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Abstract. Burns and Medvedev prove in [BM] that a relatively free pro-p group cannot be
p-adic analytic unless it is virtually nilpotent. We present a shorter, more conceptual proof,
and apply it to deduce analogous results for other categories of groups.
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1. Introduction

The following theorem is established in [BM]:

Theorem 1. A relatively free pro-p group is p-adic analytic if and only if it is finitely
generated and virtually nilpotent.

The rather technical proof given in [BM] relies ultimately on a deep theorem of
Zelmanov about Engel Lie algebras. The aim of this note is to present a short and
relatively easy, or at least more conceptual, proof. An advantage of this approach is
that it yields analogous results for other categories of groups.

Before stating these, let us recall that a pro-p group G is p-adic analytic if and
only if it has finite rank ([DDMS], Chapter 8); the rank of any profinite group G is the
least integer r such that every closed subgroup of G can be generated (topologically)
by r elements. An abstract group G is said to have rank r if every finitely generated
subgroup of G can be generated by r elements, and r is minimal with this property
(this is also known as the Mal’cev special rank or Prüfer rank). The upper rank of G

is the supremum of the ranks of all finite quotient groups of G; it coincides with the
rank of the profinite completion yG of G.

We also need to discuss what is meant by “relatively free”. In [BM], a pro-p
group is (in effect) defined to be relatively free if it is of the form F=R where F is
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a free pro-p group and R is a closed fully invariant subgroup; such an R need not,
a priori, be a verbal subgroup (it is generated by the values of a family of ‘profinite
words’). I will call a profinite group G relatively free of finite type in a group variety
if G D F=V.F /, where F is the free profinite group on some finite set and V.F / is
a verbal subgroup, i.e. the subgroup generated (algebraically) by the values of some
family V of (ordinary) group words (and xS denotes the closure of a subset S in a
profinite group). (In the world of free groups, ‘finite type’ is traditionally called
‘finite rank’, a terminology it seems best to avoid in the present context.)

Theorem 2. Let G be a profinite group that is relatively free of finite type in a group
variety. Then G has finite rank if and only if G is virtually nilpotent.

For the next variation we recall some material from [RZ], Chapter 2 and Chapter 3.
A formation will mean a class C of finite groups closed w.r.t. forming quotients and
finite subdirect products. A pro-C group is a projective limit of groups in C , or
equivalently a profinite group all of whose continuous finite images are in C . For a
finite set X , the free pro-C group on X is the pro-C completion of the abstract free
group on X . We define a relatively free pro-C group of finite type in a group variety
as above, replacing ‘profinite’ by ‘pro-C ’.

Theorem 3. Let C be a subgroup-closed formation consisting of soluble groups;
assume that, for some prime p, C contains Cp o Cpn for each n 2 N. Let G be a
relatively free pro-C group of finite type in a group variety. Then G has finite rank if
and only if G is virtually nilpotent.

(Here Cp oCpn denotes the wreath product of a cyclic group of order p by a cyclic
group of order pn.)

Of course, if V is a group variety and C is a formation then V \ C D C� is
again a formation, and a pro-C group relatively free in V is the same thing as a free
pro-C� group; the theorem is stated as it is to show how it generalizes Theorem 1
in the most ‘natural’ case, that of group varieties (for C one could take for example
all finite soluble groups, or all finite soluble �-groups where � is a non-empty set of
primes).

These results about profinite groups will be deduced from an analogous one about
abstract groups:

Theorem 4. A finitely generated relatively free group G has finite upper rank if and
only if G=Gf is virtually nilpotent, where Gf denotes the finite residual of G.
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2. The main step

The ‘if’ claims in the theorems are well known and elementary. The proofs of the
other implications are based on the following observation:

Proposition 1. Let G be (a) a relatively free group, or (b) a relatively free pro-p
group. Suppose that G is virtually torsion-free and virtually soluble of finite rank.
Then G is virtually nilpotent.

