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1. Introduction

Let P D hX j Ri be a presentation of a group. P is termed one-relator presentation
if R consists of a single relator R. We say that a group is a one-relator group if it
has a one-relator presentation. Let G be an one-relator group given by the one-relator
presentation P D hX j Ri and let F be the free group, freely generated by X .

The study of one-relator groups started with the pioneering works of Max Dehn and
Wilhelm Magnus, and this was one of the central subjects of classical combinatorial
group theory (see [MKS]). Among the most important achievements of this theory
was the solution of the word problem for one-relator groups by W. Magnus. Magnus
and his successors developed a whole (algebraic) theory of one-relator groups. The
main ingredients of this theory are the subgroups of G which are generated by the
images of proper subsets of X under the natural map � W F ! G. These groups where
termed by his successors Magnus subgroups. Magnus proved that these groups are
free, freely generated by the corresponding subset of �.X/ (the Freiheitssatz).
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Groups in which subgroups generated by proper subsets of a canonical set of
generators play a central role, are not exceptional in group theory; for example, if
H is a Coxeter group generated by a finite set S of reflections, then the so-called
parabolic subgroups – which are the subgroups generated by proper subsets of S –
enter in considerations of fundamental importance in the theory of Coxeter groups
and in representation theory. It is an important basic result that the intersection of two
parabolic subgroups is again parabolic.

Coming back to one-relator groups, it is easy to see that intersection of Magnus
subgroups is not necessarily a Magnus subgroup: let X D fa; bg and let R D a2b3.
Then hai and hbi are Magnus subgroups with non-trivial intersection ha2i. However,
ha2i is not a Magnus subgroup. This example rises naturally the following questions.

Let X1 and X2 be proper subsets of X , let Y1 D �.X1/, Y2 D �.X2/, and let
H1 D hY1i and H2 D hY2i.
(1) Under what conditions on R, X1 and X2 is H1 \ H2 a Magnus subgroup?

(2) If H1 \ H2 is not a Magnus subgroup then how its structure looks like? In
particular, how H1 \ H2 is related to hY1 \ Y2i?

These questions are interesting in their own, but they are also crucial in certain
aspects of solutions of equations and also for cyclic presentations. (See [Ju2], [Ju3]
and [Ju4], and independently, [E-H].)

The study of Magnus intersections was initiated by Donald Collins in [Co], where
among other things he gave a complete answer to the second question, by showing
that

if H1 \H2 ¤ hY1 \Y2i then H1 \H2 D hY1 \Y2i � hc1i D hY1 \Y2i � hc2i,
where c1 2 H1, c2 2 H2 and c1; c2 … hY1 \Y2i .

(?)

Jim Howie in [Ho2], based an a conjecture of Don Collins, gave an algorithm to check
whether H1 \ H2 D hY1 \ Y2i, or not.

Now, one-relator free products are natural generalisations of one-relator groups:
we consider the free group freely generated by X as the free product of infinite cyclic
groups and then replace them by arbitrary groups Gi , Gi ¤ 1 for i D 1; : : : ; n, n � 2

and take a one-relator quotient (see [Ho1] for more motivation). Such groups G have a
free product presentations P D hG1 � � � � � Gn j Ri, where R is a cyclically reduced
word in G1 � � � � � Gn of length at least two. We can naturally extend the notion
of Magnus subgroups to one-relator free products, namely a Magnus subgroup of G

is a subgroup generated by the image of a proper subset of fGig, i D 1; : : : ; n.
In contrast with one-relator groups, very little is known on one-relator free prod-

ucts. Even the most fundamental problem, the word problem, is widely open. Nev-
ertheless, under suitable conditions on the components of the free product or on the
defining relator, or on both, large parts of the theory of one-relator groups can be
extended to one-relator free products.
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In the present work we make assumptions on R and consider questions 1 and 2
above. More precisely, we assume the small cancellation condition C.6/ & T .4/ and
in Theorem A, with a mild restriction on R we give a complete classification of those
words R for which H1 \H2 is not a Magnus subgroup, where H1 and H2 are Magnus
subgroups of G. In Theorem B we show that the corresponding version of the theorem
of D. Collins (see [Co]) mentioned above in .?/ holds true. We also show how to
get from the defining relator R elements c1 and c2 in .?/. Finally, in Theorem C we
show that Magnus subgroups are free products. (The Freiheitssatz.) We work under
the following assumptions

Notation and assumptions of the main theorems. Let G be a group with a one-
relator free product presentation P , P D hF j Ri, where F D G1 � � � � � Gn, n � 2,
Gi , i D 1; : : : ; n, are non-trivial groups, R is the symmetric closure of a cyclically
reduced word R of length at least two in F such that P satisfies the small cancellation
condition C.6/ & T .4/. (See [L-S, Ch.V] for definition.) Suppose that no letter in
R has order two and if g 2 Gi occurs in R and g with finite order, then there is at
least one more occurrence of a letter in R from Gi . Let � W F ! G be the natural
homomorphism which sends each element of F to its coset modulo the normal closure
of R in F . For a subset Q of f1; : : : ; ng let GQ D �

i2Q
Gi . Let I; J ¤ f1; : : : ; ng

such that I ª J and J ª I and let D D I \ J . Finally, let HQ be the image of GQ

by �. Our main results are the following.

Theorem A. Let notation and assumptions be as above. If HI \ HJ ¤ HD then R

has a cyclic conjugate R� which satisfies one of the following:

(i) R� D UaU �1W �1 reduced as written, where a 2 Gi for some i and .U; W / is
inadequate .see Definition 2.4 (c));

(ii) R� is exceptional in the sense of Definition 5.5;

(iii) R� D AB reduced as written with A 2 GI and B 2 GJ .

Moreover, if R has no cyclic conjugate R� as in (i), then HI \ HJ ¤ HD if and only
if R� is exceptional or R� D AB , A 2 GI and B 2 GJ .

The result of Theorem A is quite surprising: clearly, (iii) is an obvious case for
HI \ HJ ¤ HD and as usual in small cancellation theory we would expect that this
is the only case. However, Theorem A tells us that there are also rather unexpected
cases (case ii) and moreover, if (i) does not hold then these are all the additional cases.
Observe that by Theorem A, the exceptional words in (ii) are precisely those R which
have arbitrary length as words in GI �GD

GJ , yet they have a consequence of length
two in it.

Theorem B. Let notation and assumptions be as above and suppose that R has no
cyclic conjugate R� which satisfies condition (i) of Theorem A. If HI \ HJ ¤ HD
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then HI \ HJ D HD � hui D HD � hvi, where u 2 HI n HD and v 2 HJ n HD .
Moreover, R� contains a unique subword U 2 GI which starts and terminates with
a letter in I n D and which is maximal relative to this property and there is a unique
subword V 2 GJ which starts and terminates with a letter in J n D and which
is maximal relative to this property such that if �.U / D u and �.V / D v then
HD � hui D HD � hvi D HI \ HJ .

Theorem C. Let notation and assumptions be as above and suppose that no cyclic
conjugate R� of R satisfies condition (i) of Theorem A. Then HJ Š GJ . In particular,
HJ is a free product.

We mention that J. Howie in [Ho2], independently, considered problems (1) and (2)
above in one-relator free products with arbitrary defining relators, however, with the
assumptions that every component Gi is locally indicable (i.e. every finitely generated
non-trivial subgroup maps onto the infinite cyclic group).

Our main tools are small cancellation theory and van Kampen diagrams with
word combinatorics. We prove first Theorem C. The idea is to show that under the
assumptions of the theorem,

every consequence of the defining relator R

contains at least one letter from each Gi .
(??)

(This is one of the equivalent formulations of the Freiheitssatz by Magnus. See [L-S].)
A central ingredient in small cancellation theory is Greendlinger’s Lemma, which

guaranties the existence of at least two Greendlinger regions in every van Kampen
diagram M , which has at least two regions. These are regions with the property that
their boundary has a large common portion with the boundary of M . (For definitions
of van Kampen diagrams and regions see Section 2.2.)

However for our problem, showing .??/, a more precise information than just
knowing that a large portion of the defining relator is present on the boundary of M ,
is needed.

Recently we developed an improved version of Greendlinger’s Lemma for one-
relator groups and one-relator free products with the small cancellation condition
C.6/ & T .4/, which implies .??/, and hence proves Theorem C. We remark that it
also implies several results of different nature. In [Ju5] we solved the membership
problem for Magnus subgroups of one-relator free products with small cancellation.
In [Ju6] we proved the appropriate version of Magnus’s Freiheitssatz for Magnus
subsemigroups of one-relator groups with small cancellation. In [Ju7] we classify
non-malnormal Magnus subgroups in one-relator groups and free products with small
cancellation. We also plan to use it in complexes of certain types of groups to produce
a lower bound on the angles between the local groups.

