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Abstract. M. Lazard established a correspondence between finite p-groups of nilpotence class
less than p and finite nilpotent Lie rings of p-power order and nilpotence class less than p.
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1. Introduction and notation

Let S be a finitep-group for some primep. If S is abelian, it is sometimes convenient
to represent the operation in S as addition. If p is odd and S has nilpotence class at
most two, then we may define new operations C and Œ ; �onS under whichS becomes a
Lie ring, by a construction of R. Baer (below). M. Lazard extended Baer’s construction
to the case in which p is arbitrary and S has class at most p�1. Furthermore, Lazard
established a correspondence (Theorem 4.8 below) between these p-groups and finite
nilpotent Lie rings of p-power order and class at most p � 1, since one may recover
the group operation from the Lie ring operations. (Thus, this Lie ring differs from the
more commonly used Lie ring ([13], Definition 6.1), which may be defined for any
nilpotent group and which may be the same for non-isomorphic groups.)

Lazard’s correspondence has many applications ([13], Remark 10.29). Unfortu-
nately, examples (below) show that it is generally impossible to extend to a p-group S
of class at least p. However, in this paper, we show that one may associate to S a Lie
ring that reflects a large part of the structure of S in the case in which S is equal to a
productB1B2 : : : Bn of normal subgroups of class at most p�1, e.g., normal abelian
subgroups. We do this by making a slight change in the definition of the operations.
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In the Lazard correspondence for a given group the Lie ring operations are defined
by formulas

aC b D h1.a; b/ and Œa; b� D h2.a; b/;

where each of h1.a; b/ and h2.a; b/ is a product of elements equal to a or b or to a
commutator in a and b raised to a rational power (as defined below). However, h1

and h2 need not be well defined in a p-group of class at least p. We give below a
family of examples in which h2.x; y/, but not h1.x; y/; is well defined for some pairs
of elements x; y. More generally, there are conditions under which h2.x; y/, but
not h1.x; y/; may become well defined by multiplying its product formula by some
powers of commutators cr for which the choice of x and y yields c D 1. Therefore,
in this paper (in Remark 5.9), we modify the product formula for h2.a; b/ in this way
to obtain a product h0

2.a; b/ that is equal to h2.a; b/ for p-groups of class at most
p � 1, but is also well defined in some other situations. We then let Œa; b� be h0

2.a; b/

in these situations.
Lazard’s correspondence was originally inspired by a correspondence of Mal’cev

for infinite nilpotent groups (Theorem 4.6). Although its main applications concern
finite p-groups, it is stated in a more general form. Our main results, too, are stated
in a more general (and complicated) form in Section 6 of the paper. We also mention
some open questions (Remark 6.11 and below).

Our main results are the following (for Œa; b� as above):

Theorem A. Suppose p is a prime and S is a finite p-group. Then Œx; y� is well
defined whenever x and y are elements of .possibly different/ normal subgroups of S
of nilpotence class at most p � 1:

In addition, suppose A and B are normal subgroups of S of nilpotence class at
most p � 1. Define C and Œ ; � on A and B as in the Lazard correspondence. Then:

(i) for each u in A and v in B , the elements Œu; v� and Œv; u� lie in A \ B , and
Œv; u� D Œu; v��1, and

(ii) for each u; u0 in A and v in B ,

ŒuC u0; v� D Œu; v�C Œu0; v� and ŒŒu; u0 �; v� D ŒŒu; v�; u0 �C Œu; Œu0; v��:

Theorem B. Suppose S is a finite p-group generated by a set S of normal subgroups
N of S having nilpotence class at most p � 1. Let U be the set-theoretic union of the
elements of S . For each N in S , define C on N by Lazard’s definition. For each u,
v in U, define Œu; v� as in Theorem A.

Let E D End.S/ be the set of all mappings � from U to U such that, for each N
in S ;

� maps N into N and induces an endomorphism of N under C.

Define addition and multiplication on E by

.� C �0 /.x/ D �.x/C �0.x/ and .��0 /.x/ D �.�0.x//:
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Then E forms an associative ring, and hence also a Lie ring under the definition

Œ�; �0 � D ��0 � �0�:

For each v in U, define a mapping ad v on U by

.ad v/.u/ D Œu; v�:

Then

(i) ad v lies in E for each v in U,

(ii) for each N in S and each v;w in N , ad.v C w/ D ad v C adw;

(iii) for v;w in U,

Œad v; adw� D adŒw; v� D � adŒv; w�; and

ad v D adw iff v � w .mod Z.S//;

(iv) the additive subgroup L.S/ of E spanned by the mappings ad v for v in U is a
Lie subring of E; and

(v) for L.S/ as in (iv), each element of � of L.S/ satisfies

�.Œu; v�/ D Œ�.u/; v�C Œu; �.v/�; for every u, v in U:

Note that in Theorem B, we associate to S a Lie ring, L.S/, although it may
be impossible to make S itself into a Lie ring by Lazard’s methods. The elements
of L.S/; together with the identity mapping on U, generate an associative subring
of E.S/ that contains the inner automorphism group of S as a multiplicative subset
(Remark 6.9). The condition that S generate S in Theorem B is used only for the
second part of conclusion (iii).

Part (ii) of Theorem A shows that, for each v in U and each N in S , ad v induces
a derivation of N , for N regarded as a Lie ring under Lazard’s definition. Part (v) of
Theorem B generalizes this.

To illustrate our methods, consider the case in which S has class two. For p odd,
Baer’s construction ([1], Theorem B.1) gives

x C y D x
1
2yx

1
2 D xy.y; x/

1
2 and Œx; y� D .x; y/;

where
�
u

1
2

�2 D u and .u; v/ is the group commutator u�1v�1uv, for all u; v in S .
For p D 2, Œx; y� is still well defined, but x C y is not, in general. (For groups of
larger class, usually Œx; y� does not coincide with .x; y/.)

An explanation for our results is that one almost seems to need S (or the sub-
group generated by x and y) to have class at most p � 1 in order to define x C y,
while one needs less to define Œx; y�. For example, the original definition of x C y
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(in [14], Théorème II.2.4, pp. 155–156) uses a formula for products xtyt (for every
integer t ) that is a product of factors ci in various terms �ki

.S/ of the lower central
series f�k.S/g of S , raised to powers fi .t/ that are polynomials in t with rational
coefficients. (Here, ki tends to infinity as i increases.) For the factors ci inside (but
not outside) �p.S/, the rational coefficients may have denominators divisible by p,

so that cfi .t/
i may be undefined. This is why we assume that �p.S/ D 1 (i.e., S

has nilpotence class at most p � 1) for the Lazard correspondence. In contrast, the
bracket product Œx; y� is related to the formula for .xt ; yt /, which may be expressed
similarly as a product of powers of extended commutators chi .t/

i in which the rational
coefficients of hi .t/ may have denominators divisible by p only if ci has weight at
least p in x or at least p in y. This was shown by T. Easterfield (in Theorem C of [5])
and is illustrated by the formulas above for Baer’s construction.

For example, suppose S has class at most p�1. For a fixed element y of S , define

ı.x/ D .y�1xy/C .x�1/ for every x in S .

Define powers of ı by composition and regard S as a Lie algebra over Z=jS jZ. Then
(Corollary 6.2) for every x in S ,

Œx; y� D ı.x/ � ı2.x/=2C � � � C .�1/p�2ıp�1.x/=.p � 1/: (1.1)

(Thus, Œx; y� D .Log �/.x/ for � given by �.x/ D y�1xy for all x in S .) It turns
out that if S has class greater than p� 1, we may define Œx; y� by (1.1) if we have the
situation of Theorem A (with x in A and y in B).

A special case of our results appears in the Section 5 of [7]. It concerns a p-group
S of class p. Here, every element x lies in a normal subgroup Nx D hx; S 0i of
class at most p � 1, so that L.S/ is isomorphic to the Lazard Lie ring of S=Z.S/ for
S D fNx j x in Sg.

These results lead to further questions. In the Lazard correspondence, the entire
group S becomes a Lie ring. In Theorem B, in effect, we turn each subgroup B in S

into a Lie ring and then embed BZ.S/=Z.S/ into the Lie ring L.S/. Then L.S/
is spanned additively by the Lie rings BZ.S/=Z.S/. It would seem preferable to
construct an analogous Lie ring in which we embed the Lie rings B , but we do not
know whether this is possible. Some other questions are given in Remark 6.11.

It is easy to see that in the original situation of Lazard’s correspondence, the
elements of order 1 or p in the group S form a Lie subring of S (and thus a subgroup
of S ). Therefore, Lazard’s correspondence cannot be extended to a dihedral group of
order 8. Similarly, for any prime p, the Sylow p-subgroup of the symmetric group
of degree p2 (i.e., the wreath product of a group of order p by a group of order p)
provides an example of a p-group of class p to which the Lazard correspondence
cannot be extended.

This paper relies heavily on the proof of the Mal’cev and Lazard correspondences
given in [13], which uses the free nilpotent associative Q-algebraA of some arbitrary
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class c: After some preliminary lemmas in Section 2, we devote Sections 3 and 4 to
steps in the proof of the Lazard correspondence and to extensions of these steps. In
Section 5, we study a quotient algebra A=Id of A. The derivation of our main results
from properties of A=Id is analogous to the derivation of the Lazard correspondence
from properties of A. Thus, we use Sections 3 and 4 as a basis and as a model for
Section 5. Finally, in Section 6, we obtain our main results and some technical results
intended for further applications.

Our notation is mainly standard and taken from [9] and [13]. We mention some
exceptions and some possibly unfamiliar notation.

Suppose G is a group and H and K are subgroups of G. We write H C K to
indicate that H is a normal subgroup of K. For an element x of G, we let xH be the
set of all elements xy.D y�1xy/ as y ranges over H . For elements x and y of G,
we let .x; y/ be the commutator x�1y�1xy. Here we differ from [9] and [13], which
denote the commutator by Œx; y�, because we often need to write Œx; y� for the bracket
product of x and y given by the Lazard correspondence or by the formula h0

2.x; y/

of Remark 5.9.
As in [9] and [13], we use left-normed commutators, so that .x; y; z/ denotes

..x; y/; z/ for elements x; y; z in a group G, and likewise for .x1; x2; : : : ; xn/. We
also let

.y; xI 0/ D y and .y; xInC 1/ D ..y; xIn/; x/
for every positive integer n: For a subset T of G, we let

.T; x/ D h.t; x/ j t 2 T i
and define subgroups .T; xIn/ similarly. We adopt analogous notation for bracket
products where a Lie ring is involved.

Now we take some further definitions and notation from [13] (especially pp. 18
and 121–122) that concern mainly infinite groups.

A group G is torsion-free if the identity is the only element of finite order in G; it
is divisible if, for every element h of G and every positive integer n, there exists an
nth root of h in G, i.e., an element g in G such that gn D h.

Now suppose G is nilpotent, torsion-free, and divisible, and h 2 G. Then ([13],
Lemma 3.16) for every positive integer n, h has a unique nth root in G. A short
argument shows that for every rational number r , there exists a unique element g inG
such that

gk D hm; for all integers m; k such that k ¤ 0 and m=k D r I (1.2)

we denote g by hr . Moreover, for all r; s in Q,

hrCs D hrhs and .hr/s D hrs: (1.3)

Following [13], p. 18, we call G a Q-powered group. If the operation of G is
written additively, we usually write r � h or rh for hr .
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Conversely, a Q-powered group must be torsion-free and divisible. Thus, a nilpo-
tent group is Q-powered if and only if it is torsion free and divisible.

Now let � be a set of primes. An integer is said to be a �-number if it is a product
of powers of primes from � (we regard 1 as a �-number.) A group G is �-divisible
if, for every �-number k, every element in G has a kth root in G. A group G is
�-torsion-free if it has no non-identity elements whose orders are �-numbers.

Let Q� be the ring of all rational numbers whose denominators are �-numbers.
Suppose G is a nilpotent group. If G is �-divisible and �-torsion-free, then

Lemma 10.18 of [13] and our argument above show that for every element h ofG and
every number r in Q� , there exists a unique element g ofG (denoted by hr ) such that
(1.2) is valid. Moreover, (1.3) is satisfied for all r; s in Q� . Thus,G is a Q� -powered
group, as defined in [13], pp. 18–19. Since a Q� -powered subgroup is obviously
�-torsion-free and �-divisible, we see that a nilpotent group is Q� -powered if and
only if it is �-torsion free and �-divisible. In the special case that � consists of all
primes, then Q� D Q, and the properties of being �-divisible and �-torsion-free
coincide with the properties of being divisible and torsion-free.

For a subgroup H of a nilpotent group G, the set of all roots in G of elements
from H is denoted by

G

p
H D fg 2 G j gn 2 H for some positive integer ng:

Likewise, we let

G
�
p
H D fg 2 G j gn 2 H for some �-number ng:

If there is no danger of confusion, we may write
p
H and �

p
H for G

p
H and G

�
p
H .

