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Growth conditions in infinitely generated groups
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Abstract. We characterize groups in which each finitely generated subgroup has polynomial
growth, under some uniformity conditions.
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We recall a few basic facts. Let G be a finitely generated group, generated by a finite
set S. Then each element x € G can be written as a product of elements from S and
their inverses. The least length of such an expression for x is the length [ (x) of x. We
write sg(n) = |{x € G | [(x) < n}|. This is the growth function of G, and G has
polynomial growth if there exist numbers C and d such that sg (1) < Cn?. Strictly
speaking, the growth function depends also on the set S. However, if the growth is
polynomial with respect to one set of generators, it is polynomial with respect to any
(finite) set of generators. In the sequel, whenever we say that a group G has growth
function sg(n), we mean that there exists some set of generators with respect to
which this is the growth function. J. Wolf proved that virtually nilpotent groups have
polynomial growth [Wo 68], and in a seminal paper M. Gromov proved the converse:
all groups of polynomial growth are virtually nilpotent [Gr 81]. An alternative proof
was given by v. d. Dries and Wilkie [VADW 84a]. In the special case of linear growth,
Justin [J 71] gave earlier an elementary proof that G is virtually cyclic (see also
[VADW 84b]).

At the end of his paper, Gromov indicated a proof that a torsion-free group, all of
whose finitely generated subgroups have polynomial growth, with a uniform bound
on the degree, is also virtually nilpotent. In this paper we elaborate on that result,
proving the following theorems.

*The author thanks the contributors to this issue, as well as the participants of the Asymptotic Group
Theory meeting in Jerusalem in May 2006, for their many good wishes on the occasion of his retirement.
He is also grateful to the referee for suggestions which improved the presentation of this note.
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Theorem 1. For a group G the following two conditions are equivalent:

(i) There exist numbers C and d, such that each finitely generated subgroup H of
G satisfies sg(n) < Cn®.
(1) G is virtually nilpotent and of finite rank.

Moreover, if (1) is satisfied, then G is virtually nilpotent of class smaller than ~/2d
and of rank at most C.

If we bound only the growth degrees, we obtain the result below. In its statement
h(d) denotes the maximal order of a finite subgroup of GL(d, Z).

Theorem 2. The following conditions on a group G are equivalent:

(1) Eachfinitely generated subgroup has polynomial growth, and the growth degrees
are bounded.

(1) G is locally Noetherian, and contains normal subgroups N and L such that
L < N, L is locally finite, N/L is torsion free nilpotent of finite rank, and
|G : N| is finite.

Moreover, if (i) holds, with d being the bound on the growth degrees, then N
and L can be chosen so that N/ L has rank at most d and class less than ~/2d, and
|G : N| < h(d).

Here we recall that G has finite rank if there exists a number r such that each
finitely generated subgroup of G can be generated by r elements. The least such r is
termed the rank of G.

A simple example of a group of finite rank is the additive group of rational numbers.
There each finitely generated subgroup is cyclic. Direct sums of finitely many copies
of that group provide more examples. Together with subgroups of these groups, we
have a continuum of examples. For non-abelian examples, note that the group of
upper unitriangular n-by-n rational matrices is nilpotent of class n — 1 and of finite
rank.

The following concept is a variation of one mentioned in [dIH 00, VIL.40].

Definition 1. A group G is uniformly locally of polynomial growth if there exist
functions A(d) and ¢(d), such that each d-generator subgroup H of G satisfies
sg(n) < A(d)n'@ (with respect to some set of generators).

The definition in [dIH 00] is slightly different. The term used is uniform polynomial
growth, and G is said to enjoy that property, if each d-subset X of G satisfies | X" | <
A(d)n*@ _ Tt follows from Theorem 3 below that the two concepts, de la Harpe’s and
ours, coincide.
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Definition 2. A group G is uniformly locally nilpotent, or uniformly locally finite, if
there exists a function f(d), such that each d-generated subgroup of G is nilpotent
of class at most f(d), or finite of order at most f(d), respectively (in [Sh 93] the
term strongly locally nilpotent is used).

Theorem 3. (1) G is uniformly locally of polynomial growth if and only if there exist
two functions f(d) and g(d), such that each d -generated subgroup of G contains a
nilpotent subgroup of class at most f(d) and index at most g(d).

