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Abstract. In the present paper we continue to examine cellular covers of groups, focusing on
the cardinality and the structure of the kernel K of the cellular map G ! M . We show that
in general a torsion free reduced abelian group M may have a proper class of non-isomorphic
cellular covers. In other words, the cardinality of the kernels is unbounded. In the opposite
direction we show that if the kernel of a cellular cover of any group M has certain “freeness”
properties, then its cardinality is bounded by jM j.
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Introduction and main results

In this paper we continue the discussion of cellular covers in the category of groups
begun in [FGS], [CFGS], where this notion is also motivated. Given a map of groups
c W G ! M; we say that .G; c/ is a cellular cover of M or that c W G ! M is a cellular
cover, if every group map ' W G ! M factors uniquely through c, or, equivalently, the
natural map Hom.G; G/ ! Hom.G; M/; induced by c; is an isomorphism of sets.
Explicitly this means that there exists a unique lift z' 2 End.G/ such that z' B c D '

(maps are composed from left to right).
It has been shown before ([FGS], [FlR]) that cellular covers are values of general

augmented (FM ! M ) and idempotent (F B F D F ) functors on the category of
groups. More concretely, such functors are of the form cellA.�/; namely A-cellular
approximation with respect to some group A.
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The functors cellA.�/ had been used fruitfully in the category of groups, topolog-
ical spaces and chain complexes over rings or DGAs (D differential graded algebras);
compare, for example, Dwyer et al. [DGrI], [RSc], [FlR], Shoham (see [Sho]). The
present results shade some light on the possible values of the functor cellA.�/ when
A is abelian. (We note that very different groups A can give rise to the same functor.)
It is possible that the values of all such functors (i.e. fcellAM j A a groupg) on a fixed
group M yields only a set of results, up to isomorphism. In some topological analo-
gous situations it has been shown that indeed only a set of values occurs (cf. [DP]).
We have seen in [FGS], [CFGS] that this is the case when M is a finite group, a finitely
generated nilpotent group or a divisible abelian group. One aim of the present paper
is to show that there are abelian groups M for which fcellAM j A an abelian groupg
is a proper class of isomorphism types.

Theorem 1. For any infinite cardinal �, there exists an abelian group M of cardi-
nality � such that

(1) the isomorphism types of cellular covers G ! M form a proper class. In fact,

(2) for every infinite cardinal � there is a surjective cellular cover c� W G� � M

with j ker c� j D �. Furthermore,

(3) the group M and the maps c� can be chosen so that Hom.ker c� ; M/ D 0 and
End.M/ D Z.

Theorem 1 is Theorem 2.10 of §2; its proof relies on Theorem 2.5 which may be of
independent interest.

Let c W G ! M be a cellular cover. In previous papers we have noticed that G

inherits several important properties from M : First the kernel K D ker c is central
in G, that is, G is a central extension of M; and further, if M is nilpotent, then G is
nilpotent of the same class; if M is finite then so is G. In addition, we have classified
all possible covers of divisible abelian groups ([CFGS]) and showed that when M

is abelian the kernel K is reduced and torsion-free ([FGS, Theorem 4.7]). The case
when M is abelian was independently investigated in [BD] and [D]. Amongst other
results it was shown there that when M is (abelian and) reduced, K is cotorsion free.

In [FGS] we have already observed that if M is perfect, and G is the so-called
universal central extension of M (so that K is the Schur-multiplier), then G � M is
a cellular cover, and, since any abelian group is a Schur-multiplier, in general, there
is no restriction on K (other than being in the center of G and hence K is abelian).

Note that the covers in Theorem 1 are very special covers in which the only map
ker c� ! M from the kernel to M is the zero map. This class of maps are both cellular
covers and localization maps. Namely c� W G� � M is both a cellular cover and a
localization. Recall that “c is a localization” means that for any ' 2 Hom.G; M/

there is a unique corresponding z' 2 End.M/ such that c B z' D '. Therefore,
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this class of localization-cellular maps V ! W have the property that they induce
isomorphisms on endomorphism sets: End.V / Š Hom.V; W / Š End.W /.

The kernel ker cx in Theorem 1 cannot be of arbitrary nature:

Theorem 2. For any cellular cover c W G ! M .where M is an arbitrary,
not necessarily abelian, group/, if the kernel K of c is a free abelian group then
jKj � jM j:

In fact, the results in §1 (see Proposition 1.4) are somewhat more general than
Theorem 2. We note that [FuG] continues the investigation of cellular covers of
abelian groups begun in [CFGS] and in Theorem 1 of this paper, and in particular,
further results on “large” cellular covers of “small” abelian groups are obtained there.

