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1. Introduction and notation

Let S be a finite p-group for some prime p. If S is abelian, it is sometimes convenient
to represent the operation in S as addition. If p is odd and S has nilpotence class at
most two, then we may define new operations 4+ and [, ] on S under which S becomes a
Liering, by aconstruction of R. Baer (below). M. Lazard extended Baer’s construction
to the case in which p is arbitrary and S has class at most p — 1. Furthermore, Lazard
established a correspondence (Theorem 4.8 below) between these p-groups and finite
nilpotent Lie rings of p-power order and class at most p — 1, since one may recover
the group operation from the Lie ring operations. (Thus, this Lie ring differs from the
more commonly used Lie ring ([13], Definition 6.1), which may be defined for any
nilpotent group and which may be the same for non-isomorphic groups.)

Lazard’s correspondence has many applications ([13], Remark 10.29). Unfortu-
nately, examples (below) show that it is generally impossible to extend to a p-group S
of class at least p. However, in this paper, we show that one may associate to S a Lie
ring that reflects a large part of the structure of S in the case in which S is equal to a
product By B, ... B, of normal subgroups of class at most p — 1, e.g., normal abelian
subgroups. We do this by making a slight change in the definition of the operations.
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In the Lazard correspondence for a given group the Lie ring operations are defined
by formulas
a+b=nhy(a,b) and [a,b] = hy(a,b),

where each of hj(a, b) and ha(a, b) is a product of elements equal to a or b or to a
commutator in @ and b raised to a rational power (as defined below). However, /1,
and /1, need not be well defined in a p-group of class at least p. We give below a
family of examples in which &, (x, y), but not /11 (x, y), is well defined for some pairs
of elements x, y. More generally, there are conditions under which %5 (x, y), but
not /17 (x, y), may become well defined by multiplying its product formula by some
powers of commutators ¢” for which the choice of x and y yields ¢ = 1. Therefore,
in this paper (in Remark 5.9), we modify the product formula for /15 (a, b) in this way
to obtain a product /) (a, b) that is equal to s (a, b) for p-groups of class at most
p — 1, but is also well defined in some other situations. We then let [a, b] be 1) (a, b)
in these situations.

Lazard’s correspondence was originally inspired by a correspondence of Mal’cev
for infinite nilpotent groups (Theorem 4.6). Although its main applications concern
finite p-groups, it is stated in a more general form. Our main results, too, are stated
in a more general (and complicated) form in Section 6 of the paper. We also mention
some open questions (Remark 6.11 and below).

Our main results are the following (for [a, b] as above):

Theorem A. Suppose p is a prime and S is a finite p-group. Then [x, y] is well
defined whenever x and y are elements of (possibly different) normal subgroups of S
of nilpotence class at most p — 1.

In addition, suppose A and B are normal subgroups of S of nilpotence class at
most p — 1. Define + and [ ,] on A and B as in the Lazard correspondence. Then:

(i) for each u in A and v in B, the elements [u,v] and [v,u] lie in A N B, and
[v,u] = [u,v]™!, and
(ii) for eachu,u’ in A and v in B,

[u+u',v] =[u,v]+ [u,v] and [[u,u'],v] = [[u,v],u’] + [u, [, v]].

Theorem B. Suppose S is a finite p-group generated by a set 8 of normal subgroups
N of S having nilpotence class at most p — 1. Let W be the set-theoretic union of the
elements of 8. For each N in 8, define + on N by Lazard’s definition. For each u,
v in U, define [u, v] as in Theorem A.
Let E = End(8) be the set of all mappings ¢ from U to U such that, for each N
in8,
¢ maps N into N and induces an endomorphism of N under +.

Define addition and multiplication on E by

(@ +¢)(x) =¢(x)+¢'(x) and ($p¢')(x) = ¢(¢'(x)).
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Then E forms an associative ring, and hence also a Lie ring under the definition
[¢.8'] = 98" —¢'¢.
For each v in U, define a mapping ad v on U by
(adv)(u) = [u, v].

Then
(i) adv liesin E for each v in U,
(ii) for each N in 8 and each v, w in N, ad(v + w) = adv + ad w,

(iii) for v, w in U,
[ad v,ad w] = ad[w, v] = —ad[v, w], and
adv=adw iff v=w (mod Z(S)),

(iv) the additive subgroup L(8) of E spanned by the mappings ad v for v in U is a
Lie subring of E, and

(V) for L(8) as in (iv), each element of ¢ of L(8) satisfies
d([u,v]) = [p(u),v] + [u, ¢ ()], foreveryu, vinU.

Note that in Theorem B, we associate to S a Lie ring, L(&), although it may
be impossible to make S itself into a Lie ring by Lazard’s methods. The elements
of L(¥), together with the identity mapping on U, generate an associative subring
of E(&) that contains the inner automorphism group of & as a multiplicative subset
(Remark 6.9). The condition that § generate S in Theorem B is used only for the
second part of conclusion (iii).

Part (ii) of Theorem A shows that, for each v in U and each N in &, ad v induces
a derivation of N, for N regarded as a Lie ring under Lazard’s definition. Part (v) of
Theorem B generalizes this.

To illustrate our methods, consider the case in which S has class two. For p odd,
Baer’s construction ([1], Theorem B.1) gives

=xy(y.x)? and [r.y] = (x.y).

N—
(Sl

X+y=x2yx

1,2 . 1 — .
where (uf) = u and (u, v) is the group commutator u Ly=lyv, forall u,v in S.

For p = 2, [x, y] is still well defined, but x + y is not, in general. (For groups of
larger class, usually [x, y] does not coincide with (x, y).)

An explanation for our results is that one almost seems to need S (or the sub-
group generated by x and y) to have class at most p — 1 in order to define x + y,
while one needs less to define [x, y]. For example, the original definition of x + y
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(in [14], Théoreéme 11.2.4, pp. 155-156) uses a formula for products x’ y* (for every
integer 7) that is a product of factors ¢; in various terms yi; (S) of the lower central
series {yr(S)} of S, raised to powers f;(¢) that are polynomials in ¢ with rational
coefficients. (Here, k; tends to infinity as i increases.) For the factors ¢; inside (but
not outside) y,(.S), the rational coefficients may have denominators divisible by p,
so that cifi @ may be undefined. This is why we assume that y,(S) = 1 (ie., S
has nilpotence class at most p — 1) for the Lazard correspondence. In contrast, the
bracket product [x, y] is related to the formula for (x?, y*), which may be expressed
similarly as a product of powers of extended commutators cih i@ in which the rational
coefficients of %; () may have denominators divisible by p only if ¢; has weight at
least p in x or at least p in y. This was shown by T. Easterfield (in Theorem C of [5])
and is illustrated by the formulas above for Baer’s construction.

For example, suppose S has class at most p — 1. For a fixed element y of S, define
§(x) = (y 'xy) + (x71) forevery xinS.

Define powers of § by composition and regard S as a Lie algebra over Z/|S|Z. Then
(Corollary 6.2) for every x in S,

[x, 7] = 8(x) = 82(x)/2 + -+ + (=1)P 2877 () /(p = 1). (1.1

(Thus, [x, y] = (Logy)(x) for y given by y(x) = y~!xy for all x in S.) It turns

out that if S has class greater than p — 1, we may define [x, y] by (1.1) if we have the
situation of Theorem A (with x in A and y in B).

A special case of our results appears in the Section 5 of [7]. It concerns a p-group
S of class p. Here, every element x lies in a normal subgroup N, = (x, S’) of
class at most p — 1, so that L(§) is isomorphic to the Lazard Lie ring of S/ Z(S) for
8 ={Nx | xin S}.

These results lead to further questions. In the Lazard correspondence, the entire
group S becomes a Lie ring. In Theorem B, in effect, we turn each subgroup B in §
into a Lie ring and then embed BZ(S)/Z(S) into the Lie ring L(&). Then L(¥)
is spanned additively by the Lie rings BZ(S)/Z(S). It would seem preferable to
construct an analogous Lie ring in which we embed the Lie rings B, but we do not
know whether this is possible. Some other questions are given in Remark 6.11.

It is easy to see that in the original situation of Lazard’s correspondence, the
elements of order 1 or p in the group S form a Lie subring of S (and thus a subgroup
of §). Therefore, Lazard’s correspondence cannot be extended to a dihedral group of
order 8. Similarly, for any prime p, the Sylow p-subgroup of the symmetric group
of degree p? (i.e., the wreath product of a group of order p by a group of order p)
provides an example of a p-group of class p to which the Lazard correspondence
cannot be extended.

This paper relies heavily on the proof of the Mal’cev and Lazard correspondences
given in [13], which uses the free nilpotent associative (Q-algebra A of some arbitrary
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class c. After some preliminary lemmas in Section 2, we devote Sections 3 and 4 to
steps in the proof of the Lazard correspondence and to extensions of these steps. In
Section 5, we study a quotient algebra A/[; of A. The derivation of our main results
from properties of A/1; is analogous to the derivation of the Lazard correspondence
from properties of A. Thus, we use Sections 3 and 4 as a basis and as a model for
Section 5. Finally, in Section 6, we obtain our main results and some technical results
intended for further applications.

Our notation is mainly standard and taken from [9] and [13]. We mention some
exceptions and some possibly unfamiliar notation.

Suppose G is a group and H and K are subgroups of G. We write H <1 K to
indicate that H is a normal subgroup of K. For an element x of G, we let x be the
set of all elements x”(= y~!xy) as y ranges over H. For elements x and y of G,
we let (x, y) be the commutator x ! y~!xy. Here we differ from [9] and [13], which
denote the commutator by [x, y], because we often need to write [x, y] for the bracket
product of x and y given by the Lazard correspondence or by the formula /2 (x, y)
of Remark 5.9.

As in [9] and [13], we use left-normed commutators, so that (x, y, z) denotes
((x, ), z) for elements x, y, z in a group G, and likewise for (x1, x2,...,X,). We
also let

(y.x:0) =y and (y,x;n+1)=((y,x;n),x)

for every positive integer n. For a subset 7" of G, we let
(T.x) =((t.x)|teT)

and define subgroups (7, x;n) similarly. We adopt analogous notation for bracket
products where a Lie ring is involved.

Now we take some further definitions and notation from [13] (especially pp. 18
and 121-122) that concern mainly infinite groups.

A group G is torsion-free if the identity is the only element of finite order in G it
is divisible if, for every element 4 of G and every positive integer 1, there exists an
nth root of 4 in G, i.e., an element g in G such that g" = h.

Now suppose G is nilpotent, torsion-free, and divisible, and 4 € G. Then ([13],
Lemma 3.16) for every positive integer n, h has a unique nth root in G. A short
argument shows that for every rational number r, there exists a unique element g in G
such that

gk =n", forall integers m, k such thatk # Oandm/k =r; (1.2)
we denote g by h". Moreover, for all , s in Q,
WS =h"h* and (h")* =h'"S. (1.3)

Following [13], p. 18, we call G a Q-powered group. If the operation of G is
written additively, we usually write r - & or rh for h".
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Conversely, a Q-powered group must be torsion-free and divisible. Thus, a nilpo-
tent group is Q-powered if and only if it is torsion free and divisible.

Now let 7 be a set of primes. An integer is said to be a 7 -number if it is a product
of powers of primes from 7 (we regard 1 as a w-number.) A group G is w-divisible
if, for every w-number k, every element in G has a kth root in G. A group G is
1 -torsion-free if it has no non-identity elements whose orders are -numbers.

Let Q, be the ring of all rational numbers whose denominators are 7 -numbers.

Suppose G 1is a nilpotent group. If G is w-divisible and z-torsion-free, then
Lemma 10.18 of [13] and our argument above show that for every element 4 of G and
every number r in Q, there exists a unique element g of G (denoted by /") such that
(1.2) is valid. Moreover, (1.3) is satisfied for all , s in Q. Thus, G is a Q-powered
group, as defined in [13], pp. 18-19. Since a Q,-powered subgroup is obviously
m-torsion-free and w-divisible, we see that a nilpotent group is Q,-powered if and
only if it is w-torsion free and s-divisible. In the special case that & consists of all
primes, then Q, = @, and the properties of being w-divisible and 7 -torsion-free
coincide with the properties of being divisible and torsion-free.

For a subgroup H of a nilpotent group G, the set of all roots in G of elements
from H is denoted by

6VH ={g € G| g" € H for some positive integer n}.
Likewise, we let
GV H ={g e€G|g" e H for some w-number n}.