(2) An extension of a uniformly locally nilpotent group by a uniformly locally finite
group is uniformly locally of polynomial growth.

The proofs of these theorems depend, as in [Gr 81] and [VADW 84a], on explicit,
quantitative versions of Gromov’s theorem.

Theorem 4. Let G have polynomial growth; specifically, let sg(n) < Cn?. Then G
contains a nilpotent subgroup of finite index and of class less than ~/2d.

Surprisingly, the value +/2d, or indeed any explicit bound for the class of a finite
index nilpotent subgroup, seems not to have appeared in the literature.

Theorem 5. Let numbers C and d be given. Then there exist numbers k and r,
such that if a finitely generated group G satisfies sg(n) < Cn? forn = 1,...,k,
then G contains a nilpotent subgroup of class less than V2d and index at most r.
The numbers k and r depend only on C and d.

Except for the bound +/2d, this is stated on p. 71 of [Gr 81], and it is also The-
orem 7.1 of [VADW 84a]. In the latter reference it is shown that k and r can be
computed effectively (though not efficiently) from C and d.

Theorem 6. Let G be a finitely generated group of polynomial growth of degree d.
Then G contains normal subgroups N and L, such that L < N, L is finite, N/ L is
nilpotent, cI(N/L) < ~/2d, and |G : N| < h(d).

In the case d = 1 the proof will show that G/L is either infinite cyclic or the
infinite dihedral group. This is stated in [IS 87], where it is deduced from the theory
of groups with two ends. It also follows from the results there that if d = 1 in
Theorem 5, then one can take k = r = 2C.

The definition of uniform local polynomial growth in [dIH 00] modifies slightly
the definition in [Bo 80] (there M. Bozejko forgot to introduce the coefficient A(d)).
Bozejko defines also uniformly amenable groups, and shows that uniform local poly-
nomial growth implies uniform amenability. For completeness we show that his
argument applies in more generality.
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Definition 3. A group G has uniformly locally subexponential growth if for each d

there exists a function f;(n), such that lim inf f; (n)% = 1, and for each d -subset X
of G we have | X"| < f;(n).

Proposition 7. A group of uniformly locally subexponential growth is uniformly
amenable.

While this seems stronger than Bozejko’s result, we have to say that we do not have
any examples of groups of uniform local subexponential growth but not of uniform
local polynomial growth. In contrast to the case of ordinary subexponential growth,
there are no residually finite groups of that type. Indeed a weaker assumption than
subexponential growth suffices.

Proposition 8. Let G be locally residually finite. Suppose that there exist some d
and n, such that for each d-subset X of G we have |X"| < d". Then G is uniformly
locally of polynomial growth. If G itself is residually finite, it is an extension of a
uniformly locally nilpotent group by a uniformly locally finite group.

This will be seen to follow from results of A. Shalev [Sh 93]. A similar argument
occurs in [B198]. Note that if functions f;(n) as in Definition 3 exist, even satisfying
the weaker condition lim inf f (n)% < d, then the inequality | X"| < d" holds for
some d and n (and all d-subsets X). Thus we have

Corollary 9. A locally residually finite group of uniform local subexponential growth
is uniformly locally of polynomial growth.

1. Proofs

Proof of Theorem 4. This is a converse of Bass’ formula [Ba 72], giving the degree
of polynomial growth of a nilpotent group. Let G be a finitely generated nilpo-
tent group, let {y;(G)} be its lower central series, and let r; be the torsion-free
rank of y;(G)/yi+1(G), i.e. the number of infinite factors in a decomposition of
yi(G)/vi+1(G) as a direct product of cyclic groups. Bass’ formula states that G has
polynomial growth of degree d = ) _ir;. This does not yield a bound for the class
of G in terms of d, because some of the lower central factors may be finite. But
it is well known that G contains a torsion-free subgroup of finite index. Thus we
assume that G itself is torsion-free, and let §; (G)/y; (G) be the torsion subgroup of
G/yi(G) and ¢ = cl(G). Then 8.4+1(G) = 1. It is well known that §;(G)/y:(G) is
a finite group, and that {§; (G)} is a central series for G. By definition, the factors
8i(G)/8;+1(G) are torsion-free, and have torsion-free rank rank r;. Because the class
is exactly ¢, none of the factors 6;(G)/8; +1(G), for i < c, is trivial, i.e r; > 1 for