Theorem B follows easily from the proof of Theorem A, so we concentrate on
the proof of Theorem A. The proof of Theorem A is much more demanding then the
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proof of Theorem C; while the improved Greendlinger’s Lemma was enough for the
proof of Theorem C, we need the extension of a further result from small cancellation
theory. If HI \ HJ ¤ HD , as in Theorem A, then there are non-empty words A

and B in GI and GJ respectively, such that �.A/ D �.B/ in G. Thus AB�1 is a
consequence of R and hence there is a van Kampen diagram M with boundary label
AB�1. In Theorem A we recover the combinatorial structure of the word R from
the combinatorial structure of its consequence AB�1. In a sense, we deal with an
inverse problem to the word problem. In the word problem we are given R and we
want to check whether (another) given word W is a consequence of R; in Theorem A
a word W.D AB�1/ is given and it is also given that W is a consequence of an
unknown relation R, and we would like to find the combinatorial structure of all such
relations, in term of the combinatorial structure of W . We are not aware of results in
this direction in the literature. This is a difficult problem in general, because boundary
regions of M contribute only parts of R� to the boundary label of M and in general,
it is difficult to recover R� from these parts. There is however, one case when this
is doable; this is the case when M is a one-layer diagram. Then we can use word
combinatorics in order to determine the combinatorial structure of R. This is done in
Sections 5.1 and 5.2. So it remains now to show that M is a one-layer diagram. We
show this in Section 4.

The work is organised as follows:
In Section 2 we introduce preliminary results on words and van Kampen diagrams

as well as the improved version of Greendlinger’s Lemma. In Section 3 we prove
Theorem C while in Section 4 we prove that intersection diagrams are one-layer
diagrams. In Section 5 we prove Theorems A and B.

Acknowledgements. I am grateful to Don Collins for showing me and discussing
with me results from [Co] prior to publication. I am also grateful to the referee of a
previous version for his useful remarks which improved the presentation of the work.
My thanks go to Zoran Šunić and the editors of this issue for their help in bringing
this paper to publication.

2. Preliminary results on words and diagrams

2.1. Words. Basic reference for this subsection is [L-S, Ch.V]. We recall here only
a few basic notions and results which we need.

Let F D G1 � � � � � Gn, n � 2, be the free product of non-trivial groups Gi ,
i D 1; : : : ; n. We call the Gi s the components of F . Let G be a group. A free
presentation for G is a presentation of G as a homomorphic image of free group F .
A free product presentation for G is a presentation of G as a homomorphic image
of free product F . If F is a free group, freely generated by a set X then, as usual,
we denote free presentation of G by hX j Ri, where R is a set of defining relations
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for G, and if F is a free product, F D G1 � � � � � Gn, n � 2, Gi non-trivial, then
we denote free product presentation of G by hG1 � � � � � GnjRi, where again R is
a set of defining relations for G, R � G1 � � � � � Gn. The elements of F n f1g can
be uniquely presented by finite sequences of non-trivial elements of the components,
such that adjacent elements in a sequence come from different components. We call
the elements of Gi , i D 1; : : : ; n, letters and the sequences of elements, words.
For g 2 Gi , g ¤ 1, denote ˛.g/ D i . Thus, if 1 ¤ W 2 F then W can be
uniquely expressed as a word: W D bi1 : : : bik , where k � 1, 1 ¤ bij 2 Gij and
˛.bij / ¤ ˛.bij C1

/ for j D 1; : : : ; k � 1. We call this presentation of W its normal
form, call k its length and denote it by jW j.

Let U and V be reduced words in F . We say that the product U V is reduced as
written if either the last letter of U and the first letter of V are in different components
Gi , or if there is no cancellation between U and V , however the last letter of U and
the first letter of V may come from the same component (consolidation).

Denote by H .W / the set of initial subwords of W and by T .W / the set of terminal
subwords of W . Also, for a reduced non-empty word W we denote by h.W / the first
letter of W and by t .W / the last letter of W . We start with the following well-known
results on word equations over F .

Lemma 2.1. (a) Let A; B and C be reduced words which contains no letters of order
two, such that AB and BC are reduced as written. If jABj � 2 and AB D BC then
A D KL, C D LK and B D .KL/ˇ K, ˇ � 0.

(b) Let A be a cyclically reduced word, jAj � 2. If AA D UA"V , reduced as
written, U ¤ 1, V ¤ 1, and " 2 f1; �1g, then " D 1 and A D Bk , k � 2, for some
cyclically reduced word B .

(c) Let Z be a reduced word which contains no letters of order two.

(i) If for some reduced words V and U , such that ZU and Z�1V are reduced as
written, we have ZU D Z�1V , then jZj D 1 and V D Z 2U . Moreover, Z

and the first letters of V and U are in the same component Gi .

(ii) If for some reduced words U and V such that UZ and Z�1V are reduced as
written, we have UZ D Z�1V , then U D Z�1a and V D aZ, where a is a
letter and the first letter of Z and a are in the same component Gi .

We introduce below the key notion of the work.

Definitions and notation. (a) Let W 2 F , W D ai1 : : : aik , aij 2 Gij reduced as
written. Define

Supp.W / D fi1; : : : ; ikg � f1; : : : ; ng:
(b) Let W1 and W2 be reduced words in F . W2 majorises W1 if Supp.W2/ �

Supp.W1/. In this case write W2 � W1. If W1 � W2 and W1 � W3 we shall write
W1 � W2; W3.
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(c) For W1 and W2 in part (b) define W1 	 W2 if W1 
 W2 and W2 
 W1. Thus
W1 	 W2 if and only if Supp.W1/ D Supp.W2/.

Clearly “	” is an equivalence relation, which contains the equality of elements
in F .

The following lemma is immediate from the definition, hence its proof is omitted.

Lemma 2.2. (a) If A is a subword of B then A 
 B .

(b) If A 
 B then A˙1 
 B˙1.

(c) If A 	 B and A 
 C then B 
 C .

(d) If A D P1 : : : Pm, reduced as written and Pi 	 Q for i D 1; : : : ; m and a
reduced word Q, then A 	 Q.

(e) If A � P1; : : : ; Pm then A�W.P1; : : : ; Pm/, for every word W on P1; : : : ; Pm.

Parts (a) and (b) of the following lemma are immediate corollaries of Lemma 2.1
and Lemma 2.2. Also, the remaining parts are routine case by case checking. Hence
we omit their proofs.

Lemma 2.3. (a) Let A; B and C be as in Lemma 2.1 (a). Then B 
 A 	 C 	 AB 	
BC . If ˇ � 1 then B 	 A.

(b) If AB D KAC with jBj � 2 and jKAj � 2, reduced as written then
B � A, B � C and K � A.

(c) Let K; Q; U; V and S be non-empty words such that KQ; U V; V U and KS

are reduced as written, of length at least two. If KQ D U V and KS D V U then
either Q 	 S � K; U; V , or U D D˛ , V D Dˇ , ˛; ˇ � 1 and D � K; Q; S .

(d) Let B; Q; L; U and V be non-empty words such that BQ; U V; LB and V U

have length at least two and are reduced as written. If BQ D U V and LB D V U

then one of the following holds:

(i) B D U; Q D L D V ; or

(ii) Q � B; U; V; L and L � B; U; V; Q .hence L 	 Q 	 U V /.

(e) Let L; K; Q1; M and N be non-empty reduced words, such that KQ1; MN; Q1M

and LK are reduced as written with length at least two. If KQ1 D MN and
Q1M D LK, then one of the following holds:

(i) Q1 D N D L and K D M ; or

(ii) Q1 � K; L; M; N .

Notice that if one of the products in parts (a)–(e), like BQ in part (d), has length
one then the statements of Lemma 2.3 trivially hold true.

The following basic notions are crucial for the paper.
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Definition 2.4. (a) Let R be a weakly cyclically reduced word in F and let P be
a subword of a cyclic conjugate of R. P is a piece in R (or a piece relative to the
symmetric closure R of R) if R has distinct cyclic conjugates R1 and R2 such that
R1 D PR0

1, R"
2 D PR0

2, reduced as written, for some " 2 f1; �1g. Equivalently,
P ˙1 has at least two occurrences in the cyclic word yR, corresponding to the linear
word R. We call the two occurrences of P in R1 and R"

2, respectively, a piece pair
and denote it by .P; P 0/, where P 0.D P "/ is the occurrence of P " in R2.

