that q D 2. Then, except the case S D P �C
2m.q/; m D 4,

we have jOut.S/j D 2, and so we are done by the remark at the beginning of the
proof. If S D P �C

2m.q/; m D 4, then jOut.S/j D 6, while jS j D 212.24 � 1/ �
.22 � 1/.24 � 1/.26 � 1/. Since .2:9 � 6/2:4 � jS j, the case that q D 2 is completed.

The case S D P �C
2m.q/; m D 4 for q � 3 is checked by verifying the inequality

.2:9�24f /2:4 � 1
4
p12f .p4f �1/.p2f �1/.p4f �1/.p6f �1/ for every p � 3; f � 1

and for p D 2; f � 2.
Assume now q D 3, S D P ��

2m.q/, m D 2. Then jOut.S/j D 4 and jS j D
360 � 304, hence the result follows by the remark at the beginning of the proof.
The case q D 3, m � 3 for P �C

2m.q/ and P ��
2m.q/ (excluding the possibility

S D P �C
2m.q/; m D 4, which was already done) is done by verifying the inequality

.2:9 � 8/2:4 � 1
4
36 � .33 � 1/ � .32 � 1/ � .34 � 1/ (the right hand side is a lower bound

for jS j in this case).
In the case q D 4, for P �C

2m.q/ and P ��
2m.q/ (excluding the possibility S D

P �C
2m.q/; m D 4, which was already done), we have d D 1, jOut.S/j D 4, and so

it suffices to verify the inequality .2:9 � 4/2:4 � 42 � .42 C 1/ � .42 � 1/ (the right hand
side is a lower bound for jS j).

It is left to consider the case q � 5. Since the inequality .2:9 � 8f /2:4 �
1
4
pf m.m�1/.pf m � 1/

Qm�1
iD1 .p2f i � 1/ holds for every p � 5; m � 2; f � 1

(it suffices to check for p D 5; m D 2; f D 1), we are done. Hence case IV is
completed.
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It remains to consider the simple exceptional groups. Assume first that jOut.S/j D
f (see [10], Table 5.1.B). Then jS j � q4 D p4f . Hence, we have only to consider
the inequality .2:9f /2:4 � p4f . Since this inequality holds for every p � 2 and
f � 1, we are done in this case. Assume now that jOut.S/j > f . Then we observe
(Table 5.1.B again) that jOut.S/j � 6f and jS j � q12 in this case. Hence, since the
inequality .1:9 � 6f /2:4 � q12 D p12f holds for every p � 2 and f � 1, the proof
of Proposition D is completed.

Proof of Theorem C. Apply induction on jGj. Let N be a minimal normal sub-
group of G and let N1=N be the maximal normal solvable subgroup of G=N . Then
F.G=N1/ D 1. Suppose first that N1 < G. Then from F.N1/ � F.G/ D 1 it
follows by induction that

(1) jRes.G/ \ N1j � jRes.N1/j > jN1jˇ :

By applying further the inductive hypothesis to G=N1, we obtain

(2) ŒRes.G/ W Res.G/ \ N1� D jRes.G/N1=N1j D jRes.G=N1/j > jG=N1jˇ :

Now from (1) and (2) follows jRes.G/j > jGjˇ , as claimed.
Thus we may assume from now on that N1 D G, i.e., G=N is solvable and

Res.G/ D N D T ˛ , a direct product, where T is a simple non-abelian group (recall
that F.G/ D 1) and ˛ � 1 is an integer. We notice that N is the unique minimal
normal subgroup of G. Indeed, suppose on the contrary that there exists another
minimal normal subgroup, say M , of G. Then M \ N D 1 and M is embedded in
the solvable group G=N , contradicting F.G/ D 1.

We deduce that CG.N / D 1 and N � G � Aut.N / D Aut.T / wr S˛ (see [12],
Lemma 9.24). Thus G=N is a solvable group embedded in Out.T /wrS˛ . Any element
of G=N has the form .b; �/, where b belongs to the base subgroup of Out.T / wr S˛

and � 2 S˛ . Then the function .b; �/ 7! � is a homomorphism from G=N into S˛ .
Denote the image of this homomorphism by D. Then D is a solvable subgroup of S˛

and thus, by [3], Theorem 3, jDj � f .˛/ WD 24.˛�1/=3. Since jG=N j � jOut.T /j˛ �
jDj, it follows that jG=N j � jOut.T /j˛ � f .˛/. Since Res.G/ D N and since we

want to show that jN j > jGjˇ , it suffices to show that jG=N j < jN j 1�ˇ
ˇ D jT j˛ 1�ˇ

ˇ .

For that, it is enough to check that jOut.T /jf .˛/1=˛ < jT j 1�ˇ
ˇ for each simple non-

abelian group T . Thus, it suffices to show that .24
˛�1
3˛ jOut.T /j/ ˇ

1�ˇ < jT j holds for
every positive integer ˛ and every non-abelian simple group T . Since this inequality
holds by Proposition D, the proof of the theorem is complete.
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