If there is no danger of confusion, we may write «/ H and %/ H for g/ H and ¢ V H.

2. Q-powered groups and generalizations

In this section, we prove some preliminary results, mainly about infinite groups.
The following elementary result from ([9], p. 19) will be useful:

Lemma 2.1. Suppose x and y are elements of a group G and z = (x, y) commutes
with both x and y. Then

(x',y/) =zY forallintegersi, j.

Lemma 2.2. Let it be a set of primes and H be a subgroup of a nilpotent Q . -powered
group G. Assume H has nilpotence class at most c.
Then Y H is a Qy-powered subgroup of G of nilpotence class at most c.
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Proof. Let Hy = %/H. By Theorem 10.19 of [13], H, is a subgroup of G. Since G
is a nilpotent Q,-powered group, H is nilpotent and r-torsion-free. Moreover, G
is w-divisible and, therefore, H is w-divisible. Hence, H; is a Q ,-powered group.

One may use Theorem 10.20 of [13] to show that H, has class at most c, but we
give a short direct proof. Let d be the nilpotence class of H,;. We may assume that
d > 1. Then y;341(Hz;) = 1 and, by Lemma 3.6 of [13], there exists an iterated
commutator

h=(hi,ha....hq)

of elements hy, ko, ..., hg of Hy suchthat h # 1.

Foreach j = 1,2,...,d, there exists a w-number k(j ) such that hf(j) liesin H.
Letk = k(1)k(2)...k(d). By Lemma 6.13 of [13],

(WX B5D D) = (hy ha, . ha)* = R

As G is m-torsion-free and i # 1,h¥ # 1. Therefore, yz(H) > 1. As H has
class at most ¢, we have d < ¢ as desired. O

Lemma 2.3. Let w be a set of primes and H and K be subgroups of a nilpotent
group G. Assume H <1 K. Then

YH < VK.

Proof. This is part of Theorem 10.19 of [13]. O

The remaining results in this section are not necessary for applications to finite
groups, except for the easy special cases in which G is finite.

Lemma 2.4. Suppose H and K are subgroups of a nilpotent group G. Let
L=(HK)={((x,y)|xe HyeK).

(a) If K is w-divisible and L < Z(G), then L is w-divisible.

(b) If H and K are both normal in G and m-divisible, then L is normal in G and
m-divisible.

Proof. (a)Here, L is abelian. Take any x in H and y in K, and let k be a 7r-number.
We claim that (x, y) has a kth root in L.

Since K is m-divisible, there exists z in K such that z¥ = y. Since (x, z) lies in
Z(G), Lemma 2.1 yields

(x, ) = (x,2) = (x, ).

Thus, (x, y) has a kth root in L, as claimed. Since L is abelian and is generated by
elements of the form (x, y) above, L is w-divisible.
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(b)Let M = (H, K). Since G is nilpotent, sois M. Let d be the nilpotence class
of M, and let
l1=ZM)<ZiM)<---<ZsgM)=M

be the upper central series of M. Take r minimal such that L < Z,(M). Since
H,K <1 G,wehave L < G ([9], p. 18).

We prove that L is m-divisible by induction on r. Part (a) handles the case in
which r is 0 or 1.

Now assume r > 2. Then L is not contained in Z(M ). Take s minimal such that

LNZ(M)>LNZ(M).
Then
I<(LNZ{(M),M)<LNZ;1(M)=LNZ(M).

(This shows that s = 2, as is well known.) Let

L*=LNZ{(M)andY = (L*, H)(L*, K). @2.1)

ThenY < LN Z(M).
Since Y is abelian and (L*, H) and (L*, K) are rr-divisible by (a),

Y is w-divisible. (2.2)

Let M = M/Y andlet X = XY/Y for every subgroup X of M. Since H
and K are normal in G and 7-divisible, H and K are normal in M and 7-divisible.
Moreover,

L=(HK)=(H,K). (2.3)

It is easy to see that (L*, M) = 1 (infact, Y = (L*, M) ). Therefore, by (2.1) and a
short argument, we have 3 3
L = Zr—l (M)

By (2.3) and the induction hypothesis,
L is -divisible. (2.4)

Take any element x of L and any r-number k. By (2.4), there exists y in L such that
7% = %. Then xy~* lies in Y. By (2.2), there exists z in ¥ such that z5¥ = xy~*.
Since ¥ < Z(M),

x=zFyk = (@zp)k.
Thus, L is w-divisible, as desired. OJ

Corollary 2.5. Suppose G is a w-divisible nilpotent group. Then y,,(G) is -divisible
for every positive integer n.
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Proposition 2.6. Suppose G is a nilpotent group generated by m-divisible subgroups.
Then

(a) Z(G) is w-divisible, and
(b) G is m-divisible.

Proof. Let Z = Z(G).
(a)Let N = ¥/Z. Since Z < G, Lemma 2.3 yields

N=%Y7Z<a%YG=0¢G.

Assume N > Z. We work toward a contradiction. Since N < G and G is
nilpotent,

1<N/Z<G/Z and 1<(N/Z)NZ(G/Z)= (NN ZxG))/Z.

Take x in N N Z5(G) such that x lies outside Z.

Since N = %/Z, x*¥ € Z for some m-number k. Since x lies outside Z, and G
is generated by m-divisible subgroups, some m-divisible subgroup H of G does not
centralize x. Take y in H such that y does not centralize x. Take z in H such that

k
¢ =y,
Since x lies in Z5,(G), the element (x, y) lies in Z. Therefore, by Lemma 2.1,

(x,y) = (x,2F) = (x,2)" = (x%,2) = 1,

since x* lies in Z. This contradicts the choice of y. Thus, Z is w-divisible.
(b) We use induction on the nilpotence class of G.
For every rr-divisible subgroup H of G, the group HZ /Z is w-divisible. There-
fore, by induction,
G/ Z is w-divisible. (2.5)
Take any element x in G and any w-number k. By (2.5), there exists y in G such
that y*¥ = x (mod Z). Then xy~* lies in Z. By (a), xy~* = z¥ for some z in Z.
Then
x =Mk = @)k
Thus, G is w-divisible. O

3. Group operations on algebras

In this section, we describe some relations among associative algebras, Lie algebras,
and groups, taken mainly from [13], Chapters 9-10, that are extended in Sections 4
and 5.

All rings and algebras that we discuss will be associative unless otherwise speci-
fied. We use the following conditions:
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Hypothesis 3.1. (i) R is a commutative ring with unity element 1.
(ii) B is an algebra over R with unity element (also denoted by 1).
(iii) A is a subalgebra (without unity element) of B over R.

(iv) ¢ is a positive integer.

(v) A isnilpotent of class atmost ¢, i.e.,ajas ...ac+1 = Oforallay,as, ..., dc+1
in 4.

Suppose u is an element of B in Hypothesis 3.1. We define a mapping ad(u) on B
by ad(u)(x) = xu—ux.Ifuisin A, thenu¢t! = 0 by condition (v). Assume further
that, for some positive integer d,

d! is invertible in R and u?+! = 0. (3.1)

Then we may define

u? u?

Exp(u) = " =1+M+2—!+"'+m

and 5 J
Log(1 + u) :u—%-l-----l-(—l)d“%.

It is easy to see that (Exp(u) — 1)4*! = (Log(l + u))¢*' = 0. By a proof
similar to the usual proof for real numbers (e.g., by a small change in the proof of
Proposition 2.1 of [2]), we have:

Lemma 3.2. Suppose u is in B, d is a positive integer, d! is invertible in R, and
u?tl = 0. Then

u = Log(Exp(u)) and 14 u = Exp(Log(l + u)).
We sometimes use the following assumption.

Hypothesis 3.1’. (i) Hypothesis 3.1 is satisfied.
(ii) d is a positive integer and d ! is invertible in R.
(iii) u is an element of B andu’bu?*1~" = Oforallbin B andfori = 1,2,...,d.

Note that, by (iii) in Hypothesis 3.1/, udtl = ylud = 0.
The following result appears as Lemma 4.5.1 in [3].

Lemma 3.3. Assume Hypothesis 3.1'. Let y = Exp(ad(u)) and let (y — 1)(x) =
y(x) — x for all x in B. Then

(a) ad(u) = Log y and (ad(u))?*! = (y — 1)4+! =0,
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b) y(x) = e H“xeY, forall x in B, and

(©) y(e*) = "™ whenever x is in B and x4+! = 0.

Proof. Let E be the ring of all endomorphisms of B as a module over R. Then E is
an algebra over R, and E contains the mappings 7 (1) and /(1) on B given by

r(u)(x) = xu, [(u)(x) = ux.

Clearly, ad(u) = r(u) — I(u) and r(u)l(u) = [(u)r (u).
By Hypothesis 3.1’and the Binomial Theorem,

V(M)d+1 — l(u)d+1 — (ad(u))d+1 = 0.

Therefore, by Lemma 3.2 (applied to E in place of B), ad(u) = Log(Exp(ad(u))) =
Log y.
Since r(u)l(u) = I(u)r(u),
y = ead(u) — er(u)—l(u) — e—l(u)er(u)_
Moreover, y—1 is an element of E and since (r (u)—[(1))¢ ! = 0 (by Hypothesis 3.1/
and the Binomial Theorem), (y — 1)4*! = 0.
For x in B,

d
er(u)(x) Z (r(u)) (X) Z

i=0 i=0

and similarly e /@ (x) = e7¥x and y(x) = ®(x) = e ¥xe¥.

Now suppose x4 *1 = 0. Since y is conjugation by e, it is an algebra automor-
phism, and (y(x))4*! = 0.

Then

()’(x)) V(x )
e?® = Z Z = y(e¥). O
In B, let 1 + A be the subset {1 + x | x in A}. For each x in A, the element 1 4 x
has a multiplicative inverse because x¢*! = 0 and
A+t =1—-x+x—x3 4+ + (=D

Now it is easy to see that 1 + A is a group under multiplication.
Note that B becomes a Lie algebra B~ over R under the bracket multiplication

[u,v] = uv —vu,

and A becomes a Lie subalgebra A~ of B™.
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Now suppose also that ¢! is invertible in R. Then, for every u in A, since uctl =,
we see that Exp(u) and Log(1 + u) are well defined. Further, u = Log(Exp(u)) and
1 +u = Exp(Log(1 + u)), by Lemma 3.2. Therefore, the function Exp from A to
1 4+ A is a bijection for which Log is the inverse function. Since 1 4+ A is a group
under multiplication, this bijection induces a group operation x on A4, given by

Exp(u x v) = (Expu)(Expv) = e¥e”, e,
u x v = Log(e*e?).

Itis easy to see that, under *, O is the identity element and the inverse of an element
u is —u. For each natural number n, the nth power of an element u under « is the
element nu in A.

For a set w of primes, recall that QQ, consists of all rational numbers that can
be expressed in the form m/k, where m and k are integers and every prime divisor
of k lies in w. For the next result, note that if ¢! is invertible in R, then A may
be regarded as an algebra over the ring Z[1/c!] obtained by adjoining 1/c! to the
ring Z of integers. However, Z[1/c!] coincides with Q. for the set o of all primes
not exceeding ¢, since QQ, is obtained from Z by adjoining 1/p for every such
prime p.

Theorem 3.4 (Baker—Campbell-Hausdorff (BCH) formula; [13], Theorem 9.11 and
Remark 9.17). Assume Hypothesis 3.1. Suppose c! is invertible in R. Let o be the
set of all primes not exceeding c, and regard A as an algebra over Q.

Then, for u and v in A,

u * v lies in the subalgebra of A~ over R generated by u and v,
and is given by a formula H(u, v) over Q4 that depends only on ¢, not on u and v.

The formula in the theorem is given as (9.16) in [13], p. 109; in particular ([4],
p- 116), it gives

1
u*v:u+v+§[u,v]+w, (3.2)

where w is a linear combination over Q, of bracket products of weight at least three
inu and v.
Recall that for ¥ and v in B,

[v,u;0) =v and [v,u;n + 1] = [[v,u;n],u]

for every positive integer n, and that extended iterated commutators (v, u;n) in a
group are defined similarly.
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Proposition 3.5. Assume Hypothesis 3.1'. Let
y(x) = e “xe¥, forall xin B.
Then
(@) (ad))?*! = (y —1)?*! =0,y = Exp(ad(u)) and ad(u) = Log y and
(b) forallvin A,
y() =v+ [v,u]l+---+ [v,u;d]/d!

and
o] = (7 = D) = 5 = 170) + -+ DI L = D7)

Moreover,
(c) if c!isinvertible in R, then for all v in A,

ulxvxu=ypQ),

1

where u™" is the inverse of u under x.