(b) A piece pair .P; P 0/ as in part (a) of the definition is right normalized if
.R0

1/�1R0
2 is reduced as written.

(c) Let R D UaU �1W �1, reduced as written, a 2 Gi for some i , i D 1; : : : ; n.
The pair .U; W / is inadequate if

(i) W is the product of at least four pieces over the symmetric closure of R and

(ii) Supp W ¥ Supp U .

2.2. Diagrams. For basic results on diagrams see [L-S, Ch.V]. We recall here some
of the basic definitions from [L-S, p. 236 and pp. 274–276] for convenience.

A diagram over a group F is an oriented map M and a function ˆ assigning
to each oriented edge e of M as a label an element ˆ.e/ of F such that if e is an
oriented edge of M and e�1 the oppositely oriented edge, then ˆ.e�1/ D ˆ.e/�1,
and if � D e1v1e2v2 : : : ek is a path in M then ˆ.�/ D ˆ.e1/ˆ.e2/ : : : ˆ.ek/. We
denote by ˆM the labelling function of M over F . If M is fixed we shall write ˆ

for ˆM .
If M is planar, connected and simply connected then it is called a van Kampen

diagram. In the case of diagrams M over free products the vertices are divided into
two types, primary and secondary. The label on every edge of M will belong to
a factor Gi of F with the labels on successive edges meeting at primary vertices
belonging to different factors Gj , while the labels on the edges at a secondary vertex
all belong to the same factor of F . For a region D in M denote by @D its boundary
and by @M the boundary of M .

Definitions 2.5. Let M be a diagram over F .

(a) Two regions D1 and D2 in M are neighbours if @D1 \ @D2 ¤ ;. They are
proper neighbours if @D1 \ @D2 contains a non-empty edge.

(b) A region D is a boundary region if @D \ @M ¤ ;. A region D is a proper
boundary region if @D \ @M contains a non-empty edge. A region of M which
is not a boundary region is an inner region.

(c) Let M be a connected, simply connected map. M is a simple one-layer map,
if the dual map M �, obtained from M by putting in each region D a vertex
D� and connecting two vertices D�

1 and D�
2 by an edge if D1 and D2 are

proper neighbours, is a tree in which each vertex has valency at most two. (See
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Figure 1 (b).) In particular, M has connected interior, every region is a boundary
region, each region has at most two proper neighbours and if M contains more
than one region then M contains exactly two regions, see D1, Dr in Figure 1 (b)
and D1, D2 in Figure 1 (c), which have exactly one neighbour each. M is a
one-layer map if it is composed from simple one-layer maps and paths in the
way shown in Figure 1 (a).

..

. .

.

.

V

U
M1 M2 Mk

.a/

v1

�1

u1D1 Dr

�1

.b/

u

D1 D2

˛1

�

˛2

v

.c/

Figure 1. One-layer diagrams.

We shall need the next lemma in Section 5. As pointed out by the referee it is an
immediate consequence of Lemma 2.1. We omit its proof.

Lemma 2.6. Let R be the symmetric closure of a cyclically reduced word R and let
M be a van Kampen diagram over R, with a boundary label K. Let D1 and D2 be
adjacent regions in M with boundary cycles u˛1v�u and u��1v˛�1

2 u, respectively,
where u and v are vertices. .See Figure 1 (c).) Suppose R has a cyclic conjugate An,
n � 2 for some cyclically reduced non-empty word A. Suppose further that

(i) A is not a proper power .i.e. A ¤ Bk , k � 2 for every word B/.
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(ii) M contains a minimal number of regions among all the diagrams with boundary
label K.

Then ˆ.�/ contains no cyclic conjugate of A˙1.

We recall the main structure theorem from [Ju1], where it is proved in a more
general setting. Observe that the condition C.6/ & T .4/ implies the condition W.6/

in [Ju1]. (For the definition of the standard small cancellation conditions, see [L-S,
pp. 240–241]

.
.

... . .
.

E0

E1

E2

E3

E4

E5 L2.D0/

D1

v v1

D

D2

D0

St1.D0/

.a/

Lp

L3

L2

L1

D0

.b/

Figure 2. Layer decompositions.

Theorem 2.7 (Layer decomposition, [Ju1]). (See Figure 2.) Let M be a simply
connected map .diagram/ with connected interior and let D0 be a region of M .
Assume that M satisfies the condition C.6/ & T .4/.

Define St0.D0/ D D0 and for i � 1 let Sti .D0/ D Sti�1.D/ [ Li .D0/, where
Li .D0/ D hD in M n Sti�1.D0/ j @D \ @Sti�1.D0/ ¤ ; i and L0 D fD0g. Let
p be the smallest number such that Stp.D0/ D M and assume that p > 0 .i.e., M

contains more than one region/. Then each of the following holds:

(a) Every regular submap of StiC1.D0/ containing Sti .D0/ is simply connected
for 0 � i � p. .A submap is regular if every edge is on the boundary of a
region./

(b) Every connected and simply connected submap of Li .D0/ is a one-layer map.

(When D0 is fixed, we shall abbreviate Li .D0/ by Li and call ƒ.D0/ D .L0; : : : ; Lp/

a layer decomposition of M . We call D0 the center of the layer decomposition.)
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(c) For a region D 2 Li , i � 1 denote by A.D/ the set of regions E in Li�1, which
have a non-trivial common edge with D, denote by B.D/ the set of regions S

in Li with @S \ @D ¤ ; and denote by C.D/ the set of regions K of LiC1,
.i < p/ with @K \ @D ¤ ;. Also, let a.D/ D jA.D/j, b.D/ D jB.D/j and
c.D/ D jC.D/j. Then a.D/ � 1 and b.D/ � 2. In other words, D has at most
two proper neighbours in Li and at most one neighbour in Li�1.

(d) If v 2 @Sti .D0/n@Sti�1.D0/ then v has valency at most three in Sti .D0/.

(e) For regions D; E in M with @D \ @E ¤ ; we have that @D \ @E is connected.

Remark. Let M be a connected, simply connected map (diagram) with connected
interior and let D be a region in M . Let ƒ.D/ be a layer decomposition of M

with center D. Suppose that D is a boundary region of M with a non-empty edge
on @M . (See Figure 3.) Then it follows from the above theorem that L1.D/ is
not annular, hence simply connected, though not necessarily with connected interior.
(See Figure 3 (a), where the interior of L1 is simply connected and connected and see
Figure 3 (b), where the interior of L1 is not connected.) But then due to the simply
connectedness of M , Li is simply connected for every i .

... .

..

L1L1

DD

.a/ .b/

Figure 3. Simply connected and not simply connected layers.

In the next definition we introduce special subdiagrams and regions, the boundaries
of which share a large portion with the boundary of M .

Definition 2.8. (a) Let ƒ.D0/ be a layer decomposition of M , where D0 is a boundary
region of M with a non-empty edge on @M . A connected component P of the interior
of Li is a peak relative to D0, if either i D p or no region of LiC1 is a neighbour of
any region in P . If ƒ.D0/ D .L0; L1; : : : ; Lp/ then the closure of every connected
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component P of the interior of Lp is a peak. (See Figure 2 (a), where p D 2 and L2

is a peak and Figure 2 (b), where Lp is a peak.) Related to peaks is the following
notion.

(b) A boundary region D of M is a k-corner region for k D 1; 2 if each of the
following holds:

1) @D \ @M is connected and

2) D has k proper neighbours in M .

Example 2.9. Let M be a diagram of a C.6/ & T .4/ presentation. Let P be a peak,
depicted in Figure 4 (a). Then its extremal regions D1 and Dk are 2-corner regions
because a.D1/ � 1 and b.D1/ � 1, due to being extremal. If P is a peak consisting
of a single region E, then E is a 1-corner region due to Theorem 2.7. Also, if
a.Dk�1/ D 0 then Dk�1 in Figure 4 (a) is a 2-corner region.

. .
..

.

˛

P

D1

D2

D3

Dk�1

Dk

.a/

ˇ1 ˇ2

P ˇ
D1 D2

.b/

Figure 4. Peaks and corner regions in van Kampen diagrams.

The k-corner regions are examples of Greendlinger regions. (These are regions
which satisfy the conditions of Greendlinger’s Lemma. See [L-S, pp. 250–251].)

The next section is devoted to the improved version of Greendlinger’s Lemma.
A similar version was formulated in [Ju5] the proof of which, using Lemmas 2.3
and 2.11, easily can be adapted to the proof of Proposition 2.12 below. Therefore, we
shall omit the details of the proof, which consists of case by case checking.