1. Free kernels are small

In this section we consider the kernel K of a cellular cover c W G ! M . We impose
some additional “freeness” assumptions on K. We show that under these restrictions
the cardinality of G is bounded in terms of the cardinality of M .

Definition 1.1 (compare with [EMe], p. 90). Let K be an abelian group and ˛; ˇ

be cardinal numbers such that ˛ � ˇ. We say that K is weakly-.˛; ˇ/-separable iff
any subgroup K1 � K of size � ˛ is contained in a direct summand K2 � K of
size � ˇ. Notice that when ˛ D ˇ, then our notion coincides with the notion of
(weakly) ˛C-separable group as in [EMe], p. 90. In this case we will say that K is
weakly-˛-separable (and not weakly ˛C-separable as in [EMe]).

We recall the following well-known fact.

Lemma 1.2. Let K be a free abelian group. Then K is weakly-˛-separable for every
infinite cardinal number ˛.

Proof. Let K1 be a subgroup of K. Of course we may assume that K1 ¤ 0. Let B be
a basis of K and for each x 2 K1 let Bx � B be a finite subset such that x 2 hBxi.
Let K2 WD hBx j x 2 K1i. Then K1 � K2, jK1j D jK2j, and K D K2 ˚ F , where
F D hB n S

x2K1
Bxi.

Lemma 1.3. If G; M are groups and c 2 Hom.G; M/ is surjective, then there exists
G1 � G such that jG1j � jM j C @0 with c.G1/ D M .

Proof. For each m 2 M choose a preimage gm 2 G (i.e. c.gm/ D m) and let
G1 D hgm j m 2 M i.
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Proposition 1.4. Let c W G ! M be a cellular cover of the infinite group M and set
K WD ker c. Let ˇ be a cardinal number such that ˇ � jM j. Then

(1) if K is weakly .jM j; ˇ/-separable, then jGj � ˇ; in particular,

(2) if K is a free abelian group, then jGj � jM j.

Proof. Note that (2) is an immediate consequence of (1) and Lemma 1.2. It remains
to prove (1). Notice that if we restrict the image and consider the map c W G ! c.G/

we still get a cellular cover. It follows that if c.G/ is finite, then G is finite (see [FGS,
Theorem 5.4]). We may thus assume without loss that c is surjective. Let G1 � G

be a subgroup such that c.G1/ D M and such that

jG1j D jM j;
whose existence is guaranteed by Lemma 1.3 (note that since M is infinite, jM jC@0 D
jM j). Since c.G1/ D M , we have that

G D KG1:

Let K1 WD G1 \ KI then jK1j � jM j, so by hypothesis there exists a subgroup
K2 � K such that K1 � K2, jK2j � ˇ and such that K D K2 �F , for some F � K.
It is easy to check that it follows that

G D .G1K2/ � F:

In particular, if F ¤ 1, then, since F � K, Hom.G; K/ ¤ 0; contradicting [FGS,
Lemma 3.5 (c)]. Thus F D 1, so G D G1K2 and hence jGj � ˇ.

2. Cellular covers with large kernels

Before describing the main construction in Section C, we introduce some notation
and definitions (Section A) and prove two existence result about “large” rigid abelian
groups (Section B).

A. Preliminaries

Definition 2.1. Let A be an abelian group, q a prime and � a set of primes. Then

(1) A is q-reduced if
T1

iD1 qiA D 0.

(2) A is �-reduced if A is p-reduced, for all p 2 � .

(3) An element a 2 A is q-pure (in A) if a is not divisible by q in A.

(4) A is q-divisible if each element a 2 A is divisible by q in A.
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(5) An integer n is a �-number, if n is divisible only by primes from � (1 and �1

are always �-numbers).

(6) A torsion element a 2 A is a �-element if the order of a is a �-number (or
a D 0).

(7) A is a �-group, if each element of A is a �-element.

(8) ZŒ1=�� WD ZŒ1=p j p 2 �� (and if � D ;, then ZŒ1=�� D Z).

Remark 2.2 (Tensor products, see [Fu]). (1) Let A be a torsion free abelian group.
Then V WD Q ˝ A is a vector space over Q which contains a copy of A (cf. [Fu,
Exercise 1(a), p. 260]). Thus we always think of A as being contained in a vector
space V over Q such that V=A is a torsion abelian group. Hence it makes sense to
talk about the group hA[f ai

mi
j i 2 I gi where I is an index set, fai j i 2 I g � A and

fmi j i 2 I g � Z n f0g. This is the subgroup of V generated by A [ f ai

mi
j i 2 I g.