2. Q-powered groups and generalizations

In this section, we prove some preliminary results, mainly about infinite groups.
The following elementary result from ([9], p. 19) will be useful:

Lemma 2.1. Suppose x and y are elements of a group G and z D .x; y/ commutes
with both x and y. Then

.xi ; yj / D zij for all integers i; j:

Lemma 2.2. Let� be a set of primes andH be a subgroup of a nilpotent Q� -powered
group G. Assume H has nilpotence class at most c.

Then �
p
H is a Q� -powered subgroup of G of nilpotence class at most c.
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Proof. LetH� D �
p
H . By Theorem 10.19 of [13],H� is a subgroup ofG. SinceG

is a nilpotent Q� -powered group, H� is nilpotent and �-torsion-free. Moreover, G
is �-divisible and, therefore, H� is �-divisible. Hence, H� is a Q� -powered group.

One may use Theorem 10.20 of [13] to show that H� has class at most c, but we
give a short direct proof. Let d be the nilpotence class of H� . We may assume that
d � 1. Then �dC1.H�/ D 1 and, by Lemma 3.6 of [13], there exists an iterated
commutator

h D .h1; h2; : : : ; hd /

of elements h1; h2; : : : ; hd of H� such that h ¤ 1.
For each j D 1; 2; : : : ; d , there exists a �-number k.j / such that hk.j /

j lies inH .
Let k D k.1/k.2/ : : : k.d/. By Lemma 6.13 of [13],

�
h

k.1/
1 ; h

k.2/
2 ; : : : ; h

k.d/

d

� D .h1; h2; : : : ; hd /
k D hk :

As G is �-torsion-free and h ¤ 1; hk ¤ 1. Therefore, �d .H/ > 1. As H has
class at most c, we have d � c as desired.

Lemma 2.3. Let � be a set of primes and H and K be subgroups of a nilpotent
group G. Assume H C K. Then

�
p
H C �

p
K:

Proof. This is part of Theorem 10.19 of [13].

The remaining results in this section are not necessary for applications to finite
groups, except for the easy special cases in which G is finite.

Lemma 2.4. Suppose H and K are subgroups of a nilpotent group G. Let

L D .H;K/ D h.x; y/ j x 2 H;y 2 K i:
(a) If K is �-divisible and L � Z.G/, then L is �-divisible.

(b) If H and K are both normal in G and �-divisible, then L is normal in G and
�-divisible.

Proof. (a) Here, L is abelian. Take any x inH and y inK, and let k be a �-number.
We claim that .x; y/ has a kth root in L.

Since K is �-divisible, there exists z in K such that zk D y. Since .x; z/ lies in
Z.G/, Lemma 2.1 yields

.x; y/ D .x; zk/ D .x; z/k :

Thus, .x; y/ has a kth root in L, as claimed. Since L is abelian and is generated by
elements of the form .x; y/ above, L is �-divisible.
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(b) LetM D hH;Ki. SinceG is nilpotent, so isM . Let d be the nilpotence class
of M , and let

1 D Z0.M/ < Z1.M/ < � � � < Zd .M/ D M

be the upper central series of M . Take r minimal such that L � Zr.M/. Since
H;K C G, we have L C G ([9], p. 18).

We prove that L is �-divisible by induction on r . Part (a) handles the case in
which r is 0 or 1.

Now assume r � 2. Then L is not contained in Z.M/. Take s minimal such that

L \Zs.M/ > L \Z.M/:

Then
1 < .L \Zs.M/;M/ � L \Zs�1.M/ D L \Z.M/:

(This shows that s D 2, as is well known.) Let

L? D L \Zs.M/ and Y D .L?;H/.L?; K/: (2.1)

Then Y � L \Z.M/.
Since Y is abelian and .L?;H/ and .L?; K/ are �-divisible by (a),

Y is �-divisible: (2.2)

Let xM D M=Y and let xX D XY=Y for every subgroup X of M . Since H
and K are normal in G and �-divisible, xH and xK are normal in xM and �-divisible.
Moreover,

xL D .H;K/ D . xH; xK/: (2.3)

It is easy to see that . SL?; xM/ D 1 (in fact, Y D .L?;M/ ). Therefore, by (2.1) and a
short argument, we have

xL � Zr�1. xM/:

By (2.3) and the induction hypothesis,

xL is �-divisible: (2.4)

Take any element x of L and any �-number k. By (2.4), there exists y in L such that
Nyk D Nx. Then xy�k lies in Y . By (2.2), there exists z in Y such that zk D xy�k .
Since Y � Z.M/,

x D zkyk D .zy/k :

Thus, L is �-divisible, as desired.

Corollary 2.5. SupposeG is a�-divisible nilpotent group. Then �n.G/ is�-divisible
for every positive integer n.
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Proposition 2.6. SupposeG is a nilpotent group generated by �-divisible subgroups.
Then

(a) Z.G/ is �-divisible, and

(b) G is �-divisible.

Proof. Let Z D Z.G/.
(a) Let N D �

p
Z. Since Z C G, Lemma 2.3 yields

N D �
p
Z C �

p
G D G:

Assume N > Z. We work toward a contradiction. Since N C G and G is
nilpotent,

1 < N=Z C G=Z and 1 < .N=Z/ \Z.G=Z/ D .N \Z2.G//=Z:

Take x in N \Z2.G/ such that x lies outside Z.
Since N D �

p
Z, xk 2 Z for some �-number k. Since x lies outside Z, and G

is generated by �-divisible subgroups, some �-divisible subgroup H of G does not
centralize x. Take y in H such that y does not centralize x. Take z in H such that
zk D y.

Since x lies in Z2.G/, the element .x; y/ lies in Z. Therefore, by Lemma 2.1,

.x; y/ D .x; zk/ D .x; z/k D .xk; z/ D 1;

since xk lies in Z. This contradicts the choice of y. Thus, Z is �-divisible.
(b) We use induction on the nilpotence class of G.
For every �-divisible subgroup H of G, the group HZ=Z is �-divisible. There-

fore, by induction,
G=Z is �-divisible: (2.5)

Take any element x in G and any �-number k. By (2.5), there exists y in G such
that yk � x .mod Z/. Then xy�k lies in Z. By (a), xy�k D zk for some z in Z.
Then

x D zkyk D .zy/k :

Thus, G is �-divisible.

3. Group operations on algebras

In this section, we describe some relations among associative algebras, Lie algebras,
and groups, taken mainly from [13], Chapters 9–10, that are extended in Sections 4
and 5.

All rings and algebras that we discuss will be associative unless otherwise speci-
fied. We use the following conditions:
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Hypothesis 3.1. (i) R is a commutative ring with unity element 1.

(ii) B is an algebra over R with unity element .also denoted by 1/.

(iii) A is a subalgebra .without unity element/ of B over R.

(iv) c is a positive integer.

(v)A is nilpotent of class at most c, i.e., a1a2 : : : acC1 D 0 for all a1; a2; : : : ; acC1

in A.

Suppose u is an element ofB in Hypothesis 3.1. We define a mapping ad.u/ onB
by ad.u/.x/ D xu�ux: If u is inA, then ucC1 D 0 by condition (v). Assume further
that, for some positive integer d ,

dŠ is invertible in R and udC1 D 0: (3.1)

Then we may define

Exp.u/ D eu D 1C uC u2

2Š
C � � � C ud

dŠ

and

Log.1C u/ D u � u2

2
C � � � C .�1/dC1u

d

d
:

It is easy to see that .Exp.u/ � 1/dC1 D .Log.1 C u//dC1 D 0: By a proof
similar to the usual proof for real numbers (e.g., by a small change in the proof of
Proposition 2.1 of [2]), we have:

Lemma 3.2. Suppose u is in B , d is a positive integer, dŠ is invertible in R, and
udC1 D 0. Then

u D Log.Exp.u// and 1C u D Exp.Log.1C u//:

We sometimes use the following assumption.

Hypothesis 3.10. (i) Hypothesis 3.1 is satisfied.

(ii) d is a positive integer and dŠ is invertible in R.

(iii)u is an element ofB anduibudC1�i D 0 for all b inB and for i D 1; 2; : : : ; d:

Note that, by (iii) in Hypothesis 3.10, udC1 D u1ud D 0:

The following result appears as Lemma 4.5.1 in [3].

Lemma 3.3. Assume Hypothesis 3:10. Let � D Exp.ad.u// and let .� � 1/.x/ D
�.x/ � x for all x in B . Then

(a) ad.u/ D Log � and .ad.u//dC1 D .� � 1/dC1 D 0;
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(b) �.x/ D e�uxeu, for all x in B , and

(c) �.ex/ D e�.x/ whenever x is in B and xdC1 D 0:

Proof. Let E be the ring of all endomorphisms of B as a module over R. Then E is
an algebra over R, and E contains the mappings r.u/ and l.u/ on B given by

r.u/.x/ D xu; l.u/.x/ D ux:

Clearly, ad.u/ D r.u/ � l.u/ and r.u/l.u/ D l.u/r.u/.
By Hypothesis 3.10and the Binomial Theorem,

r.u/dC1 D l.u/dC1 D .ad.u//dC1 D 0:

Therefore, by Lemma 3.2 (applied toE in place of B), ad.u/ D Log.Exp.ad.u/// D
Log �:

Since r.u/l.u/ D l.u/r.u/,

� D ead.u/ D er.u/�l.u/ D e�l.u/er.u/:

Moreover, ��1 is an element ofE and since .r.u/�l.u//dC1 D 0 (by Hypothesis 3.10
and the Binomial Theorem), .� � 1/dC1 D 0.

For x in B ,

er.u/.x/ D
dX

iD0

.r.u//i .x/

i Š
D

dX
iD0

xui

i Š
D xeu;

and similarly e�l.u/.x/ D e�ux and �.x/ D ead.u/.x/ D e�uxeu:

Now suppose xdC1 D 0. Since � is conjugation by eu, it is an algebra automor-
phism, and .�.x//dC1 D 0.

Then

e�.x/ D
dX

iD0

.�.x//i

i Š
D

dX
iD0

�.xi /

i Š
D �.ex/:

In B , let 1CA be the subset f1Cx j x in Ag. For each x in A, the element 1Cx

has a multiplicative inverse because xcC1 D 0 and

.1C x/�1 D 1 � x C x2 � x3 C � � � C .�1/cxc :

Now it is easy to see that 1C A is a group under multiplication.
Note that B becomes a Lie algebra B� over R under the bracket multiplication

Œu; v� D uv � vu;
and A becomes a Lie subalgebra A� of B�.
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Now suppose also that cŠ is invertible inR. Then, for everyu inA, sinceucC1 D 0,
we see that Exp.u/ and Log.1C u/ are well defined. Further, u D Log.Exp.u// and
1 C u D Exp.Log.1 C u//, by Lemma 3.2. Therefore, the function Exp from A to
1 C A is a bijection for which Log is the inverse function. Since 1 C A is a group
under multiplication, this bijection induces a group operation ? on A, given by

Exp.u ? v/ D .Expu/.Exp v/ D euev; i.e.;

u ? v D Log.euev/:

It is easy to see that, under ?, 0 is the identity element and the inverse of an element
u is �u. For each natural number n, the nth power of an element u under ? is the
element nu in A.

For a set � of primes, recall that Q� consists of all rational numbers that can
be expressed in the form m=k, where m and k are integers and every prime divisor
of k lies in � . For the next result, note that if cŠ is invertible in R, then A may
be regarded as an algebra over the ring ZŒ1=cŠ� obtained by adjoining 1=cŠ to the
ring Z of integers. However, ZŒ1=cŠ� coincides with Q� for the set � of all primes
not exceeding c, since Q� is obtained from Z by adjoining 1=p for every such
prime p.

Theorem 3.4 (Baker–Campbell–Hausdorff (BCH) formula; [13], Theorem 9.11 and
Remark 9.17). Assume Hypothesis 3.1. Suppose cŠ is invertible in R. Let � be the
set of all primes not exceeding c, and regard A as an algebra over Q� .

Then, for u and v in A,

u ? v lies in the subalgebra of A� over R generated by u and v,

and is given by a formula H.u; v/ over Q� that depends only on c, not on u and v.

The formula in the theorem is given as (9.16) in [13], p. 109; in particular ([4],
p. 116), it gives

u ? v D uC v C 1

2
Œu; v�C w; (3.2)

where w is a linear combination over Q� of bracket products of weight at least three
in u and v.

Recall that for u and v in B ,

Œv; uI 0� D v and Œv; uInC 1� D ŒŒv; uIn�; u�
for every positive integer n, and that extended iterated commutators .v; uIn/ in a
group are defined similarly.
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Proposition 3.5. Assume Hypothesis 3:10. Let

�.x/ D e�uxeu; for all x in B:

Then

(a) .ad.u//dC1 D .� � 1/dC1 D 0; � D Exp.ad.u// and ad.u/ D Log � and

(b) for all v in A,
�.v/ D v C Œv; u�C � � � C Œv; uI d�=dŠ

and

Œv; u� D .� � 1/.v/ � 1

2
.� � 1/2.v/C � � � C .�1/dC1 1

d
.� � 1/d .v/:

Moreover,

(c) if cŠ is invertible in R, then for all v in A,

u�1 ? v ? u D �.v/;

where u�1 is the inverse of u under ?.