2.3. An improved version of Greendlinger’s Lemma. The improved version of
Greendlinger’s Lemma is given for 1-corner regions in Lemma 2.10 and for 2-corner
regions in Proposition 2.12.
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In this section we assume that the conditions of Theorem A are satisfied.

2.3.1. 1-corner regions. Let D be a 1-corner region in M with proper neighbour E.
Let ˛ D @D \ @E, let P D ˆ.˛/, let � D @D \ @M and let Q D ˆ.�/. (See
Figure 5 (a).) Then P is a piece and v˛u�v is a boundary cycle of D with PQ a
boundary label of D, where u and v are vertices.

Q

�

D

v
˛ P

P 0
u

E

.a/

v

A

P

X

u

Y

Q

Q1

P 0

.b/

Figure 5. 1-corner regions and corresponding word equation.

Lemma 2.10. Let notation be as above. Then Q � P .

Proof. Let .P; P 0/ be the corresponding piece pair. Then one of the following holds:

1) P 0 is a subword of Q;

2) P 0 overlaps with P .

In case 1) Q � P , by Lemma 2.2 (a). Also, in case 2) , if jP j D 1 then Q � P .
Hence assume that jP j � 2. In case 2) we have P D AX , P 0 D XY , Q D YQ1,
reduced as written, Q1 2 T .Q/. See Figure 5 (b). Applying Lemma 2.3 (a) to the
first two of these equations and remembering that P �1 cannot overlap P in more
than one letter (see Lemma 2.1 (c)), we get A 	 Y � X and hence, by Lemma 2.2,
P 	 Y . Applying Lemma 2.2 to the last equation implies Q � P .

The lemma is proved.
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2.3.2. 2-corner regions. Let D be a 2-corner region in M with neighbours Er

and E`. See Figure 6. Denote ˛1 D @D \ @Er and denote ˛2 D @D \ @E`. Let
v0 D ˛1 \ @M , let v2 D ˛2 \ @M and let v1 D ˛1 \ ˛2. Denote P1 D ˆ.˛1/,
P2 D ˆ.˛2/ and Q D ˆ.@D \ @M/. Let .P1; P 0

1/ and .P2; P 0
2/ be the piece pairs

obtained from ˛1 and ˛2, being common edges of @E` and @D and of @Er and @D,
respectively. Thus, P 0

1 and P 0
2 are subwords of ˆ.@Er/ and ˆ.@E`/, respectively,

which are equal to P1 and P2, respectively, as words, and since all the regions of M

have the same boundary labels, up to sign, .P1; P 0
1/ and .P2; P 0

2/ are piece pairs. It
is convenient and harmless to identify Pi with ˛i and, similarly, P 0

i with ˛0
i , i D 1; 2.

Then v2Qv0P1v1P2v2 is a boundary label of D, which we may assume to coincide
with R, without loss of generality, where P1 and P2 are pieces.

.

.

.Q`

v2
Q

v0

Qr

@MP2 P1

P 0
2 ˛2 ˛1

P 0
1

D

E` Er

v1

Figure 6. 2-corner regions.

The proof of the following lemma is a routine case by case checking, hence we
omit it.

Lemma 2.11. Let notation be as above and make the assumptions of the main theo-
rems. Assume that condition (i) of Theorem A is not satisfied by any cyclic conjugate
of R.

(a) If jP1j D 1, v0 has valency three in M and v1 is an inner vertex of M , then
Q � P1; P2. Similarly, if jP2j D 1 and v1 is an inner vertex of M , then
Q � P1; P2.

(b) Suppose jP1j � 2 and P1 overlaps with P 0
1. If "1 D �1 then either P1 
 Q or

P1 
 ZQ, where P2 D cP �1
1 Z and where c is a letter with ˛.c/ D ˛.h.P �1

1 //

and P 0
1 contains v1. The analogous result holds for P2.

The following is our version to Greendlinger’s Lemma for 2-corner regions.
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Proposition 2.12. Let notation be as above and assume that R satisfies the assump-
tions of the main theorems, and no cyclic conjugate of R satisfies condition (i) of
Theorem A. Assume that the piece pairs .P1; P 0

1/ and .P2; P 0
2/ are right normalised.

Let Qr D @Er \ @M and let Q` D @E` \ @M . Then the following holds:
If dM .v0/ D 3 and Qr is not a piece, then Qr has a head Q� which is a piece

over R such that QQ� � P1P2 and dually, if dM .v2/ D 3 and Q` is not a piece,
then Q` has a tail Q� which is a piece over R such that Q�Q � P1P2. In particular,
if both v0 and v2 have valency three and both Qr and Q` are not pieces .i.e. the
products of at least two pieces/ then both Q�Q � R and QQ� � R hold true.

We close this section with the following consequence of the proposition.

Proposition 2.13. Let M be an R-diagram. Let assumptions be as in Proposi-
tion 2.12. Let P be a peak relative to a layer decomposition ƒ. Let ˛ D @P \ @M .
Then ˆ.˛/ contains a letter from each component.

Proof. Let P D hD1; : : : ; Dki. If k D 1 then the result follows from Lemma 2.10.
If k � 3 then it follows from Theorem 2.7 (d) and the T .4/ condition that either P

contains a 1-corner region or contains a 2-corner region D with two neighbours Er

and E` such that @D \ @Er \ @M and @D \ @E` \ @M are vertices with valency
three and @Er \ @M and @E` \ @M are not pieces (due to the C.6/ condition). In
both cases the result follows by Proposition 2.12, where D1 is E`, D2 is D and D3

is Er . See Figure 4 (a).
Finally, assume k D 2. See Figure 4 (b). Let P D hD1; D2i, let ˇ1 D @D1 \@M

and let ˇ2 D @D2 \ @M . Both D1 and D2 are 2-corner regions, and ˇi is the product
of at least four .4 D 6 � 2/ pieces, for i D 1; 2. Also, by Theorem 2.7 (d), ˇ1 \ ˇ2 is
a vertex with valency three. Therefore, by Proposition 2.12, ˇ1 [ ˇ2 contains a letter
from each component Gj and the proposition is proved.

3. The proof of Theorem C

In proving Theorem C we may assume without loss of generality that Supp.R/ D
I [ J D f1; 2; : : : ; ng and we shall do so.

Suppose HJ is not a free product. Then there exists a non-empty word W in
GJ such that �.W / D 1 in G. Therefore, by [L-S, Theorem 1.1, p. 237] there
exists a connected, simply connected diagram M with boundary label W . Let �

be a connected component of the interior of M . By Proposition 2.13 @� contains
a letter from every component Gi for i D 1; : : : ; n. Since, as sets, @� � @M ,
@M also contains a letter from every component. This, however, violates W 2 GJ ,
J ¤ f1; : : : ; ng. Therefore, HJ is a free product, HJ Š GJ .

The theorem is proved.
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4. The structure of intersection diagrams

For the proof of Theorems A and B we may assume without loss of generality that
Supp.R/ D I [ J D f1; : : : ; ng and we shall do so. In this section we shall assume
the notation of the main theorems, and, moreover, that R has no cyclic conjugate R�
which satisfies condition (i) of Theorem A. Let W ¤ 1 be an element of HI \ HJ .
Then there are non-empty words U in GI and V in GJ such that �.U / D �.V / in
G. Hence, by [L-S, Theorem 1.1, p. 237] there is a van Kampen R-diagram M with
boundary label U V �1. We call this diagram an Intersection Diagram.

Definition 4.1. Let D D I \ J and let FI;J D hGI[J i. We can consider FI;J as
the amalgamated free product FI;J WD GI �GD

GJ . We shall denote the length of a
word W in F , considered as a word in FI;J by kW k.

Proposition 4.2. Let assumptions be as above. Let M be an intersection diagram with
boundary label U V �1, where U 2 GI and V 2 GJ . If kRk � 4 and kU V �1k D 2

then M is a one-layer diagram.

We need Lemmas 4.4 and 4.5 for the proof of Proposition 4.2. In what follows we
shall use the notation and rely on the assumptions of Proposition 4.2. Also, we shall
use the following easy lemma, the proof of which we omit.

Lemma 4.3. Let ˛1; ˛2 and ˛3 be disjoint boundary paths of M . Let ! be a boundary
cycle of M . Then kˆ.!/k � 4 in each of the following cases:

(a) kˆ.˛1/k � 2 and kˆ.˛2/k � 3;

(b) kˆ.˛i /k � 2 for i D 1; 2; 3.