(2) Note that if S � V and � is a set of primes such that for each s 2 S there
exists a �-number n with ns 2 A, then hA [ Si=A is a �-group. In particular, for a
subring R � Q we view R ˝ A as a subgroup of V (cf. [Fu, Theorem 60.6, p. 260])
and if R D ZŒ1=��, then .R ˝ A/=A is a �-group.

(3) Note further that if �1 and �2 are disjoint sets of primes and B � V is a
subgroup containing A such that A is �1-reduced and B=A is a �2-group, then B is
�1-reduced.

Notation 2.3. Let L be a torsion free abelian group and let q be a prime. For
0 ¤ x 2 L we denote, using Remark 2.2 (1),

L ˚x ZŒ1=q� WD ˝
L [ ˚

x

qi j 1 � i 2 Z
�˛

:

We write H D xZŒ1=q� for the subgroup of L ˚x ZŒ1=q� consisting of the elements

H WD ˚
m

qi x j m 2 Z and 1 � i 2 Z
�
:

Remark 2.4. Assume L is a torsion free abelian group, q is a prime and 0 ¤ x 2 L

is a q-pure element. Then

L ˚x ZŒ1=q� Š .L ˚ ZŒ1=q�/=h.�x; 1/i:

Furthermore, let yM be a group such that yM D L ˚ H where L; H are subgroups
of yM , L is torsion free and H is isomorphic to ZŒ1=q� under an isomorphism taking
some 0 ¤ h 2 H to 1. Let 0 ¤ y 2 L be a q-pure element and let M WD yM=hy �hi.
Then M is isomorphic to the group L ˚y ZŒ1=q� constructed in Notation 2.3.
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B. Existence of large rigid groups. The following is our main stepping stone for
proving the existence of covers with arbitrarily large kernels.

Theorem 2.5. Let P be a set of at least four primes, Q its complementary set of
primes and � any infinite cardinal. Then there is a torsion-free abelian group H of
cardinality � with the following three properties.

(1) H is Q-reduced;

(2) if Q0 � Q is a set of primes and A is a torsion free abelian group containing
H such that A=H is a Q0-group, then End.A/ � ZŒ1=Q0�;

(3) H contains a free abelian group F of rank � such that H=F is a P -group.

Proof. Let R WD ZŒ1=Q�. By [GM] (see also [GT, Corollary 14.5.3 (b), p. 577]),
there exists an R-module M of cardinality � such that End.M/ D R. Let B be a
maximal .Z/-independent subset of M . We let

F WD hBi and H WD fx 2 M j there exists a P -number n 2 Z with nx 2 F g:
We claim that H satisfies all the required properties. By construction (3) holds. Also,
since F is a free abelian group and since H=F is a P -group, H is Q-reduced (see
Remark 2.2 (3)), so (1) holds.

We now show (2). By construction, M=H is a Q-group, so R ˝ H D M . Let
Q0 and A be as in (2). Then H � A � R ˝ A D R ˝ H D M , and since
R ˝ A D M , it follows that any endomorphism of A extends to an endomorphism
of M , thus End.A/ � R. Let f 2 End.A/ so that f is multiplication by m

n
, where

gcd.m; n/ D 1 and n is a Q-number. Assume there exists a prime q 2 Q n Q0

such that q jj n. Then, after multiplying by an appropriate integer, we may assume
that n D q. Writing 1 D ˛q C ˇm, with ˛; ˇ 2 Z, we see that 1

q
D ˛ C ˇ m

q
, so

multiplication by 1
q

is an endomorphism of A. However, q … Q0, H is Q-reduced
and A=H is a Q0-group, so Remark 2.2 (3) implies that A is q-reduced. This is a
contradiction. Thus n is a Q0-number, so End.A/ � ZŒ1=Q0� and (2) holds.

Remark. The set of primes P in Theorem 2.5 is the set of primes that are used to
construct the ZŒ1=Q�-module M as in the beginning of the proof of the theorem. Thus
we only work with the complimentary set of primes Q when using the theorem to
construct groups L that have some desirable properties. Below we will fix the set Q

of primes which will be used for our constructions (in fact we only need 3 primes
in Q, see Proposition 2.6 below). The set P will be the complimentary set of primes.