Proof. Lemma 3.3 gives (a), which gives (b).
To prove (c), take v in A and assume ¢! is invertible in R. Then

ulxvxu=u"l%@xru)=(—u)x Log(e’e") =

= Log(e ™ Exp(Log(e'e"))) = Log(e “e'e") =
= Log(y(e”)) = Log(e?™) = y(v), by Lemma 3.3. O

Proposition 3.6. Assume Hypothesis 3.1'. Suppose d is a positive integer, d! is
invertible in R, C is a subalgebra of A that is nilpotent of class at most d, T is a Lie
subalgebra of C~, and « is an automorphism of T
For each positive integer i, let (« — 1) (T') be the image of the additive group of T
under the endomorphism (o — 1)!. Then:
(a) C isa group under » and T is a subgroup of C,
(b) o is an automorphism of T under x, and

(¢c) in the semi-direct product of T (under x) by the cyclic group generated by «,
the subgroup (T, a; i) contains the set (o — 1)' (T') above, for every i.

Proof. (a) Since d! is invertible in R and C is nilpotent of class at most d, C forms
a group under x. The BCH formula (Theorem 3.4) shows that T is closed under .
Since T contains the negatives of its elements, it contains its inverses under . There-
fore, T is a subgroup of C.

(b) This also follows from Theorem 3.4.

(c) This is an extension of Lemma 6.5 of [8], but follows from the proof of that
lemma. O
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4. The Mal’cev and Lazard correspondences

To prove our main results, we need a variation of the Mal’cev and Lazard corre-
spondences. Here, we present part of Khukhro’s exposition of these correspondences
(Chapters 9 and 10 of [13], especially Sections 9.1 and 10.1 in pp. 101-104 and
113-121), together with some applications.

Take positive integers ¢ and n such that n > 2. (We will later choose n to
be 2 or 3, depending on our applications.) Let A be a free associative (Q-algebra of
nilpotency class ¢ with free (non-commuting) generators xj,...,X,. Then A has a
basis consisting of all monomials of the form

XiyXiy oo Xip, 1=<k=<c, 1=<ij<nforj=12... k.

Thus, A is homogeneous: A = A; & -+ & A, where A; is the homogeneous
component of A4 of degree i.

The bracket multiplication [x, y] = xy — yx defines the structure of the Lie Q-
algebra A~ on the additive group of A; and x1, ..., X, generate a Lie ring (Z-algebra)
L inside A~ and a Lie algebra Q L over Q. Then L is a free nilpotent Lie ring of class ¢
with free generators x; (and, QL is a similar free nilpotent Lie (Q-algebra). Both L
and Q L are homogeneous with components Ly = L N Ax and QL = QL N Ag
and are multihomogeneous with respect to the free generators x;. Recall that certain
Lie products of x1, ..., x, are called basic Lie products. By Theorem 5.39 of [13],

the additive group of L (respectively, of QL) has a free Z-basis
(respectively, a Q-basis) consisting of the basic Lie products in 4.1)
X1,...,Xn of weight at most c.

We adjoin an outer unity 1 to A to form the associative Q-algebra B = Ay & A4,
where 1 spans the one-dimensional algebra Ag. Then every ideal of A4 is an ideal of B
and, as in Section 3, the set

Il+A={14alacA}

forms a group under multiplication. Moreover, Hypothesis 3.1 is satisfied with
R =Q.

Since ¢! is invertible in Q and A is nilpotent of class ¢, Hypothesis 3.1’ is satisfied
for every element u of A if we take d to be c. Therefore, we may define e* = Exp(u)
and Log(1+u) for every u in A, and the function Exp from A4 to 14 A is a bijection for
which Log is the inverse function. This bijection induces a group operation * on A,
given by

u v = Log(e*e")

Asin [13], let H(u,v) = u % v for all u, v in A. Since (Theorem 3.4) H(u,v) is a
linear combination of u, v, and Lie ring commutators involving u and v with rational
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coefficients, QL is a subgroup of A under . Fori = 1,...,n,lety; = e* — 1 —x;,

so that
2 c

) X X
1+x,~+yl-=ex‘=1—I—xi+2—"+-~+c—"- 4.2)

Then, for each i, y; is a linear combination of powers of x; of degree at least 2.
Let F be the multiplicative subgroup of 1+ A generated by the elements e*!, ..., e*".

For each positive integer k, let A% be the sum Ay @ --- @ A.. (Thus AK = 0
if k > ¢.) Note that A¥ is an ideal of 4 and of B. Because we make heavy use
of both group commutators and Lie ring commutators, we denote the commutator of
two group elements a, b by

(a,b) =a ‘b lab,

unlike [13], which uses the notation [a, b] for both group commutators and Lie ring
commutators. For any group G and positive integer k, we let y; (G) be the kth term
of the lower central series of G:

y1(G) =G, and yi4+1(G) = (G,yi(G)) fori > 1.

As in [13], we consider a commutator x to be an abstract bracket product of
variables that may be all taken from a Lie ring or all taken from a group. In the latter
case, we interpret each bracket product [a, b] within x to be a group commutator
(a,b). (However, at the end of Section 4 and afterward, we will interpret a bracket
product [a, b] of group elements differently.)

Now we quote two important results from [13].

Lemma 4.1 (Special case of Lemma 9.1 in [13]). (a) Suppose that k is a commutator
of weight k. Then the group commutator k(e*?), the value of k on the elements e*i
in F, is equal to 1 + k(x;) + A, where A € AT and k(x;) is the corresponding Lie
ring commutator, the value of k on the elements x; in L.

(b) Suppose that g = ]—[j K;Cj (mod yx4+1(F)), oj € Z, where the k; = k;(e*')
are group commutators of weight k inthe e*i. Theng = 1+ Zj ajkj(x;)+ A, where
A € AT and the k; (x;) are the corresponding Lie ring commutators in the x;.

Theorem 4.2 (Special case of Theorem 9.2 of [13]). The group F is free nilpotent of
class ¢ with free generators e*i.

It is easy to see that the group A under the operation « is a nilpotent Q-powered
group in which a power u” is simply the scalar multiple ru. The isomorphism of A
under x onto 1 + A under multiplication shows that 1 + A is a Q-powered group.

Remark 4.3. Let F'* be the set of all roots of elements of F in1 + A4, i.e.,

F*=+F={gel+A|g" e F for some positive integer n}.
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Then ([13]. Theorem 9.19 and Corollary 9.22),

F* is a subgroup of 1 4+ A, and is a free nilpotent QQ-powered group
of class ¢ freely generated by the elements e*i .

Therefore, for any nilpotent Q-powered group G of class at most ¢ and elements
g1,--.,8&n of G, there exists a unique homomorphism of F* into G that maps e*i to
gi foreachi.

Recall that L is the Lie subring of A™ generated by xy, ..., x,. Theorem 10.4 of
[13] yields:

Proposition 4.4. We have
F* = e = {e" |uinQL}.

Remark 4.5. Now let f; = e* fori = 1,...,n. We first consider the case in which
n = 2. There F = (e*!,e*2) = (f1, f2). Since x; + x, and [xy, x»] lie in L (and
hence in QL), e*1+*2 and e[*1-*2] lie in F*. Thus, we may express them as “words”
in f1 and f, obtained by taking inverses, products, and rational powers:

1Y = hy(fi, o) and  eFU¥ = ny (£, £). 4.3)

Now consider any nilpotent Q-powered group G of class at most ¢. For any
elements u and v of G, there exists a unique homomorphism ¢ of F* into G such that
¢(f1) = u and ¢(f2) = v, by Remark 4.3. If we evaluate the “words” & and h;
on ¥ and v in the natural manner, we see that

hi(u,v) = p(e¥1772) = ¢(h1(fi, f2)) and
ha(u, v) = ¢y = p(ha(f1. 1))

This allows us to define operations + and A[ , j on G by

(4.4)

u+v=~h(uv) and Tu vT = hp(u,v), forallu,vinG.
We also define 7 - u to be u” for r in Q and u in G. Since

hi(fa. f1) = €250 = M1H%2 =y (f1, fo),

we obtain for u, v in G,

vdu=hiu) =¢hi(fo. /1) = dhi(f1. f2) = hi(u,v) =u + v.
Likewise, as

eX1:X1] — 00 — | gnd el*2x1] — p=lx1x2] — (e[xlsXZ])_l’

A PO A A
we obtain [u,u] = 1 and [v,u] = (1) - [u,v] = [u,v] .
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Similar arguments (some with 7 = 2 and some with n = 3) show that, under +
and A[,j and scalar multiplication as above, G becomes a nilpotent Lie algebra Lg
over Q with class at most ¢ ([13], pp. 116-117). In particular, the identity element of
G is the zero element of Lg and the inverse of each element u of G is the element
—u = (=1)-uof Lg.

Remark 4.5 gives part of the notation and proof for the Mal’cev correspondence,
which is proved in full as Theorem 10.11 in pp. 116-118 of [13]:

Theorem 4.6 (Mal’cev correspondence). Let ¢ be a positive integer. For every nilpo-
tent Q-powered group G of class at most c, the corresponding nilpotent Lie Q-algebra
Lg of class at most c is defined on the same underlying set Lg = G, with Lie
Q-algebra operations

a+b=h(a,b), la,b]=hy(a,b), ra=a"
forr € Q.

Conversely, for every nilpotent Lie Q-algebra M of class at most c, the corre-
sponding nilpotent Q-powered group Gy of class at most ¢ is defined on the same
underlying set Gyy = M, with group operations

a-b=H(a,b) and a" =ra forr € Q,

where H(a, b) is given by the Baker—Campbell-Hausdorff (BCH) formula as in Theo-
rem 3.4.

These transformations are inverses of one another: Lg,, = M as Lie Q-algebras
(that is, not only sets, but all operations coincide), and, similarly, G, = G as
Q-powered groups.

(For G as in Theorem 4.6 above, we write + and [, ] for the Lie operations instead
of + and A[ , T when there is no danger of confusion.)

Since the ideas in the proof of Theorem 4.6 are used in the proof of the Lazard
correspondence and our main results, we have mentioned some of these ideas in
Remark 4.5, and we mention some more now.

Returning to the original case in which G is the group F* = @ for some n, we
obtain ([13], p. 114) for all x, y in QL,

e Fe¥ =" and [e¥,e?] = eV, 4.5)
Since we have defined
r-e* =(e*) =& foralle’in F*, (4.6)

we see that the Lie Q-algebra L p» = L, oz onthe set F'* is isomorphic to the original
Lie (Q-algebra Q L under the logarithm mapping, which takes e* to x for each x.
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The inverse of the logarithm mapping in the previous paragraph is the exponential
bijection that takes each element x of QL to the element e* of F*. We used the
exponential mapping earlier to define the group action » on A and on QL:

xxy = H(x,y) =Log(e*e”) (and Exp(x *x y) = (Expx)(Expy)). 4.7)

The definition forces QL under = to be isomorphic to F* under multiplication.
Similarly, the BCH formula can be applied to define a product u x v = H(u,v)
for elements u, v in any nilpotent (Q-algebra M of class at most ¢c. Moreover, take
n = 2 and recall that QL is a free nilpotent Lie QQ-algebra of class ¢ with free
generators x; and x,. Then for any u,v and M as above, there is a unique Lie
Q-algebra homomorphism ¢ that takes x; to # and x5 to v. Clearly,

uxv=H®u,v) =¢(H(x1,x2)).