Growth conditions in infinitely generated groups 617

i <c. Thusd = Zi iri > %c(c + 1), yielding ¢ < +/2d. Unless G is cyclic, we
have r; > 2, therefore we actually have d > %c(c + 1)+ 1. O

The above proof establishes the following

Corollary 10. Let G be a finitely generated torsion free nilpotent group, of class c
and growth degree d. Unless G is cyclic, we have d > CZ'FTC"'Z

Proof of Theorem 5. Suppose that for some pair C, d the result does not hold. Then
we can find groups G;, 1 = 1,2,..., satisfying s, (n) < Cné, forn =1,...,i,
but G; does not contain a nllpotent subgroup of class less than +/2d and index at
most i. Substituting n = 1 in the inequalities, we see that the growth functions are
relative to sets of at most C generators, and without loss of generality we assume that C
is an integer, and that each G; is generated by exactly C elements, say x; 1, ..., X;,C.
Let ¥ be a non-principal ultrafilter on N, and form the corresponding ultraproduct K
of the groups G;. Let G be the subgroup of K generated by the elements x1, ..., xc,
whose representatives are the sequences {x; 1}, ....{x;.c}. Consider s := sg(n), for
some 7, and the elements y1, ..., ys of G of length at most n. Write each y; as a word
w; of minimal length in the generators. Then for any two distinct indices J, [ the set
T(j,l):=1{i e N|w;j(x;x) # wi(x;x)} liesin ¥, and so does their intersection 7
(the inequalities are in G;). Therefore T is infinite, and choosingi € T,i > n,wesee
that G; has at least s distinct elements of length at most 2. By assumption, s < Cn¢,
which means that G has polynomial growth, and contains a nilpotent subgroup H of
finite index r and class ¢ < v/2d.

Let F be the free group on C generators ay,...,ac, and let N be the inverse
image of H under the natural homomorphism from F onto G. Then |F : N| = r,
and in the natural homomorphism of F onto G;, N maps to a subgroup H; of index
at most . Let N be generated by elements {u,}, v = 1,...,¢, written as words u,
in the generators. Then in G the elements u, (x;) generate H, and each commutator
of weight ¢ + 1 in these generators is 1. But that means that ¥ contains the set of
indices i for which the same commutators, on the elements u,(x;,;), are 1 (in G;),
and in particular this set of indices is infinite. But the elements u, (x;, ;) generate H;,
and therefore for infinitely many i’s G; contains a nilpotent subgroup of class ¢ and
index at most r, contradicting our choice of G;. O

Proof of Theorem 6. We know already that G contains a normal nilpotent subgroup K
of finite index and of class less than +/2d. Consider the central series &; (K), de-
fined as in the proof of Theorem 4, and for each i < ¢ := cl(K) write C; =
Cg(6i(K)/6i+1(K)),and let N = () C;. Then K < N. G/N is the group of auto-
morphisms that G induces on @ §;(G)/8;i +1(G), and therefore |G : N| < h(d). By
definition, wehave K /8.4+1(K) < Z.(N/38¢+1(K)), and therefore y.4+1(N/8c+1(K))
is finite, by [R0 96, 14.5.1]. But 6,41 (K), which is the torsion subgroup of K, is finite,
hence y.+1(N) is finite as well, and we are done. O
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Proof of Theorem 1. Let G satisfy condition (i). We remarked already that each
finitely generated subgroup of G is generated by C elements. By Theorem 5, there
exists a number r such that each finitely generated subgroup H contains a normal
nilpotent subgroup N of class less than +/2d and index at most r. Let A(H) be
the set of such subgroups, and for each pair H < K of finitely generated subgroups,
consider the map N — N N H from A(K) into A(H ). This defines an inverse system
of finite sets and maps, and there exists a point in the inverse limit of that system.
Let {N(H)} be a point in the inverse limit, and write N = (JN(H). If x,y € N,
then x € N(H) and y € N(K) for some finitely generated subgroups H and K.
Write L = (H, K). Then x, y € N(L), therefore xy € N(L) < N, and thus N is a
subgroup. Next, if x € N(H) and y € G, then in the subgroup L = (H, y) we have
x¥ € N(L) < N, and this shows that N is normal. Let ¢ be the largest integer which
is smaller than ~/2d, and let X1,...,Xc+1 € N,say x; € N(H;). Then x; € N(L),
where this time L is generated by all the H;’s, therefore [x1,...,xc4+1] = 1,and N
is nilpotent of class ¢. Finally, if z1,...,z,41 € G,and L = {(z1,...,Zz,41), then
two of the z;’s lie in the same coset of N(L), and therefore in the same coset of V.
Thus |G : N| <.

