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Abstract. We study permutation groups of given minimal degree without the classical primitiv-
ity assumption. We provide sharp upper bounds on the order of a permutation group H < §j
of minimal degree m and on the number of its elements of any given support. These results
contribute to the foundations of a non-commutative coding theory.

A main application of our results concerns the Hidden Subgroup Problem for S, in quantum
computing. We completely characterize the hidden subgroups of §;, that can be distinguished
from identity with weak Quantum Fourier Sampling, showing that these are exactly the sub-
groups with bounded minimal degree. This implies that the weak standard method for S, has
no advantage whatsoever over classical exhaustive search.
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1. Introduction

Let S, denote the symmetric group on {1,...,n}. For a permutation 7 € S, define
its support supp(%) by

supp(h) ={i € {l,...,n}: h(i) #i}.

The minimal degree m(H) of a permutation group 1 # H < §,, is defined to be the
minimal number of points moved by a non-identity element of H. In other words,

m(H) = min{|supp(h)|: 1 # h € H}.

This notion goes back to the 19th century, and plays an important role in the theory of
finite permutation groups since the days of Jordan [16], [17]. Particular attention was
given to the minimal degree of primitive permutation groups. Recall that a permutation
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group is called primitive if it is transitive and does not preserve a non-trivial block
system. Let H < §, be a primitive permutation group not containing A,. Jordan
proved that m(H) goes to infinity as n goes to infinity. Babai [1] showed that under
the above conditions we actually have that

Jn—1
SR

m(H) >

This result is essentially best possible. However, if we exclude certain primitive
groups and use the Classification of Finite Simple Groups (CFSG) (see e.g. [9]),
sharper bounds can be obtained. Indeed, it was shown by Liebeck and Saxl in [24]
that m(H) > n/3 with a given list of exceptions. This lower bound was improved
by Guralnick and Magaard in [12] to n/2 (with prescribed exceptions). See also
Cameron [4] for the impact of the Classification on the theory of finite permutation
groups and primitive groups in particular.

In spite of considerable progress in the study of the minimal degree of primitive
groups, much less is known in the non-primitive case. One of the purposes of this paper
is to study permutation groups of given minimal degree without assuming primitivity
or even transitivity.

A basic question in this field is: how large can a permutation group H of degree n
and minimal degree m be? An easy classical upper bound is | H | < n” %1, Indeed,
this follows from the fact that a permutation 4 € H is uniquely determined by its
actionon {l,...,n —m + 1}.

Better bounds were given by Liebeck [22], [23] under the assumption that H is
transitive. Our first result extends Liebeck’s theorem to arbitrary permutation groups.

Theorem A. Let H < S, be a permutation group with minimal degree m = m(H).
1) Ifm < log, n, then |H| < n'%%/m,
2) If m > log, n, then |H| < 2107,

Theorem A is essentially best possible. For example, consider the group H =
San/m < Sy acting on 2n/m blocks of size m /2. Then the minimal degree of H is m
and |H| = (2n/m)! which is of the form n?=°("/m when m < log, n. Up to a
constant in the exponent, this shows that part (1) of Theorem A is tight.

Note also that if H < S, is transitive of minimal degree m and base size b, then
bm > n (see e.g. [5], p. 80), and this implies |H | > 2b > on/m

Subgroups of S, of given minimal degree m can be regarded as non-commutative
analogues of linear codes with minimal distance . Recall thatin coding theory [26] a
fundamental question is: how large can a subspace of GF(¢)" with minimal distance m
be? Replacing the Abelian group GF(g)” by the symmetric group S, we may ask a
similar question in this context. Theorem A provides a rather sharp answer.
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Note that any binary linear code inside GF(2)"/2? can be embedded naturally as
a subgroup of S 2 < Syn. Thus classical coding theory provides a rich source
of constructions of permutation groups of large minimal degree. In particular the
(obvious) Gilbert—Varshamov lower bound ([10] p. 781, remark after Thm. 3.5)
applied to linear codes produces exponentially large elementary Abelian permutation
groups with large minimal degree, e.g. m > n/8. This demonstrates the tightness of
part (2) of Theorem A, even when m is very large.

Another classical question in coding theory is the study of the weight distribution,
namely counting elements of weight k in a code with minimal distance m. The
analogous question for permutation groups is counting the number of elements of
support k in a permutation group of minimal degree m. Given a permutation group
H < §,, define

Hy = {h € H : |supp(h)| = k},

the subset of elements of support k in H. In our second result, which is the most
technically demanding, we bound the size of H.

Theorem B. There exists absolute constants b, ¢ > 0 such that if a subgroup H < S,
has minimal degree m > b then

1
2
|Hy| < n~em (Z) (k1)#.

The theorem has an interesting consequence for the number of elements of minimal
support. If k = m < n?® then (k!)!/* < n®™/2 and this implies

1/2
n

H,,| <n—em/2 .
| Hp| < -

This upper bound is essentially tight. To show this we use some results from
coding theory and the above embedding of binary codes in S,,. Consider the well
known Goppa code [8] and the estimates for the number of code words of minimal
weight [21]. For a binary Goppa code over GF(2)"/2, in the regime of small ¢
(t < 4/logn), the number of code words of minimum weight 2¢ + 1 is roughly (up

to a constant factor)
n/2 (n )_t
2t +1)\2/

Embedding this code into S, as above, we obtain a subgroup H < S, of minimal
degree m = 4t + 2 satisfying

1
2
n
|Hy| > cn_m/4< )
m
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for some constant ¢ > 0. This demonstrates the tightness of Theorem B in the regime
of small m.

A main motivation behind Theorem B, besides the study of weight distributions
of non-commutative codes, comes from quantum computing. A central problem in
quantum computing is the Hidden Subgroup Problem (HSP), which we state below.
Let G be a finite group and H < G a subgroup. Given a function f: G — S that
is constant on (left)-cosets gH of H and takes different values for different cosets,
determine a set of generators for H. The decision version of this problem is to
determine whether there is a non-identity hidden subgroup or not.

Note that given g € G we have g € H if and only if f(g) = f(1). Using
classical search we may therefore perform membership tests, and once we find a non-
identity element g € H we may conclude that H # 1. However, the aim is to decide
whether or not H = 1 in polynomial time, namely after (log |G|)¢ steps. Complete
enumeration over the elements g € G is therefore not efficient. The question is
whether a quantum computer can solve the HSP efficiently (giving the correct answer
in polynomial time with a very high probability).

The Hidden Subgroup Problem plays a central role in quantum computing. The
two important quantum algorithms for factoring and discrete log, which significantly
improve the known classical algorithms, solve the Abelian version of this problem
by the so called standard method of Quantum Fourier Sampling. One of the most
important questions is whether the standard method can efficiently solve the non-
Abelian HSP, especially for the symmetric group G = §,,. This latter case in particular
would yield a quantum algorithm for the Graph Isomorphism Problem, for which no
efficient classical algorithm is known. For more details on quantum computing, the
HSP, and the standard method see Section 2.

To state our main quantum-theoretic application in a precise mathematical way
we need some notation. Given a finite group G let G denote the set of (complex)
irreducible representations of G (up to equivalence). For p € G let d, denote its
dimension and y, its character.

Given a subgroup H < G, define

Dpéde\ > k) ()

peG  heHh#1

Roughly speaking, Dy measures the L-distance between a (non-commutative)
Fourier transform of the characteristic function of H and that of the characteristic
function of the identity.