We may show above that under x, M satisfies the associative law and is a nilpotent
Q-powered group of class at most ¢ (with u” in the group equal to r - u in the Lie
algebra for r in Q and u in M) by taking n = 3 and using arguments similar to those
in the proof above that L is a Lie Q-algebra for a suitable group G ([13], p. 178).
We denote the set M under the group operation by Gs. Thus, by (4.7),

Gor =~ F* = QL

Now let us consider the special case in which M is L g+ ,i.e., the set F* considered
as a Lie Q-algebra. We saw in (4.5) and (4.6) that for all ¢*, e” in F* and r in Q,

rx

e Fe¥ =", [ex,ey]=e[x’y], and r-ef=e

Therefore, the mapping Log : L: F* — QL isaLie Q-algebraisomorphism. Hence,
fore*,e? in Lp«,

Log(e* x ¢”) = Log(e*) x Log(e”) = x x y = H(x,y) = Log(e*e”),

by (4.7), i.e., e* x ¥ = e*e?. Thus, L p» under x and F* under its usual multipli-
cation are the same set with the same operation: G ., = F*. This is a special case
of the Mal’cev correspondence. In particular, the functions /; and /4, in the formula
(4.4) together give an inversion of the BCH formula by giving a Lie algebra structure
on a group.

The derivation of the Mal’cev correspondence by algebraic means above was
obtained by M. Lazard, inspired by Mal’cev’s orginal work, which used analytic
methods ([14], p. 104). Lazard then extended the Mal’cev correspondence in the
following way.

By Theorem 4.2, F is a free nilpotent group of class ¢ with free generators
f1...., fu. Recall that F is a subgroup of the Q-powered group F*. For every
set of primes 7, we define

F, = ¥F ={g € F* | gk € F for some 7-number k}.
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Note that F* is a Q,-powered subgroup. By Lemma 2.2 above and Theorem 10.20
of [13], we obtain:

Theorem 4.7. Let it be a set of primes. Then Fy is a subgroup of F*, and is the free
nilpotent Q -powered group of class c freely generated by f1, ..., fu.

Now let o be the set of all primes not exceeding ¢ and 7 be a set of primes
containing o. Because the coefficients in the BCH formula (Theorem 3.4) lie in Q,
(and hence in Q), the Lie Q,-algebra Q, L is closed under the group operation *.
By [13], Theorem 10.22,

Fr = {e* | x € QL. (4.8)
Recall from (4.3)
1Y = hy(fi, o) and el = ny (£, £).

Since x; + x5 and [x1, x3] liein L, hence in Q, L,

hi(f1, f>) and ha(f1, f>) lie in €@ L.

Now we may apply our previous arguments to QQ,-powered groups and Lie al-
gebras over Q; instead of Q-powered groups and Lie algebras over Q. We obtain
(Results 10.11 and 10.13 and p. 124 of [13])

Theorem 4.8 (Lazard correspondence). Let ¢ be a positive integer and w be a set
of primes containing every prime not exceeding c. For every nilpotent Q. -powered
group G of class at most ¢, the corresponding nilpotent Lie Q. -algebra Lg of class
at most ¢ is defined on the same underlying set Lg = G, with Lie Q-algebra
operations

a+b=h(ab), [a b]l=hyab), ra=a
forr € Q.

Conversely, for every nilpotent Lie Q -algebra M of class at most c, the corre-
sponding nilpotent Q. -powered group Gy of class at most ¢ is defined on the same
underlying set Gy = M, with group operations

a-b=H(a,b) and a" =ra forr € Q.

These transformations are inverses of one another: Lg,, = M as Lie Q-alge-
bras (that is, not only sets, but all operations coincide), and, similarly, G, = G as
Qr-powered groups.

Corollary 4.9. Let w be a set of primes containing every prime not exceeding c.
Let A* be a nilpotent algebra over Q, of class at most ¢ contained in an algebra B*
with 1 over Q. Let 1 + A* be the set {1 +a | a € A*}. Then
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(a) 1+ A" ={e? |a e A"},

(b) 14 A* is a nilpotent Q. -powered group of class at most ¢ under multiplication,
and

(c) foreverya,a’ in A* andr in Q,
hl(ea’ea’) — ea—l—a” hz(ea’ea’) — eaa’—a’a’ and (ea)r — o,

Proof. Let R = Q. Note that Hypothesis 3.1 is satisfied with A* and R1 & A* in
place of A and B. Our discussion after Lemma 3.3 shows that 1 + A* is a group
under multiplication and that (a) is valid.

Let us consider A* as a Lie R-algebra under the bracket multiplication given by
[a,a’] = aa’ —d’a. Since A* is nilpotent of class at most ¢, A* is a nilpotent Lie
R-algebra of class at most c. By the Lazard correspondence, A* becomes a nilpotent
R-powered group G4~ of class at most ¢ under the operation » (given by the BCH-
formula), and then for a,a’ in A* (regarded as elements of the group G4») and r

in Qo,
hi(a,ay =a+d', hy(a,d)=la,a'l=ad" —d'a, and a" =ra. (4.9)
By our discussion after Lemma 3.3, the group operation * is also given by
Exp(a » b) = (Expa)(Expb),

and the exponential mapping defines a group isomorphism of A* under » onto the
group 1 + A* under its usual multiplication. Therefore, (b) is valid by the previous
paragraph, and in the group 1 + A* under multiplication, (4.9) gives

hl(ea’ea’) — ea+a/’ hz(ea’ea/) — eaa/—a/a’ and (ea)r — era’
which then gives (c). O

Let S be the set of all basic commutators xk; = k;(x, y) of weight at least two
and at most ¢ in two variables of a group. We order S linearly so that commutators
of smaller weight precede those of larger weight. Let o be the set of primes not
exceeding c.

By Lemma 10.12, Remark 10.15, and p. 124 of [13], there exist unique elements r;
and s; of Q4 such that, for any elements a, b of a nilpotent Q,-powered group of
class at most ¢,

hi(a,b) =ab [] «j(a.b)"” (4.10)
KjGS
and
haa.b) = [ «j(a.b)¥. 4.11)

kj €S
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Note that #; and 4, may be defined by (4.10) and (4.11) for every Q,-powered
group, regardless of whether it is nilpotent. Moreover, by p. 116 of [13], for any
positive integer d less than ¢, the analogous formulas hold with the same exponents,
but with the product taken over only those «; in S of weight at most d. For such «;,
the previous paragraph asserts that the exponents r; and s; lie in Q, for T being the
set of primes not exceeding d.

Note that every Q,-powered group is a Q,-powered group. By the discussion
above, we obtain:

Proposition 4.10. Suppose d is a positive integer less than c. Let o be the set of
primes not exceeding ¢ and t be the set of primes not exceeding d. Take functions hy
and hy on Qg -powered groups as above, and let by and ', be the analogous functions
on Q-powered groups, where k; ranges over only the elements of S of weight at
most d.

Then, for all elements u, v in a Qy-powered group G,

(R}, v) " hy(u,0) € ya41(G), for j =1,2.

Now we obtain a further relation between the group structure and Lie algebra
structure.

Proposition 4.11. Suppose w, A*, and B* satisfy the hypothesis of Corollary 4.9,
and g € (1 + A*), u = Log g, and d is a positive integer. Assume that

d<c and u'bu®ti =0, forallbin B*andi =1,2,....,d.
Define operations + andA[ ,]Aon 1 + A* and scalar multiplication on 1 + A* by
x+y=nhi(xy), Tx,y]A = hy(x,y), and rx=x",

forr € Q.
Define mappings y and § on 1 + A* by

y(h) =g 'hg and 8(h) =y(h) + (h™).

Define powers of § by composition.
Then 8411 = 0 and, Jorallhinl + A%,

{n, g] = (8(h)ye® F {82y @ & .. T {84 (W)@,
where e(i) = (—=1)!*t1/i, foreach i.

Proof. Recall from the proof of Corollary 4.9 that the exponential mapping is a
bijection of A* into 1 + A* and that the logarithm mapping is the inverse bijection.
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Let L(h) = Logh forevery hin 1+ A*. Forall x, y in A* and r in Q, Corollary 4.9
asserts that

A A

X Fe¥ =¥ty [ex,ey]ze[x’y], and r-e* =e"*.

Therefore, for all g1, g, in 1 + A* and r in Q,

L(g1 + g2) = L(g1) + L(g2), (4.12)
L(g1. £2)) = [L(g1). L(g2)]. (4.13)

and
L(g}) =rL(g1) (4.14)

Since u = L(g), g = e%. Let R = Q. Note that Hypothesis 3.1’ is satisfied.
Extend the definition of y to all of B by defining

y(b) = g 'bg.

Since ¢! is invertible in R, part (c) of Lemma 3.3 applies with ¢ in place of d. Hence
y(e¥) = e?™ forall x in A*, and

L(y(h)) = y(L(h)), forallhinl+ A*.
By (4.12) and (4.14),
L@S(h) = Ly(h) + k™) = L(y(h)) + L(h™") = y(L(h)) — L(h).

We have defined § on 1 + A*. We define § on the set A* (which is disjoint from
1+ A*) by
8(h) = y(x) — x.

Then, forhin 1 + A*,
L(8(h)) = y(L(h)) — L(h) = 8(L(h)). (4.15)

Since § is an endomorphism of A* under addition, so are its powers under composition,
and (4.15) gives

L(8'(h)) = 8" (L(h)), for all positive integers i. (4.16)
As before, take /2 in 1 + A*. Let v = L(h). By Proposition 3.5,
[v,u] = e(1)8(v) + e(2)8%(v) + -+ + e(d)§% (v).
So, by (4.16),
[v,u] = e(1)L(8(h)) 4+ e(2)L(8*(h)) + --- + e(d)L(8% (h)).
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By (4.12), (4.13), and (4.14), this says

A ~

L(lh. gD = [L(h), L()] = [v,u]
= L8} ) + LU 01®) + -+ + L{{87 ()} )
= L@ + 482 m3e® F -+ {87 (1),

Since L is an injective function from 1 + A* to A*, this gives the conclusion. O

5. A new definition for the Lie product [«, v]

In Section 4, we used the free associative (Q-algebra A of nilpotency class ¢ on
n generators to construct the free nilpotent Q-powered group F* of class ¢ on n
generators, and to obtain the operations + and [, | for the Mal’cev correspondence.
In a similar way, we used a subgroup F;; of F'* to obtain the Lazard correspondence.
In this section, we define an ideal /; of A and a normal subgroup K; of F* so that
A/lg, F* /K4 and F; K4/ Kg will play similar roles for defining a “word” i, (u, v)
for 4 and v in a Q,-powered group (for suitable 7). In Section 6, we will show that
I, (u,v) can be used to extend the definition of the Lie product [u, v] given in the
Lazard correspondence to suitable elements in a wider class of groups.

We continue to assume the hypothesis and notation of Section 4. We also let 7 be
an arbitrary set of primes, d be a positive integer such that d < ¢, and 7 be the set of
all primes p such that p < d.

Recall that
x2 xd
fi=ei=14+x1+-=2++--+-L, fori =1,2,...,n, 5.1
2! d!
1 + A is a group under multiplication, and F is the subgroup ( fi, f2,..., fx) of
1+ A. Foreachi = 1,2,...,n and each positive integer k, let
N; = (/¥ | g € F) = normal closure of f; in F (5.2)

and let C;z be the Q-subgroup of A spanned by all monomials of degree at least k
in x;. It is easy to see that C; is an ideal of A and of B.

Let I; be the Q-subspace of A spanned by all the monomials in xq, ..., xg that
have degree at least d + 1 in x; for some i (1 <i < n). Thus,

lg =Ciag1+Cogy1+--+Chaqr.

Let
Ki={geF"|g=1 (mod I;)}.
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Lemma 5.1. Suppose I is an ideal of B contained in A. Let
Ki={geF*|g=1 (mod I)}

Then
(a) Ky is a normal subgroup of F*, and

(b) Ky and F* /Ky are Q-powered groups.

Remark. Note that since B contains a copy of the rational field Q, every ring ideal
of B is a Q-algebra ideal of B. By taking I = I4, we obtain K; = Kj,,.

Proof. (a) Since [ is an ideal of B, there is a canonical algebra homomorphism of B
onto B/I that induces a group homomorphism of F*. Then K; is the kernel of this
homomorphism and is, therefore, a normal subgroup of F*.

(b) Recall that

the mapping Log is a group isomorphism of 1 + A (under multi-

plication) onto A under *, and Exp is the inverse isomorphism. (5-3)

From the definition of g” for a rational number r and an element g of a Q-powered
group and from (4.6), we obtain

Log(g") = rLog(g). Exp(rx) = (Exp(x)), (5.4)

forginl+ A andr in Q.