Proof. We may assume that G is relatively free on at least two generators. G has
(closed) normal subgroups N � H such that G=H is finite, H=N is abelian and N

is torsion-free and nilpotent (a well-known consequence of the Lie–Kolchin–Mal’cev
theorem, cf. [LR], 5.2.1, 5.2.2). Let Zi denote the i th term of the upper central series
of N ; then each factor Zi=Zi�1 is a torsion-free abelian group (resp. pro-p group)
of rank at most r , the rank of G. Writing Zi=Zi�1 additively we consider

Vi WD .Zi=Zi�1/ ˝ k

as a kH -module, where H acts by conjugation and k D Q in case (a), k D Qp in
case (b). Note that Vi is a vector space over k of dimension at most r . I claim that
for each i and each h 2 H ,

hrŠ acts unipotently on Vi :

As H=N is abelian, this will imply that the group NH rŠ is nilpotent, and the result
follows; in case (a) because jG W NH rŠj is finite, in case (b) because NH rŠ is also
nilpotent, and has finite index in G (in fact NH rŠ is already closed, cf. [DDMS],
Chapter 1).

To establish the claim, let a 2 Zi=Zi�1, put U D a �khhi � Vi and let � 2 GL.U /

correspond to the action of h. As Vi is the sum of finitely many modules like U , it
will suffice to show that �rŠ is unipotent. Now consider the two elements

v D .a; : : : ; a/; � D .�1; : : : ; �n/ 2 .G=Zi�1/.n/;

the direct product of n D r C 1 copies of G=Zi�1, where �j D hj Zi�1 for each j .
Put � D hv; �i in case (a), � D hv; �i in case (b). Since G is relatively free on at
least two generators, there is an epimorphism from G onto �, and so � has rank at
most r . Therefore

W WD �
.Zi=Zi�1/.n/ \ �

� ˝ k

is a k-vector space of dimension at most r . Evidently

v� D .a�; a�2; : : : ; a�n/:



664 D. Segal

Let f .X/ denote the characteristic polynomial of the action of � on W . Then f .�/

annihilates W , and as v 2 W it follows that for j D 1; : : : ; n we have a � f .�j / D 0,
whence f .�j / D 0. Now let � be an eigenvalue of �. As f has at most r < n roots,
there exist s and t with 1 � s < t � n such that �s D �t . Thus �e D 1 where
e D t � s � n � 1 D r , and so �rŠ D 1.

Thus �rŠ is unipotent as required.

Remark. Essentially the same argument shows that if G is not virtually nilpotent,
then the Cartesian power GN involves as a section the wreath product C1 o C1 of
two infinite cyclic groups. Since the group C1 o C1 generates the variety of all
metabelian groups (see [N], Theorem 22.42), we may infer the following corollary of
the proof:

Corollary 1. Let G be a soluble group of finite rank which is virtually torsion-free.
If G is not virtually nilpotent then the variety generated by G contains all metabelian
groups.

This generalizes an example due to B. H. Neumann, [N], 32.35, which indeed
suggested the above proof of Proposition 1.

3. Pro-p groups

Let G D F=R be a pro-p group of finite rank, where F is a free pro-p group and R

is a fully invariant closed subgroup. Then G is virtually torsion-free and G is a
linear group over Qp ([DDMS], Chapter 4, Chapter 7). Suppose that R contains a
non-trivial verbal subgroup w.F /. Then w.G/ D 1, and it follows by a theorem of
Platonov (see [W], 10.15) that G is virtually soluble (of course this follows from the
well-known ‘Tits alternative’, but that is a much harder result). Proposition 1 now
shows that G is virtually nilpotent (and G is finitely generated because it has finite
rank).

Thus Theorem 1 is proved for pro-p groups that are relatively free in a group
variety (this case suffices for the interesting application made in [JZ]). The general
case will follow from the next lemma:

Lemma 1. Let F be a free pro-p group and let R be a fully invariant closed subgroup
of F . Suppose that F=R has finite rank. Then R contains w.F / for some non-trivial
group word w.