In Section C below we use the following proposition whose proof relies on The-
orem 2.5.
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Proposition 2.6. Let � be any infinite cardinal and let Q WD fqK ; qL; qg be a set
consisting of three primes. Then there exists an abelian group L whose cardinality is
� such that

(1) L is qK-reduced;

(2) Hom.L; K/ D 0, for any abelian group K which is fqL; qg-reduced;

(3) there exists a q-pure element y 2 L such that the group M WD L ˚y ZŒ1=q�

satisfies:(a) M is torsion free;
(b) M is qK-reduced;
(c) End.M/ D Z.

Proof. We use Theorem 2.5 with Q playing the role of Q in that theorem. Let
R WD ZŒ1=Q� and let H be as in Theorem 2.5. Let F be as in part (3) of Theorem 2.5,
and let B � F be a free generating set of F .

Pick x 2 B and let L1 WD f˛xx 2 R ˝ H j ˛x 2 ZŒ1=.P [ fqg/�,
L2 WD ˚

v 2 R ˝ H j v D P
y2Bnfxg ˛yy; ˛y 2 ZŒ1=.P [ fqLg/��:

and L WD L1 C L2 (a direct sum). Notice that since H=F is a P -group, L � H .
Further, since L=H is a fqL; qg-group and since H is qK-reduced, Remark 2.2 (3)
implies that L is qK-reduced so (1) holds.

Next, let K be a fqL; qg-reduced group and let � 2 Hom.L; K/. Then �.`/ 2T1
iD1 qiK, for all ` 2 L1, thus �.`/ D 0, since K is q-reduced. Similarly, �.`/ D 0,

for all ` 2 L2, since K is qL-reduced, so (2) holds.
We now prove (3). We pick y 2 B n fxg. Note that y is q-pure in L. By

construction M is torsion free. Since M=L is a q-group and since L is qK-reduced,
Remark 2.2 (3) shows that M is qK-reduced.

To prove (3) (c), notice that every element in M has the form

˛xx C ˛yy C
X

z2Bnfx;yg
˛zz;

with

˛x 2 ZŒ1=.P [ fqg/�; ˛y 2 ZŒ1=.P [ fqL; qg/�; ˛z 2 ZŒ1=.P [ fqLg/�:
Note that x is qL-pure in M , while z is q-pure in M , for all z 2 B n fx; yg. Since
jBj > 2, we see that M is neither q-divisible nor qL-divisible. Next, since M=H

is a fq; qLg-group, Theorem 2.5 (2) implies that End.M/ � ZŒ1=fqL; qg�. Let ' 2
End.M/, then there exists m

n
2 Q, with gcd.m; n/ D 1 such that n � 1 is a fqL; qg-

number and such that '.x/ D m
n

x, for all x 2 M . Suppose n ¤ 1 and let p 2 fqL; qg
such that p jj n. Since m

n
x 2 M , for all x 2 M also m

p
x 2 M , for all x 2 M and

then writing 1 D ˛m C ˇp, ˛; ˇ 2 Z we see that 1
p

x D ˛m
p

x C ˇx 2 M . Thus M

is p-divisible. This contradicts an earlier remark. Hence n D 1 and we see that
End.M/ D Z, so the proof of the proposition is complete.
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C. Constructing covers with arbitrarily large kernels. In this section we use
Proposition 2.6 above to construct an abelian group M and, for arbitrarily large
cardinal �, a cellular cover G ! M whose kernel K has cardinality �. The group M

will be as in Proposition 2.6 (3).
We start with a very simple lemma that allows us to conclude that the canonical

homomorphism G ! G=K from the abelian group G to the factor group G=K is a
cellular cover. The rest of the section is devoted to building arbitrarily large groups K

satisfying the conditions of the lemma (while G=K remains fixed).

Lemma 2.7. Let G be an abelian group and K � G be a subgroup. Set M WD G=K

and let c W G ! G=K be the canonical homomorphism. Assume that

(i) End.M/ Š Z;

(ii) K is a fully invariant subgroup of G;

(iii) Hom.K; M/ D 0 D Hom.G; K/.

Then End.G/ D Z and c is a cellular cover.

Proof. Let � 2 End.G/. By (ii), �.K/ � K so � induces O� 2 End.M/ defined by
O�.g C K/ D �.g/ C K. By (i), there exists n 2 Z such that O� is multiplication by n.
Thus the map g ! .�.g/ � ng/ is in Hom.G; K/, so by (iii) it is the zero map and it
follows that � is multiplication by n. This shows that End.G/ Š Z.