Lemma 4.4. Let P be a peak of M in Li .D/ and suppose k.@P [ @Li�1.D// \
@M/k D 2. If jP j > 1 then P D hD1; D2i such that a.D1/ C a.D2/ D 1.

Proof. Suppose jP j � 3; P D hD1; : : : ; Dki; k � 3. Consider the extremal regions
D1 and Dk . Start with D1.

If a.D1/ D a.D2/ D 1 let fE1g D A.D1/ and fE2g D A.D2/. If E1 D E2

then v WD @D1 \ @D2 \ @E1 is an inner vertex with valency three, violating the
condition T .4/. Hence E1 ¤ E2 and since D1 is extremal in P and D2 is the only
region of P adjacent to D1, hence C.E1/ D fD1g and dM .E1/ D a.E1/ C b.E1/ C
c.E1/ � 2 C 1 C 1 D 4. Consequently, due to the C.6/ condition @E1 \ @M is the
product of at least two pieces, hence if u WD @D1 \ @E1 \ @M then u is a vertex with
valency three and every piece on @E1 starting at u and read anticlockwise is contained
in @E1 \ @M . Therefore noticing that dM .D1/ D 2, we may apply Proposition 2.12
to D1 to get that
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(i) If a.D1/ D a.D2/ D 1, then

k.@E1 \ @M/ [ .@D1 \ @M/k � 2: (4.1)

(ii) If a.D1/ D 0 and a.D2/ D 1, then d.D1/ D 1, hence by Lemma 2.10

k.@D1 \ @M/k � 2: (4.2)

(iii) If a.D1/ D 1 and a.D2/ D 0, then d.D1/ D 2 and d.D2/ � 2, hence by
Proposition 2.12

k.@D1 \ @M/ [ .@D2 \ @M//k � 2: (4.3)

It follows from (4.1), (4.2) and (4.3) that if we define L D hE1; D1; D2i if a.D1/ D 1

and define L D hD1; D2i if a.D1/ D 0, then k@L \ @Mk � 2. A similar analysis
shows that if K D hEk; Dk; Dk�1i if A.Dk/ D fEkg and K D hDk; Dk�1i if
a.Dk/ D 0, then k@K \ @Mk � 2. Consequently, if k � 4 then

k.@P [ @Li�1.D// \ @M/k � 3; (4.4)

violating our supposition. Hence k � 3. Since by assumption k � 3, we get k D 3.
If one of cases (i) or (ii) above hold for D1 (or for D3) then (4.4) holds true. Assume
therefore that case (iii) holds for both D1 and D3. Then a.D1/ D 1, a.D2/ D 0 and
a.D3/ D 1. Now, d.D2/ D a.D2/ C b.D2/ C c.D2/ D 2 C 1 C 0 D 3, hence due
to the C.6/ condition:

@D2 \ @M is the product of at least three .6 � 3 D 3/ pieces (4.5)

Since d.D1/ D d.D3/ D 2, we may apply Proposition 2.12 to the pairs .D1; D2/

and .D2; D3/, where in the notation of Proposition 2.12 in the first pair D D D1 and
Er D D2 while in the second pair D D D3 and E` D D2. By their definition Q� and
Q� are pieces. Since E` D Er D D2; Q� is an initial subword of ˆ.@D2 \ @M/,
which is a piece and Q� is a terminal subword of ˆ.@D2 \ @M/, which is a piece.
Since .@D2 \ @M/ is the product of at least three pieces by (4.5), Q� and Q� do not
overlap and hence k@P \ @Mk � 3 violating our supposition. Therefore jP j D 2

and if a.D1/ D a.D2/ D 0 or a.D1/ D a.D2/ D 1 then Lemma 2.10 in the first
case and Proposition 2.12 in the second case with the arguments in (i) above imply
that k.@Li�1 [ @Li / \ @Mk � 3. Therefore, a.D1/ C a.D2/ D 1.

The lemma is proved.

Lemma 4.5. Let ƒ be a layer decomposition for M and let P1 be a peak of M relative
to ƒ. If P1 is an extremal component of Li then
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(a) k@P1 \ @Mk � 2.

(b) Either P1 contains a region D with k@D \ @Mk � 2 or P1 contains adjacent
regions D1 and D2 such that k.@D1 [ @D2/ \ @Mk � 2.

Proof. (a) If jP1j D 1 this follows from Lemma 2.10. Assume jP1j � 2. Let
P1 D hD1; : : : ; Dki, k � 2 and assume P1 is left-extremal. Then b.D1/ D 1 and
c.D1/ D 0. By Theorem 2.7 (c) a.D1/ � 1. Consequently, d.D1/�1 C 0 C 1D2,
hence D1 is a 2-corner region of M . Let v D @D1 \ @D2 \ @M . Then by Theo-
rem 2.7 (d) dLi

.v/ D 3 and since c.D1/ D c.D2/ D 0 hence dLi
.v/ D dM .v/.

Thus dM .v/ D 3 and Proposition 2.12 applies to D1. Now, in the notation of Propo-
sition 2.12, D1 D D and D2 D Er and dM .D2/ D a.D2/ C b.D2/ C c.D2/ �
1 C 2 C 0 D 3, hence Qr is the product of at least three (6 � 3 D 3) pieces. (Here,
as in Proposition 2.12, Qr is the label of @Er \ @M .) Therefore, it follows from
Proposition 2.12 that k.@D1 \ @M/ [ .@D2 \ @M/k � 2, as required. Similarly, if
P1 is right-extremal then the above argument applies to Dk .

(b) follows immediate from the proof of part (a).
The lemma is proved.

Now, it follows from Greendlinger’s Lemma (see [L-S, p. 250]) that due to the
C.4/ & T .4/ condition (which is implied by the C.6/ & T .4/ condition) M contains at
least two k-corner regions with k � 2. Consider the layer structure of M with center
D0, where D0 is a k-corner region of M , k � 2. Since D0 is a boundary region of M ,
hence the layer structure of M with center D0 has a peak P0 in its last layer. Hence
by Lemma 4.5 (b) either P0 contains a boundary region D such that k@D \ @Mk � 2

or contains adjacent regions D and D1 such that k.@D [ @D1/ \ @Mk � 2. Consider
the layer structure ƒ of M with center D. Since d.D/ � 3 all the layers of ƒ are
simply connected (i.e. not annular) and in particular its last layer Lp is. If Lp has
more than one component then it follows from Lemma 4.5 (a) that k@Lp \ @Mk � 3,
hence by Lemma 4.3 k@Mk � 4, since k@D \@Mk � 2 or k.@D [@D1/\@Mk � 2,
and may assume that D1; D 6� Lp . (If D1 � Lp or D � Lp then p � 1 and in this
case k@Mk � 4 easily follows.) Similarly, it follows that

if the interior of Li contains more than one component then k@Mk � 4: (4.6)

Now we turn to the proof of Proposition 4.2.

Proof. First observe that k@Mk � 2 due to Lemma 4.5 (a) (or Theorem C), and if
k@Mk > 2 then k@Mk � 4. Suppose by way of contradiction that M is not a one-
layer diagram and show that k@Mk � 4. Let D; ƒ and Lp be as above. Then due
to (4.6) we may assume that Lp has connected interior. It follows that all layers of ƒ

have connected interior.
Let P D Lp . Let @M D ˛ˇ, where ˛ D @D \ @M if k@D \ @Mk � 2 and

˛ D .@D [ @D1/ \ @M if k.@D [ @D1/ \ @Mk � 2. Then due to Lemmas 4.5
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and 4.3, it is enough to show that kˇk � 3. Clearly, .@P [ @Lp�1/ \ @M � ˇ, hence
if k.@P [ @Lp�1/ \ @Mk � 3 then k@Mk � 4. Assume therefore that kˇk � 2 and
k.@P [ @Lp�1/ \ @Mk D 2. Then by Lemma 4.4 either jP j D 1 or P D hD1; D2i
such that a.D1/ C a.D2/ D 1.

Claim. Consider the following statement:

either jLi j D 1 or Li D hD1; D2i such that a.D1/ C a.D2/ D 1: .�/

Then .�/ holds for every i , i D 1; : : : ; p.