We say that a subgroup H < G is distinguishable if

Dy = (log|G[)™*

for some constant ¢. Of course this is an asymptotic notion, where we think of G
as ranging over an infinite family of groups, whereas the constant ¢ does not depend
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on G. Here we focus on the case G = §,,, where distinguishability is equivalent
to Dy > n~°. Distinguishable subgroups H are those which can be distinguished
from 1 using the so called weak standard method (see the next section for more details).

The main application of this paper to quantum computing, which relies heavily
on Theorem B above, is the following.

Theorem C. Let H < S, be a subgroup. If H is distinguishable, then it has a
bounded minimal degree. Moreover, if Dg > n™¢, then m(H) < g(c), where
g(x) = ax + b is some fixed linear function.

Thus all subgroups of unbounded minimal degree are indistinguishable, which
opens up a huge spectrum of examples and constructions. The only case previously
known in the literature of an indistinguishable subgroup of S, is that of a subgroup
of order 2 generated by a fixed point free involution or by a product of transpositions
of large support [14], [11]. Obviously m(H ) is unbounded for such subgroups H, so
its indistinguishablity is an immediate consequence of the above theorem.

In an extended abstract [18] a subset of the authors of this paper have proved a
weaker version of Theorem C (for primitive subgroups and subgroups of polynomial
size) and have conjectured that it holds in full generality. In this paper we prove the
conjecture.

It is intriguing that much larger subgroups are also indistinguishable. Indeed take
H = S3,/m < Su, the subgroup constructed following Theorem A. If m = m(H)
tends to infinity arbitrarily slowly, then H is indistinguishable and |H| > (n!)¢™
where ¢(n) tends to O arbitrarily slowly. In particular, the size of indistinguishable
subgroups of S,, can be super-exponential in 7.

However, if ¢ > 0 is fixed, and |H| > (n!)?, then it follows from Theorem A
that the minimal degree of H is bounded. Enumerating over elements of S, of
bounded support (their number is bounded by a polynomial in ) we deduce that such
a subgroup H can be distinguished from 1 using classical search.

It follows from the two paragraphs above that all subgroups H < S, of size > N
can be distinguished from 1 using the weak standard method (together with classical
search) if and only if N > (n!)® where ¢ is bounded away from zero.

Theorem C has rather grave consequences. Indeed, if H is distinguishable then it
has an element of bounded support, and this can be detected (as above) after polyno-
mially many membership tests (when we enumerate the permutations in S, according
to their support).

Corollary D. Any subgroup H < S, which is distinguishable can already be distin-
guished from 1 using classical search.

Thus Theorem C provides a complete characterisation of hidden subgroups
H < S, which can be distinguished from 1 using the weak standard method and
classical search: these are precisely the subgroups of bounded minimal degree.
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It is intriguing that the old classical notion of minimal degree, which is central
in the theory of finite permutation groups, plays a role in the context of quantum
computing. The Classification of Finite Simple Groups (CFSG) is also used in an
essential way in some parts of this work.

Some words on the structure of this paper. In Section 2 we provide background
on quantum computing, the Hidden Subgroup Problem, and the standard method of
Quantum Fourier Sampling. Section 3 deals with arbitrary finite groups G and their
subgroups H. Using character-theoretic methods we give upper and lower bounds
on the L;-distance Dg introduced above. We then characterize distinguishable sub-
groups of polylogarithmic size. In Section 4 we focus on the case G = S,,. We prove
there (relying on CFSG and other tools) that any primitive subgroup H < S, not
containing A, is indistinguishable. We also show how to deduce Theorem C from
Theorem B. Theorem A is proved in Section 5. Section 6, which is the longest in this
paper, is devoted to the proof of Theorem B. This proof applies Theorem A as well as
results on primitive groups obtained in Section 4.

2. Quantum Computing

In the last decade quantum computation has provided us with powerful tools to solve
several problems not known to be classically efficiently solvable, like factoring and
discrete log [35]. This important class of problems and most others where a quantum
computer excels more than quadratically with respect to its classical counterpart can
be cast into the framework of the Hidden Subgroup Problem (HSP). Let G be a finite
group and H < G a subgroup. Given a function f: G — S that is constant on
(left)-cosets gH of H and takes different values for different cosets, determine a set
of generators for H. The decision version of this problem is to determine whether
there is a non-identity hidden subgroup or not.

The reason that quantum computers seem to provide a speed-up for this type
of problem is that it is possible to implement the Fourier transform over certain
groups efficiently on a quantum computer. This in turn allows to sample the Fourier
components efficiently (this technique of Quantum Fourier Sampling is referred to as
the “standard method”). In the case of Abelian groups G (appearing in factoring and
discrete log) the hidden subgroup can be reconstructed with only a polynomial (in
log |G |) number of queries to the function and a polynomial number of measurements
(samplings in the Fourier basis) and postprocessing steps.

We denote states of the vector space C[G], spanned by the group elements, with
a|-), as is standard in quantum computation (see e.g. [30] for more details).
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Definition 1. The Quantum Fourier Transform (QFT) over a group G is the following
unitary transformation on C[G]:

Z Jdop(@)islp.i. )

plj

where plabels an irreducible representation of G, d, isits dimensionand 1 <i, j < d,.
The |p, i, j) span another basis of C[G], the so called Fourier basis.

For many non-Abelian groups it is possible to implement the Fourier transform on
a quantum computer efficiently (see e.g. [27]), and in particular explicit constructions
exist for the symmetric group S, [3].

Addressing the HSP in the non-Abelian case is considered to be one of the most
important challenges at present in quantum computing. A positive answer to the ques-
tion whether quantum computers can efficiently solve the Hidden Subgroup Problem
over non-Abelian groups would have several important implications for the solution
of problems in NP, which are neither known to be NP-complete nor in P; and which are
good candidates for a quantum speed-up. Among the most prominent such problems
is Graph Isomorphism, where the group in question is the symmetric group. Hence
it is very desirable to get a handle on the power of Quantum Fourier Sampling (QFS)
to solve the HSP for general groups.

Definition 2. The standard method of Quantum Fourier Sampling is the following:
The state is initialised in a uniform superposition over all group elements; a second
register is initialised to |0). Then the function f is applied reversibly over both
registers (i.e. f:]g)|0) — |g)|f(g))). The second register is measured, which
puts the first register into the superposition of a (left)-coset of H, i.e. in the state
lgH) = F Y neq lgh) for some random g € G. Finally the QFT over G is

performed, yielding the state

\/W Z \/> Z pij (€M) p, i, j).

0,0, ] heH

A basis measurement now gives (p, i, j) with probability

. d 2
Peu(p,i,j) = |G||"H|)};1pij(gh)‘ :

Since we do not know g and g is distributed uniformly, we sample (p, i, j) with
probability Py = ﬁ ¢ Pen. The strong standard method samples both p and its
entries i, j. In the weak standard method only the character y, is measured (but not
the entries i, j, which are averaged over). In this case it is not hard to see [14], [11]
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that the probability to sample p is independent of the coset of H we happen to land
in. Hence the probability to measure p in the weak case is

d
Pu(p) = 2> 1p(h).
|G| heH

Note that from this expression it is clear that the weak standard method cannot dis-
tinguish between conjugate subgroups [14]. Let Irr(G) be the set of irreducible
characters of G. Then Py is a distribution on Irr(G). The strong standard method
sometimes provides substantially more information than its weak counterpart, and is
indeed necessary to efficiently solve the HSP in the case of groups like the dihedral
group [6], [20], [32] and other semidirect product groups [28]. However (see below),
for S, it has been shown [11] that for a random basis the additional information
provided by the strong method is exponentially small except possibly for very large
subgroups.