Proof. Lemma 3.3 gives (a), which gives (b).
To prove (c), take v in A and assume cŠ is invertible in R. Then

u�1 ? v ? u D u�1 ? .v ? u/ D .�u/ ? Log.eveu/ D
D Log.e�u Exp.Log.eveu/// D Log.e�ueveu/ D
D Log.�.ev// D Log.e�.v// D �.v/; by Lemma 3.3:

Proposition 3.6. Assume Hypothesis 3:10. Suppose d is a positive integer, dŠ is
invertible in R, C is a subalgebra of A that is nilpotent of class at most d , T is a Lie
subalgebra of C�, and ˛ is an automorphism of T .

For each positive integer i , let .˛�1/i .T / be the image of the additive group of T
under the endomorphism .˛ � 1/i . Then:

(a) C is a group under ? and T is a subgroup of C ,

(b) ˛ is an automorphism of T under ?, and

(c) in the semi-direct product of T .under ?/ by the cyclic group generated by ˛,
the subgroup .T; ˛I i/ contains the set .˛ � 1/i .T / above, for every i .

Proof. (a) Since dŠ is invertible in R and C is nilpotent of class at most d , C forms
a group under ?. The BCH formula (Theorem 3.4) shows that T is closed under ?.
Since T contains the negatives of its elements, it contains its inverses under ?. There-
fore, T is a subgroup of C .

(b) This also follows from Theorem 3.4.
(c) This is an extension of Lemma 6.5 of [8], but follows from the proof of that

lemma.
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4. The Mal’cev and Lazard correspondences

To prove our main results, we need a variation of the Mal’cev and Lazard corre-
spondences. Here, we present part of Khukhro’s exposition of these correspondences
(Chapters 9 and 10 of [13], especially Sections 9.1 and 10.1 in pp. 101–104 and
113–121), together with some applications.

Take positive integers c and n such that n � 2. (We will later choose n to
be 2 or 3, depending on our applications.) Let A be a free associative Q-algebra of
nilpotency class c with free (non-commuting) generators x1; : : : ; xn. Then A has a
basis consisting of all monomials of the form

xi1xi2 : : : xik ; 1 � k � c; 1 � ij � n for j D 1; 2; : : : ; k:

Thus, A is homogeneous: A D A1 ˚ � � � ˚ Ac , where Ai is the homogeneous
component of A of degree i .

The bracket multiplication Œx; y� D xy � yx defines the structure of the Lie Q-
algebraA� on the additive group ofA; and x1; : : : ; xn generate a Lie ring (Z-algebra)
L insideA� and a Lie algebra QL over Q. ThenL is a free nilpotent Lie ring of class c
with free generators xi (and, QL is a similar free nilpotent Lie Q-algebra). Both L
and QL are homogeneous with components Lk D L \ Ak and QLk D QL \ Ak

and are multihomogeneous with respect to the free generators xi . Recall that certain
Lie products of x1; : : : ; xn are called basic Lie products. By Theorem 5.39 of [13],

the additive group of L .respectively, of QL/ has a free Z-basis
.respectively, a Q-basis/ consisting of the basic Lie products in (4.1)
x1; : : : ; xn of weight at most c.

We adjoin an outer unity 1 to A to form the associative Q-algebra B D A0 ˚ A,
where 1 spans the one-dimensional algebraA0. Then every ideal ofA is an ideal ofB
and, as in Section 3, the set

1C A D f1C a j a 2 Ag
forms a group under multiplication. Moreover, Hypothesis 3.1 is satisfied with
R D Q.

Since cŠ is invertible in Q andA is nilpotent of class c, Hypothesis 3.10 is satisfied
for every element u ofA if we take d to be c. Therefore, we may define eu D Exp.u/
and Log.1Cu/ for everyu inA, and the function Exp fromA to 1CA is a bijection for
which Log is the inverse function. This bijection induces a group operation ? on A,
given by

u ? v D Log.euev/

As in [13], let H.u; v/ D u ? v for all u; v in A. Since (Theorem 3.4) H.u; v/ is a
linear combination of u; v; and Lie ring commutators involving u and v with rational
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coefficients, QL is a subgroup of A under ?. For i D 1; : : : ; n, let yi D exi � 1�xi ,
so that

1C xi C yi D exi D 1C xi C x2
i

2Š
C � � � C xc

i

cŠ
: (4.2)

Then, for each i , yi is a linear combination of powers of xi of degree at least 2.
LetF be the multiplicative subgroup of 1CA generated by the elements ex1 ; : : : ; exn .

For each positive integer k, let Ak be the sum Ak ˚ � � � ˚ Ac . (Thus Ak D 0

if k > c.) Note that Ak is an ideal of A and of B . Because we make heavy use
of both group commutators and Lie ring commutators, we denote the commutator of
two group elements a; b by

.a; b/ D a�1b�1ab;

unlike [13], which uses the notation Œa; b� for both group commutators and Lie ring
commutators. For any group G and positive integer k, we let �k.G/ be the kth term
of the lower central series of G:

�1.G/ D G; and �iC1.G/ D .G; �i .G// for i � 1:

As in [13], we consider a commutator � to be an abstract bracket product of
variables that may be all taken from a Lie ring or all taken from a group. In the latter
case, we interpret each bracket product Œa; b� within � to be a group commutator
.a; b/. (However, at the end of Section 4 and afterward, we will interpret a bracket
product Œa; b� of group elements differently.)

Now we quote two important results from [13].

Lemma 4.1 (Special case of Lemma 9.1 in [13]). (a) Suppose that � is a commutator
of weight k. Then the group commutator �.exi /, the value of � on the elements exi

in F , is equal to 1C �.xi /C �, where � 2 AkC1 and �.xi / is the corresponding Lie
ring commutator, the value of � on the elements xi in L.

(b) Suppose that g � Q
j �

j̨

j .mod �kC1.F //; j̨ 2 Z, where the �j D �j .e
xi /

are group commutators of weight k in the exi . Then g D 1CP
j j̨ �j .xi /C�, where

� 2 AkC1 and the �j .xi / are the corresponding Lie ring commutators in the xi .

Theorem 4.2 (Special case of Theorem 9.2 of [13]). The group F is free nilpotent of
class c with free generators exi .

It is easy to see that the group A under the operation ? is a nilpotent Q-powered
group in which a power ur is simply the scalar multiple ru. The isomorphism of A
under ? onto 1C A under multiplication shows that 1C A is a Q-powered group.

Remark 4.3. Let F ? be the set of all roots of elements of F in 1C A, i.e.,

F ? D p
F D fg 2 1C A j gn 2 F for some positive integer ng:
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Then ([13]. Theorem 9.19 and Corollary 9.22),

F ? is a subgroup of 1C A, and is a free nilpotent Q-powered group
of class c freely generated by the elements exi .

Therefore, for any nilpotent Q-powered group G of class at most c and elements
g1; : : : ; gn of G, there exists a unique homomorphism of F ? into G that maps exi to
gi for each i .

Recall that L is the Lie subring of A� generated by x1; : : : ; xn. Theorem 10.4 of
[13] yields:

Proposition 4.4. We have

F ? D eQL D feu j u in QLg:
Remark 4.5. Now let fi D exi for i D 1; : : : ; n. We first consider the case in which
n D 2. There F D hex1 ; ex2i D hf1; f2i. Since x1 C x2 and Œx1; x2� lie in L (and
hence in QL), ex1Cx2 and eŒx1;x2� lie in F ?. Thus, we may express them as “words”
in f1 and f2 obtained by taking inverses, products, and rational powers:

ex1Cx2 D h1.f1; f2/ and eŒx1;x2� D h2.f1; f2/: (4.3)

Now consider any nilpotent Q-powered group G of class at most c. For any
elements u and v ofG, there exists a unique homomorphism � of F ? intoG such that
�.f1/ D u and �.f2/ D v, by Remark 4.3. If we evaluate the “words” h1 and h2

on u and v in the natural manner, we see that

h1.u; v/ D �.ex1Cx2/ D �.h1.f1; f2// and

h2.u; v/ D �.eŒx1;x2�/ D �.h2.f1; f2//
(4.4)

This allows us to define operations OC and OŒ ; O� on G by

u OC v D h1.u; v/ and OŒu; vO� D h2.u; v/; for all u; v in G:

We also define r � u to be ur for r in Q and u in G. Since

h1.f2; f1/ D ex2Cx1 D ex1Cx2 D h1.f1; f2/;

we obtain for u; v in G,

v OC u D h1.v; u/ D �.h1.f2; f1// D �.h1.f1; f2// D h1.u; v/ D u OC v:

Likewise, as

eŒx1;x1� D e0 D 1 and eŒx2;x1� D e�Œx1;x2� D .eŒx1;x2�/�1;

we obtain OŒu; uO� D 1 and OŒv; uO� D .�1/ � OŒu; vO� D OŒu; vO��1
.
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Similar arguments (some with n D 2 and some with n D 3) show that, under OC
and OŒ ; O� and scalar multiplication as above, G becomes a nilpotent Lie algebra LG

over Q with class at most c ([13], pp. 116–117). In particular, the identity element of
G is the zero element of LG and the inverse of each element u of G is the element
�u D .�1/ � u of LG .

Remark 4.5 gives part of the notation and proof for the Mal’cev correspondence,
which is proved in full as Theorem 10.11 in pp. 116–118 of [13]:

Theorem 4.6 (Mal’cev correspondence). Let c be a positive integer. For every nilpo-
tent Q-powered groupG of class at most c, the corresponding nilpotent Lie Q-algebra
LG of class at most c is defined on the same underlying set LG D G, with Lie
Q-algebra operations

aC b D h1.a; b/; Œa; b� D h2.a; b/; ra D ar

for r 2 Q.
Conversely, for every nilpotent Lie Q-algebra M of class at most c, the corre-

sponding nilpotent Q-powered group GM of class at most c is defined on the same
underlying set GM D M , with group operations

a � b D H.a; b/ and ar D ra for r 2 Q;

whereH.a; b/ is given by the Baker–Campbell–Hausdorff .BCH/ formula as in Theo-
rem 3.4.

These transformations are inverses of one another: LGM
D M as Lie Q-algebras

.that is, not only sets, but all operations coincide/, and, similarly, GLG
D G as

Q-powered groups.

(ForG as in Theorem 4.6 above, we write C and Œ ; � for the Lie operations instead
of OC and OŒ ; O� when there is no danger of confusion.)

Since the ideas in the proof of Theorem 4.6 are used in the proof of the Lazard
correspondence and our main results, we have mentioned some of these ideas in
Remark 4.5, and we mention some more now.

Returning to the original case in whichG is the group F ? D eQL for some n, we
obtain ([13], p. 114) for all x; y in QL,

ex OC ey D exCy and OŒex; eyO� D eŒx;y�: (4.5)

Since we have defined

r � ex D .ex/r D erx for all ex in F ?; (4.6)

we see that the Lie Q-algebraLF ? D LeQL on the setF ? is isomorphic to the original
Lie Q-algebra QL under the logarithm mapping, which takes ex to x for each x.
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The inverse of the logarithm mapping in the previous paragraph is the exponential
bijection that takes each element x of QL to the element ex of F ?. We used the
exponential mapping earlier to define the group action ? on A and on QL:

x ? y D H.x; y/ D Log.exey/ (and Exp.x ? y/ D .Exp x/.Expy/): (4.7)

The definition forces QL under ? to be isomorphic to F ? under multiplication.
Similarly, the BCH formula can be applied to define a product u ? v D H.u; v/

for elements u; v in any nilpotent Q-algebra M of class at most c. Moreover, take
n D 2 and recall that QL is a free nilpotent Lie Q-algebra of class c with free
generators x1 and x2. Then for any u; v and M as above, there is a unique Lie
Q-algebra homomorphism � that takes x1 to u and x2 to v. Clearly,

u ? v D H.u; v/ D �.H.x1; x2//:

We may show above that under ?,M satisfies the associative law and is a nilpotent
Q-powered group of class at most c (with ur in the group equal to r � u in the Lie
algebra for r in Q and u inM ) by taking n D 3 and using arguments similar to those
in the proof above that LG is a Lie Q-algebra for a suitable group G ([13], p. 178).
We denote the set M under the group operation by GM . Thus, by (4.7),

GQL Š F ? D eQL:

Now let us consider the special case in whichM isLF ? ,i.e., the setF ? considered
as a Lie Q-algebra. We saw in (4.5) and (4.6) that for all ex , ey in F ? and r in Q,

ex OC ey D exCy ; OŒex; eyO� D eŒx;y�; and r � ex D erx :

Therefore, the mapping Log W L W F ? ! QL is a Lie Q-algebra isomorphism. Hence,
for ex , ey in LF ? ,

Log.ex ? ey/ D Log.ex/ ? Log.ey/ D x ? y D H.x; y/ D Log.exey/;

by (4.7), i.e., ex ? ey D exey . Thus, LF ? under ? and F ? under its usual multipli-
cation are the same set with the same operation: GLF ? D F ?. This is a special case
of the Mal’cev correspondence. In particular, the functions h1 and h2 in the formula
(4.4) together give an inversion of the BCH formula by giving a Lie algebra structure
on a group.