Proof of the Claim. By the last argument the Claim holds true for i D p. Suppose
the Claim holds true for Lp; : : : ; Li and prove for Li�1. Suppose jLi�1j � 2 and
let Li�1 D hE1; : : : ; Eki. Let D1 2 Li with a.D1/ D 1 and let A.D1/ D fEj g
for some j , j D 1; : : : ; k. Assume that either j ¤ 1 or j ¤ k. Suppose first
j ¤ 1. If a.E1/ D 0 then k@E1 \ @Mk � 2 by Lemma 2.10, hence kˇk � 3 by
Lemma 4.3, since k@P \@Mk � 2 by Proposition 2.13 and E1 … P . This contradicts
our assumption that kˇk � 2. If a.E1/ D 1 and a.E2/ D 1 with A.E1/ D fF1g
and A.E2/ D fF2g then F1 ¤ F2 and k.@E1 [ @F1/ \ @Mk � 2 hence kˇk � 3 by
Lemma 4.3 (a), contradiction. (See proof of part (i) in Lemma 4.4). Therefore,

(i) if j ¤ 1 then a.E1/ D 1 and a.E2/ D 0.

Suppose now that j ¤ k. Then the arguments of the case j ¤ 1 for Ek apply
and yield

(ii) if j ¤ k then a.Ek/ D 1 and a.Ek�1/ D 0.

Assume now that k � 3. If j ¤ 2 and j ¤ 1 then it follows from (i) and
Proposition 2.12 that k.@E1 [ @E2/ \ @Mk � 2 and hence jˇk � 3, violating our
assumption. Thus

(iii) if k � 3 then either j D 1 or j D 2.

Similarly, if j ¤ k � 1 and j ¤ k then it follows from (ii) and Proposition 2.12
that k.@Ek [@Ek�1/\@Mk � 2 and hence jˇk � 3, violating our assumption. Thus

(iv) If k � 3 then either j D k � 1 or j D k.

Therefore, by (iii) and (iv), if k � 3 then j 2 f1; 2g \ fk � 1; kg. In particular,
f1; 2g \ fk � 1; kg ¤ ;. It follows that if k � 3 then j D k � 1 D 2, hence k D 3

and j D 2. Since d.E2/ D 2 and @E2 \ @D1 is a piece, either @E2 \ @M is
connected and is the product of at least three

�
6 � .2 C 1/ D 3

�
pieces or @E2 \ @M

has two connected components �1 and �3 such that @E2 \ @Sti�1 D �1�2�3 with
�2 D @E2\@D1 and either �1 is the product of at least two pieces or �3 is the product of
at least two pieces. Therefore we may apply Proposition 2.12 for E1 or for E3 to give
k.@Li�1 [ @Li / \ @Mk � 3, a contradiction. Consequently, k � 2, i.e. jLi�1j � 2.
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Now it easily follows by arguments we made several times above that if jLi�1j D 2,
then a.E1/ D 1 and a.E2/ D 1 would imply that either k.@E1 [ @F1/ \ @Mk � 2

or k.@E2 [ @F2/ \ @Mk � 2. This would imply kˇk � 3, violating our assumption,
proving the claim.

We show that .�/ implies M is a one-layer diagram. Let K be a region of M .
Suppose K is in Li , 0 < i < p and Li consists of two regions. Then b.K/ D 1 by
condition .�/. Also, a.K/ � 1 by Theorem 2.7 (c), and c.K/ � 1 by condition .�/.
Hence d.K/ � 3. Let Li D hK; Li. If d.K/ D 3 then it follows from .�/ that
c.L/ D 0; a.L/ D 0 and b.L/ D 1, hence d.L/ D 1 and hence k@L \ @Mk � 2 by
Lemma 2.10, implying kˇk � 3. Therefore d.K/ � 2. Suppose d.K/ D 1. Then
k@K \ @Mk � 2 by Lemma 2.10 implying again kˇk � 3. Therefore d.K/ D 2.
Thus, every region in Li , 1 < i < p has exactly two neighbours. But now, L0 D fDg
and D by .�/ has exactly one neighbour (in L1) and either Lp D fD1g in which
case d.D1/ D 1 due to the T .4/ condition and Theorem 2.7 (d), or Lp D hD1; D2i
in which case either d.D1/ D 2 and d.D2/ D 1 or d.D2/ D 2 and d.D1/ D 1, by
Lemma 4.4. Consequently, M is a one-layer diagram.

The proposition is proved.

5. The proofs of Theorems A and B

5.1. Decompositions of R. For the proof of Theorem A we may assume Supp.R/ D
I [ J D f1; 2; : : : ; ng. We start with various decompositions of words in hGI ; GJ i.
Consider gp hGI ; GJ i as the amalgamated free product GI �GD

GJ and denote its
length function by k � k. Every F -reduced element W of GI �GD

GJ with kW k � 2

can be written by
W D W1 : : : Wk; k � 1; .�/

F -reduced as written, such that each of the following holds:

(i) W1 2 T .A1B1K1L1/, Wk 2 H .AkBkKkLk/, and Wi D AiBiKiLi for
i D 2; : : : ; k � 1, F -reduced as written with Ai 2 GI , Ki 2 GJ , Bi 2 GD and
Li 2 GD , i D 1; : : : ; k;

(ii) Ai starts and terminates with an element of GInD n f1g;

(iii) Ki starts and terminates with an element of GJ nD n f1g.

We call this decomposition of W its .�/-decomposition. We say that the .�/-decom-
position is complete if W1 D A1B1K1L1 and Wk D AkBkKkLk . If W is cyclically
reduced then it has a cyclic conjugate W � with a complete .�/-decomposition.

Since GI D GInD � GD and GJ D GJ nD � GD , it follows from the normal form
theorem for free products (see [L-S, p. 175]) that W has a unique .�/-decomposition.
As a result, we have the following lemma, the proof of which is a routine application
of the normal form theorem for free products, hence we omit it.
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Lemma 5.1. Let W and S be elements of hGI ; GJ i with .�/-decompositions W D
W1 : : : Wk , k � 1 and S D S1 : : : S`, ` � 1, respectively. Let W D HP T and
let S D H 0P 0T 0 be decomposition of W and S , as words in F , reduced as written.
Assume that kP k � 2 and kP 0k � 2. Then

(a) P D W 00
i WiC1 : : : Wj W 0

j C1, where W 00
i 2 T .Wi / and W 0

j C1 2 H .Wj C1/,
reduced as written in F , S D S 00

p SpC1 : : : SqS 0
qC1, where S 00

p 2 T .Sp/ and
S 0

qC1 2 H .SqC1/, reduced as written in F .

(b) If P D P 0 and j � i C 1, then j � i D q � p and

(i) SpCt D WiCt for t D 1; : : : ; q � p;

(ii) W 00
i D S 00

p and S 0
qC1 D W 0

j C1.

5.2. Word equations that define R. Assume now results (i) and (iii) of Theorem A
do not hold and consider HI \ HJ . We shall prove that necessarily result (ii) holds
true. Let w be an element of HI \HJ , w ¤ 1. Then there are reduced words U in GI

and V in GJ such that w D �.U / D �.V /. If U 2 GD then also V 2 GD , otherwise
U V �1 is a non-trivial relation in GJ , violating Theorem C. Hence if V … GD then
U … GD . Since by assumption HD ¤ HI \ HJ , we may assume U 2 GI n GD and
V 2 GJ n GD . Now, since �.U / D �.V /, we have �.U V �1/ D 1, hence there is a
van Kampen R-diagram with a boundary label U V �1. Since V … GD and U … GD ,
hence M is not-empty. Since we assumed that result (iii) of Theorem A doesn’t
hold, hence kR�k � 4 for every cyclic conjugate R� of R. Hence Proposition 4.2
applies, implying that M is a one-layer diagram, which without loss of generality has
connected interior. Since kR�k � 4, while kU V �1k D 2, we get jM j � 2.

Lemma 5.2. Let M be a connected, simply connected R-diagram with connected
interior. Suppose that M is a one-layer diagram; M D hD0; : : : ; Dt i, t � 1, with
boundary cycle u�v��1 such that u 2 @D0 and v 2 @Dt . Suppose ˆ.�/ 2 GI and
ˆ.�/ 2 GJ . Let � D @D0 \ @D1 and let P D ˆ.�/. Let .P; P 0/ D .P; P "/ be
the corresponding piece pair. If " D 1 and kRk � 4 then R has a cyclically reduced
.in F / cyclic conjugate R� with .�/-decomposition W1 : : : Wk , which satisfies the
word equation SWj Wj C1Z D ZW1W2S , where 2 � j � k � 2, S D W3 : : : Wj �1

and Z D Wj C1 : : : Wk .