An even more basic question is which hidden subgroups can be distinguished from
the identity via QFS with special attention to the symmetric group. Distinguishing
the trivial subgroup {e} from a larger subgroup H efficiently using the weak standard
method is possible if and only if the L distance Dy between Py and P is larger
than some inverse polynomial in log |G|. The L distance (also known as the total
variation distance) is given as

DH=|é_|de) Z Xp(h)‘-
o

heH,h#1

We say that H is distinguishable (using the weak standard method) if Dy >
(log|G|)~¢ for some constant ¢, and indistinguishable otherwise.

Several positive results on the power of QFS for the Hidden Subgroup Problem
have been obtained previously for groups that are in some ways “close” to Abelian, like
some semidirect products of Abelian groups [6], [33], [20], [32], [28], in particular the
Dihedral group; Hamiltonian groups [14], groups with small commutator groups [15]
and solvable groups of constant exponent and constant length derived series [7].
Often in these cases the irreducible representations are known and can be analysed.
For instance the Dihedral group D, the first non-Abelian group to be analysed in this
context [6], is “nearly” Abelian in the sense that all of its irreducible representations
have degree at most two. Indeed hidden reflections of D, can be distinguished from
the identity with only polynomial Quantum Fourier Samplings, similar to the Abelian
case (where all irreducible representations are one-dimensional). Note, however, that
the computational version of the HSP seems much harder: even though a polynomial
number of samples suffice to distinguish hidden reflections information theoretically,
no efficient reconstruction procedure is known.

The holy grail of the field is the symmetric group S,,, which seems much harder to
analyse, partly because to this day there is still only partial explicit knowledge about
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its irreducible representations and character values (see e.g. [34]), because most of
its subgroups are far from normal (have many conjugate subgroups), because its
irreducible representations can have very large dimension (up to almost (n!)!/2) and
the number of different irreducible representations is an exponentially small fraction
of the size of the group, to name just some of the difficulties. The structure of
distinguishable versus indistinguishable subgroups of S, has remained open.

The following results have been obtained for the HSP over the symmetric group:
The group S, being non-Abelian, Quantum Fourier Sampling gives a distribution on
both the characters and the entries of the corresponding matrix representations. It is
shown in [11] that sampling the row index in the strong standard method provides no
additional information. They also show that the additional information provided by
the strong method in a random basis scales with /| H|2k(G)/|G| where k(G) is the
number of conjugacy classes of the group G and | H | the size of the hidden subgroup.
Both [14] and [11] show that hidden subgroups of S, of size |H| = 2, generated
by involutions with large support, cannot be distinguished from identity; exactly the
task that needs to be solved for Graph Automorphism. Recently, [29] have essentially
shown that the strong standard method cannot distinguish the subgroup generated by
a fixed point free involution from identity. Moreover, even a generalization of the
strong standard method to O(n logn) instances of Quantum Fourier Sampling does
not allow to distinguish the above subgroup from 1 [13]. No results are known for
other subgroups of S,,.

In this work various classical as well as modern parts of the theory of permutation
groups are applied for the first time in the context of quantum computing. In our
applications to the Hidden Subgroup Problem, we focus on the weak form of the
standard method, since the strong form with random choices of basis does not provide
any non-negligible additional information for the symmetric group and the subgroups
we consider [11]. It remains to be seen whether judicious choices of basis for each
irreducible matrix representation can give more information in the case where random
choices do not help; but to our knowledge no such examples have been found and in
fact recent results of [29] show that in the case of fixed point free involutions no such
good basis exists.

Theorem C and Corollary D above provide a complete characterization of sub-
groups which can be distinguished from 1 using the weak standard method (together
with classical exhaustive search). Indeed, these are exactly the subgroups of S;, with
bounded minimal degree. For instance we cannot distinguish a group generated by a
cycle of unbounded length or an involution with unbounded number of transpositions
(implying the result in [14], [11]).

This also has implications for the Graph Isomorphism (GI) problem. Recall that
to solve GI for two graphs G, G», it suffices to distinguish a hidden subgroup of the
automorphism group Aut(G, U G») of the form H; x H, (not G; =~ G»), where H; =
Aut(G;), from a subgroup of the form H U o H (G; >~ G;), where H = H; x H,
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and o0 maps G; to G,. Our results imply that we cannot distinguish each of the
two possible cases from identity, and hence (using the triangle inequality) we cannot
distinguish them from each other unless Aut(G;) contains an element of bounded
support. Thus weak QFS provides no advantage here.

3. Arbitrary groups

In this section we discuss results for arbitrary finite groups G. Our starting point is a
general result providing both upper and lower bounds on the total variation distance
Dy in terms of the same group theoretic data. While the definition of Dy involves
character degrees and values, which are hard to compute, our bounds below involve
sizes of conjugacy classes, and their intersections with the hidden subgroup.

We need some group theoretic notation. For i € G welet h% denote the conjugacy
class of 1 in G. Let Cq,.. ., Cy denote the non-identity conjugacy classes of G. For
an irreducible character y, € Irr(G) welet y,(C;) denote the common value of y,(x)
for elements x € C;.

Proposition 1. Let H < G. Then

k
Lo Y IG N HPHITGI™ < Dp:
i=1
k 1
2. Dy =) IGOH|GI2= ) W72
i=1 1#heH

Applying the upper bound with |H| = 2 gives the result obtained previously
by [14] and [11]. No lower bounds seem to exist in the literature. This result has a
wide range of applications. For example, it enables us to characterise distinguishable
subgroups H < G of polylogarithmic order (see Theorem 3 below).

Proof of Proposition 1. For each irreducible representation p of G we have

Yot Y M= Y dp<|Hld,

heH,h#1 heH h#1 heH,h#1

Hence d, > |H|™'| Y4 nz1 Xo(h)|. Substituting this in (1) we obtain

1 2
Dx >WZ‘ Z Xp(h)‘ :

o heHh#1
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Note that y,(h) = x,(C;)if his containedin HNC;. Thisyields Y e g 1 Xo(h) =
Zle |H N Ci|xp(Ci), and so

k

1 2

Dy > §:‘§:|an-|x @)
IGIIH| < V= v

Now,

2

k
| 1H NGl (C)
i=1

k
=Y [HNGCP|xo(CHP + ) _|HNG|[H N Cilyxp(C)io(C)).
i=1 i#j

Using the generalised orthogonality relations we observe that

k

k
S D TIH N GPlxp(CoI> =Y |H N Ci?IGI/IGl.

o i=1 i=1

and
D S TIH N GHIH N Cilxo(Cp(Ch) = 0.
poit)
It follows that

k k
1 _ _
Dy > G| E |H N C;]*|G|/|Ci| = E |H N GPH|TH G
i=1

i=1

This completes the proof of the lower bound.
To prove the upper bound, write

PulGl=Y"dp| D xs®[=Ddpy D L)

o heH,h#1 o heH,h#1

= ) D dolxedl. @)

heH,h#1 p

Fix h € H and choose i such that i1 € C;. Using the Cauchy—Schwarz inequality

we obtain s s
S dlapml = (X d2) (X lemP)
P P P
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giving (using the orthogonality relations)

> dylxo) < |GIV2(GI/ICiDY? = |G|ICi |72
P

Summing over non-identity elements # € H, and observing that the upper bound
above occurs |H N C;| times, we obtain

k

0 > dlxM) =D IH N GGG,

heHh#e P i=1

Combining this with (2) we obtain

k
Dy <) |HNCCIT?,

i=1
as required. O

The following is an immediate consequence of Proposition 1.