The derivation of the Mal’cev correspondence by algebraic means above was
obtained by M. Lazard, inspired by Mal’cev’s orginal work, which used analytic
methods ([14], p. 104). Lazard then extended the Mal’cev correspondence in the
following way.

By Theorem 4.2, F is a free nilpotent group of class c with free generators
f1; : : : ; fn. Recall that F is a subgroup of the Q-powered group F ?. For every
set of primes � , we define

F� D �
p
F D fg 2 F ? j gk 2 F for some �-number kg:
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Note that F ? is a Q� -powered subgroup. By Lemma 2.2 above and Theorem 10.20
of [13], we obtain:

Theorem 4.7. Let � be a set of primes. Then F� is a subgroup of F ?, and is the free
nilpotent Q� -powered group of class c freely generated by f1; : : : ; fn.

Now let � be the set of all primes not exceeding c and � be a set of primes
containing � . Because the coefficients in the BCH formula (Theorem 3.4) lie in Q�

(and hence in Q� ), the Lie Q� -algebra Q�L is closed under the group operation ?.
By [13], Theorem 10.22,

F� D fex j x 2 Q�Lg: (4.8)

Recall from (4.3)

ex1Cx2 D h1.f1; f2/ and eŒx1;x2� D h2.f1; f2/:

Since x1 C x2 and Œx1; x2� lie in L, hence in Q�L,

h1.f1; f2/ and h2.f1; f2/ lie in eQ� L:

Now we may apply our previous arguments to Q� -powered groups and Lie al-
gebras over Q� instead of Q-powered groups and Lie algebras over Q. We obtain
(Results 10.11 and 10.13 and p. 124 of [13])

Theorem 4.8 (Lazard correspondence). Let c be a positive integer and � be a set
of primes containing every prime not exceeding c. For every nilpotent Q� -powered
group G of class at most c, the corresponding nilpotent Lie Q� -algebra LG of class
at most c is defined on the same underlying set LG D G, with Lie Q� -algebra
operations

aC b D h1.a; b/; Œa; b� D h2.a; b/; ra D ar

for r 2 Q� .
Conversely, for every nilpotent Lie Q� -algebra M of class at most c, the corre-

sponding nilpotent Q� -powered group GM of class at most c is defined on the same
underlying set GM D M , with group operations

a � b D H.a; b/ and ar D ra for r 2 Q:

These transformations are inverses of one another: LGM
D M as Lie Q� -alge-

bras .that is, not only sets, but all operations coincide/, and, similarly, GLG
D G as

Q� -powered groups.

Corollary 4.9. Let � be a set of primes containing every prime not exceeding c.
Let A? be a nilpotent algebra over Q� of class at most c contained in an algebra B?

with 1 over Q� . Let 1C A? be the set f1C a j a 2 A?g. Then
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(a) 1C A? D fea j a 2 A?g,

(b) 1CA? is a nilpotent Q� -powered group of class at most c under multiplication,
and

(c) for every a; a0 in A? and r in Q� ;

h1.e
a; ea0

/ D eaCa0

; h2.e
a; ea0

/ D eaa0�a0a; and .ea/r D era:

Proof. Let R D Q� . Note that Hypothesis 3.1 is satisfied with A? and R1˚ A? in
place of A and B . Our discussion after Lemma 3.3 shows that 1 C A? is a group
under multiplication and that (a) is valid.

Let us consider A? as a Lie R-algebra under the bracket multiplication given by
Œa; a0� D aa0 � a0a. Since A? is nilpotent of class at most c, A? is a nilpotent Lie
R-algebra of class at most c. By the Lazard correspondence, A? becomes a nilpotent
R-powered group GA? of class at most c under the operation ? (given by the BCH-
formula), and then for a; a0 in A? (regarded as elements of the group GA?) and r
in Q0,

h1.a; a
0/ D aC a0; h2.a; a

0/ D Œa; a0� D aa0 � a0a; and ar D ra: (4.9)

By our discussion after Lemma 3.3, the group operation ? is also given by

Exp.a ? b/ D .Exp a/.Exp b/;

and the exponential mapping defines a group isomorphism of A? under ? onto the
group 1C A? under its usual multiplication. Therefore, (b) is valid by the previous
paragraph, and in the group 1C A? under multiplication, (4.9) gives

h1.e
a; ea0

/ D eaCa0

; h2.e
a; ea0

/ D eaa0�a0a; and .ea/r D era;

which then gives (c).

Let S be the set of all basic commutators �j D �j .x; y/ of weight at least two
and at most c in two variables of a group. We order S linearly so that commutators
of smaller weight precede those of larger weight. Let � be the set of primes not
exceeding c.

By Lemma 10.12, Remark 10.15, and p. 124 of [13], there exist unique elements rj
and sj of Q� such that, for any elements a, b of a nilpotent Q� -powered group of
class at most c,

h1.a; b/ D ab
Y

�j 2S

�j .a; b/
rj (4.10)

and
h2.a; b/ D

Y
�j 2S

�j .a; b/
sj : (4.11)
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Note that h1 and h2 may be defined by (4.10) and (4.11) for every Q� -powered
group, regardless of whether it is nilpotent. Moreover, by p. 116 of [13], for any
positive integer d less than c, the analogous formulas hold with the same exponents,
but with the product taken over only those �j in S of weight at most d . For such �j ,
the previous paragraph asserts that the exponents rj and sj lie in Q� , for 	 being the
set of primes not exceeding d .

Note that every Q� -powered group is a Q� -powered group. By the discussion
above, we obtain:

Proposition 4.10. Suppose d is a positive integer less than c. Let � be the set of
primes not exceeding c and 	 be the set of primes not exceeding d . Take functions h1

and h2 on Q� -powered groups as above, and let h0
1 and h0

2 be the analogous functions
on Q� -powered groups, where �j ranges over only the elements of S of weight at
most d .

Then, for all elements u; v in a Q� -powered group G,

.h0
j .u; v//

�1hj .u; v/ 2 �dC1.G/; for j D 1; 2:

Now we obtain a further relation between the group structure and Lie algebra
structure.

Proposition 4.11. Suppose �;A?; and B? satisfy the hypothesis of Corollary 4.9,
and g 2 .1C A?/; u D Logg, and d is a positive integer. Assume that

d � c and uibudC1�i D 0; for all b in B? and i D 1; 2; : : : ; d:

Define operations OC and OŒ ; O� on 1C A? and scalar multiplication on 1C A? by

x OC y D h1.x; y/; OŒx; yO� D h2.x; y/; and rx D xr ;

for r 2 Q� .
Define mappings � and ı on 1C A? by

�.h/ D g�1hg and ı.h/ D �.h/ OC .h�1/:

Define powers of ı by composition.
Then ıdC1 D 0 and, for all h in 1C A?,

OŒh; gO� D fı.h/ge.1/ OC fı2.h/ge.2/ OC � � � OC fıd .h/d ge.d/;

where e.i/ D .�1/iC1=i , for each i .

Proof. Recall from the proof of Corollary 4.9 that the exponential mapping is a
bijection of A? into 1C A? and that the logarithm mapping is the inverse bijection.
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LetL.h/ D Log h for every h in 1CA?. For all x; y inA? and r in Q� , Corollary 4.9
asserts that

ex OC ey D exCy ; OŒex; eyO� D eŒx;y�; and r � ex D erx :

Therefore, for all g1; g2 in 1C A? and r in Q,

L.g1 OC g2/ D L.g1/C L.g2/; (4.12)

L.OŒg1; g2
O�/ D ŒL.g1/; L.g2/�; (4.13)

and

L.gr
1/ D rL.g1/ (4.14)

Since u D L.g/; g D eu. Let R D Q� . Note that Hypothesis 3.10 is satisfied.
Extend the definition of � to all of B by defining

�.b/ D g�1bg:

Since cŠ is invertible in R, part (c) of Lemma 3.3 applies with c in place of d . Hence
�.ex/ D e�.x/ for all x in A?, and

L.�.h// D �.L.h//; for all h in 1C A?:

By (4.12) and (4.14),

L.ı.h// D L.�.h/ OC h�1/ D L.�.h//C L.h�1/ D �.L.h// � L.h/:
We have defined ı on 1C A?. We define ı on the set A? (which is disjoint from

1C A?) by
ı.h/ D �.x/ � x:

Then, for h in 1C A?,

L.ı.h// D �.L.h// � L.h/ D ı.L.h//: (4.15)

Since ı is an endomorphism ofA? under addition, so are its powers under composition,
and (4.15) gives

L.ıi .h// D ıi .L.h//; for all positive integers i: (4.16)

As before, take h in 1C A?. Let v D L.h/. By Proposition 3.5,

Œv; u� D e.1/ı.v/C e.2/ı2.v/C � � � C e.d/ıd .v/:

So, by (4.16),

Œv; u� D e.1/L.ı.h//C e.2/L.ı2.h//C � � � C e.d/L.ıd .h//:
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By (4.12), (4.13), and (4.14), this says

L.OŒh; gO�/ D ŒL.h/; L.g/� D Œv; u�

D L
�fı.h/ge.1/

� C L
�fı2.h/ge.2/

� C � � � C L
�fıd .h/ge.d/

�

D L
�fı.h/ge.1/ OC fı2.h/ge.2/ OC � � � OC fıd .h/ge.d/

�
:

Since L is an injective function from 1C A? to A?, this gives the conclusion.

5. A new definition for the Lie product Œu; v�

In Section 4, we used the free associative Q-algebra A of nilpotency class c on
n generators to construct the free nilpotent Q-powered group F ? of class c on n
generators, and to obtain the operations C and Œ ; � for the Mal’cev correspondence.
In a similar way, we used a subgroup F� of F ? to obtain the Lazard correspondence.
In this section, we define an ideal Id of A and a normal subgroup Kd of F ? so that
A=Id ; F

?=Kd and F�Kd=Kd will play similar roles for defining a “word” h0
2.u; v/

for u and v in a Q� -powered group (for suitable �). In Section 6, we will show that
h0

2.u; v/ can be used to extend the definition of the Lie product Œu; v� given in the
Lazard correspondence to suitable elements in a wider class of groups.

We continue to assume the hypothesis and notation of Section 4. We also let � be
an arbitrary set of primes, d be a positive integer such that d � c, and 	 be the set of
all primes p such that p � d .

Recall that

fi D exi D 1C x1 C x2
i

2Š
C � � � C xd

i

dŠ
; for i D 1; 2; : : : ; n; (5.1)

1 C A is a group under multiplication, and F is the subgroup hf1; f2; : : : ; fni of
1C A. For each i D 1; 2; : : : ; n and each positive integer k, let

Ni D hf g
i j g 2 F i D normal closure of fi in F (5.2)

and let Cik be the Q-subgroup of A spanned by all monomials of degree at least k
in xi . It is easy to see that Cik is an ideal of A and of B .

Let Id be the Q-subspace of A spanned by all the monomials in x1; : : : ; xd that
have degree at least d C 1 in xi for some i .1 � i � n/. Thus,

Id D C1;dC1 C C2;dC1 C � � � C Cn;dC1:

Let
Kd D fg 2 F ? j g � 1 .mod Id /g:
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Lemma 5.1. Suppose I is an ideal of B contained in A. Let

KI D fg 2 F ? j g � 1 .mod I /g

Then

(a) KI is a normal subgroup of F ?, and

(b) KI and F ?=KI are Q-powered groups.

Remark. Note that since B contains a copy of the rational field Q, every ring ideal
of B is a Q-algebra ideal of B . By taking I D Id , we obtain Kd D KId

:

Proof. (a) Since I is an ideal of B , there is a canonical algebra homomorphism of B
onto B=I that induces a group homomorphism of F ?. Then KI is the kernel of this
homomorphism and is, therefore, a normal subgroup of F ?.

(b) Recall that

the mapping Log is a group isomorphism of 1C A .under multi-
plication/ onto A under ?, and Exp is the inverse isomorphism.

(5.3)

From the definition of gr for a rational number r and an element g of a Q-powered
group and from (4.6), we obtain

Log.gr/ D r Log.g/; Exp.rx/ D .Exp.x//r ; (5.4)

for g in 1C A and r in Q.
Recall from Proposition 4.4 that F ? D eQL. For g in KI , Log.g/ lies in I

because it is a linear combination over Q of positive powers of g�1. Similarly, for x
in QL \ I , Exp.x/ lies in KI because it is a polynomial in x over Q with constant
term 1. Thus, by (5.3),

the mapping Log induces a group isomorphism of
KI .under multiplication/ onto QL \ I under ? .

(5.5)

Since I is a Q-algebra ideal of B , QL\ I is closed under multiplication from Q.
By (5.3), (5.4), and (5.5), QL \ I is a Q-powered group under ? and KI is a Q-
powered group under multiplication.

A similar argument shows that the factor groups QL=.QL \ I / under ? and
F ?=KI (under multiplication) are isomorphic Q-powered groups.

Suppose 1 � i � n. Recall that fi D exi is a polynomial in xi with constant
term 1, and that, for every k, Cik is an ideal of A and of B .
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Lemma 5.2. Suppose 1 � i � n, k is a positive integer, g is an element of the set
1C Cik , and f is an element of the set 1C Ci1. Let

h D .g; f / D g�1f �1gf:

Then h � 1 lies in Ci;kC1.