Recall from Proposition 4.4 that F* = QL. For g in K7, Log(g) lies in I
because it is a linear combination over QQ of positive powers of g — 1. Similarly, for x
in QL N I, Exp(x) lies in K; because it is a polynomial in x over Q with constant
term 1. Thus, by (5.3),

the mapping Log induces a group isomorphism of (5.5)
K7 (under multiplication) onto QL N [ under *. '
Since 7 is a Q-algebra ideal of B, QL N [ is closed under multiplication from Q.
By (5.3), (5.4), and (5.5), QL N I is a Q-powered group under » and Ky is a Q-
powered group under multiplication.
A similar argument shows that the factor groups QL/(QL N I) under = and
F* /K (under multiplication) are isomorphic Q-powered groups. O

Suppose 1 < i < n. Recall that f; = e¢% is a polynomial in x; with constant
term 1, and that, for every k, C;j is an ideal of A and of B.
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Lemma 5.2. Suppose 1 < i < n, k is a positive integer, g is an element of the set
1 + Cix, and f is an element of the set 1 4+ C;;. Let

h=(g.f)=¢"'f¢f
Then h — 1 lies in C; 4.

Proof. Letu = g—1,and v = h — 1. Then u lies in C;; and

fe+ fev= fgh= fgg ' f'gf =gf
So

fev=gf—fe=rf+uf —f—fu=uf—fu=u(f-1)—(f-Du. (5.6)

Since f — 1 lies in C;; and u lies in Cj, (5.6) shows that fgv lies in C; x41. Since
Cik+1isanidealof Bandv = g~ f~1( fgv), itfollows that v in C; f 41, as desired.
O

Proposition 5.3. Suppose 1 < i < n, k is a positive integer, and g lies in yi (N;).
Then g — 1 lies in Cjy.

Proof. For each positive integer k, let
Hy=FNKc, ={ge€F|g—1¢eCyj}.

By Lemma 5.1, Kc;, is a normal subgroup of F'*. Hence Hj is a normal subgroup
of F.

We prove the conclusion by induction on k.

By (5.1), f; lies in Hj. Since N; is the normal closure of f; in F' (by (5.2)) and
H; is normal in F, it follows that H; contains N;. This proves the conclusion for
k=1

Now, assume k > 1 and yx(N;) < Hp. Let M = Hp,,. Since N; < Hi,
Lemma 5.2 gives

Ye+1(Ni) = (v (Ni), Ni) < Hi41.

This proves the result by induction. O
Proposition 5.4. We have y,q11(F*) < K4.

Proof. Let b = nd. Recall that F*/K, is isomorphic to the image of the multi-
plicative subgroup F* of 1 + A under the algebra homomorphism of B onto B/I;.
Clearly, each monomial in x1, . . ., X, of degree at least b + 1 must have degree at least
d + 1 in x; for some i, and hence must lie in /4. Therefore, B/, is a homomorphic
image of the (Q-algebra Q1 & A for the free nilpotent associative algebra A of class b
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over Q on n generators zy, .. ., z,, with z; mapping to x; 4+ I for each i. This shows
that F* /K4 is a homomorphic image of the corresponding multiplicative subgroup

(e?1,...,e%n)

of 1 + A.
By Remark 4.3 with b in place of ¢, this subgroup has class at most b. Therefore,
F*/K; is nilpotent of class at most b, and Y11 (F*/K;) = 1. Hence,

Ynd+1(F*) = yp41(F*) < Ky,

as desired. O

Lemma 5.5. We have
(a) F*/K; is a Q-powered group, and
(b) Fr/(Fr N Kyg)isaQr-powered group.

Proof. By Theorem 4.7, F; is a nilpotent Q,-powered, hence m-divisible, group.
Therefore,

Fr/(Fy N Kg) is m-divisible. (5.7)

By definition, /; is an ideal of B contained in A. Therefore, (a) follows from
Lemma 5.1. In particular, F* /K is torsion-free.
Since
Fo/(Fr N Kgq) ~ FrKg/Kqg < F*/Kg.

F./(Fr N Ky) is also torsion-free and hence m-torsion-free. Therefore, by (5.7),
Fr/(Fr N Ky)is Qn-powered. O

Theorem 5.6. Suppose nd < c. Let

Mo = (yar1(Ni) |i=1,....n)

and
M =Fﬂ7{/ﬁo ={ge F,| gk € My for some 7 -number k}.
Then:
(a) M is a normal subgroup of Fy,
(b) M = F; N Ky, and

(¢c) Fr/M has nilpotence class exactly nd.
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Proof. Recall from Section 4 that A was defined to be the free non-associative Q-
algebra of nilpotency class ¢ with free (non-commuting) generators xi, . . ., X,. Thus,
we can calculate in A by setting every monomial of total degree at least ¢ + 1 to zero.
Since ¢ + 1 > nd + 1, each such monomial has degree at least d + 1 in x; for
some i, and hence lies in /4. Therefore, up to isomorphism; A/, is independent of
the choice of ¢, as long as ¢ > nd. Moreover,

the distinct monomials in X1, ..., X, having degree at most d in x;
foreveryi = 1,...,n form a basis of A, modulo /4, i.e., map to a (5.8)
basis of A/1; in the canonical homomorphism of 4 onto A/1,.

We defined F}; just before Theorem 4.7 by
Fp =p«NF = {g € F* | g¥ € F for some 7-number k}. (5.9

Let G = F.

(a) For each i, N; is a normal subgroup of F, and y;+1(N;) is a characteristic
subgroup of N; and hence a normal subgroup of F. Therefore, My is normal in F'.
By (5.9) and Lemma 2.3,

M =%/ My <¢ ¥F = F, = G.

(b) By Proposition 5.3, g — 1 lies in C; 44 (hencein /) foreveryi =1,...,n
and every element g of y;.41(N;). Therefore, My < K4, and since M =g</ My,

MK;/Kg is a m-group.

However, F*/K; is a Q-powered group by Lemma 5.5, and hence is torsion-free.
Consequently,
MKd/KdZI, M < K;, and

M is containedin G N K. (5.10)

We wish to show that M = G N K; . We will show first that F N K; < M.

Take any element /2 of F that lies outside M. We must show that / lies outside K4,
ie., h # 1(mod I;). By Theorem 4.2, F is a free nilpotent group of class ¢ with
free generators f1,..., fu. Therefore, by [10], Theorem 11.2.4, p. 175, h may be
uniquely expressed in the form

er

— €162
h=ci'cy’...c;",

where ¢y, ¢3, . . ., ¢, are the basic commutators of weight at most ¢ in f1, ..., f,, and
ey, ez, ...,e, are integers.
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Any basic commutator in f1, ..., f, of weightatleastd + 1in f; for some i must
lie in y441(NV;) and thus in My. Therefore,

h=]]¢’. modulo Mo, (5.11)
JjES
where j ranges over the set S of all subscripts for which e; # 0 and ¢; has weight at
most d in f; fori = 1,...,n (and hence has total weight at most nd). Since £ lies
outside My, the set S is not empty.
Let d’ be the minimal total weight of ¢; for j ranging over S. Then

d <nd <c. (5.12)

We may assume that the basic commutators ¢; in S are numbered so that, for some
positive integer k,

c1,...,Ck have total weight d’, and ¢; has total weight greater than d’
whenever j € S and j > k.

Then, by (5.11), there exists an element 4’ in Y411 (F) such that
h=ci'ce?.. .,c,ikh’, modulo M.

Moreover, e; # O forevery j =1,... k.
By (5.10), My < M < K;. So g = 1(mod I;) for each element g of M.
Therefore,
h=ci'c;?...cikh’,  modulo I, (5.13)

For each j, let u; be the Lie ring commutator in X1, ..., X, (in A7) that corresponds
to the group commutator ¢; in F, so that u; has weight at most d in x; for every i and
total weight d’. By (5.12) and (4.1), u1, . .., u; are linearly independent elements of
degree d’ over Q. By Lemma 4.1,

k
ef' e h =14 euj + A, (5.14)
j=1
where A lies in A9 *1,
By (5.13) and (5.14),

k
h=1+ Zejuj + A, modulo /;.
j=1

However, by (5.8), u1, ..., uj are linearly independent modulo (Ad g 4). There-
fore, h — 1 does not lie in I;, and & does not lie in K4, as desired. This proves
FNK;<M,.
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Suppose g € G N Ky = F; N K. By (5.9), there exists a w-number k such that
gk € F. Then

g e FN Ky < My,
and g €p, ¥/ Mo = M. Thus, G N Kz < M.By (5.10), G N Kz = M, as desired.

(c) By Proposition 5.4, ¥,,4+1(G) < ypa+1(F*) < K4. Hence, G/(G N Ky) =
G/M has nilpotence class at most nd. We show that the class is exactly nd by
exhibiting a commutator g of weight nd that lies outside M .

Letg = (c1,¢2,...,Cng), Where c; = f> and

C2 =03 = "=0Cgq41= fl. Cdq42=1C443="""=Coq = f2,

and, if n > 2,

Ckd+1 = Ckd+2 = *** = Ck+1)d = Jk+1, fork=2,3,...,n—1

Then g has weight d in each f; and total weight nd.
By Lemma 4.1,

g:l—|—u—|—)& fOI‘M:[yl,yZ’---’Ynd]’

where A lies in A”¢*1 and we have y; = x; whenever ¢; = f;. Then u is a Z-linear

combination of monomials of degree d in each x; and total degree nd. By (5.8),
these monomials are linearly independent over Q modulo (4”4 *! + I;). Moreover,
it is easy to see that the monomial x%x¢ ...x¢ appears in u with coefficient +1.

Therefore, modulo (474 +1 + 1),
uzOandg=1l4+u+i=1+u##l.
Thus, g — 1 does not lie in /; and g does not lie in K, as desired. O

In the next result, we show that F /(Fr N Ky) is a “free” group with respect to
certain constraints.

Theorem 5.7. Suppose nd < c. Assume G is a nilpotent Q-powered group and
g1,.--,8n liein G. For each i, assume that the normal closure (glG) of gi in G has
nilpotence class at most d. Then

(a) there exists a unique homomorphism ¥ of Fy into G such that ¥ (f;) = gi
foralli,

(b) for ¥ as in (a), the kernel of ¥ contains F; N K4, and

(c) for ¥ as in (a), the image of W is nilpotent of class at most nd.
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Proof. Foreachi,let H; = (g,.G), andlet H = HiH, ... H,. Let

H, =¢VH ={geG| gk € H for some r-number k}.

Since H; is a normal subgroup of G of class at most d for each i, H is a subgroup
of class at most nd (from Fitting’s Theorem in [11], p. 276, and induction). By
Lemma 2.2, H is a Q,-powered subgroup of G of nilpotence class at most nd.

By Theorem 4.7, F; is the free nilpotent Q,-powered group of class ¢ freely
generated by f1,..., fu. Since nd < c, there exists a unique homomorphism i of
F, into H; such that ¥ ( f;) = g; for all i. Furthermore, any homomorphism of Fj
into G that takes f; to g; for all i must take F' into H and then (because F; =g« YF
by (5.9)) take F into H,, and so must coincide with ¥r. This proves (a).

Let K be the kernel of . It is easy to see that, for each i,

YD) =YD (W ()°) = (¢F) = Hi
and

VU (Ya+1(Ni)) = Ya+1 (Y (N)) < va+1(Hi) =1,
whence yz41(N;) < K. Take My and M as in Theorem 5.6, so that

Mo = (ya+1(Ni) |i =1,...,n)
and M =F, 3/ My. Then
My < K (5.15)

and by Theorem 5.6,
M = F; N K4 and F;; /M has nilpotence class nd. (5.16)

From (5.15) and the definition of M, it follows that M /(M N K) is a w-group.
However,
M/(MNK)~MK/K < F/K ~y(Fr) <G,

and G is n-torsion-free. Therefore, M/(M N K) = 1,and M = M N K < K. This
proves (b). Then (b) and (5.16) yield (c). ]

Recall that 7 is the set of all primes p such that p < d.

Theorem 5.8. Suppose nd < c¢ and w contains t. Let B = B/I; and, for every
element x and subset T of B, let

¥=x+1; and T={X|xinT}.

Define operations + and [,] on F* by the Lazard correspondence. Define a
mapping § on F* by

§(x) = (fz_lez) + (7Y, forallx in F*.
Let L =5 Y/ Nyande(i) = (—1)'*'/i fori =1,....d. Then:
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(a) L is a Qn-powered normal subgroup of Fy of class at most d;

(b) L is closed under + and [ ,];

(¢) 8% = 0 and L contains [f1, f>] and (8" (f1))D fori =1,....d;
@ [f1. f] = G()D + -+ (82 (/1)D; and

(e) ha(f1, f2) is equal to [ f1, f2] and lies in Fr K.