Proof. Let �i D � \ @Di , �i D � \ @Di , let Hi D ˆ.�i / and let Ti D ˆ.�i /

for i D 0; : : : ; t . Consider the subdiagram hD0; D1i. (See Figure 7 (a).) Let � D
�0z1�1 : : : zt�t and � D �0w1�1 : : : wt�t , where zi and wi are vertices, i D 1; : : : ; t .
Then u�0z1��1w1��1

0 is a boundary cycle of D0 with label H0P T �1
0 .Now, by

Lemma 5.1 R has a cyclic conjugate R� with .�/-decomposition R� D W1 : : : Wk

with Wi D AiBiKiLi for i D 1; 2; : : : ; k, k � 2, like in (i), (ii) and (iii), in the
beginning of Section 5.1. We have k � 2 due to the assumption kRk � 4.
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.

. . .
.

.
...

.
.

. .
�0
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z1
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� 00
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ı00
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ı0
0

� D1 D2

Dt

�0

w1 �1 w2

�t

.a/

u v

.
.. ..

(b)

.
�000

i�1

zi

�0
i ti �00

i si �000
i ziC1

	

�

Di�1 Di

Figure 7. The diagram for U D V .

Since H0 2 GI and T0 2 GJ , H0 is a subword of LiAiC1BiC1 and T �1
0 is

a subword of BiKiLi for some i , i D 1; 2; : : : ; k. Since T �1
0 H0 is a subword of

R�, hence T �1
0 H0 is a subword of BiKiLiAiC1BiC1. Therefore, Li decomposes

to Li D L0
iL

00
i such that T �1

0 is a terminal subword of BiKiL
0
i and H0 is an initial

subword of L00
i AiC1BiC1. Hence,

P has a .�/-decomposition

P D .P 0KiC1LiC1/WiC2 : : : Wk : : : Wi�1.AiP
00/; (5.7)

where P 0 is a terminal subword of L00
i AiC1BiC1 and P 00 is an initial subword of

BiKiL
0
i .

Now, P is the label of a common boundary path of D0 and D1, hence P " occurs
as a subword of yR (the cyclic word R) in different positions, for some " 2 f1; �1g.
(The positions of these occurrences are different because M is a reduced diagram.)
Therefore, by Lemma 5.1 either P also has a .�/-decomposition

P D .Q0Kj C1Lj C1/Wj C2 : : : Wj �1.Aj Q00/ for somej; (5.70)
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or a .�/-decomposition

P �1 D .Q0Kj C1Lj C1/Wj C2 : : : Wj �1.Aj Q00/ for somej; 1 � j � n: (5.8)

Since " D 1 by the assumption of the lemma , P 0 is given by (5.70). Due to Lemma 5.1
we have

P 0 D Q0; KiC1 D Kj C1; LiC1 D Lj C1; WiCt D Wj Ct ; for t D 2; : : : ; k � 1;

Ai D Aj and P 00 D Q00 ( we count j C t and i C t; mod k/:

(5.9)

Without loss of generality we may assume i D 1 and k � j > 1. If k � 3 then P D
.P 0K2L2/W3 : : : Wk.A1P 00/, hence if k � 3 we get W3 : : : Wk D Wj C2 : : : Wj �1

from (5.9). Denote ŒP 
 D W3 : : : Wk , Z D Wj C2 : : : Wk and S D W3 : : : Wj �1.
Since 2 � j � k, we have 4 � j C 2 � k C 2. If j C 2 � k we split Wj C2 : : : Wj �1

into the product .Wj C2 : : : Wk/ � .W1 : : : Wj �1/. Thus

if j � k � 2 then SWj Wj C1Z D ZW1W2S;

where S D W3 : : : Wj �1 and Z D Wj C1 : : : Wk :
(5.10)

If j C 2 > k then either j C 2 D k C 1 or j C 2 D k C 2, i.e. either j D k or
j D k � 1.

If j D k then W2S D SWk : (5.11)

Finally, suppose j D k � 1.

If j D k � 1 then W1W2S D SWk�1Wk : (5.12)

We claim that cases (5.11) and (5.12) cannot occur. Due to Lemma 5.1 we have in
case (5.11) W2 D W3, W3 D W4; : : : ; Wk�1 D Wk , hence W1 D W2 D � � � D Wk .
But then R� D W1 : : : Wk D W k

1 , a proper power, hence �0�1 is not reduced, a
contradiction. In case (5.12) W1 D W3, W2 D W4, W3 D W5; : : : ; Wj �2 D Wk�1,
Wj �1 D Wk . Since j D k � 1, if k even, we get W1 D W2`C1, ` D 1; : : : ; k

2
� 1,

W2 D W`, ` D 2; : : : ; k
2

. But then R� D .W1W2/
k
2 and again ˆ.�0�1/ is not

reduced as written. If k is odd then W1 D W2 D � � � D Wk , i.e. R� D .W1/k , which
leads to a contradiction, as above.

The lemma is proved.

In order to find the explicit from of the relator, it is convenient to consider
W1; : : : ; Wk as symbols, not in F and consider the equation in (5.10) as a word
equation in the free semigroup, freely generated by W1; : : : ; Wk . We can do this due
to Lemma 5.1.

We have now to find out the conditions under which the equation in (5.10) is
solvable and to find the solutions. To this end we introduce some types of words.
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Definition 5.3 (1-solutions for the defining equations). (a) Let F0 be the free group,
freely generated by two elements X1 and X2. For a natural number ˛0 (˛0 � 0)
define: U˛0

D .X1X2/˛0X1, V˛0
D .X2X1/˛0X2, M˛0

D X
˛0

1 X2, N˛0
D X

˛0

2 X1.
(Observe that U˛0

, V˛0
, M˛0

and N˛0
are in the same orbit under Aut.F0/.)

(b) Let k be a natural number, k � 1 and let ˛ D .˛1; : : : ; ˛k/ be a sequence
of natural numbers, ˛i � 0, i D 1; : : : ; k. Define: U˛ D U˛1

: : : U˛k
, V˛ D

V˛1
: : : V˛k

, M˛ D M˛1
: : : M˛k

, and N˛ D N˛1
: : : N˛k

.

(c) Let F be a free group and let A and B be reduced or empty words in F . Let E be
the equation AxyB D BuvA over F in the indeterminates x, y, u and v. A 1-solution
of E is an element .x0; y0; u0; v0/ 2 F 4 with jx0j D jy0j D ju0j D jv0j D 1 such
that Ax0y0B and Bu0v0A are reduced as written and Ax0y0B D Bu0v0A holds true
in F . E is 1-solvable over F if it has a 1-solution. Denote WE D WE .u0; v0/ WD
Bu0v0A.

Proposition 5.4. Let notation be as in Definition 5.3. Then E is 1-solvable with
1-solution .x0; y0; u0; v0/ if and only if one of the following holds:

I. (i) WE D ua
0 , a � 0, x0 D y0 D u0 D v0;

(ii) WE D .u0v0/a, a � 0, x0 D u0 and y0 D v0;

(iii) WE D .Y u0v0/aY , B D .Y u0v0/bY , for some non-empty reduced word
Y , a; b � 0, x0 D u0, y0 D v0

II. Let ˛ D .˛1; : : : ; ˛m/, m � 1, 0 � ˛i 2 Z, i D 1; : : : ; m with the property that
if m � 2 then there exists a natural number k, 1 � k � m such that one of the
following holds:

.˛1 � 1; ˛2; : : : ; ˛k; ˛kC1; : : : ; ˛m/ D .˛kC1; : : : ; ˛m; ˛1; : : : ; ˛k � 1/ (�)

or

.˛1; : : : ; ˛k; ˛kC1; : : : ; ˛m � 1/ D .˛kC1 � 1; : : : ; ˛m; ˛1; : : : ; ˛k/ (��)

Then one of the following holds:

(i) WE D U˛.u0; v0/, where ˛ satisfies (�) and x0 D v0, y0 D u0;

(ii) WE D V˛.u0; v0/, where ˛ satisfies (��) and x0 D v0, y0 D u0;

(iii) WE D M˛.u0; v0/, where ˛ satisfies (�) and x0 D v0, y0 D u0;

(iv) WE D N˛.u0; v0/, where ˛ satisfies (��) and x0 D v0, y0 D u0;

(v) WE D .Y u2
0/aY , a � 0, Y a reduced word and x0 D y0 D u0 D v0.

Proof. The proof of the proposition is straightforward. We first show that for any
1-solution either x0 D u0 and y0 D v0, or x0 D v0 and y0 D u0. Next we check
each of the cases: AxyB D ByxA and AxyB D BxyA, respectively. We omit
details.
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Definition 5.5 (Exceptional words). (a) Let W 2 F be a reduced word and let V1, V2

be reduced words. Call W exceptional with respect to V1; V2 if W D WE .V1; V2/,
where WE is given by one of II(i) – II(iv) of Proposition 5.4. (By WE .V1; V2/ we
mean the word obtained from WE .u0; v0/ by substituting V1 in place of u0 and V2 in
place of v0.)