Corollary 2. Let Cy, denote a non-identity conjugacy class of minimal size inter-
secting H non-trivially. Then we have

|H| ™Y Crin| ™ < D < (|H| = 1)|Cuin| V2.

We can now prove the main result of this section, characterising distinguishable
subgroups of polylogarithmic order in an arbitrary group G.

Theorem 3. Suppose |H| < (log|G|)€ for some constant c. Then H is distinguish-
able if and only if H has a non-identity element h such that |h®| < (log|G|)¢" for
some constant c'.

Proof. Suppose first that H is distinguishable, namely Dy > (log|G|)~? for some
constant b. Then the upper bound in the above corollary shows that

|H ||Cunin| /2 = (log |G])7?,

SO
|Cin| < |H |2(log |G|)??) < (log|G|)?>®+9).

In the other direction, suppose |Crmin| < (log|G|)®. Then the lower bound in the
corollary above gives

Dy > |H| ' (log|G)™" > (log |G])~®*).
The result follows. O
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4. Symmetric groups

Let us now focus on the case G = S,. In this section we first prove some preliminary
results related to distinguishability of subgroups of S,,. Some of these results play a
role in the proof of Theorem B. We also deduce Theorem C from Theorem B.

Proposition 4. Let H < S, with |H| < n° for some constant c. Then H is distin-
guishable if and only if its minimal degree m(H ) is bounded.

Proof. Let g € S, with supp(g) = k. Then it is straightforward to verify that
(Z) < |g%"| < nk. As a consequence we see that a conjugacy class C in S, has
polynomial order if and only if it consists of elements of bounded support. This
observation, when combined with Theorem 3, completes the proof. 0

Our next result concerns primitive subgroups. Primitive permutation groups are
considered the building blocks of finite permutation groups in general, and were
extensively studied over the past 130 years. We note that if H < S, is primitive
and H # A,,S, then Babai showed [1], [2] that |H| < pAv/nlogn, Using the
Classification of Finite Simple Groups the latter bound can be somewhat improved to
|H| <2n V2 which is essentially best possible [4]; in particular the order of H can
be much more than polynomial, and so Proposition 4 above does not apply.

However, we obtain the following somewhat surprising general result:

Theorem 5. Let H # Ay, Sy be a primitive subgroup of S,. Then H is indistin-
guishable. Moreover, there is an absolute constant € > 0 such that

Dy < I’l_sﬁ.

Theorem 5 follows immediately from the two technical lemmas below, which are
based on counting elements of given support in permutation groups H. Recall that
for H < S, we set

Hy ={h € H : |supp(h)| = k}.

Lemma 6. Let H < S, be a subgroup. Suppose that, for each k < n, we have
|Hk| < n(1/6—8)k‘

where € > 0 is some fixed constant. Then, if n is large enough (given €) we have
Dy < 2n—8m(H)’

where § = g/2. In particular, if the minimal degree m(H ) is unbounded, then H is
indistinguishable.
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Proof. Apply the upper bound of Proposition 1, written in the form
Dy < Z |/’ZG|_1/2.
1#heH

To evaluate this sum we use a result from [25], showing that, for G = S, and h € G
of support k we have |1¢| > n®* for any real « < 1/3 and n large enough (given a).

Using this we obtain
Dy < Y |Hgln™P%,
k>m(H)

for any real number b < 1/6 and sufficiently large n. Let§ = ¢/2,b = 1/6 —§, and
m = m(H). Then the upper bound on | Hy| yields

Dy < Z n(1/6—e)kn—(l/6—8)k — Z n—Sk < 2n—8m'
k>m k>m

This proves the first assertion. Assuming m = m(H ) is unbounded, we see that Dy
is smaller than any fixed negative power of n, and so H 1is indistinguishable. O

Lemma 7. Let H < S, be primitive and H # Ay, Sy. Then for sufficiently large n
k
and for all k we have |Hy| <n7.

Proof. We use Babai’s lower bound on the minimal degree of primitive subgroups
H # A,, S, [1], showing that

m(H) = (vn - 1)/2. A3)

Furthermore, we apply a theorem of Cameron [4] (which in turn relies on the Clas-
sification of Finite Simple Groups) describing all primitive groups of ‘large’ order.
In particular it follows from that description that, for all large n, and for a primitive
subgroup H # A,, Sy, either

cnl/3

W) |H|<n , or
(in = (é) for some [, and H < S; acting on 2-subsets of {1,...,[}, or
(iii) n = [? for some [, and H < S§; 2 S5 acting on {1, ...,/}? in the so called

product action.

We claim that for all large n and for all k we have |Hy| < n¥/7_ To show this it
suffices to consider k > (4/n — 1)/2, otherwise | Hy| = 0 by (3). Now, if H satisfies
condition (i) above then the claim follows trivially using |H| < |H|. So it remains
to consider groups H in cases (ii) and (iii). Here a simple computation based on the
known actions of H completes the proof of the lemma. O

Theorem 5 now follows by combining the above two lemmas. In fact we obtain,
for all primitive subgroups H # A,, Sy,

DH < 2n—m(H)/84 < 2n—(ﬁ—1)/168'
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The remainder of this section is devoted to reducing Theorem C to Theorem B.

Lemma 8. Let C be a conjugacy class in Sy consisting of elements of support k.
Then |C| > C(Z)vk! . k_%, where c is an absolute positive constant.

Proof. There are (Z) ways to chose the subset S C {1,...,n} of letters moved by
an element 4 € C. Given the subset S, &|g is a fixed point free permutation of
degree k. The number of such permutations with a given cycle structure is minimal

in the case of a fixed point free involution and is in this case equal to k!/ 25 (k/2)!.

Using Stirling’s formula, we see that this expression is at least cvVk!- k% Putting
everything together the lemma follows. O

Lemma9. Let H < S,. Then

Dy <a ) |Hk|(Z) (k)75 - k3,

1<k<n

(S

where a is some absolute constant.

Proof. We use part 2 of Proposition 1:
DH < Z |I’ZG|_1/2.
1#heH

By Lemma 8 we conclude that

Ejmﬂ%sc*HHuG) ey~ ik,

heHy
The result follows. O

N—
B

Suppose now that Theorem B holds and let m = m(H'). Substituting

1
2
|Hi| <0~ (k) (k1)
in Lemma 9 we obtain

_ 1 _
Dy <an™®™ E k*# <an " .n

1<k<n

Kl

Therefore, if m is unbounded, Dy is smaller than any inverse polynomial in 7,
and hence H is indistinguishable. Moreover, assuming Dy > n~¢ (and n3/* > qas
we may) we obtain em — 2 < ¢, and so

m<2/e+c/e.