Remark. The proof shows that F* is isomorphic to F* /K, which is a Q-powered
group by Lemma 5.5. Therefore, we may use the Lazard (or Mal’cev) correspondence
to define operations + and [ ,] on F*. We write + and [ , ] instead of + andA[ , T (used
in Remark 4.5) for F*, and likewise for F, because we will not need the natural Lie
ring operations on B and B.

Proof. Recall that
Ki={geF*|g=1 (mod I;)}.

Therefore, the natural algebra homomorphism ¥ of B onto B given by x +— X
induces a group homomorphism of F* onto F* withkernel K. Thus, F* ~ F*/Ky.

As mentioned in the Remark above (and Remark 4.3), F* and F* are Q-powered
groups and hence admit operations defined by the Lazard correspondence, i.e., for u
and v both in F* or both in F*,

u+v="h(u,v) and [u,v] = h(u,v). (5.17)

For u and v in F'*, ¥ takes the “word” h; (u, v) to the “word” h; (¥ (u), ¥ (v)) for
j = 1,2. Thus,

foruandvin F*,u +v =4 + ¥ and [u, v] = [i, D]. (5.18)
LetG = Fr. Then G ~ F,K;/Ky ~ Fy/(Fr N Ky). By Lemma 5.5,
G is a Q,-powered group. (5.19)

Recall that Ny = (fl.F), so that Ny <« F. For My and M as in Theorem 5.6,
Ya+1(N1) < My < M < K;. Therefore,

N; < F and N; has nilpotence class at most d. (5.20)

Since F, =p+%/F,we have G = F, =G7«T/F. Take L as in the statement of the
theorem. By (5.20) and Lemma 2.3,

L=cY N <cVF =G.

Then by (5.19), (5.20) and Lemma 2.2, we obtain (a).
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By (a) and the Lazard correspondence, we may define + and [, | on L by (5.17).
Since we used (5.17) to define + and [ , ] on the entire group F*, we see that L is
closed under + and [, ], which gives (b).

Since f] lies in Ny, we have f; € Ny < L. As L is normal in G and is a
Qn-powered group, L is closed under § and all of its powers, and

L contains (Si(ﬂ))e(i), fori =1,2,....d. (5.21)

Now we check the hypothesis of Proposition 4.11 with 7 chosen to be the set of all
primes; A* and B* to be A and B; and g and u to be f2 and X, respectively. Note
that the hypothesis of Corollary 4.9 is satisfied, that u = Log g because f, = e*2,
and that d < nd < c¢. Moreover, forallbin Bandi =1,...,d,

d+1-i

xhbx4 dti=i —

€ Ca,q+41 € 1g, sothat u'bu

In addition, the definition of § on F* in this theorem agrees with the definition

in Proposition 4.11. Thus, the hypothesis of the proposition is satisfied, and the

proposition, (5.21), and part (b) of this theorem give parts (c) and (d) of this theorem.
By (5.17), (5.18), and (c),

v (ha(f1, 1) = ha(fr1, o) = L1, fal.

which lies in L and thus in G. Since G = F; ~ Fy, K4/Kg and K is the kernel
of the restriction of ¥ to F*, ha( f1, f2) liesin F K4. As ha(f1, f2) = [ f1. f2], we
obtain (e). This completes the proof of the theorem. O

Remark 5.9. Let n = 2. Assume 2d < c¢. By Theorem 5.8 for the case in which
7 = 7, there exists an element /5 ( f1, f2) of F; such that

R (f1, f2) = ha(f1, f2) (mod Kg) (5.22)

Here, 1, ( f1, f2) is a “word” in f; and f, obtained by taking inverses, products, and
rational powers g”’/ k for whichk = 1 or k is a product of powers of primes in 7.

Now suppose 7 is any set of primes containing t and G is any nilpotent Q-
powered group. Assume g; and g, are elements of G contained in (possibly different)
normal subgroups of G having nilpotence class at most d. By Theorem 5.7 (for
n = 2), there exists a unique homomorphism i of F into G such that

Yv(f1) = g1, ¥(f2) = g2, and F; N K is contained in the kernel of ¢.  (5.23)

Since 7 contains t, b, ( f1, f2) € Fr < Fy. If we evaluate the “word” 1, on g;
and g, by replacing f; by g; for each i, we obtain

hy(g1.82) = Y (h5(f1. 12)). (5.24)
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By (5.22), ha(f1, f2) = hy(f1, f2)h5(f1, f2) for an element h5(f1, f2) in K.
One may show by a proof similar to that of Theorem 5.6 that 25 ( f1, f>) is a product
of basic commutators in My (and thus in K ;) raised to rational powers ¢”. For each
such commutator ¢, ¥ (c) = 1 by (5.23). The reason that we use the “word” //, rather
than /1 is that the exponents r in the rational powers ¢” in / may have denominators
divisible by primes outside 7, so that (¥ (c))” may not be defined.

Now we adopt the bar notation of Theorem 5.8, so that the natural homomorphism
of B onto B induces an isomorphism F, ~ F,K;/K4. As F, N K is contained in
the kernel of ¥, it follows that ¢ induces a well defined homomorphism ¢ from Fyr
to G given by

¢(X) = ¢¥(x), forall xin Fy.

Let h = h5(f1, J2)- By (5.24) and Theorem 5.8, ¢ is the unique homomorphism
of F to G taking f; to g, and f5 to g, and

hy(g1.82) = ¥ (h) = ¢(h) = ¢([f1. f2]).

Thus, 7 (g1, g2) is independent of the original choice of /5 ( f1, f2), and we may
define unambiguously

h,(g1.82) = & ([ f1. f>]) for the unique homomorphism

iy - - (5.25)
¢ of Fy into G such that ¢(f1) = g1, and ¢(f2) = g>.

In the next section, we will define [g1, g2] to be h5(g1, g2) in this situation.

Lemma 5.10. Suppose G is a nilpotent Q-powered group and N is a normal sub-
group of G. Then /N is a Qg -powered normal subgroup of G that contains N and
has the same nilpotence class as N.

Proof. Obviously, /N contains N and has the same or larger nilpotence class. By
Lemma 2.2 (with d in place of ¢), /N is a Q,-powered subgroup of G of the same
class as N. By Lemma 2.3,

YN < ¥G =G. O

6. The main results

In this section, we obtain our main results. We continue to assume the hypothesis and
notation of Section 4, except that after Theorem 6.1 we no longer need the algebras
A and B, since we deal only with groups. However, here we take d to be an arbitrary
positive integer and choose ¢ to be 3d. As in Section 5, we let v be an arbitrary set
of primes and t be the set of all primes p such that p < d.
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Theorem 6.1. The function h’,(u, v) given in Remark 5.9 satisfies the following con-
ditions:

Suppose 1wt contains t, G is a nilpotent Q-powered group, and g, and g, are
elements of G lying in normal subgroups Gy and G, of G having nilpotence class
at most d. Let H =g%/G,. Assume the bar notation of Theorem 5.8 and let e(i) =
(=1)*ifori =1,...,d. Then:

(@) forn = 2 and  as in Theorem 5.7, ¥ induces a homomorphism of Fy into G
that takes [ f1, f2] to h%(g1. g2),

(b) hy(g2.81) = (h5(81.82))7",

(c) hy(g1,82) = ha(g1,82) = [81.82), if G has nilpotence class at most d,

(d) H is a Qr-powered normal subgroup of G having nilpotence class at most d,

(e) H is endowed with an operation + by the Lazard correspondence,

(f) there exists a well-defined endomorphism § of H under + given by 6(x) =
(g5 'xg2) + (x71),

(g) 84t =0,

(h) H contains hly(g1, g2) and (§'(g1))¢® fori = 1,...,d, and

(i) hy(g1.82) = (B(g))*D + - + (69 (g1))*.
Proof. For every element x and subset 7" of B, the bar notation of Theorem 5.8 gives
¥=x4+1I; and T ={X|xeT}

Then F, =~ F,K4/K,.

Assume n = 2 and take i as in Theorem 5.7. By Theorem 5.7 (b), the kernel
of ¥ contains F; N K;. Therefore 1 induces a well-defined homomorphism ¢ from
Fy into G given by

¢(x) = Y¥(x), forall xin Fy.

Let h = h5(f1, f2). By (5.25) (in Remark 5.9),
¢ is the unique homomorphism of F, taking f; to g; and
f2t0 g2, and (g1, 82) = ¥ (h) = $(h) = ([ /1. fa)).

This proves (a) and shows that, for g; and g, as in the hypothesis, /5 (g1, g2) is
independent of the original choice of /1 ( f1, f2).
Since the roles of f and f, are symmetric, as are those of g; and g,, we have

(g2, g1) = ¥ ([ fo. f1])

because by (6.1), ¢ is the unique homomorphism of F, taking fz to g, and fl to g;.

6.1)
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However, [ >, f1] and [ f1, f»] are negatives of each other as Lie ring elements of F*.
Therefore, by (6.1),

hy(g1.82) = ¢(Lf1. £o]) = d(Lfo. Al = ¢ (L fo. AD T = (Hy(g2.81) 7"

This proves (b).
By Lemma 5.10 we obtain (d). Then (e) follows from the Lazard correspondence.
Since H is a normal subgroup of G, it is closed under conjugation and under
inverses. Hence, (f) follows from (e) and (g) follows from Theorem 5.8 (c).
Now consider the subgroup L of F,; given in Theorem 5.8; recall that

Ni=(fif|xeF)<F=<F,
and L =g_3/Ny. Then

d(N1) = ((@p(f1))?P |yeF)<(gi|z€G) <G

and
(L) <¢ VG1=H (6.2)
Let D be the mapping on F* that was denoted by § in Theorem 5.8:

D(x) = (f, 'xfo) + (x™1) forall x in F*.

Recall that fz lies in F,; and ¢ ( f_z) = g». As L is a Q -powered normal subgroup
of F,, of class at most d, addition on L is given by the Lazard correspondence by

X +y=hi(x,y),

and L is closed under conjugation and under D, and under taking powers in Q;
likewise for H, with g, and § in place of f> and D. Thus, by (6.2),

p(x +y) = d(hi(x.y) = hi(9(x). ¢ () = (x) + $(¥).

for all x, y in L. Similarly, for all x in L,

¢(D(x) = ¢(f, 'x o) +o(x™ ) = (/) 1P (x)p(f2) + p(x) 7!
= (g5'p(x)g2) + ¢(x) 7" = 8((x)).

By Theorem 5.8, L contains [ fi, f>] and (D ( f1))¢®, fori = 1,....d, and
i, o) = (D' (f))® + -+ (DY (1)@, (6.4)
Clearly, ¢(x") = (¢(x))" for all x in L and r in Q. Therefore, by (6.3),

H(D'(fi)*) = E @S = @ (q)?, fori=1,....d.

(6.3)



456 G. Glauberman

Now (h) and (i) follow from (6.1), (6.2), (6.4), and Theorem 5.8 (c).
To prove part (c), suppose G has nilpotence class at most d. Then we may define +
and [ ,] on G by the functions /; and A, in Lazard’s correspondence, and (6.1) gives

5(g1,82) = (L1, fo]) = ¢ (ha(f1, f2)) = ha(d(f1), d(f2))
= h2(g1.82) = [g1. &2]- O

Corollary 6.2. Suppose m contains © and G is a nilpotent Q . -powered subgroup of
class at most d. Define operations + and [ ,] on G as in the Lazard correspondence.
Take v in G and define a mapping & on G by

Su) = (v uv) + Y, foreveryuinG.

Define powers of § by composition. Let e(i) = (=1)/T1/i fori =1,2,....d.
Then §2+! = 0 and, for every u in G,

[, 0] = @)V + (82 @)*P + -+ (87 ).

Remark 6.3. This corollary shows that the formula for /}(g1, g2) in part (i) of
Theorem 6.1 also gives [g1, g2] in the situation of the Lazard correspondence. Thus,
Lazard’s definition of bracket multiplication in G is determined by conjugation in G
and Lazard’s definition of addition in G. For this reason, we often denote /5 (g1, g2)
by [g1, g2] in the situation of Theorem 6.1.