(b) Let A be a non-empty word in GI , reduced in F , which starts and terminates
with an element from GInD and let K be a non-empty word in GJ , reduced in F , which
starts and terminates with an element from GJ nD . Let L, B1 and B2 be elements
of GD , B1 ¤ B2 such that AB1KL and AB2KL are reduced in F . Define

yW1 D AB1KL and yW2 D AB2KL (5.13)

(c) Let I; J � f1; : : : ; ng be as in the beginning of this section. W is .I; J /-
exceptional if it is exceptional with respect to yW1 and yW2 as given by (5.13).

Thus, W is .I; J /-exceptional if W is obtained from WE in parts of II (i) – II (iv)
of Proposition 5.4, by substituting yW1 for v0 and yW2 for u0, where yW1 and yW2 are
given by (5.13).

5.3. The proof of TheoremA. We keep the notation and assumptions of Sections 5.1
and 5.2. To simplify notation we shall write u for u0 and v for v0.

We found in the proof of Lemma 5.2 that in the piece pair .P; P 0/ D .P; P "/,
P is given by (5.7), P 0 is given by (5.70) if " D 1 and P 0 is given by (5.8) if " D �1.
Assume first " D 1. Then due to Lemma 5.2 we get from (5.10)

R� D W1W2ŒP 
; where ŒP 
 D W3 : : : Wk D SxyZ D ZuvS

Wj D x; Wj C1 D y; W1 D u; W2 D v; (5.14)

Z D Wj C1 : : : Wk; S D W3 : : : Wj �1

R� D uvŒP 
 (5.3 0)

We apply Proposition 5.4 to (5.3).
We claim that Main Case (I) of Proposition 5.4 and Main Case (II), case (v) cannot

occur. Consider first Main Case (I). In this case x D u and v D y, hence by (5.3),
Wj D W1 and Wj C1 D W2. The three cases of Main Case (I) are:

(i) R� D u2uau2ub D uaCbC4, a; b � 0.

(ii) R� D .uv/.uv/a.uv/.uv/b D .uv/aCbC2, a C b � 1.

(iii) R� D .uv/.Y uv/aY D .uvY /aC1, a � 1.

Hence in all cases R� is a proper power. Since M is reduced and u, uv and v are not
proper powers and

ˇˇŒP 

ˇˇ � 3kQk, (

ˇˇŒP 

ˇˇ � 3kAk in the notation of Lemma 2.6), it

follows by Lemma 2.6 that cases (i) and (ii) can not occur. If uvY is not a proper power
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and a � 2 or uvY D Qm, m � 2, Q not a proper power, then by Lemma 2.6 these
cases cannot occur. Assume therefore that a D 1 and uvY is not a proper power. Then
R� D .uvY /2. Since kT �1

0 Hk D 2, Y uvY is a subword of P , hence P contains
Q.D uvY / as a subword, violating Lemma 2.6. Hence, none of these cases may occur.
By a similar argument Case (II) (v) cannot occur. Therefore, by (5.3), Wj D W2,
Wj C1 D W1 and R� is one of the words given by Case (II)(i) – (iv). Consequently,
R� is an .I; J /-exceptional word, provided that we can show that A1 D A2, K1 D K2

and L1 D L2. To this end consider z1��1w1. (See Figure 7 (a).) Since H0 2 GJ , D0

has a boundary path �0 such that �0 D � 0
0z1� 00

0 with ˆ.�0/ D W1 and, similarly, D1

has a boundary path ı0 such that ı0 D ı0
0z1ı00

0 with ˆ.ı0/ D W2, and satisfy ˆ.� 00
0 / D

ˆ.ı00
0/ with K1L1 2 T

�
ˆ.� 00

0 /
�

and K2L2 2 T
�
ˆ.ı00

0/
�
. Consequently, K1 D K2

and L1 D L2. By a similar argument in W1 we get A1 D A2. Consequently,
W1 D A1B1K1L1 and W2 D A1B2K1L1. Now B1 ¤ B2 for otherwise W1 D W2,
hence R� is a proper power, which as we saw above can not occur due to Lemma 2.6.
Since the last argument applies also for the case k D 2, it follows that R� is a
.I; J /-exceptional word, as required.

Next, suppose " D �1. Then P 0 is given by (5.8). First observe that W �1
j D

L�1
j K�1

j B�1
j A�1

j , hence if W �1
j is a subword of W1W2 then B1 D L�1

j , K1 D K�1
j ,

L1 D B�1
j and A2 D A�1

j . Since K1 ¤ K�1
1 and A1 ¤ A�1

2 , we have j … f1; 2g.
Hence, if k D 3 then j D 3 and therefore P �1 D Q0K1L1.A2B2K2L2/A3Q00,

hence P D Q00�1A�1
3 L�1

2 K�1
2 B�1

2 A�1
2 L�1

1 K�1
1 Q0�1. On the other hand, by (5.7)

P D P 0K2L2A3B3K3L3A1P 00, where P 0 2 T .L00
1A2B2/ and P 00 2 H .B1K1L0

1/.
Consequently, by Lemma 5.1 either A�1

3 D A2, L�1
2 D B2, K�1

2 D K2, a contra-
diction since K2 ¤ K�1

2 , or A�1
3 D A3, again a contradiction. Hence k ¤ 3. Also,

a similar argument shows that k ¤ 2. Therefore we may assume k � 4. We have
by (5.3 0) that R� D W1W2ŒP 
. Hence, if " D �1 then we have the following word
equation W1W2ŒP 
W1W2ŒP 
 D Q1ŒP 
�1Q2 in F , for some subwords Q1 and Q2,
which define the occurrence of ŒP 
�1, where

�
ŒP 
; ŒP 
�1

�
is a piece pair. Conse-

quently, either Q1 is a subword of W1W2 in which case ŒP 
 and ŒP 
�1 overlap and
we have:

W1W2ŒP 
 D Q1ŒP 
�1Q0
2; where Q0

2 is a head of Q2; or empty, (5.15)

or W1W2 is a subword of Q1 in which case

ŒP 
�1 D Q00
1W1W2Q000

1 ; where Q00
1 2 T .ŒP 
/ ; or empty and

Q000
1 2 H .ŒP 
/ ; or empty.

(5.16)

Consider equation (5.15). ŒP 
�1 D Xc, c 2 Gi for some i , by Lemma 2.1 (c) and
W1W2 D c0X , c 0 2 Gi . Therefore R� D W1W2ŒP 
 D W1W2cW �1

2 W �1
1 c 0. But

then W1W2 is a piece and R� is a product of at most three pieces, contradicting
the C.6/ condition. Finally, consider equation (5.16). We have ŒP 
 D U1Q00

1 and
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ŒP 
 D Q000
1 U2. From equation (5.16) we also have ŒP 
 D .Q000

1 /�1W �1
2 W �1

1 .Q00
1/�1.

These three equations imply, due to Lemma 2.1 (c) that Q00
1, Q000

1 2 Gi , hence again
we get R� D W1W2c1.W1W2/�1c1, contradicting the C.6/ condition.

Theorem A is proved.

5.4. The proof of Theorem B. Let notation be as in Figure 7. By Theorem A either
kRk D 2 or kRk � 4 and R� has the form

A1Bi1K1L1 � A1Bi2K1L1 : : : A1BikC2
K1L1;

where Bij 2 fB1; B2g. Assume kRk � 4. Then ˆ.�i / D XiYiZi , where Yi 2
GD � hA1i, Xi is a terminal subword of a word in GD � hA1i and Zi is an initial
subword of a word in GD � hA1i. Now, let zi�iziC1 D zi�

0
i ti�

00
i si�

000
i ziC1, where

zi , ti , si , ziC1 are vertices and ˆ.�0
i / D Xi , ˆ.�00

i / D Yi and ˆ.�000
i / D Zi . We

claim that

if ˆ.�0
i / has a head � such that ˆ.�/ is in GI then it is a tail of A˙1

1

and �000
i�1 has a tail 	 , such that A˙1

1 is a head of ˆ.	zi�
0
i /.

(�)

Since A is the unique maximal subword of R� in GI , which starts and ends with a
letter from GInD this is clear if dM .zi / D 3. (See Figure 7 (b).) Now it follows by
induction on dM .zi /, by the same argument, that A˙1

1 is a head of ˆ.	zi�
0
i /. This

proves that ˆ.�/ 2 GD � hAi. By the same argument ˆ.�/ 2 GD � hKi. Also,
observe that the above arguments clearly apply for the case kRk D 2.

Theorem B is proved.
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