Hence, Theorem C follows from Theorem B.
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5. Bounds on the group size in terms of the minimal degree

In this section we prove Theorem A. It extends a theorem of Martin Liebeck [22],
[23] which bounds the order of transitive groups with large minimal degree.

We call H a subdirect product subgroup of S* if it is a subdirect product of
S1 % --- x Sy where all the S; are isomorphic to S. Such an H is called a diagonal
subgroup if it is isomorphic to S.

Lemma 10. Let S be anon-Abelian simple group and H a subdirect product subgroup
of ST = Sy x---x S;.

1) Then there is a partition of the set of indices {1, ...,t} and for each part, say
{ijys- ... ij ), a diagonal subgroup D; of Sij, X e X Sijk such that H is a direct
product of the subgroups D;.

2) Assume that S = Alt(k) for some k > 7 and let D be a diagonal subgroup
of S'. Letd = (dy,...,d;) be an element of D such that dy is a 3-cycle. Then all
the d; are 3-cycles.

Proof. 1. This is a standard result.
2. This follows from the fact that the set of 3-cycles is invariant under automor-
phisms of Alt(k) if kK > 7 [5, Lemma 8.2. A]. O

Let H be a permutation group with minimal degree m = m(H). Denote by
Q1,...,8, the orbits of A and set 1 = max |Q;|. Let 8; = {B;,,..., B} be
a system of blocks of imprimitivity for the action of H on €2; such that k; > 1is
minimal (if H acts on €2; as a primitive group, then k; = |2;|). Denote by K;
the kernel of the action of H on B; and the size of the blocks in B; by b;. Set
B=U_8:,K=_;Kiandx = Y._ (k; — 1). Note that K has at least
r + x orbits.

Proposition 11. |H/K| < 5% t3"/m,

Proof. H acts on B; as a primitive permutation group P; = H/K; of degree k;.
If P; does not contain Alt(k;), then, by a result of Praeger and Saxl, [31] we have
|P;| < 4’;" . Together with some trivial computation for small values of k; this implies
|P;i| <5 i—1

Denote by S the intersection of all the K; for which | P;| < 5%~! holds. Then S
acts on each B; either as a trivial group or as a group containing Alt(k; ) where k; > 7.
Without loss of generality one can assume that S acts trivially on B; exactly if i > gq.
The group A = (S/K)’ is a subdirect product subgroup of Alt(k;) x --- x Alt(kg).
Denoting by A the inverse image of A in S we see that | H/A| < 5* holds.

To complete the proof it is enough to show that

|A/K| = |A] < "™,
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It follows from Lemma 10 that A is a direct product of diagonal subgroups A4;.
Each A; acts as an alternating group Alt(n;) on some systems of blocks $B; with
nj = k;, trivially on the rest and is isomorphic to Alt(n;).

We claim that the sum of the block-sizes b; corresponding to A; is at least m /3.
To simplify notation we assume that A; acts trivially on $; exactly if i > p. By
Lemma 10 there is an element a; of A; which acts as a 3-cycle on each B; fori < p.
This element corresponds to an element a; of A which moves at most 3 le —1 bi
elements. Hence 3 Zf’: 1 bi = m as claimed.

It follows that each A; moves at least n;m /3 points. This implies that the sum of
the n; for all diagonal subgroups A; is at most 3n/m. Each A; has order %nj <",

Hence |A| < t3"/™ as required. O
We are now ready to prove Theorem A:

Proof of Theorem A. Set £ = min(m, log, n). We have to show that |G| < nlo%.
Denote by Ay,..., A, the orbits of G. Let D; = {D;j1...., D;,} be a system of
blocks of imprimitivity for the action of G on A;, such that the block size d; is at
least £ and d; is as small as possible with this restriction (if there are no proper blocks
of size > £ then we set D;1 = A;). G actson D = Ult'=1 D; as a permutation group
of degree at most n/£. Hence the kernel H of the action has index < n “inG.

Denote by 1, ..., 2, the orbits of H and let By, ..., B8, be systems of imprim-
itivity as in Proposition 11. By the construction of H it is clear that we have b; < £
for each i. Applying Proposition 11 we obtain a subgroup K of index < 5%n3"/™
such that K has at least r + x orbits and each orbit has size < £.

We apply Proposition 11 to K to obtain a subgroup K of index < 5% . ¢£37/m
in K, which has at least r 4+ x + x; orbits, each of size < %.

Continuing in this fashion we obtain a descending series of subgroups K > K; >
K5 > -+ > K, = 1. The maximal size of an orbit of K; is at most £/2', hence the
above series of subgroups has length v < log, £.

Since K; has atleastr +x + x; +--- 4+ x; orbits we have x +x1 + -+ x, < n.
Hence |H| = |H/K|-|K/K\|TT/=) [Ki/Kit1] < 5n/m.(g3n/myv < 5. p3n/t.

(log@)2

23”( e ) < 5np3n/t.23n9/8 < 31/t 261 Therefore we have |G| < n4n/t.p6n <
n R

n'%7 as required. O

6. Counting elements of given support

This section, which is the longest in this paper, is devoted to the proof of Theorem B.
The main ingredients of the proof are Theorem A and Proposition 5.
We will use the following inequality many times.
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Proposition 12. Let x, y, n be positive integers such that x + y < n. Then (2) (;) <
(41,)22CF) holds.

Proof. In fact we claim that the stronger inequality () (; ) < (xiy) (* Jyry )2 holds.
This is equivalent to

nn—1)..m—x+nnrn—-1)...n—y+1) - x+y
nn—1)...n—x—y+1) N y

which is equivalent to

nn—1)...m—y+1) - x+y)x+y—-D...(x+1
m—x)..m—x—-y+1) "~ y!

But this follows by multiplying the inequalities

n—t xX+y—t
=
n—x-—t y—t

for t =0,1,...,y—1.

These latter inequalities follow from x 4+ y < n. O

To avoid some technical difficulties we first prove Theorem B directly in the case
when k is very large.

Lemma 13. Let H be a permutation group of degree n and minimal degree m >
100000. Assume that k > n%’LllW and k > 2100000 Thon there exists a constant

1
& > 0 such that |Hg| < (})> (kD) *n=c™ holds.

Proof. We have to count elements &7 € H with supp(h) = k. There are at most (Z)

choices for supp(#) and given this by Theorem A there are at most k 10600 choices
for h itself. We have to show that

1
2
n k n 1
10000 < kNap—em,

(n)ksokoo . p2em < (k!)%

This is equivalent to

which follows from
nk k5000 . 2k < (k1)3,
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This in turn is implied by

k

N

nk _ksécwkﬁiek < (li)
e

n%(e -kﬁ“‘g) <k

which reduces to

which follows from our conditions if ¢ is small enough. O

We now fix a > 10000 such that if H is a primitive permutation group of degree
n > a not containing Alt(n), then m(H) > 100 and |Hy| < n*/7. This is possible
by [1] and Lemma 7 above.

Next, we introduce some notation which will be used in the rest of this section.
Let G be a permutation group of degree n with no fixed points. Denote by 21, 25, ...,
the orbits of G. Let 8; = {Bi1, Bi2, ...} be a system of blocks of imprimitivity for
the action of G on €2;, such that | Bj;| > 2 is minimal. Then the setwise stabiliser of
the blocks B;; in G acts as some primitive group P;; on B;;. The P;; are permutation
equivalent for i fixed.