Recall from Section 1 that we have defined iterated commutators in groups and
Lie rings to be left normed, i.e. for r > 2,

(X1,X2, LRI 7-xr7xr+l) = ((x19x25 LR ’xr),xr—i-l)

and
[-xl?xZa e Xy xr+1] = [[x17x2a s ,xr]a xr-{—l]-

Theorem 6.4. Suppose w contains t, G is a nilpotent Q. -powered group, and G, G,
and G3 are normal subgroups of G that have nilpotence class at most d. Define
+ on every Q-powered normal subgroup of G of class at most d by the Lazard
correspondence. Define [x, y] as in Remark 6.3 whenever x and y lie in normal
subgroups of G having nilpotence class at most d.

Take u in Gy and v in G,. Then G satisfies the following conditions (and all terms
in the conditions are well defined):

(a) Foru' inGyandr in Qy,
[ru,v] = rlu,v], [u-+u',v]=I[u,v]+ [, v]

and
[, '], v] = [[u, v], '] + [u, [, v]].



A partial extension of Lazard’s correspondence for finite p-groups 457

(b) For w in G3,
[u,v,w] + [v,w,u] + [w,u,v] = 1.

(¢) If G1 and G, are Qn-powered, then [u,v] = (u,v), modulo (G, G2, G1G»),
and [u,v] € (G1, Gy).

Remark. For (b), recall that the identity element of G is the zero element of any
subgroup of G that forms a Lie algebra under the Lazard correspondence.

Proof. Take u’ and w in G as in (a) and (b). As in Theorem 6.1, let H =g%/G,.

By Theorem 6.1, H is a Q,-powered normal subgroup of G of class at most d
(so that we may define + and scalar multiplication from Q, on H), and [x, y] (=
I, (x, y)) is well defined and lies in H whenever x lies in G (or H) and y lies in
a normal subgroup of G of class at most d (e.g., G, or G3). This shows that the
elements

u+u', [u,v], [W.,v], and [w,u]
are well defined and lie in H , as do the elements [u +u’, v] and [u, v, w] and [w, u, v].

By the symmetry of G1, G, and G3, the element [v, w] is well defined and lies in
a Q-powered normal subgroup of G of class at most d. Therefore, [v, w, u] is well
defined and lies in H.

Recall that for x in H and r in Q,, the group power A" coincides with the scalar
product r - h for H considered as a Q,-module. Therefore, for g; in G, and g5 in
G, and § as in Theorem 6.1, part (i) of Theorem 6.1 gives

[g1. g2] = hy(g1.82) = e(1)8(g1) + -+ + e(d)§¢ (g1).

Since § is an endomorphism of H under +, this shows that the mapping on H given
by x > [x, v] is a Q,-module endomorphism of H. In particular,

[ru,vl]=ru,v] and [u+u',v] = [u,v]+ [, v]. (6.5)

Next we prove (b). The proof is similar to the proof of the corresponding statement
(i.e., the Jacobi identity) for the Lazard correspondence, which we summarized in
Remark 4.5. We assume n = 3 and adopt the notation of Theorem 5.8. Itis easy to see
that the group L in Theorem 5.8 contains [ f;, f;, fx] whenever {i, j, k} = {1,2,3},
and satisfies

[f1, f2, f3] + [2n f3, il + 13 1 2]l = 1 (6.6)
By Theorem 5.7, there exists a unique homomorphism v of F;; into G such that

v(f=u. Y(fz)=v. and ¥(f3)=w,

and Fr N K is contained in the kernel of . Therefore, ¥ induces an homomorphism
¢ of Fy into G such that

o(fi)=u, ¢(fo)=v. and ¢(f3) = w.
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By (5.25) (in Remark 5.9) and its proof, we have whenever {i, j, k} = {1, 2, 3},

o(Ufi- fi- JiD) = [o(fis 5D ¢ (fi)] = [9(f1). (). (fi)].

Therefore, (6.6) yields (b).
By (b) and Theorem 6.1 (b),

[u, v, w] + [u, [w,v]] = [u, w,v].
By considering the special case in which G3 = G and w = u’, we obtain
[, u',v] = [u,v,u'] + [u, [u', V]]

This and (6.5) yield (a).
To prove (c), assume G and G, are Q,-powered. Then H =g%/G; = G1. We
apply Theorem 6.1 with g; = u and g, = v, so that

§(x) = (@ 'xv)+ ) =+ (v xv), forall x € Gy. (6.7)

Let L = (G1,Gz)and M = (L, G1G3). Since G1,G, < G, wehave L, M <« G
and M < L < G; N G,. Moreover, by Lemma 2.4 and Proposition 2.6,

L and M are m-divisible. (6.8)

Let G = G/M andlet X = XM/M and § = gM for every subgroup X and
element g of G. Since M = (L, G1G>,),

L < Z(G1G»). (6.9)

Now take an element x in G;. Let x’ = v~ !xv. Then (x,v) € L and x(x,v) =
xx lv~lxv = x’. Hence,
(x¥,v) e L < Z(G,G,) and X(X,7) = x'. (6.10)

Therefore, the_elements x and X’ commute. By (6.8), L and M are both m-divisible,
which forces L to be Q,-powered. Thus, by (6.7), (6.10), and (4.10),

Sy = +x=xT4+x =y =x1x = (x,0).

Similarly, by (6.7) and (6.9), §(x) = 1 for all x in L. Therefore, §/(x) = 1 for all
i > 2. By Theorem 6.1,

[x,v] = 8(x) = (x,v).
By taking x = u, we obtain (c). O
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Corollary 6.5. Assume the hypothesis and notation of Theorem 6.4,
(a) Supposeu € y;(G) and v € y;(G) for some positive integers i, j. Then

[u,v] € yi+;(G) and [u,v] = (u,v) (mod y;+;+1(G)).

(b) Suppose u; € yi,(G) fori = 1,...,r and some positive integers k;. Let
k=ki+---+ky Then

[ui,uz,...u,;] € Y (G) and
[ui,uz, ... ur] = (ui,uz, ... uy) (mod yr41(G)).

Proof. (a) By Corollary 2.5, yx(G) is Qr-powered for every positive integer k. By
Corollary 3.5 of [13],

(vi(G),vj(G),7i(G)y;(G)) < yi+;+1(G) and (u, v) lies in ;4 ;(G).

Then [u, v] = (4, v) (mod y; 4 ;+1(G)) by part (c) of Theorem 6.4. Therefore, [u, v]
liesin y; 4 (G).

(b) We use induction on r. The result is trivial for » = 1, and follows immediately
from (a) for r = 2.

Now assume r > 3 and the result is true for r — 1. Let

w =luy,...ur—1), u’' =@, ...ur—1), and k' =k; +ky+---+k,_1.
Then k = k' + k,. By induction,
u' € yp(G) and u' =u" (mod yr41(G)). (6.11)
By (a), [u',u,] = (W', u,) (mod yr+1(G)). By (6.11) and Theorem 6.2 of [13],

(ulv ”r) = (M//, ”r) (mOd )’k—i—l(G))-

Therefore, [u’,u,] = (u”,u;) (mod yr1(G)), as desired. O

Theorem 6.6. Assume 7 is a set of primes containing t, G is a nilpotent Q . -powered
group, N is the set of all Q-powered normal subgroups of G of nilpotence class at
most d, and 8 is a subset of N. Let U(N) and U(8) be the set-theoretic unions of
the elements of N and of the elements of S.

For each N in N, define + on N by the Lazard correspondence. For each u,v
in U(N), define [u, v] as in Remark 6.3. Let E(8) be the set of all mappings ¢ on
U(8) such that, for each N in S,

¢ maps N into N and induces an endomorphism of N under +.

Define addition and multiplication on E(8) by

@ +¢)(x) =0(x) +¢'(x) and ¢¢'(x) = (¢’ (x)).
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For each v in U(N), define a mapping ad v on U(8) by
(adv)(u) = [u, v].

Then

(a) E(8) forms an associative algebra over Qy, and also forms a Lie algebra
E(8)™ over Q under the bracket multiplication given by

[¢.¢'] = ¢¢" —¢'¢:
(b) foreach v in UN) and r in Q,
ad v lies in E(8) and ad(rv) = r(adv);
(¢) foreach N in N and each v,w in N,
ad(v + w) = adv + ad w;

(d) forv,win UN),
[ad v, ad w] = ad[w, v] = —ad[v, w];
(e) the additive subgroup L(8) of E(&) spanned by the mappings ad v for v in
U(8) is a Lie Q-subalgebra of E(8)~; and
(f) for L(8) as in (e), each element ¢ of L(8) satisfies
¢([u,v]) = [p(u),v] + [u. ¢ (v)], foreveryu,vin U(S).

Remark. Part (a) of Theorem 6.4 shows that, for each v in U(N) and N in N, ad v
induces a derivation of N, for N regarded as a Lie algebra over Q, by Lazard’s
correspondence. Part (f) of this theorem extends this.

Proof. Note that, by Theorem 6.1 (b),
[v,u] = [v,u]™' = —[u,v], forallu,vin U(S). (6.12)

(a) This follows directly from the definitions of addition, multiplication, bracket
multiplication, and scalar multiplication from Q.
(b) This follows from Theorem 6.4.
(c) Take v and w as in (c) and u in U(§). By (b) and (6.12),
[u, v+ w]=—[v+w,u] =—[v,u] —[w,u] = [u,v] + [u, w],
as desired.
(d) Take u in U(&) and v, w in U(N'). Then
[ad v, ad w](u) = (ad v)(ad w)(u) — (ad w)(ad v)(u)
= [[u. w], v] —[[u, v], w]
= _[[w’u]’v] - [[M,U],U)] by (612)
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= [[v, w], u] by Theorem 6.4
= —[u, [v,w]] = [u, [w, v]] by (6.12).
(e) This follows from (d) and (b).

(f) First, consider the case in which ¢ = ad w for some w in U(8) : by (6.12) and
Theorem 6.4,

[¢ @), v] + [u, (V)] = [[u, w], v] + [[u, v], w]
= —[[w,u], v] = [[v, w], u] = [[u, v], w] = ¢([u, v]).

Since this is a linear condition on ¢, it remains valid for all the elements in the linear
span L (&) of all the mappings ad w. O

Theorem 6.7. Assume the hypothesis and notation of Theorem 6.6. Let G* be the
subgroup of G generated by 8 and k be the nilpotence class of G*. Then:

(a) each normal subgroup of G of nilpotence class at most d is contained in some
normal Q ;-powered subgroup of nilpotence class at most d;

(b) G* is a normal Q-powered subgroup of G;
(c) foreveryvy,...,vx in U(S),

(advy)(ad v;) ... (ad vg) = O;

(d) forvin U(N), (adv)?t! = 0;
(e) the Lie Qy-algebra L(8) is nilpotent of class at most k — 1.

Proof. (a) Apply Lemma 5.10.

(b) Each element of § is a normal Q ,-powered subgroup of G. Therefore, G* <
G, and G* is w-divisible by Proposition 2.6. Since G* is nilpotent and G (and
hence G*) are w-torsion-free, G* is Q-powered.

(¢) Take u, vy, v3,..., v in U(S). Let

w = (advy)(ad vy) ..., (ad vg)(u) = [u, vk, Vg—1,..., V1].

By Corollary 6.5 applied to G* in place of G, we have w € yx4+1(G*) = 1.
(d) Take u and v in U(N). Take v lies in some element N of &. By Theorem 6.4
and induction,

(ad v)' (u) € y;(N), for every natural number .

Therefore,
(ad )+ () € yar (N) = 1.

(e) Since L(&) is spanned by the mappings ad v for all v in U(§), every Lie
commutator in L(&) of weight at least k is zero, by (c) and the definition of bracket
multiplication in E(&)~. O
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Lemma 6.8. Assume the hypothesis and notation of Theorem 6.6. Let G* be the
subgroup of G generated by 8 and H be a subgroup of G* generated by a subset T
of U(8). Let d’ be the nilpotence class of H/(H N Z(G™)).

Thend' is the nilpotence class of the Lie Q ;. -subalgebra L* (T') of L(8) generated
by the elements ad x for all x in T.