For the converse, suppose that G is nilpotent-by-finite and of finite rank, and that
each finitely generated subgroup of G can be generated by k elements. Let H be a
nilpotent subgroup, say of class c, of finite index r. Let Fj be the free group of rank k,
and let V be the intersection of the kernels of all homomorphisms of Fj into G. For
each such homomorphism, with kernel K, say, let L be the inverse image of H. Then
|Fr : L] = rand y.+1(L) < K. Let M be the intersection of all subgroups of index r
in F. This is a subgroup of finite index, and y.4+1(M) < K, for each K, therefore
Ye41(M) < N. Thus Fi/N is nilpotent-by-finite. Let S be any finitely generated
subgroup of G. Then S can be generated by k elements, hence it is a homomorphic
image of F. In this homomorphism N is in the kernel. Thus S is an image of G/ N,
and the growth function of G/N (which is polynomial) is an upper bound for the
growth function of S. Thus all finitely generated subgroups of G have a common
polynomial upper bound for their growth functions. O

Proof of Theorem 2. First assume that G satisfies condition (1). By Theorem 6, each
finitely generated subgroup H contains a normal subgroup N(H) of index at most
h(d) such that y.,1(N(H)) is finite, where ¢ = |+/2d |. Let A(H) be the set of
such subgroups, and for each pair H < K of finitely generated subgroups, consider
the map N — N N H from A(K) into A(H). This defines an inverse system
of finite sets and maps, and there exists a point in the inverse limit of that system.
If {N(H)} is that point, then, as in the proof of Theorem 1, N := | JN(H) is a
normal subgroup of index at most 4(d). A finitely generated subgroup of y.41(N)
is contained in y.41(N(H)), for some finitely generated subgroup H, and therefore
Ye+1(N) is locally finite. §(N/y.+1(N)) is also locally finite, and we take L to be
the subgroup of G satisfying L/y.+1(L) = §(N/yc+1(N)). Each finitely generated
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subgroup H of N has Hirsch rank at most d, by Bass’ formula, and looking in the
series 8; (H/H N L), with free abelian factors, shows that H/H N L can be generated
by d elements. Finally, G is locally Noetherian, because each finitely generated
subgroup is nilpotent-by-finite.

Conversely, assume that G satisfies (2). Let H be a finitely generated subgroup
of G. Since H is Noetherian, H N L is finitely generated, and since L is locally finite,
H N L is finite. Then the series H N L < H N N <« H, with the first and last terms
finite and the middle one nilpotent, shows that H has polynomial growth. Moreover,
the middle link has a central series of length ¢ with factors that can be generated by k
elements, for some ¢ and k, therefore Bass’ formula shows that the degree of H is at
most ck. O

We now come to Gromov’s result mentioned in the introduction. The following
is an obvious corollary of Theorem 2.

Corollary 11. A rorsion-free group has all its finitely generated subgroups of poly-
nomial growth of bounded degree if, and only if, it is virtually nilpotent of finite rank.

This implies a converse to a remark made following the statement of Theorem 2
above.

Corollary 12. A group as in Corollary 11 is a subgroup of GL(n, Q), for some n.

Indeed, it suffices to show this for nilpotent groups of finite rank, and for such
groups this is the Corollary on p. 25 of [We 73].