We partition the set of blocks B8 = | ) B; into 3 subsets as follows. Denote by
8 = {81, S2,...} the set of blocks of size < a. Denote by A = {A;, A3, ...} the
set of blocks B;; in 8 \ & for which P;; contains Alt(B;;), and denote by £ =
{Ly,Ly,...,} the set of the remaining blocks. Set S = (JS;, 4 = |JA; and
L = L;. Itisclear that any g € G fixes the sets S, L and A. We denote the action
of g € G onaset X (fixed by g) by gy and the action of G on a fixed set X by Gy.

Our next lemma shows that in a sense there are not too many possibilities for the
action of some g € G ontheset S U L.

Lemma 14. 1) The number of pairs (supp(gs).gL) for permutations g with
[supp(g)] = k. [supp(ge)| = x and |supp(ga)| = v is at most ( [0y )2
n*(3+100).

2) Given supp(gs), the number of possible actions g is at most ak=*=> [HT_J’] L

In fact this is an upper bound for the number of possible actions on supp(gs) of
elements h which fix supp(gs).

Proof. If g moves a point of some block, then it moves at least two points of the
block. Hence the number ¢ of blocks in § which contain points from supp(g) is at
most [W] These blocks can be chosen in at most ('t’) ways. Given these blocks
the number of choices for supp(gs) is at most (24)’.

Note that gs (or & € G fixing supp(gs)) moves ay, as, ..., a; given points of the
chosen blocks in at most ajlas!...a;!-t! < ]_H:l a%-t! < ak_x_y[l#]! ways,
proving 2).
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Each block in &£ which contains points of supp(g) contains at least 100 such points
(by the choice of a, see the notation introduced after Lemma 13), hence the number £
of such blocks is at most x /100. These blocks can be chosen in at most (}}) < nT00 /¢!
ways.

There are £; < £ blocks from £ fully contained in supp(g) and these can be
chosen in at most 2¢ ways.

By our assumption on the blocks in &£ and the Praeger—Saxl theorem [31] the
stabilisers of a block B;; in & can act on the block in at most 4!Bij| ways. This
implies that the stabiliser of the union of the above blocks can act on this union in at
most 4*£;! ways. Hence this is an upper bound for the number of actions of g on the
blocks contained in supp(g).

Assume that on the remaining blocks (which are as sets fixed by g) g acts as a
permutation of degree x1, X2, . ... The number x1, x», ... can be chosen in at most 2*
ways. Given these numbers the number of actions of g on these remaining blocks can
be chosen in at most n*1/7 . n*2/7 ... < p*/7 ways by Lemma 7.

Altogether the number of choices for supp(gs) and gy, is at most

n X n XX
(t>2‘”(n100/€!)2€4x€1!2x 7 < ([k_;_y])nvﬂ 020k

as required. O

Corollary 15. The number of pairs (supp(gs),gr) for permutations g with
|supp(g)| = k and |supp(ga)| = y is at most

1
2
(n) [%]!n—%_z(aﬂ)k ifk <3+

and n is sufficiently large.

Proof. We first claim that the number of permutations g considered is at most
L <[&]) 2(@+Dk By Lemma 14 it is sufficient to prove that for all x < k we
2

n a x(L 4L 1 n a
([k_;_y])Z k,x(5+160) < o ([k__y])z( +k

2
This is obvious if x = 0, otherwise we have x > 100. By Proposition 12

(i) () = ()2

holds, hence it is enough to show that n*(7+100)+2 < ([%] ) But this follows using

have

100 < x <k <n3tToo,
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Using Proposition 12 we obtain that

1 n 1(n n \!
- - 2@tk o — ( )( ) r(a+2)k
n ([kz_y]) 51/ \[3]
-1 1 2
ya+3k o 2" I:X]!n—[%]z(a+4)k
T n\k 2
Y1 (a+4)k
= (k) [2]” 2

proving the corollary. O

N— —

IA
S| -

The most difficult part of the proof of Theorem B is when y is large compared to m.
The following result implies Theorem B in the case when this holds and moreover k!
is large compared to n”.

Lemma 16. Assume that m > 100000, £ < n%+l(]TO, n¥ < k! and k is suffi-

ciently large (in particular k > 2199000 Tpep the number of permutations g with
Y

|supp(g)| = k and |supp(ga)| = y is at most( ) (k')4n 60,

Proof. The number of choices for supp(g4) is at most (;’)) Hence by Corollary 15
the number of choices for supp(g) is at most

1 1

2 2
n [Z]!n—%z(a+4)k Y ™), 3oerak
k 2 y] —\k

Using Theorem A we see that the number of choices for g is at most

1

1
2 2
(Z) n%z(a+4)kk TO500 < (Z) (k!)% -k 15600

If k is large enough (compared to the constant a) then (k !)%0 >k o600 . 2(a+4k
and our statement holds. O

. plat+d)k ~n_%.

Next we describe an important subgroup of G. Consider the set consisting of the
points in S and L and the blocks in 4. Let K be the kernel of the action of G on this
set. By definition K fixes all the points outside A. Moreover, if A; € #, then the
action K; of K on A; is a normal subgroup of the action of the stabiliser of A; in G,
hence it is either Sym(A4;), Alt(A;) or 1.
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Without loss of generality one can assume that K acts trivially on A4; exactly if
i > q. Now K is a subdirect product of the K;, therefore its commutator subgroup K’
is a subdirect product subgroup of Alt (4;) x --- x Alt (4,). Hence by Lemma 10 K’
is a direct product of diagonal subgroups D;. Each D; acts as an alternating group
Alt (n;) on some blocks A; of size n;. By Lemma 10 D; contains an element d; which
acts as a 3-cycle on each of the corresponding A;. Hence D; acts non-trivially on at
least 3 blocks 4; (since [supp(d;)| > m). Now K is a subgroup of the normaliser N
of K’ in [17_, Sym(4;). Clearly N is a direct product of groups N; > D; where N;
is isomorphic to Sym(#;) and contains D; = Alt(n;) in a natural way.

Proposition 17. There are at most no elements g of K with |supp(g)| = h (where
m = m(G)).

Proof. We have aunique decomposition g = g1g> ... where g; € N;. Letus choose
for each j a block on which N; acts non-trivially. It is clear that g; is determined
uniquely by its action on the chosen block. Therefore g is determined by its action
on the union U of the chosen blocks. i

3

It follows by the above discussion that [supp(g) N U| < =". Hence the number

3h
of choices for g is at most |U| o <nm,. O

Proposition 18. Assume that m > 100 000. Then the number of permutations g with
gsuL fixed and supp(g4) = y is at most n?/39%,

Proof. The coset gK is determined by gsyuz and the action of g on the blocks in 4.
Now g can move at most ¢ < 1 blocks in .

The number of choices for these blocks is less than ("/ “) and given these blocks
the number of ways g can act on them is at most #!. Hence g can act in at most

(2 )[ ] + (2 )[ al- ' 4. < ni wayson . If gK contains another element f with
|supp(f)| = k and |SUPP(fA)| =y, then gf € K and |(supp(g /™ Dl =2y
Hence by Proposmon 17 there are at most 7 < nT0000 such elements gf~ L of
course g and g f ~! determines f. Altogether we see that the number of elements g
considered is at most 725000, O

Remark. As the proof shows (see also the proof of Proposition 17 and the preceding
discussion) the conclusion of Proposition 18 holds under the much weaker assumption
that all elements of order 3 in G move at least 100 000 points.