Proof. Let u D g � 1, and v D h � 1. Then u lies in Cik and

fg C fgv D fgh D fgg�1f �1gf D gf:

So

fgv D gf �fg D f Cuf �f �f u D uf �f u D u.f � 1/� .f � 1/u: (5.6)

Since f � 1 lies in Ci1 and u lies in Cik , (5.6) shows that fgv lies in Ci;kC1. Since
Ci;kC1 is an ideal ofB and v D g�1f �1.fgv/, it follows that v inCi;kC1, as desired.

Proposition 5.3. Suppose 1 � i � n, k is a positive integer, and g lies in �k.Ni /.
Then g � 1 lies in Cik .

Proof. For each positive integer k, let

Hk D F \KCik
D fg 2 F j g � 1 2 Cikg:

By Lemma 5.1, KCik
is a normal subgroup of F ?. Hence Hk is a normal subgroup

of F .
We prove the conclusion by induction on k.
By (5.1), fi lies in H1. Since Ni is the normal closure of fi in F (by (5.2)) and

H1 is normal in F , it follows that H1 contains Ni . This proves the conclusion for
k D 1.

Now, assume k � 1 and �k.Ni / � Hk . Let M D HkC1. Since Ni � H1,
Lemma 5.2 gives

�kC1.Ni / D .�k.Ni /; Ni / � HkC1:

This proves the result by induction.

Proposition 5.4. We have �ndC1.F
?/ � Kd :

Proof. Let b D nd . Recall that F ?=Kd is isomorphic to the image of the multi-
plicative subgroup F ? of 1C A under the algebra homomorphism of B onto B=Id .
Clearly, each monomial in x1; : : : ; xn of degree at least bC1must have degree at least
d C 1 in xi for some i , and hence must lie in Id . Therefore, B=Id is a homomorphic
image of the Q-algebra Q1˚ OA for the free nilpotent associative algebra OA of class b
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over Q on n generators z1; : : : ; zn, with zi mapping to xi CId for each i . This shows
that F ?=Kd is a homomorphic image of the corresponding multiplicative subgroup

p
hez1 ; : : : ; ezni

of 1C OA.
By Remark 4.3 with b in place of c, this subgroup has class at most b. Therefore,

F ?=Kd is nilpotent of class at most b, and �bC1.F
?=Kd / D 1. Hence,

�ndC1.F
?/ D �bC1.F

?/ � Kd ;

as desired.

Lemma 5.5. We have

(a) F ?=Kd is a Q-powered group, and

(b) F�=.F� \Kd / is a Q� -powered group.

Proof. By Theorem 4.7, F� is a nilpotent Q� -powered, hence �-divisible, group.
Therefore,

F�=.F� \Kd / is �-divisible. (5.7)

By definition, Id is an ideal of B contained in A. Therefore, (a) follows from
Lemma 5.1. In particular, F ?=Kd is torsion-free.

Since
F�=.F� \Kd / ' F�Kd=Kd � F ?=Kd ;

F�=.F� \ Kd / is also torsion-free and hence �-torsion-free. Therefore, by (5.7),
F�=.F� \Kd / is Q� -powered.

Theorem 5.6. Suppose nd � c. Let

M0 D h�dC1.Ni / j i D 1; : : : ; ni
and

M DF�

�
p
M0 D fg 2 F� j gk 2 M0 for some �-number kg:

Then:

(a) M is a normal subgroup of F� ,

(b) M D F� \Kd , and

(c) F�=M has nilpotence class exactly nd .
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Proof. Recall from Section 4 that A was defined to be the free non-associative Q-
algebra of nilpotency class c with free (non-commuting) generators x1; : : : ; xn. Thus,
we can calculate inA by setting every monomial of total degree at least cC 1 to zero.
Since c C 1 � nd C 1, each such monomial has degree at least d C 1 in xi for
some i , and hence lies in Id . Therefore, up to isomorphism; A=Id is independent of
the choice of c, as long as c � nd . Moreover,

the distinct monomials in x1; : : : ; xn having degree at most d in xi

for every i D 1; : : : ; n form a basis of A, modulo Id , i.e., map to a (5.8)
basis of A=Id in the canonical homomorphism of A onto A=Id .

We defined F� just before Theorem 4.7 by

F� DF ?
�
p
F D fg 2 F ? j gk 2 F for some �-number kg: (5.9)

Let G D F� .

(a) For each i , Ni is a normal subgroup of F , and �dC1.Ni / is a characteristic
subgroup of Ni and hence a normal subgroup of F . Therefore, M0 is normal in F .
By (5.9) and Lemma 2.3,

M DG
�
p
M0 CG

�
p
F D F� D G:

(b) By Proposition 5.3, g � 1 lies in Ci;dC1 (hence in Id ) for every i D 1; : : : ; n

and every element g of �dC1.Ni /. Therefore, M0 � Kd , and since M DG
�
p
M0;

MKd=Kd is a �-group.

However, F ?=Kd is a Q-powered group by Lemma 5.5, and hence is torsion-free.
Consequently,

MKd=Kd D 1; M � Kd ; and

M is contained in G \Kd : (5.10)

We wish to show that M D G \Kd . We will show first that F \Kd � M0.
Take any elementh ofF that lies outsideM0. We must show thath lies outsideKd ,

i.e., h 6� 1 .mod Id /. By Theorem 4.2, F is a free nilpotent group of class c with
free generators f1; : : : ; fn. Therefore, by [10], Theorem 11.2.4, p. 175, h may be
uniquely expressed in the form

h D c
e1

1 c
e2

2 : : : cer
r ;

where c1; c2; : : : ; cr are the basic commutators of weight at most c in f1; : : : ; fn; and
e1; e2; : : : ; er are integers.
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Any basic commutator in f1; : : : ; fn of weight at least dC1 in fi for some i must
lie in �dC1.Ni / and thus in M0. Therefore,

h �
Y
j 2S

c
ej

j ; modulo M0; (5.11)

where j ranges over the set S of all subscripts for which ej ¤ 0 and cj has weight at
most d in fi for i D 1; : : : ; n (and hence has total weight at most nd ). Since h lies
outside M0, the set S is not empty.

Let d 0 be the minimal total weight of cj for j ranging over S . Then

d 0 � nd � c: (5.12)

We may assume that the basic commutators cj in S are numbered so that, for some
positive integer k,

c1; : : : ; ck have total weight d 0, and cj has total weight greater than d 0
whenever j 2 S and j > k.

Then, by (5.11), there exists an element h0 in �d 0C1.F / such that

h � c
e1

1 c
e2

2 : : : ; c
ek

k
h0; modulo M0:

Moreover, ej ¤ 0 for every j D 1; : : : ; k.
By (5.10), M0 � M � Kd . So g � 1 .mod Id / for each element g of M0.

Therefore,
h � c

e1

1 c
e2

2 : : : c
ek

k
h0; modulo Id : (5.13)

For each j , let uj be the Lie ring commutator in x1; : : : ; xn (in A�) that corresponds
to the group commutator cj in F , so that uj has weight at most d in xi for every i and
total weight d 0. By (5.12) and (4.1), u1; : : : ; uk are linearly independent elements of
degree d 0 over Q. By Lemma 4.1,

c
e1

1 : : : c
ek

k
h0 D 1C

kX
j D1

ejuj C �; (5.14)

where � lies in Ad 0C1.
By (5.13) and (5.14),

h � 1C
kX

j D1

ejuj C �; modulo Id :

However, by (5.8), u1; : : : ; uk are linearly independent modulo .Ad 0C1 CId /. There-
fore, h � 1 does not lie in Id , and h does not lie in Kd , as desired. This proves
F \Kd � M0.
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Suppose g 2 G \Kd D F� \Kd . By (5.9), there exists a �-number k such that
gk 2 F . Then

gk 2 F \Kd � M0;

and g 2F�

�
p
M0 D M . Thus, G \Kd � M: By (5.10), G \Kd D M , as desired.

(c) By Proposition 5.4, �ndC1.G/ � �ndC1.F
?/ � Kd . Hence, G=.G \Kd / D

G=M has nilpotence class at most nd . We show that the class is exactly nd by
exhibiting a commutator g of weight nd that lies outside M .

Let g D .c1; c2; : : : ; cnd /; where c1 D f2 and

c2 D c3 D � � � D cdC1 D f1; cdC2 D cdC3 D � � � D c2d D f2;

and, if n > 2,

ckdC1 D ckdC2 D � � � D c.kC1/d D fkC1; for k D 2; 3; : : : ; n � 1:
Then g has weight d in each fi and total weight nd .

By Lemma 4.1,

g D 1C uC � for u D Œy1; y2; : : : ; ynd �;

where � lies in AndC1 and we have yj D xi whenever cj D fi . Then u is a Z-linear
combination of monomials of degree d in each xi and total degree nd . By (5.8),
these monomials are linearly independent over Q modulo .AndC1 C Id /. Moreover,
it is easy to see that the monomial xd

1 x
d
2 : : : x

d
n appears in u with coefficient ˙1.

Therefore, modulo .AndC1 C Id /,

u 6� 0 and g � 1C uC � � 1C u 6� 1:

Thus, g � 1 does not lie in Id and g does not lie in Kd , as desired.

In the next result, we show that F�=.F� \Kd / is a “free” group with respect to
certain constraints.

Theorem 5.7. Suppose nd � c. Assume G is a nilpotent Q� -powered group and
g1; : : : ; gn lie in G. For each i , assume that the normal closure hgG

i i of gi in G has
nilpotence class at most d . Then

(a) there exists a unique homomorphism  of F� into G such that  .fi / D gi

for all i ,

(b) for  as in (a), the kernel of  contains F� \Kd , and

(c) for  as in (a), the image of  is nilpotent of class at most nd .
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Proof. For each i , let Hi D hgG
i i, and let H D H1H2 : : :Hn. Let

H� DG
�
p
H D fg 2 G j gk 2 H for some �-number kg:

Since Hi is a normal subgroup of G of class at most d for each i , H is a subgroup
of class at most nd (from Fitting’s Theorem in [11], p. 276, and induction). By
Lemma 2.2, H� is a Q� -powered subgroup of G of nilpotence class at most nd .

By Theorem 4.7, F� is the free nilpotent Q� -powered group of class c freely
generated by f1; : : : ; fn. Since nd � c, there exists a unique homomorphism  of
F� into H� such that  .fi / D gi for all i . Furthermore, any homomorphism of F�

intoG that takes fi to gi for all i must take F intoH and then (because F� DF ?
�
p
F

by (5.9)) take F� into H� , and so must coincide with  . This proves (a).
Let K be the kernel of  . It is easy to see that, for each i ,

 .Ni / D  .hf F
i i/ � h. .fi //

Gi D hgG
i i D Hi

and
 .�dC1.Ni // D �dC1. .Ni // � �dC1.Hi / D 1;

whence �dC1.Ni / � K. Take M0 and M as in Theorem 5.6, so that

M0 D h�dC1.Ni / j i D 1; : : : ; ni
and M DF�

�
p
M0. Then

M0 � K (5.15)

and by Theorem 5.6,

M D F� \Kd and F�=M has nilpotence class nd: (5.16)

From (5.15) and the definition of M , it follows that M=.M \ K/ is a �-group.
However,

M=.M \K/ ' MK=K � F�=K '  .F�/ � G;

andG is �-torsion-free. Therefore,M=.M \K/ D 1, andM D M \K � K. This
proves (b). Then (b) and (5.16) yield (c).

Recall that 	 is the set of all primes p such that p � d .

Theorem 5.8. Suppose nd � c and � contains 	 . Let xB D B=Id and, for every
element x and subset T of B , let

Nx D x C Id and xT D f Nx j x in T g:
Define operations C and Œ ; � on SF ? by the Lazard correspondence. Define a

mapping ı on SF ? by

ı.x/ D . Nf �1
2 x Nf2/C .x�1/; for all x in SF ?:

Let L D SF�

�
p xN1 and e.i/ D .�1/iC1=i for i D 1; : : : ; d . Then:
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(a) L is a Q� -powered normal subgroup of SF� of class at most d ;

(b) L is closed under C and Œ ; �;

(c) ıdC1 D 0 and L contains Œ Nf1; Nf2� and .ıi . Nf1//
e.i/ for i D 1; : : : ; d ;

(d) Œ Nf1; Nf2� D .ı. Nf1//
e.1/ C � � � C .ıd . Nf1//

e.d/; and

(e) h2.f1; f2/ is equal to Œf1; f2� and lies in F�Kd .

Remark. The proof shows that SF ? is isomorphic to F ?=Kd , which is a Q-powered
group by Lemma 5.5. Therefore, we may use the Lazard (or Mal’cev) correspondence
to define operations C and Œ ; � on SF ?. We write C and Œ ; � instead of OC and OŒ ; O� (used
in Remark 4.5) for SF ?, and likewise for F , because we will not need the natural Lie
ring operations on xB and B .