Let now ' 2 Hom.G; M/. Then by (iii), '.K/ D 0, so ' induces O' 2 End.M/

defined by O'.g C K/ D '.g/. Thus by (i) there is n 2 Z such that '.g/ D ng C K,
for all g 2 G. Consequently, the map z' 2 End.G/ defined by z'.g/ D ng lifts ', so
any ' 2 Hom.G; M/ lifts. Since Hom.G; K/ D 0, [FGS, Lemma 3.6] shows that c

is a cellular cover.

Lemma 2.8. Let G be an abelian group containing subgroups K and yM such that
G D K C yM . Set M WD G=K and let c W G ! M be the canonical homomorphism.
Assume that

(i) K is a torsion free fully invariant subgroup of G;

(ii) K is an R-module for some subring R � Q and End.K/ D R;

(iii) M is torsion free and End.M/ Š Z;

(iv) Hom. yM; K/ D 0 D Hom.K; M/;

(v) K \ yM ¤ 0.

Then End.G/ Š Z and c is a cellular cover.

Proof. We use Lemma 2.7. It only remains to show that Hom.G; K/ D 0. Let
� 2 Hom.G; K/. By hypothesis (iv), �. yM/ D 0. By hypothesis (i), �.K/ � K,
so by hypothesis (ii) there exists r 2 R such that �.v/ D rv, for all v 2 K. Let
0 ¤ v 2 yM \ K. Then rv D �.v/ D 0, so since K is torsion free, r D 0, and it
follows that �.K/ D 0 and then � D 0.
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Proposition 2.9. Let Q WD fqK ; qL; qg be a set consisting of three primes. Let K

and L be abelian groups and assume that

(i) K is torsion free, it is Q n fqKg-reduced, and End.K/ D ZŒ1=qK �.

(ii) L and the element y 2 L satisfy (1)–(3) of Proposition 2.6.

Let 0 ¤ x 2 K be an arbitrary element, and let

G D .K ˚ L/ ˚.x�y/ ZŒ1=q�

be the group constructed in Notation 2.3, with K ˚L in place of L and x �y in place
of x. Set

H WD .x � y/ZŒ1=q� and yM D L C H:

Then G, K and yM satisfy all the hypotheses of Lemma 2.8. In particular, the canonical
homomorphism c W G ! G=K is a cellular cover.

Proof. Clearly G D K C yM . Now since .K C L/ \ H D hx � yi, it is easy to check
that

K \ yM D hxi: (I)

Note that L \ H D 0, because if g WD n.x � y/ 2 L \ H , then n.x � y/ 2 L, which
implies that nx 2 L. But K is torsion free and K \ L D 0, so n D 0 and then g D 0.
Thus yM D L ˚ H , also x D y C .x � y/ and H Š ZŒ1=q� by an isomorphism
sending .y �x/ ! 1, so by (I) and Remark 2.4, M Š yM=hxi Š L˚y ZŒ1=q�. From
hypothesis (ii) and Proposition 2.6 (3) it follows that

M is torsion free, M is qK-reduced and End.M/ D Z: (II)

Since K is qK-divisible, we conclude that

Hom.K; M/ D 0; (III)

and also, since M is qK-reduced, we have
T1

iD0 qi
KG D K, so

K is a fully invariant subgroup of G: (IV)

Next, since K is fqL; qg-reduced, Hom.L; K/ D 0, by Proposition 2.6 (2). Sim-
ilarly, since H is q-divisible, Hom.H; K/ D 0. Hence

Hom. yM; K/ D 0: (V)

Thus all hypotheses of Lemma 2.8 have been verified.

As a corollary to Proposition 2.9 we get Theorem 1 of the introduction.
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Theorem 2.10. Let � be any infinite cardinal. There exists an abelian group M

of cardinality � such that for any infinite cardinal � there exists a cellular cover
c W G ! M with jker cj D �.

Proof. Let Q WD fqK ; qL; qg be a set consisting of 3 primes. Let H be as in Theo-
rem 2.5 with jH j D �, and let K WD ZŒ1=qK � ˝ H . Since K=H is a qK-group, and
since H is Q n fqKg-reduced, Remark 2.2 (3) implies that K is Q n fqKg-reduced.
Further, by Theorem 2.5 (2), End.K/ D ZŒ1=qK �. Thus K satisfies hypothesis (i) of
Proposition 2.9.

Proposition 2.6 guarantees the existence of a group L of cardinality � as in hy-
pothesis (ii) of Proposition 2.9. Let G be as in Proposition 2.9 and set M WD G=K.
By Proposition 2.9 the canonical map c W G ! M is a cellular cover and since
ker c D K, jker cj D �. Also M Š L ˚y ZŒ1=q�, so jM j D � and the structure
of M is independent of the choice of K.
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