Proposition 19. Assume that m > 100000, k < n3+bo, vy # 0 and n is sufficiently
large. Then the number of permutations g € G with |supp(g)| =k and |supp(g4)| = y

. 1 y Y
is at most (Z) 2 =3 3000 g 12@tdk
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Proof. By Corollary 15 the number of possibilities for supp(gsuz) is at most

1
(Z) 2 [%]!n_% .2@+9k Therefore the number of possibilities for ggyz, is at most

1 1
2 2
(Z) 2otk [%]'(k — )< (Z) n-20o@tdk k.

Hence by Proposition 18 the number of choices for g is at most

1

2
(l’l) n_%"‘s()yoo . f1nlatdk

k
as required. O

The next result as a counterpart of Lemma 16 deals with the case when n” is large
compared to k! (and y is large compared to m).

Corollary 20. Assume that k < n%+ﬁ, n¥ > k!and m is sufficiently large. Then
the number of permutations g with |supp(g)| = k and supp(g4)| = y is at most

()%

Proof. We have m < k < n, hence if m is large enough Proposition 19 is applica-
ble. Moreover, we have 2@+9% < k1 if m is large enough (compared to the fixed

constant a).
1
n\> _»
< n-s. Ll

Hence in this case we have
1 1
n . Yy (a+4)k n > _
(k) n~ 213000 (k!2 ) < (k) n
To deal with the case when k! and n” are “almost equal” we have to introduce
further ideas and notation. We call a pair of the form (supp(gs).,gr) thick if the

N
+
3
3=
s
+
ES

elements g which correspond to it act in at least (k!)% different ways on supp(gs)
and call a pair thin otherwise.

Proposition 21. Assume that m > 100000, 22094 < k < p3+10, y # 0 and n
is sufficiently large. Then the number of permutations g with |supp(g)| = k and

|supp(ga)| = v for which (supp(gs), gL ) is thin is at most ( ) (k‘)6Jr 00,

Proof. By Corollary 15 the number of possibilities for the pair (supp(gs), gz ) is at

most ( ) [ ]'n 7 .2@+9k  Hence the number of possibilities for ggyy, is at most

1 1

2 2
Y 2 % 2@t ok geng < () [ 2% (enyé+ oo
(k) [2]'” 2 (k')65<k) [2]” ? (ks oo
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(we used the condition 200a < logk). Using Proposition 18 we see that the total
number of elements g considered is at most

> 1
> 2

(using y <k <n3TT00), O

Proposition 22. Let (supp(gs), gr) be a thick pair. Denote the action of (the sta-
biliser of supp(gs) in) G onsupp(gs) by H. There is an element y which corresponds
to this pair such that the centraliser of ys in H has order at most

(5a)k—x—y[—k - ; - y]!/(kl)%.

Proof. By Lemma 14 (2) H has order at most ak—x=y [’#] I. By aresult of Kovécs
and Robinson [19] the number k(H) of conjugacy classes of the permutation group
H is at most 557*~¥_ Using a well-known identity we obtain

k—x—y]

5 Cuthy = k(i = s [E

heH

Since by definition we have at least (k!)% choices for gg € H, at least one of them
has small centraliser as required. O

Proposition 23. Assume that m > 100000, k > 2100000 gug y £ 0. Let
(supp(gs), gL) be a thick pair and y a corresponding permutation with small cen-
traliser as above. The number of elements g which correspond to this pair and satisfy
the condition

y
N >
|supp(g4) N supp(ya)| > 100

is at most ak k 5+ 1ot n0-4951y [ 1211,
Proof. The number of choices for the set supp(g4) N supp(y4) is less than 2¥. The
number of choices for the rest of supp(g4) is at most ([0_9"9 y]). Given these sets (and

hence supp(g)) by Theorem A the number of choices for g is at most k 10000 . It follows
that the number of choices for g is less than

2kn0'99yk10kw/ [Z]!.
2

Another estimate for the number of possible choices for g is the following. The
number of choices for ggyy, is at most ak—x=y [’%]‘ by Lemma 14 (2). Hence
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by Proposition 18 the number of choices for g is less than

ak—x—y[’HT—y}ms&m <akEnsin /2]

A third estimate follows immediately from these; the number of choices for g is at
most

(ak k55000 . ok . 099y _klo"w)% / [X]! < gk k 5+ 10%00 ,0-4951y / [Z]!
24— 2
as required. O

Proposition 24. Assume that m > 100000 and k > 2100990 10t (supp(gs), g1)
be a thick pair and y a corresponding permutation with small centralizer (as in
Proposition 22). The number of elements g which correspond to this pair and satisfy

y
n < -
|supp(g4) N supp(ya)| < 700

is at most

Proof. Let us consider the commutator [y, g]. By [5, Exercise 1.6.7] we have

3y
|supp([y. g1) N A| = 3|supp(g4) N supp(ya)l = {5
Hence the number of choices for supp([y, g]) N A is at most 166, Note that
supp([y, g]) N (S U L) < supp(ysur) (which is fixed). Using Theorem A we obtain
. . 3 .k .
that the number of choices for [y, g] is at most 72 700 -k 10000, This commutator, together
with y, determines g~ 'yg = y[y. g]. If h is another element with 2~ yh = g7 lyg,
then gh~! centralises y. Hence by the choice of y in Proposition 22) the number of
possibilities for 5 is less than

ot [“52] /ot

3 k — 1 . .
Hence we have at most 71 700 - k 10600 (5a)k [1%] !/(k!)ﬁ choices for ggur and given
this, the number of choices for g is at most 15000 by Proposition 18. Therefore the
number of choices for g is at most

nlOO nsooo(sa)kkloooo[ ] /(kl) [ ] 3y*o.k§+10kw(5a)k/|:%]! O

Our next result which builds on most of the earlier ones in this section implies
Theorem B if y is large compared to m.
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Lemma 25 (Main Lemma). Assume that k < n%+l<1370, y # 0 and m is sufficiently
large. Then the number of permutations g with |supp(g)| = k and |supp(ga)| = y

1 1
is at most (7) > (k!)4n~200,

Proof. By Lemma 16 and Corollary 20 we may assume that n3” > k! > ns. By
Proposition 21 the number of permutations g with a thin pair (supp(gs), gr) is at

most
() (k)& + oo (k) (k!)‘l‘(k!)_zlof<2) (k) n 160

It remains to bound the number of permutations g with a thick pair. By Corollary 15

1
the number of possibilities for (supp(gs). gr) is at most (})> [%]!n_% . latdk,
Given this, by Propositions 23 and 24 the number of choices for g is at most

(akk§+10kWn°'4951y+(5a)kk§+1okwn%)/[%]!
< (100 (e oo (u04951 %) /[ 2],

2
< (loa)k(k!)£n0.4954y / [%]|

. . k . .
(we used the inequality n® > (%)"). Hence the total number of permutations g with

1
a thick pair is at most (7)> (k)% p—0-006y ((10a)k2@+Hk) "Tf m and hence k is large
enough, then

(loa)kz(a+4)k —(k') 3000 < %I’l%

Our statement follows. O

Next we prove Theorem B in the case when x is large compared to m.