Proof. Recall that
Kd D fg 2 F ? j g � 1 .mod Id /g:

Therefore, the natural algebra homomorphism  of B onto xB given by x 7! Nx
induces a group homomorphism ofF ? onto SF ? with kernelKd . Thus, SF ? ' F ?=Kd .

As mentioned in the Remark above (and Remark 4.3), SF ? and F ? are Q-powered
groups and hence admit operations defined by the Lazard correspondence, i.e., for u
and v both in SF ? or both in F ?,

uC v D h1.u; v/ and Œu; v� D h2.u; v/: (5.17)

For u and v in F ?,  takes the “word” hj .u; v/ to the “word” hj . .u/;  .v// for
j D 1; 2. Thus,

for u and v in F ?; uC v D NuC Nv and Œu; v� D Œ Nu; Nv�: (5.18)

Let G D SF� . Then G ' F�Kd=Kd ' F�=.F� \Kd /. By Lemma 5.5,

G is a Q� -powered group: (5.19)

Recall that N1 D hf F
i i, so that N1 C F . For M0 and M as in Theorem 5.6,

�dC1.N1/ � M0 � M � Kd . Therefore,

xN1 C xF and xN1 has nilpotence class at most d: (5.20)

Since F� DF ?
�
p
F , we have G D SF� DG

�
p xF . Take L as in the statement of the

theorem. By (5.20) and Lemma 2.3,

L DG
�

q
SN1 CG

�
p xF D G:

Then by (5.19), (5.20) and Lemma 2.2, we obtain (a).
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By (a) and the Lazard correspondence, we may define C and Œ ; � on L by (5.17).
Since we used (5.17) to define C and Œ ; � on the entire group SF ?, we see that L is
closed under C and Œ ; �, which gives (b).

Since f1 lies in N1, we have Nf1 2 SN1 � xL. As L is normal in G and is a
Q� -powered group, L is closed under ı and all of its powers, and

L contains .ıi . Nf1//
e.i/; for i D 1; 2; : : : ; d: (5.21)

Now we check the hypothesis of Proposition 4.11 with � chosen to be the set of all
primes; A? and B? to be xA and xB; and g and u to be Nf2 and Nx2 respectively. Note
that the hypothesis of Corollary 4.9 is satisfied, that u D Logg because f2 D ex2 ,
and that d � nd � c. Moreover, for all b in B and i D 1; : : : ; d ,

xi
2bx

dC1�i
2 2 C2;dC1 � Id ; so that ui NbudC1�i D 0:

In addition, the definition of ı on SF ? in this theorem agrees with the definition
in Proposition 4.11. Thus, the hypothesis of the proposition is satisfied, and the
proposition, (5.21), and part (b) of this theorem give parts (c) and (d) of this theorem.

By (5.17), (5.18), and (c),

 .h2.f1; f2// D h2. Nf1; Nf2/ D Œ Nf1; Nf2�;

which lies in L and thus in G. Since G D SF� ' F�Kd=Kd and Kd is the kernel
of the restriction of  to F ?, h2.f1; f2/ lies in F�Kd . As h2.f1; f2/ D Œf1; f2�, we
obtain (e). This completes the proof of the theorem.

Remark 5.9. Let n D 2. Assume 2d � c. By Theorem 5.8 for the case in which
� D 	 , there exists an element h0

2.f1; f2/ of F� such that

h0
2.f1; f2/ � h2.f1; f2/ .mod Kd / (5.22)

Here, h0
2.f1; f2/ is a “word” in f1 and f2 obtained by taking inverses, products, and

rational powers gm=k for which k D 1 or k is a product of powers of primes in 	 .
Now suppose � is any set of primes containing 	 and G is any nilpotent Q� -

powered group. Assume g1 and g2 are elements ofG contained in (possibly different)
normal subgroups of G having nilpotence class at most d . By Theorem 5.7 (for
n D 2), there exists a unique homomorphism  of F� into G such that

 .f1/ D g1;  .f2/ D g2; and F� \Kd is contained in the kernel of  : (5.23)

Since � contains 	; h0
2.f1; f2/ 2 F� � F� . If we evaluate the “word” h0

2 on g1

and g2 by replacing fi by gi for each i , we obtain

h0
2.g1; g2/ D  .h0

2.f1; f2//: (5.24)
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By (5.22), h2.f1; f2/ D h0
2.f1; f2/h

00
2.f1; f2/ for an element h00

2.f1; f2/ in Kd .
One may show by a proof similar to that of Theorem 5.6 that h00

2.f1; f2/ is a product
of basic commutators in M0 (and thus in Kd / raised to rational powers cr . For each
such commutator c,  .c/ D 1 by (5.23). The reason that we use the “word” h0

2 rather
than h2 is that the exponents r in the rational powers cr in h00

2 may have denominators
divisible by primes outside � , so that . .c//r may not be defined.

Now we adopt the bar notation of Theorem 5.8, so that the natural homomorphism
of B onto xB induces an isomorphism SF� ' F�Kd=Kd . As F� \Kd is contained in
the kernel of  , it follows that  induces a well defined homomorphism � from SF�

to G given by
�. Nx/ D  .x/; for all x in F� :

Let h D h0
2.f1; f2/. By (5.24) and Theorem 5.8, � is the unique homomorphism

of SF� to G taking Nf1 to g1 and Nf2 to g2, and

h0
2.g1; g2/ D  .h/ D �. Nh/ D �.Œ Nf1; Nf2�/:

Thus, h0
2.g1; g2/ is independent of the original choice of h0

2.f1; f2/, and we may
define unambiguously

h0
2.g1; g2/ D �.Œ Nf1; Nf2�/ for the unique homomorphism

� of SF� into G such that �. Nf1/ D g1, and �. Nf2/ D g2.
(5.25)

In the next section, we will define Œg1; g2� to be h0
2.g1; g2/ in this situation.

Lemma 5.10. Suppose G is a nilpotent Q� -powered group and N is a normal sub-
group of G: Then �

p
N is a Q� -powered normal subgroup of G that contains N and

has the same nilpotence class as N .

Proof. Obviously, �
p
N contains N and has the same or larger nilpotence class. By

Lemma 2.2 (with d in place of c), �
p
N is a Q� -powered subgroup of G of the same

class as N . By Lemma 2.3,

�
p
N C �

p
G D G:

6. The main results

In this section, we obtain our main results. We continue to assume the hypothesis and
notation of Section 4, except that after Theorem 6.1 we no longer need the algebras
A and B , since we deal only with groups. However, here we take d to be an arbitrary
positive integer and choose c to be 3d . As in Section 5, we let � be an arbitrary set
of primes and 	 be the set of all primes p such that p � d:
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Theorem 6.1. The function h0
2.u; v/ given in Remark 5.9 satisfies the following con-

ditions:
Suppose � contains 	 , G is a nilpotent Q� -powered group, and g1 and g2 are

elements of G lying in normal subgroups G1 and G2 of G having nilpotence class
at most d . Let H DG

�
p
G1: Assume the bar notation of Theorem 5.8 and let e.i/ D

.�1/iC1=i for i D 1; : : : ; d: Then:

(a) for n D 2 and  as in Theorem 5.7,  induces a homomorphism of SF� into G
that takes Œ Nf1; Nf2� to h0

2.g1; g2/,

(b) h0
2.g2; g1/ D .h0

2.g1; g2//
�1,

(c) h0
2.g1; g2/ D h2.g1; g2/ D Œg1; g2�, if G has nilpotence class at most d ,

(d) H is a Q� -powered normal subgroup of G having nilpotence class at most d ,

(e) H is endowed with an operation C by the Lazard correspondence,

(f) there exists a well-defined endomorphism ı of H under C given by ı.x/ D
.g�1

2 xg2/C .x�1/,

(g) ıdC1 D 0;

(h) H contains h0
2.g1; g2/ and .ıi .g1//

e.i/ for i D 1; : : : ; d , and

(i) h0
2.g1; g2/ D .ı.g1//

e.1/ C � � � C .ıd .g1//
e.d/.

Proof. For every element x and subset T of B , the bar notation of Theorem 5.8 gives

Nx D x C Id and xT D f Nx j x 2 T g:
Then SF� Š F�Kd=Kd :

Assume n D 2 and take  as in Theorem 5.7. By Theorem 5.7 (b), the kernel
of  contains F� \Kd . Therefore  induces a well-defined homomorphism � from
SF� into G given by

�. Nx/ D  .x/; for all x in F� :

Let h D h0
2.f1; f2/. By (5.25) (in Remark 5.9),

� is the unique homomorphism of SF� taking Nf1 to g1 and
Nf2 to g2, and h0

2.g1; g2/ D  .h/ D �. Nh/ D �.Œ Nf1; Nf2�/.
(6.1)

This proves (a) and shows that, for g1 and g2 as in the hypothesis, h0
2.g1; g2/ is

independent of the original choice of h0
2.f1; f2/:

Since the roles of f1 and f2 are symmetric, as are those of g1 and g2, we have

h0
2.g2; g1/ D  .Œ Nf2; Nf1�/

because by (6.1), � is the unique homomorphism of SF� taking Nf2 to g2 and Nf1 to g1:
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However, Œ Nf2; Nf1� and Œ Nf1; Nf2� are negatives of each other as Lie ring elements of SF ?:

Therefore, by (6.1),

h0
2.g1; g2/ D �.Œ Nf1; Nf2�/ D �.Œ Nf2; Nf1�

�1/ D �.Œ Nf2; Nf1�/
�1 D .h0

2.g2; g1//
�1:

This proves (b).
By Lemma 5.10 we obtain (d). Then (e) follows from the Lazard correspondence.
Since H is a normal subgroup of G, it is closed under conjugation and under

inverses. Hence, (f) follows from (e) and (g) follows from Theorem 5.8 (c).
Now consider the subgroup L of SF� given in Theorem 5.8; recall that

N1 D hf x
1 j x 2 F i � F � F�

and L DF�

�
p xN1: Then

�. xN1/ D h.�. Nf1//
�.y/ j y 2 xF i � hgz

1 j z 2 Gi � G1

and
�.L/ �G

�
p
G1 D H (6.2)

Let D be the mapping on SF ? that was denoted by ı in Theorem 5.8:

D.x/ D . Nf �1
2 x Nf2/C .x�1/ for all x in SF ?:

Recall that Nf2 lies in SF� and �. Nf2/ D g2. As L is a Q� -powered normal subgroup
of SF� of class at most d , addition on L is given by the Lazard correspondence by

x C y D h1.x; y/;

and L is closed under conjugation and under D, and under taking powers in Q� ;
likewise for H , with g2 and ı in place of Nf2 and D. Thus, by (6.2),

�.x C y/ D �.h1.x; y// D h1.�.x/; �.y// D �.x/C �.y/:

for all x; y in L. Similarly, for all x in L,

�.D.x// D �. Nf �1
2 x Nf2/C �.x�1/ D �. Nf2/

�1�.x/�. Nf2/C �.x/�1

D .g�1
2 �.x/g2/C �.x/�1 D ı.�.x//:

(6.3)

By Theorem 5.8, L contains Œ Nf1; Nf2� and .Di . Nf1//
e.i/, for i D 1; : : : ; d , and

Œ Nf1; Nf2� D .D1. Nf1//
e.1/ C � � � C .Dd . Nf1//

e.d/: (6.4)

Clearly, �.xr/ D .�.x//r for all x in L and r in Q� . Therefore, by (6.3),

�..Di . Nf1//
e.i// D .ıi .�. Nf1///

e.i/ D .ıi .g1//
e.i/; for i D 1; : : : ; d:
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Now (h) and (i) follow from (6.1), (6.2), (6.4), and Theorem 5.8 (c).
To prove part (c), supposeG has nilpotence class at mostd . Then we may define C

and Œ ; � on G by the functions h1 and h2 in Lazard’s correspondence, and (6.1) gives

h0
2.g1; g2/ D �.Œ Nf1; Nf2�/ D �.h2. Nf1; Nf2// D h2.�. Nf1/; �. Nf2//

D h2.g1; g2/ D Œg1; g2�:

Corollary 6.2. Suppose � contains 	 and G is a nilpotent Q� -powered subgroup of
class at most d . Define operations C and Œ ; � onG as in the Lazard correspondence.

Take v in G and define a mapping ı on G by

ı.u/ D .v�1uv/C .u�1/; for every u in G.

Define powers of ı by composition. Let e.i/ D .�1/iC1=i for i D 1; 2; : : : ; d .
Then ıdC1 D 0 and, for every u in G,

Œu; v� D .ı.u//e.1/ C .ı2.u//e.2/ C � � � C .ıd .u//e.d/:

Remark 6.3. This corollary shows that the formula for h0
2.g1; g2/ in part (i) of

Theorem 6.1 also gives Œg1; g2� in the situation of the Lazard correspondence. Thus,
Lazard’s definition of bracket multiplication in G is determined by conjugation in G
and Lazard’s definition of addition in G: For this reason, we often denote h0

2.g1; g2/

by Œg1; g2� in the situation of Theorem 6.1.