Proof. Here,
Z(G™) contains yg4/41(H), but not y4/ (H). (6.13)
Take any positive integer r and any elements x, ..., x, of 7. By Corollary 6.5,
[xX1,....x] = (x1,...,x,) (mod yr4+1(H)). (6.14)
By Theorem 6.6 (d) and induction,
[ad x1,...,ad x,] = (—1)" ad[xy, x2 ..., x/]. (6.15)
First, consider the case in whichr = d’+1. Then, forany choice of x1, ..., X441,

we see from (6.13), (6.14), and (6.15) that
[X1,...xg'41] € HNZ(G*) and [adxy,...,adxg41] = 0.

Next, consider the case in which r = d’. By (6.13) and Theorem 3.12 of [13]
applied to H/(H N Z(G*)), there exists a choice of x1,...,x4 in T such that
(x1,...,xq) lies outside of H N Z(G*). By (6.13) and (6.14),

[x1,....x0/] = (x1,...,xg/) # 1 (mod H N Z(G™)).

Therefore by (6.15), [ad x1,...,ad x4/] # 0. Consequently, the previous paragraph
shows that L*(T) has nilpotence class precisely d’. O

Remark 6.9. For the next result, consider an element x of G in the situation of
Theorem 6.6. The inner automorphism i(x) of G given by i(x)(g) = x'gx for
each g in G preserves every normal subgroup of G. In particular, for every N in §,
i(x) induces a group automorphism on N and hence an automorphism of N as a Lie
algebra under Lazard’s definition. Thus, i (x) induces an element of E (&) that we
will denote by y(x).

Theorem 6.10. Assume the hypothesis and notation of Theorem 6.6, and assume
that 8 generates G. For each x in G, define y(x) as in Remark 6.9. Then:

(a) for each x in G, y(x) is an invertible element of E(8);
(b) for each v in U(N),

(ad v)? , (ad v)4

21 ' ar

y(v) = Exp(adv) = 1 + (adv) +
adv = Log(y(v));
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(¢) forvand win U(N), adv = ad w if and only if v = w (mod Z(G)),

(d) the multiplicative group generated by the elements y(v) for all v in U(8) is the
group {y(x) | x € G}, and

(e) the inner automorphism group of G acts faithfully on U(8) by restriction and
induces the group {y(x) | x € G} on U(¥).

(f) Moreover, suppose H is a subgroup of G generated by a subset 8' of 8, and v
is an element of H that lies in U(N). Then ad v is contained in the associative
Qy-subalgebra E’ of E(8) generated by 1 and the elements ad u as u ranges
over the elements of the subgroups in 8’

Proof. Note that for u in U($) and x, y in G,

1

Yy @) = x"1(r uy)x = (yx) " u(yx),

so that
y(x)y(y) = y(yx) forx,yinG. (6.16)

Part (a) follows from Remark 6.9.

For (b), take any v in U(N) and H in 8. Note that H = %/H because H is
Qy-powered. Moreover, the element y(v) — 1 of E(&) induces on H (under +)
the endomorphism & of Theorem 6.1, with go = v. Then Theorem 6.1 yields that
§4+1 = 0 and that the mapping B given by

B=08-8/24 -+ (-84 /d

coincides with the restriction of ad v to H.
From Section 3,

d
B =Log(14+6), BT =0, and 1+8=Exp(f) =1 +,B+§+---+%.
Since this is valid for every H in §,
adv =Logy(v) and y(v) = Exp(adv), (6.17)

which gives (b).

Take w in U(N). Then v = w (mod Z(G)) if and only if vw™! lies in Z(G).
Since & generates G, this occurs if and only if y(v) = y(w). From (6.17) and the
analogous result for w, this occurs if and only if ad v = ad w. So we obtain (c).

Since § generates G, (d) and (e) follow from (6.16).

Finally, assume the hypothesis of (f) and define E’ as in (f). For each element u
in each subgroup in 8, y(u) = Exp(ad u) by (6.17), so that y(u) lies in E’. Since
these elements u generate H, (6.16) shows that E’ contains y(x) for every element x
of H, including y(v). By (6.17), ad v is equal to Log y(v), and hence lies in E’. This
proves (f). ]
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Remark 6.11. Assume & generates G in Theorem 6.6. Theorem 6.10 shows that
one may determine the structure of the inner automorphism group of G, and thus
of G/Z(G), from § and L(&). We do not know whether one may determine the
structure of G. In (f), we do not know whether ad v lies in L ().

Assume in addition that § is strictly smaller than N. Then N generates G and we
may define E(N) and L(N) as in Theorem 6.6. They act on all the elements of N,
including the elements of §. By taking G to be elementary of order p?, we can easily
see that E£(N) need not act faithfully on the set of all elements of §. But we do not
know whether L () acts faithfully on this set in general.

Lemma 6.12. Assume the hypothesis and notation of Theorem 6.6, and suppose T is
a subset of U(8) that generates a normal subgroup My of G of nilpotence class at
most d. Let

M= %3 My, adT ={adx|xe€T}, and adM = {adx|x e M}.

Then
(a) M is a normal Q. -powered subgroup of G of the same nilpotence class as My;
(b) ad M is the Lie Q-subalgebra of L(8) generated by ad T ;
(¢c) ad M is an ideal of L(§); and

(d) if 8 generates G and T has the form {w® | g € G} for some element w of §,
then ad M is the smallest ideal of L(8) that contains ad w.

Proof. (a) This follows from Lemma 5.10.

(b) Note that (a) shows that we may define ad x for each x in M and that we may
view M as a Lie Q-algebra. Let /] = ad M.

From the definitions, M is the smallest Q-powered subgroup of G containing 7.
Therefore, by the Lazard correspondence, M is generated by 7" under the Lie algebra
operations on M. Hence, by Theorem 6.6, I is likewise generated by ad T, as desired.

(c) Take any x in M and v in U(&). By Theorem 6.6,

[ad x, ad v] = —ad][x, v].

By (a) and Theorem 6.4 (c), [x, v] lies in M, so that ad[x, v] lies in /. As L(8) is
spanned by the elements ad v for all v in U(&§), [ is an ideal of L(¥).

(d) Let I’ be the smallest ideal of L (&) that contains ad w. By (¢), I’ is contained
inad M. Let T* be the set of all elements x of M such that ad x lies in I’. Then T*
contains w. Since I’ is a subalgebra of L (&), Theorem 6.6 shows that 7 * is a subgroup
of M that contains w.

Suppose ¢ lies in T* and u lies in U(&). We claim that ¢* lies in T*. First, by
Lemma 10.12 (d) in [13], the group commutator (¢, #) can be expressed as a sum of
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[t,u] and Lie ring commutators in ¢ and u of weight at least 3. Therefore, by Theo-
rem 6.6, ad(¢, u) is a sum of [ad u, ad ¢] and other Lie ring commutators in ad ¢ and
ad u. Hence, ad(¢, u) lies in I’ and (¢, u) lies in T*. As T* is a subgroup of M and

™ =u"ltu = 1(t,u),

T™ contains %, as claimed.

This shows that T* is closed under conjugation from U(&). As § generates G
and T* contains w, T* contains w¥ for every g in G. Thus, I’ contains ad T'. By (b),
I’ contains ad M. Since I’ is contained in ad M, they are equal. 0

In some applications of the Lazard correspondence, G is a finite p-group and one
seeks a subgroup A* of G with special properties. Representing G as a Lie algebra
helps to find A* as a subalgebra, and hence as a subgroup (e.g., in [6], Section 3).

If G is instead a product of normal subgroups of class less than p, one cannot
generally represent G as a Lie algebra, but one can associate to G a Lie algebra L(&)
as in Theorem 6.6. In this case, a subalgebra may contain elements that are not of the
form ad x for x in G, or that may lack other desired properties. The following two
results help in this situation. For example, in some cases they show that an abelian
subalgebra of L(&) comes from an abelian subgroup of G.

Recall that G’ denotes the commutator subgroup of G,

G' =(G,G) = {(x,y) | x,yinG).

Theorem 6.13. Assume the hypothesis and notation of Theorem 6.6. Suppose G’ has
nilpotence class at most d.

Then G' is a Qy-powered normal subgroup of G and we may regard G’ as a Lie
Q. -algebra under the Lazard correspondence. Moreover:

(a) There exists a unique Q -bilinear mapping ¥ of L(8) x L(8) into G’ such that

Y(adv,adw) = [v,w], forallv,w in U(S).

For y as in (a),

®) Yv(a,B) = —y¥(B,a) foralla, B in L(8), and

(¢) [¥(adu,adv), w]+[¥(adv,ad w),u] + [ (ad w,ad u),v] = 0, forallu, v, w
inU(S).

Proof. Let R = Q. By Corollary 2.5, G’ is w-divisible. Since G is nilpotent and
m-torsion-free, G’ is R-powered (of nilpotence class at most d). Therefore we may
view G’ as a Lie R-algebra.

Since (ad v)(w) = [w, v] for every v, w in U(&), and [w, v] lies in (G, G) by
Corollary 6.5, we see that L(&) maps U(8) into G'.
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For each element v of U(8), define a mapping 0, from L(8) into G’ by

v (@) = ¢(v).
Then 6, is an R-module homomorphism of L(&) into G’, and, for w in U(S),
Oy(ad w) = (ad w)(v) = [v, w] = —[w, v] = (ad v)(—w). (6.18)

Let Hom(L(8), G’) be the R-module of all R-module homomorphisms of L(&)
into G'.

Suppose we are given elements a,, in R for finitely many elements v of U(4§) such
that

Zav(ad v) = 0.

Then (6.18) shows that ) a,6, vanishes on ad w for every w in U(8). Since the
elements ad w span L(38), it follows that ) _ a, 0, = 0. Thus we obtain an R-module
homomorphism ¥ * of L(&) into Hom(L(8), G') determined by

Y*(adv) = 6,, foreachvin U(S).

Lety (¢, @) = ¥v*(¢)(¢'), forall ¢, ¢’ in L(8). Then v is an R-bilinear mapping
of L(&) x L(&) into G’. Since the mappings ad v span L(§) as a R-module, v is
determined by the condition

Y(adv,adw) = ¥y*(adv)(ad w) = Oy (ad w) = (ad w)(v) = [v, w],

for all v, w in U(&), which proves (a).
Now (b) and (c) follow from Theorem 6.1 (b) and Theorem 6.4 (b). O

Theorem 6.14. Assume the hypothesis and notation of Theorem 6.6. Suppose &
generates G, v and w are elements of U(8),

o =adv + adw,

and b is the nilpotence class of the group (v9)Z(G)/Z(G). Assume b < d — 1 and
« is contained in an ideal of L(&) of nilpotence class at most d — 1 — b.
Then there exists y in U(N) such thatad y = «.

Proof. Let
Z =27(G), Ny= (%, Ny= %N, and I, ={adx|x e N,}.

Then N,Z/Z = /N1Z/Z. By Lemma 2.2, N,Z /Z has nilpotence class . By
Lemma 6.12 with T = {v8 | g € G}, I, is anideal of L (&) and is the Lie subalgebra
of L (&) generated by the set

{adv* | x € G}.
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Therefore, by Lemma 6.8,
15 has nilpotence class at most b. (6.19)

Let /; be the smallest ideal of L(&§) containing «. By hypothesis, I; has class at
most d —1—b. Moreover, I; + I, is anideal of L(&). Since (d —1—b)+b = d —1,
(6.19) and a theorem of Fitting yield

I1 + I hasclass at most d — 1. (6.20)

(Fitting’s Theorem follows from a slight variation in the proof of Proposition 1.6 in
p- 25 of [12].)

Since ad v lies in 15, « lies in /7, and ad w = o — ad v, we see that ad w lies in
I1 + I,. By Lemma 6.12 (d),

Iy + I, contains ad w® for every g in G. (6.21)
Now let T be the subset of G given by
T = {v8, w8 |geG}.

Then T generates a normal subgroup My of G. By construction, I, contains ad v&
for every g in G. Hence, by (6.21), I; + I, contains ad x for every x in 7', and
contains the subalgebra of L (&) that they generate, which we denote by L*(T') as in
Lemma 6.8.

By (6.20), L*(T') has class at most d — 1. By Lemma 6.8, My/(My N Z(G)) has
class at most d — 1, so M has class at most d. Let M = %/M,.

Sincea = adv+ad w,aliesin L*(T). By Lemma6.12, M is a normal subgroup
of G of class at most d, and

L*(T)=adM ={adx | x € M}.
So o = ad y for some y in M, as desired. O
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