Proposition 26. Assume that x # 0, n3+to > k > 2100000 40 m is sufficiently
large. Then the number of permutations g with |supp(g)| = k, |supp(gL)| = x and

|supp(g4)| = v is at most (] ) (k1) ¥ n—20000.

Proof. If y > 135 then our statement follows from the Main Lemma. Assume

now that y < 1’5—0. By Lemma 14 the number of choices for supp(g) is at most

( [k,ﬁ,y] )2“kn"(%+ﬁ) . (z) Hence, by Theorem A the number of choices for g is at
k—x-y

most ([k_g_y]> 2k px(7+180) ('y’)k 10000 (since we can assume that m > 100 000).
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Using Proposition 12 and y < 335 We see that this is at most

1
n 2 k 1 1 n n
2@ +2)k . 15600 5% (5 +160) (x )
(k) v )/ \[z2]

|
2
< (n) 2(“‘*‘2)]‘](10]({)00”"(%‘“%) / ( Z )
k 3]

If m and hence k is large enough compared to a, we have 2(@+2k 0600 < (k!)%.
Using 100 < x < k < n%+ﬁ we see that nx(%“Lﬁ)/([%]) < n~T100. Our
statement follows.

Let us return to the notation introduced after Lemma 13. If S; € § is a small
block, such that g moves at least 3 points of S;, then we denote |supp(g) N S;| by z;.
We set z(g) = Y _ z; (for all such 7).

Proposition 27. Assume that z # 0, n3t10 > k > 2100000 gpd s suf-
ficiently large. Then the number of permutations g with z(g) = z is at most

n % ' 1r __z
(k) (k)4 n~g00000,
Proof. If x > 5 or y > £, then our statement follows from Lemma 25 and Propo-
sition 26. Assume otherwise. If g moves a point of some block, then it moves at least
two points of the block. Hence the number of blocks in § which contain two points

from supp(g) is at most [kgz]. These blocks can be chosen in at most ( [k"%z] ) ways.
The blocks in & which contain at least 3 points from supp(g) can be chosen in at most

([%]) ways. Given these blocks the number of choices for supp(gys) is at most
1

() () 2o < @22% 2 (0)/ ()

V4

Using n3tio > k > z we see that ([%D 20 < (( ])22. Hence the number of

choices for supp(g) is at most

1 1
2 2
(Z) 2@ +3k =55 x+y < (Z) Ha+3k, —&

1
The number of choices for g itself is at most ( )2 ~$62@+3)k ko600 which is less

than (k) n~%o (k!) Tifk is large enough. O
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Denote the number of small blocks S; € § fixed by g such that | supp(g)NS;| =2
by v(g). On these blocks g acts as a transposition.

i, 241 . .
Proposition 28. Assume that n3710 > k > 2100000 47 1 is sufficiently large.

. . _ m
Then the number of permutations g with v(g) = v > {5 is at most

1
3
(Z) (k!)%n—m.

Proof. f x+y +z > then our statement follows from the previous results.

> T000°
Assume otherwise. Suppose first that k! > n 160. The number of choices for small

blocks S; with |supp(g) N S;| = 2 is at most ([g] ) Hence the number of choices

1
for all the pairs supp(g) N S; in these blocks is at most ([g]) @)l5] < ()2 Qa).
The number of choices for supp(g) is then at most

1

(Z) Qa)kn*+Hr+z < (Z) (a)*(kN)To.

Hence by Theorem A the number of choices for g itself is at most

( ) Qay* (k1)K

which is less then ( ) (k") 8 if m is large enough. Therefore in this case the number

of permutations g is at most ( ) (k" Tn= %0, Suppose now that k! < n106. To any
permutation g € G we assign a permutation g obtained by “forgetting about” [10]
transpositions in the small blocks S; of the smallest index j (which g fixes and for
which |supp(g) N S;| = 2). Note that if g = h then |supp(gh™!)| < 5, hence we
have g = h. That is, g uniquely determines g. The number of choices for supp(g) is

at most .

2
([13] f[ﬂ])aknx+y+z < (Z) Q2ayrn=1bn 60
2 10

The number of choices for g and hence g is at most
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if m is large enough. Hence in this case the number of choices for g is at most

2 2
n ~foptoon s < | -5
n~1op nso < -n )
k k

This completes the proof of the proposition. O

w|

We need the following auxiliary result.

Lemma 29. Let H be a permutation group of degree n such that each element of
order 3 moves at least 100 000 points. Assume that k < n3 andk is sufficiently large.

Then
N
H k2.
| k|§(k) (k)

Proof. Let g € H be a permutation with |supp(g)| = k and |supp(ga)| = ».
Making use of Corollary 15 we see that the number of choices for ggyyz is at most

1 1
()2 [%]!2(“+4)kn_%k! which is less than %(Z)z(k!)zn_% if k is large enough.

By the remark after Proposition 18 the number of possibilities for g is at most
1 1

K (k)2n~z - pso00 < £(2)? (k")2. Summing over the k ways to chose y, our

statement follows. O

Proposition 30. Assume that n3 > k > 210000 gnd m is sufficiently large. Then the

1 1
number of permutations g with v(g) = v < {g is at most (Z) 2 (k)4 n~ 800000000 .

Proof. Justlike in the proof of Proposition 28 we might assume that x +y +z < 1555-
Note that in the proof of Proposition 28 we do not use the condition on v in the case
k! > nImW, so our statement follows in this case. Now assume that k! < n 100,
The number of choices for the x + y + z + 2v points of supp(g) which are not
contained in the two-element blocks moved by g is at most n* ¥ T2+2v < ;¥ + 1660,
Let us fix such a set R of x + y + z 4+ 2v points and count the permutations g
which correspond to R. Denote by J the set of two-element blocks disjoint from R.
Each of the permutations g considered induces a permutation g of J of support
%(k — |R|). It is clear that supp(g) and R determine supp(g). Assume first that

2 . .
k > |#]|3. In this case the number of choices for the two-element blocks moved

by g is at most |[P|2 < kik < k!. Hence the number of choices for supp(g) is
at most n'4 - k! < n'% T 10, Applying Theorem A, the number of choices for g
1

NN
+
gk
b
=
o]
(=]
(=]
A

itself is bounded by n < (3)*. In this case our statement follows.

|%. Consider the permutation group G generated by all the

Q

Assume now that k < |



582 J. Kempe, L. Pyber and A. Shalev

permutations g. We claim that each element of order 3 in G moves at least “ points
(of P). For otherwise let / be an element of order 3 in G with |supp(};)| < % Now
/i can be written as a product h = g1...8;1n G (where the g; are from the above
generating set of G, i.e. each g; comes from one of the g). Considerh = g1...g; €
G. It has order divisible by 3 and hence h? is non-trivial. But #* moves only points
in R and the points corresponding to the two-element blocks in supp(%#). Hence we

2 . . .
have |supp(h?)| < %5 + |R| < m, a contradiction. Applying Lemma 29, we see that

1 1
the number of possibilities for supp(g) is at most (l[zll ) : (k")? < ([g] ) *n% it m
2

is large enough. Hence the number of choices for supp(g) is at most

1 1
The number of choices for g is at most <[§])2 nikl < ([g])z n'4+166 which

implies our statement. O

Putting together Lemma 13, Proposition 28 and Proposition 30 we obtain Theo-
rem B.
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