Recall from Section 1 that we have defined iterated commutators in groups and
Lie rings to be left normed, i.e. for r � 2,

.x1; x2; : : : ; xr ; xrC1/ D ..x1; x2; : : : ; xr/; xrC1/

and
Œx1; x2; : : : ; xr ; xrC1� D ŒŒx1; x2; : : : ; xr �; xrC1�:

Theorem 6.4. Suppose� contains 	 ,G is a nilpotent Q� -powered group, andG1; G2

and G3 are normal subgroups of G that have nilpotence class at most d . Define
C on every Q� -powered normal subgroup of G of class at most d by the Lazard
correspondence. Define Œx; y� as in Remark 6.3 whenever x and y lie in normal
subgroups of G having nilpotence class at most d .

Take u inG1 and v inG2. ThenG satisfies the following conditions .and all terms
in the conditions are well defined/:

(a) For u0 in G1 and r in Q� ,

Œru; v� D rŒu; v�; ŒuC u0; v� D Œu; v�C Œu0; v�

and

ŒŒu; u0�; v� D ŒŒu; v�; u0�C Œu; Œu0; v��:
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(b) For w in G3,
Œu; v; w�C Œv; w; u�C Œw; u; v� D 1:

(c) If G1 and G2 are Q� -powered, then Œu; v� � .u; v/, modulo .G1; G2; G1G2/,
and Œu; v� 2 .G1; G2/:

Remark. For (b), recall that the identity element of G is the zero element of any
subgroup of G that forms a Lie algebra under the Lazard correspondence.

Proof. Take u0 and w in G as in (a) and (b). As in Theorem 6.1, let H DG
�
p
G1:

By Theorem 6.1, H is a Q� -powered normal subgroup of G of class at most d
(so that we may define C and scalar multiplication from Q� on H ), and Œx; y� (D
h0

2.x; y/) is well defined and lies in H whenever x lies in G1 (or H ) and y lies in
a normal subgroup of G of class at most d (e.g., G2 or G3). This shows that the
elements

uC u0; Œu; v�; Œu0; v�; and Œw; u�

are well defined and lie inH , as do the elements ŒuCu0; v� and Œu; v; w� and Œw; u; v�.
By the symmetry of G1; G2 and G3, the element Œv; w� is well defined and lies in

a Q� -powered normal subgroup of G of class at most d . Therefore, Œv; w; u� is well
defined and lies in H .

Recall that for x in H and r in Q� , the group power hr coincides with the scalar
product r � h for H considered as a Q� -module. Therefore, for g1 in G1 and g2 in
G2 and ı as in Theorem 6.1, part (i) of Theorem 6.1 gives

Œg1; g2� D h0
2.g1; g2/ D e.1/ı.g1/C � � � C e.d/ıd .g1/:

Since ı is an endomorphism of H under +, this shows that the mapping on H given
by x 7! Œx; v� is a Q� -module endomorphism of H . In particular,

Œru; v� D rŒu; v� and ŒuC u0; v� D Œu; v�C Œu0; v�: (6.5)

Next we prove (b). The proof is similar to the proof of the corresponding statement
(i.e., the Jacobi identity) for the Lazard correspondence, which we summarized in
Remark 4.5. We assume n D 3 and adopt the notation of Theorem 5.8. It is easy to see
that the group L in Theorem 5.8 contains Œfi ; fj ; fk� whenever fi; j; kg D f1; 2; 3g,
and satisfies

Œf1; f2; f3�C Œf2; f3; f1�C Œf3; f1; f2� D 1: (6.6)

By Theorem 5.7, there exists a unique homomorphism  of F� into G such that

 .f1/ D u;  .f2/ D v; and  .f3/ D w;

andF� \Kd is contained in the kernel of :Therefore, induces an homomorphism
� of SF� into G such that

�. Nf1/ D u; �. Nf2/ D v; and �. Nf3/ D w:
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By (5.25) (in Remark 5.9) and its proof, we have whenever fi; j; kg D f1; 2; 3g,

�.Œfi ; fj ; fk�/ D Œ�.Œfi ; fj �/; �.fk/� D Œ�.fi /; �.fj /; �.fk/�:

Therefore, (6.6) yields (b).
By (b) and Theorem 6.1 (b),

Œu; v; w�C Œu; Œw; v�� D Œu; w; v�:

By considering the special case in which G3 D G1 and w D u0, we obtain

Œu; u0; v� D Œu; v; u0�C Œu; Œu0; v��

This and (6.5) yield (a).
To prove (c), assume G1 and G2 are Q� -powered. Then H DG

�
p
G1 D G1. We

apply Theorem 6.1 with g1 D u and g2 D v, so that

ı.x/ D .v�1xv/C .x�1/ D .x�1/C .v�1xv/; for all x 2 G1: (6.7)

Let L D .G1; G2/ and M D .L;G1G2/: Since G1; G2 G G, we have L;M G G
and M � L � G1 \G2. Moreover, by Lemma 2.4 and Proposition 2.6,

L and M are �-divisible. (6.8)

Let xG D G=M and let xX D XM=M and Ng D gM for every subgroup X and
element g of G. Since M D .L;G1G2/,

xL � Z. xG1
xG2/: (6.9)

Now take an element x in G1. Let x0 D v�1xv. Then .x; v/ 2 L and x.x; v/ D
xx�1v�1xv D x0. Hence,

. Nx; Nv/ 2 xL � Z. xG1
xG2/ and Nx. Nx; Nv/ D Nx0: (6.10)

Therefore, the elements Nx and Nx0 commute. By (6.8), L and M are both �-divisible,
which forces xL to be Q� -powered. Thus, by (6.7), (6.10), and (4.10),

ı.x/ D .x�1/C x0 D x�1 C x0 D .x�1/x0 D x�1x0 D .x; v/:

Similarly, by (6.7) and (6.9), ı.x/ D 1 for all x in L. Therefore, ıi .x/ D 1 for all
i � 2. By Theorem 6.1,

Œx; v� D ı.x/ D .x; v/:

By taking x D u, we obtain (c).
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Corollary 6.5. Assume the hypothesis and notation of Theorem 6.4.

(a) Suppose u 2 �i .G/ and v 2 �j .G/ for some positive integers i; j . Then

Œu; v� 2 �iCj .G/ and Œu; v� � .u; v/ .mod �iCj C1.G//:

(b) Suppose ui 2 �ki
.G/ for i D 1; : : : ; r and some positive integers ki . Let

k D k1 C � � � C kr . Then

Œu1; u2; : : : ur � 2 �k.G/ and

Œu1; u2; : : : ur � � .u1; u2; : : : ur/ .mod �kC1.G//:

Proof. (a) By Corollary 2.5, �k.G/ is Q� -powered for every positive integer k. By
Corollary 3.5 of [13],

.�i .G/; �j .G/; �i .G/�j .G// � �iCj C1.G/ and .u; v/ lies in �iCj .G/:

Then Œu; v� � .u; v/ (mod �iCj C1.G/) by part (c) of Theorem 6.4. Therefore, Œu; v�
lies in �iCj .G/.

(b) We use induction on r . The result is trivial for r D 1, and follows immediately
from (a) for r D 2.

Now assume r � 3 and the result is true for r � 1. Let

u0 D Œu1; : : : ur�1�; u00 D .u1; : : : ur�1/; and k0 D k1 C k2 C � � � C kr�1:

Then k D k0 C kr . By induction,

u0 2 �k0.G/ and u0 � u00 .mod �k0C1.G//: (6.11)

By (a), Œu0; ur � � .u0; ur/ (mod �kC1.G/). By (6.11) and Theorem 6.2 of [13],

.u0; ur/ � .u00; ur/ (mod �kC1.G//:

Therefore, Œu0; ur � � .u00; ur/ (mod �kC1.G/), as desired.

Theorem 6.6. Assume� is a set of primes containing 	 ,G is a nilpotent Q� -powered
group, N is the set of all Q� -powered normal subgroups of G of nilpotence class at
most d , and S is a subset of N . Let U.N / and U.S/ be the set-theoretic unions of
the elements of N and of the elements of S:

For each N in N , define C on N by the Lazard correspondence. For each u; v
in U.N /, define Œu; v� as in Remark 6.3. Let E.S/ be the set of all mappings � on
U.S/ such that, for each N in S ,

� maps N into N and induces an endomorphism of N under C .
Define addition and multiplication on E.S/ by

.� C �0/.x/ D �.x/C �0.x/ and ��0.x/ D �.�0.x//:
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For each v in U.N /, define a mapping ad v on U.S/ by

.ad v/.u/ D Œu; v�:

Then

(a) E.S/ forms an associative algebra over Q� , and also forms a Lie algebra
E.S/� over Q� under the bracket multiplication given by

Œ�; �0� D ��0 � �0�I
(b) for each v in U.N / and r in Q� ,

ad v lies in E.S/ and ad.rv/ D r.ad v/I
(c) for each N in N and each v;w in N ,

ad.v C w/ D ad v C adwI
(d) for v;w in U.N /,

Œad v; adw� D adŒw; v� D � adŒv; w�I
(e) the additive subgroup L.S/ of E.S/ spanned by the mappings ad v for v in

U.S/ is a Lie Q� -subalgebra of E.S/�; and

(f) for L.S/ as in (e), each element � of L.S/ satisfies

�.Œu; v�/ D Œ�.u/; v�C Œu; �.v/�; for every u; v in U.S/:

Remark. Part (a) of Theorem 6.4 shows that, for each v in U.N / and N in N , ad v
induces a derivation of N , for N regarded as a Lie algebra over Q� by Lazard’s
correspondence. Part (f) of this theorem extends this.

Proof. Note that, by Theorem 6.1 (b),

Œv; u� D Œv; u��1 D �Œu; v�; for all u; v in U.S/: (6.12)

(a) This follows directly from the definitions of addition, multiplication, bracket
multiplication, and scalar multiplication from Q� :

(b) This follows from Theorem 6.4.
(c) Take v and w as in (c) and u in U.S/. By (b) and (6.12),

Œu; v C w� D �Œv C w; u� D �Œv; u� � Œw; u� D Œu; v�C Œu; w�;

as desired.
(d) Take u in U.S/ and v;w in U.N /. Then

Œad v; adw�.u/ D .ad v/.adw/.u/ � .adw/.ad v/.u/

D ŒŒu; w�; v� � ŒŒu; v�; w�
D �ŒŒw; u�; v� � ŒŒu; v�; w� by (6.12)
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D ŒŒv; w�; u� by Theorem 6.4

D �Œu; Œv; w�� D Œu; Œw; v�� by (6.12):

(e) This follows from (d) and (b).
(f) First, consider the case in which � D adw for somew in U.S/ W by (6.12) and

Theorem 6.4,

Œ�.u/; v�C Œu; �.v/� D ŒŒu; w�; v�C ŒŒu; v�; w�

D �ŒŒw; u�; v� � ŒŒv; w�; u� D ŒŒu; v�; w� D �.Œu; v�/:

Since this is a linear condition on �, it remains valid for all the elements in the linear
span L.S/ of all the mappings adw:

Theorem 6.7. Assume the hypothesis and notation of Theorem 6.6. Let G? be the
subgroup of G generated by S and k be the nilpotence class of G?. Then:

(a) each normal subgroup of G of nilpotence class at most d is contained in some
normal Q� -powered subgroup of nilpotence class at most d ;

(b) G? is a normal Q� -powered subgroup of G;

(c) for every v1; : : : ; vk in U.S/,

.ad v1/.ad v2/ : : : .ad vk/ D 0I
(d) for v in U.N /, .ad v/dC1 D 0;

(e) the Lie Q� -algebra L.S/ is nilpotent of class at most k � 1:
Proof. (a) Apply Lemma 5.10.

(b) Each element of S is a normal Q� -powered subgroup ofG. Therefore,G? C
G, and G? is �-divisible by Proposition 2.6. Since G? is nilpotent and G (and
hence G?) are �-torsion-free, G? is Q� -powered.

(c) Take u; v1; v2; : : : ; vk in U.S/. Let

w D .ad v1/.ad v2/ : : : ; .ad vk/.u/ D Œu; vk; vk�1; : : : ; v1�:

By Corollary 6.5 applied to G? in place of G, we have w 2 �kC1.G
?/ D 1:

(d) Take u and v in U.N /. Take v lies in some elementN of N . By Theorem 6.4
and induction,

.ad v/i .u/ 2 �i .N /; for every natural number i:

Therefore,
.ad v/dC1.u/ 2 �dC1.N / D 1:

(e) Since L.S/ is spanned by the mappings ad v for all v in U.S/, every Lie
commutator in L.S/ of weight at least k is zero, by (c) and the definition of bracket
multiplication in E.S/�:
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Lemma 6.8. Assume the hypothesis and notation of Theorem 6.6. Let G? be the
subgroup of G generated by S and H be a subgroup of G? generated by a subset T
of U.S/. Let d 0 be the nilpotence class of H=.H \Z.G?//:

Thend 0 is the nilpotence class of the Lie Q� -subalgebraL?.T / ofL.S/ generated
by the elements ad x for all x in T:

Proof. Here,
Z.G?/ contains �d 0C1.H/; but not �d 0.H/: (6.13)

Take any positive integer r and any elements x1; : : : ; xr of T . By Corollary 6.5,

Œx1; : : : ; xr � � .x1; : : : ; xr/ .mod �rC1.H//: (6.14)

By Theorem 6.6 (d) and induction,

Œad x1; : : : ; ad xr � D .�1/r adŒx1; x2 : : : ; xr �: (6.15)

First, consider the case in which r D d 0C1. Then, for any choice ofx1; : : : ; xd 0C1,
we see from (6.13), (6.14), and (6.15) that

Œx1; : : : xd 0C1� 2 H \Z.G?/ and Œad x1; : : : ; ad xd 0C1� D 0:

Next, consider the case in which r D d 0. By (6.13) and Theorem 3.12 of [13]
applied to H=.H \ Z.G?//, there exists a choice of x1; : : : ; xd 0 in T such that
.x1; : : : ; xd 0/ lies outside of H \Z.G?/. By (6.13) and (6.14),

Œx1; : : : ; xd 0 � � .x1; : : : ; xd 0/ 6� 1 .mod H \Z.G?//:

Therefore by (6.15), Œad x1; : : : ; ad xd 0 � ¤ 0. Consequently, the previous paragraph
shows that L?.T / has nilpotence class precisely d 0.