Proof of Theorem 3. (1) One direction follows immediately from Theorem 5. Con-
versely, if the functions f(d) and g(d) exist, consider in the free group of rank d
the intersection H of all subgroups of index at most g(d), then all d-generated sub-
groups of G are images of H/yyq)(H ), and their growth functions are bounded by
the growth function of the latter group. Item (2) is proved similarly. O

Proof of Proposition 7. First we recall that G is uniformly amenable if for each ¢ > 0
there exists a function g, (n) such that for each finite subset £ of G there exists a finite
subset K suchthat |[EK| < (14+¢)|K|and |K| < g.(]E|). Now we repeat Bozejko’s
argument. Suppose that G is of uniform local sub-exponential growth, but it is not
uniformly amenable. Then there exist some ¢ and some number k, such that for each
r we can find a k-subset E of G, such that for all s-subsets K of G, with s < r, we
have |EK| > (1 4 ¢)|K|. Choose r = k”". Then for the corresponding E we take as
K the subsets E™, withm = n,n —1,..., and obtain |E"*1| > (1 + &)"k. Then
fe(mn+1)> (1 + &)k, and lim inf fk(n)% > 1 + ¢, a contradiction. O
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Proof of Proposition 8. Groups for which d and n as in the proposition exist, are
termed in [Sh 93] collapsing. According to the main result there, residually finite
collapsing groups are (uniformly locally nilpotent)-by-(finite exponent). Moreover,
if n and d are given, then there exist functions f(e, k) and g(k), such that G contains
a normal subgroup N such that exp(G/N) | g(r), and each e-generated subgroup
of N is nilpotent of class at most f(e, r), where r = max(d, n). This, combined with
E.Zelmanov’s solution of the Restricted Burnside Problem, proves the proposition.

O

2. Concluding remarks

The inequality d > %(02 + ¢ + 2), which was obtained in Corollary 10, is best
possible. To see this, start with a free abelian group of rank ¢, with basis x, .. ., x.,
and extend it by an element x of infinite order such that x} = x. and x;* = x; 41 for
i < c. The extended group is torsion-free, nilpotent of class ¢, and degree of growth
d=(c?+c+2)/2

Next, given any finite subgroup F of GL(d, Z), the split extension G of Z¢ by F
has polynomial growth of degree d. Let N < G be nilpotent, and let 7' be the torsion
subgroup of N. Then T < G, and Z¢ N T = 1, therefore T centralizes Z¢, which
implies T = 1, and in particular NN F = land |G : N| > |F|. Thus h(d) is the best
possible bound for the index of N in Theorem 6. But it is not the best possible bound
for the index of a nilpotent subgroup in the situation of Corollary 11. Indeed, if F
above is a maximal finite subgroup of GL(d, Z), it contains the matrix —/. If now G
is an extension of Z4 by F,and x € G maps onto —/ (modulo N), then x2 e N,and
then x? is both inverted and fixed under conjugation by x, and thus x?> = 1 and G is
not torsion-free. It may be of interest to find the best possible value for the index in
a torsion-free group. As for /(d), its finiteness was proved by H. Minkowski, who
determined the l.c.m. of the orders of all finite subgroups of GL(d, Z) ([Mi 87]; for
a modern treatment see [Fe 97] or [GL 06]). The value of &(d) was given by W. Feit,
relying on results of B. Weisfeiler ([Fe 95], [We 84], [We 94]; see also [Fr 97]). Except
for several very small values of d, we have h(d) = 22 - d!. That value is achieved by
the group of monomial matrices with entries -1 (the determination of /(d) applies
the classification of the finite simple groups).

One possible way to find groups of locally polynomial growth may be the follow-
ing. By a famous theorem of G. Higman, B .H .Neumann, and H. Neumann, each
countable group is a subgroup of a two-generator group. Let the countable group G
be a subgroup of the finitely generated group H. We can count the elements of G
according to their length in H. It is then possible that the growth function of G de-
fined in this manner is polynomial, and then Theorem 2 applies. I have not seen any
investigations along these lines. Another possible situation is this: suppose that G is
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a subgroup of an infinitely generated group H, and that a set of generators for H is
given. Then we can still define the length of each element relative to these generators.
In H there may be infinitely many elements of each length, but it may happen that G
contains only finitely many elements of each length. Note that in that case the expo-
nential bound for the number of elements of each length does not necessarily applies.
Again I know of no investigations of such situations, not even some examples.
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