Remark 6.9. For the next result, consider an element x of G in the situation of
Theorem 6.6. The inner automorphism i.x/ of G given by i.x/.g/ D x�1gx for
each g in G preserves every normal subgroup of G. In particular, for every N in S ,
i.x/ induces a group automorphism on N and hence an automorphism of N as a Lie
algebra under Lazard’s definition. Thus, i.x/ induces an element of E.S/ that we
will denote by �.x/:

Theorem 6.10. Assume the hypothesis and notation of Theorem 6.6, and assume
that S generates G. For each x in G, define �.x/ as in Remark 6.9. Then:

(a) for each x in G, �.x/ is an invertible element of E.S/I
(b) for each v in U.N /,

�.v/ D Exp.ad v/ D 1C .ad v/C .ad v/2

2Š
C � � � C .ad v/d

dŠ
and

ad v D Log.�.v//I
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(c) for v and w in U.N /, ad v D adw if and only if v � w .mod Z.G//;

(d) the multiplicative group generated by the elements �.v/ for all v in U.S/ is the
group f�.x/ j x 2 Gg; and

(e) the inner automorphism group of G acts faithfully on U.S/ by restriction and
induces the group f�.x/ j x 2 Gg on U.S/.

(f) Moreover, suppose H is a subgroup of G generated by a subset S 0 of S , and v
is an element of H that lies in U.N /. Then ad v is contained in the associative
Q� -subalgebra E 0 of E.S/ generated by 1 and the elements ad u as u ranges
over the elements of the subgroups in S 0.

Proof. Note that for u in U.S/ and x; y in G,

�.x/�.y/.u/ D x�1.y�1uy/x D .yx/�1u.yx/;

so that
�.x/�.y/ D �.yx/ for x; y in G: (6.16)

Part (a) follows from Remark 6.9.
For (b), take any v in U.N / and H in S . Note that H D �

p
H because H is

Q� -powered. Moreover, the element �.v/ � 1 of E.S/ induces on H (under +)
the endomorphism ı of Theorem 6.1, with g2 D v: Then Theorem 6.1 yields that
ıdC1 D 0 and that the mapping ˇ given by

ˇ D ı � ı2=2C � � � C .�1/dC1ıd=d

coincides with the restriction of ad v to H .
From Section 3,

ˇ D Log.1C ı/; ˇdC1 D 0; and 1C ı D Exp.ˇ/ D 1C ˇ C ˇ

2
C � � � C ˇd

dŠ
:

Since this is valid for every H in S ;

ad v D Log �.v/ and �.v/ D Exp.ad v/; (6.17)

which gives (b).
Take w in U.N /. Then v � w .mod Z.G// if and only if vw�1 lies in Z.G/.

Since S generates G, this occurs if and only if �.v/ D �.w/. From (6.17) and the
analogous result for w, this occurs if and only if ad v D adw: So we obtain (c).

Since S generates G, (d) and (e) follow from (6.16).
Finally, assume the hypothesis of (f) and define E 0 as in (f). For each element u

in each subgroup in S 0; �.u/ D Exp.ad u/ by (6.17), so that �.u/ lies in E 0. Since
these elements u generateH , (6.16) shows thatE 0 contains �.x/ for every element x
ofH , including �.v/. By (6.17), ad v is equal to Log �.v/, and hence lies inE 0. This
proves (f).
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Remark 6.11. Assume S generates G in Theorem 6.6. Theorem 6.10 shows that
one may determine the structure of the inner automorphism group of G, and thus
of G=Z.G/, from S and L.S/. We do not know whether one may determine the
structure of G. In (f), we do not know whether ad v lies in L.S/:

Assume in addition that S is strictly smaller than N . Then N generatesG and we
may define E.N / and L.N / as in Theorem 6.6. They act on all the elements of N ,
including the elements of S . By takingG to be elementary of order p2, we can easily
see that E.N / need not act faithfully on the set of all elements of S . But we do not
know whether L.N / acts faithfully on this set in general.

Lemma 6.12. Assume the hypothesis and notation of Theorem 6.6, and suppose T is
a subset of U.S/ that generates a normal subgroup M0 of G of nilpotence class at
most d: Let

M D �
p
M0; ad T D fad x j x 2 T g; and adM D fad x j x 2 M g:

Then

(a) M is a normal Q� -powered subgroup ofG of the same nilpotence class asM0;

(b) adM is the Lie Q� -subalgebra of L.S/ generated by ad T ;

(c) adM is an ideal of L.S/; and

(d) if S generates G and T has the form fwg j g 2 Gg for some element w of S ,
then adM is the smallest ideal of L.S/ that contains adw:

Proof. (a) This follows from Lemma 5.10.
(b) Note that (a) shows that we may define ad x for each x inM and that we may

view M as a Lie Q� -algebra. Let I D adM:
From the definitions,M is the smallest Q� -powered subgroup ofG containing T:

Therefore, by the Lazard correspondence,M is generated by T under the Lie algebra
operations onM . Hence, by Theorem 6.6, I is likewise generated by ad T , as desired.

(c) Take any x in M and v in U.S/. By Theorem 6.6,

Œad x; ad v� D � adŒx; v�:

By (a) and Theorem 6.4 (c), Œx; v� lies in M , so that adŒx; v� lies in I . As L.S/ is
spanned by the elements ad v for all v in U.S/, I is an ideal of L.S/:

(d) Let I 0 be the smallest ideal ofL.S/ that contains adw. By (c), I 0 is contained
in adM . Let T ? be the set of all elements x of M such that ad x lies in I 0: Then T ?

containsw. Since I 0 is a subalgebra ofL.S/, Theorem 6.6 shows thatT ? is a subgroup
of M that contains w.

Suppose t lies in T ? and u lies in U.S/. We claim that tu lies in T ?. First, by
Lemma 10.12 (d) in [13], the group commutator .t; u/ can be expressed as a sum of
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Œt; u� and Lie ring commutators in t and u of weight at least 3. Therefore, by Theo-
rem 6.6, ad.t; u/ is a sum of Œad u; ad t � and other Lie ring commutators in ad t and
ad u. Hence, ad.t; u/ lies in I 0 and .t; u/ lies in T ?:As T ? is a subgroup of M and

tu D u�1tu D t .t; u/;

T ? contains tu, as claimed.
This shows that T ? is closed under conjugation from U.S/: As S generates G

and T ? containsw, T ? containswg for every g inG. Thus, I 0 contains ad T . By (b),
I 0 contains adM . Since I 0 is contained in adM , they are equal.

In some applications of the Lazard correspondence, G is a finite p-group and one
seeks a subgroup A? of G with special properties. Representing G as a Lie algebra
helps to find A? as a subalgebra, and hence as a subgroup (e.g., in [6], Section 3).

If G is instead a product of normal subgroups of class less than p, one cannot
generally representG as a Lie algebra, but one can associate toG a Lie algebraL.S/
as in Theorem 6.6. In this case, a subalgebra may contain elements that are not of the
form ad x for x in G, or that may lack other desired properties. The following two
results help in this situation. For example, in some cases they show that an abelian
subalgebra of L.S/ comes from an abelian subgroup of G:

Recall that G0 denotes the commutator subgroup of G,

G0 D .G;G/ D h.x; y/ j x; y in Gi:

Theorem 6.13. Assume the hypothesis and notation of Theorem 6.6. SupposeG0 has
nilpotence class at most d .

Then G0 is a Q� -powered normal subgroup of G and we may regard G0 as a Lie
Q� -algebra under the Lazard correspondence. Moreover:

(a) There exists a unique Q� -bilinear mapping ofL.S/�L.S/ intoG0 such that

 .ad v; adw/ D Œv; w�; for all v;w in U.S/:

For  as in (a),

(b)  .˛; ˇ/ D � .ˇ; ˛/ for all ˛; ˇ in L.S/, and

(c) Œ .ad u; ad v/; w�C Œ .ad v; adw/; u�C Œ .adw; ad u/; v� D 0; for all u; v; w
in U.S/:

Proof. Let R D Q� . By Corollary 2.5, G0 is �-divisible. Since G is nilpotent and
�-torsion-free, G0 is R-powered (of nilpotence class at most d ). Therefore we may
view G0 as a Lie R-algebra.

Since .ad v/.w/ D Œw; v� for every v;w in U.S/; and Œw; v� lies in .G;G/ by
Corollary 6.5 , we see that L.S/ maps U.S/ into G0:
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For each element v of U.S/, define a mapping 
v from L.S/ into G0 by


v.�/ D �.v/:

Then 
v is an R-module homomorphism of L.S/ into G0, and, for w in U.S/;


v.adw/ D .adw/.v/ D Œv; w� D �Œw; v� D .ad v/.�w/: (6.18)

Let Hom.L.S/; G0/ be the R-module of all R-module homomorphisms of L.S/
into G0:

Suppose we are given elements av inR for finitely many elements v ofU.S/ such
that X

av.ad v/ D 0:

Then (6.18) shows that
P
av
v vanishes on adw for every w in U.S/. Since the

elements adw span L.S/, it follows that
P
av
v D 0. Thus we obtain an R-module

homomorphism  ? of L.S/ into Hom.L.S/; G0/ determined by

 ?.ad v/ D 
v; for each v in U.S/:

Let .�; �0/ D  ?.�/.�0/; for all�; �0 inL.S/:Then is anR-bilinear mapping
of L.S/ � L.S/ into G0. Since the mappings ad v span L.S/ as a R-module,  is
determined by the condition

 .ad v; adw/ D  ?.ad v/.adw/ D 
v.adw/ D .adw/.v/ D Œv; w�;

for all v;w in U.S/, which proves (a).
Now (b) and (c) follow from Theorem 6.1 (b) and Theorem 6.4 (b).

Theorem 6.14. Assume the hypothesis and notation of Theorem 6.6. Suppose S

generates G, v and w are elements of U.S/;

˛ D ad v C adw;

and b is the nilpotence class of the group hvGiZ.G/=Z.G/. Assume b � d � 1 and
˛ is contained in an ideal of L.S/ of nilpotence class at most d � 1 � b.

Then there exists y in U.N / such that ad y D ˛:

Proof. Let

Z D Z.G/; N1 D hvGi; N2 D �
p
N1; and I2 D fad x j x 2 N2g:

Then N2Z=Z D p
N1Z=Z. By Lemma 2.2, N2Z=Z has nilpotence class b. By

Lemma 6.12 with T D fvg j g 2 Gg; I2 is an ideal ofL.S/ and is the Lie subalgebra
of L.S/ generated by the set

fad vx j x 2 Gg:
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Therefore, by Lemma 6.8,

I2 has nilpotence class at most b: (6.19)

Let I1 be the smallest ideal of L.S/ containing ˛: By hypothesis, I1 has class at
most d �1�b. Moreover, I1 CI2 is an ideal ofL.S/: Since .d �1�b/Cb D d �1,
(6.19) and a theorem of Fitting yield

I1 C I2 has class at most d � 1: (6.20)

(Fitting’s Theorem follows from a slight variation in the proof of Proposition I.6 in
p. 25 of [12].)

Since ad v lies in I2; ˛ lies in I1, and adw D ˛ � ad v, we see that adw lies in
I1 C I2. By Lemma 6.12 (d),

I1 C I2 contains adwg for every g in G: (6.21)

Now let T be the subset of G given by

T D fvg ; wg j g 2 Gg:
Then T generates a normal subgroup M0 of G. By construction, I2 contains ad vg

for every g in G. Hence, by (6.21), I1 C I2 contains ad x for every x in T , and
contains the subalgebra of L.S/ that they generate, which we denote by L?.T / as in
Lemma 6.8.

By (6.20), L?.T / has class at most d � 1: By Lemma 6.8,M0=.M0 \Z.G// has
class at most d � 1, so M0 has class at most d . Let M D �

p
M0.

Since ˛ D ad vCadw, ˛ lies inL?.T /. By Lemma 6.12,M is a normal subgroup
of G of class at most d , and

L?.T / D adM D fad x j x 2 M g:
So ˛ D ad y for some y in M , as desired.
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