Proof. We may assume that F is the free pro-p group on a set X with jX j � 2

(otherwise we may take w D Œx; y�). Suppose first that 3 � jX j < 1. Then F is the
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pro-p completion of the abstract free group ˆ on X , which we consider as a subgroup
of F . We have a natural homomorphism

� W Aut.ˆ/ ! Aut.F / ! Aut.F=R/:

Now Aut.F=R/ is a linear group over Qp ([DDMS], Chapter 5 and Chapter 7); but
Aut.ˆ/ has no faithful linear representation over any field, by a theorem of Formanek
and Procesi [FP]. Thus � is not injective. Let 1 ¤ ˛ 2 ker � . Then

1 ¤ Œˆ; ˛� � ˆ \ ŒF; ˛�� � ˆ \ R:

Then for 1 ¤ w D w.X/ 2 Œˆ; ˛� we have w.F / � R since R is fully invariant
in F .

Suppose next that X is infinite. In a finitely generated pro-p group, every gener-
ating set contains a finite generating set, so F D R � F.Y / where Y is a finite subset
of X and F.Y / denotes the subgroup generated (topologically) by Y , which is a free
pro-p group on Y . We may choose Y to have size at least 3. Now R \ F.Y / is
fully invariant in F.Y /, hence, by the first case, contains w.Y / for some non-trivial
word w. As Y is part of a free basis for F it follows that w.F / � R.

Finally we consider the case where jX j D 2. For any pro-p group H , define

R.H/ D hR	 j 	 2 H i
where H denotes the set of all morphisms F ! H . Then R.H/ is fully invariant
in H . Now take H to be the free pro-p group on X [Y where Y is a non-empty finite
set disjoint from X . Then F is a subgroup of H , and there is a morphism � W H ! F

with Y� D f1g and �jF D IdF . Thus

F \ R.H/ D .F \ R.H// �

� R.H/� D hR	� j 	 2 H i D R

since R	� � R for each 	 2 H . By the first case, we have w.H/ � R.H/ for some
non-trivial word w; then w.F / � F \ R.H/ � R.

This completes the proof.

4. Abstract groups

Let G be a relatively free group. It is easy to see that Gf is a fully invariant subgroup
of G, so G=Gf is again relatively free. Thus to prove Theorem 4 we may replace G

by G=Gf , and so assume that G is residually finite. If also G is finitely generated and
has finite upper rank, then G is virtually soluble of finite rank, by Theorem A of [MS]
(cf. [LS], Theorem 5.2). Such a group which is finitely generated and residually
finite is also virtually torsion-free (see [LR], 5.2.1, 10.5.3). Now Proposition 1 shows
that G is virtually nilpotent, and Theorem 4 follows.
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5. Profinite groups

Let C be a formation, let F be the free pro-C group on a finite set X , and put
G D F=V.F / where V is a set of group words. Let ˆ be the abstract free group
on X , and put 
 D ˆ=V.ˆ/.

We consider ˆ as a dense subgroup of F D ŷ
C , the pro-C completion of ˆ. Sup-

pose that N is an open normal subgroup of F . Then F D Nˆ, so V.F / � N V.ˆ/.
As the intersection of all such sets N V.ˆ/ is equal to the closure of V.ˆ/ in F , it
follows that V.F / � V.ˆ/ and hence that V.F / D V.ˆ/.

Now let 
C denote the C -residual of 
 and put 
0 D 
=
C ; thus 
C is the kernel
of the natural map 
 ! y
C , and we have

b.
0/C D y
C Š ŷ
C=V.ˆ/ D F=V.F / D G.

Assuming that G has finite rank r as a profinite group, it follows that every C -
quotient of 
 has rank at most r .

Case 1. Suppose that C consists of all finite groups. Then 
 has upper rank r , and
Theorem 4 shows that 
=
f D 
0 is virtually nilpotent. Therefore so is y
0 D
b.
0/C Š G, and Theorem 2 follows.

Case 2. Suppose now that C satisfies the hypotheses of Theorem 3. If jX j � 1 then G

is abelian and there is nothing to prove, so we assume that jX j � 2. Then Cp o Cpn is
a C -quotient of ˆ for each n; but it cannot be a quotient of 
 if pn > r , consequently
V.Cp o Cpn/ ¤ 1 for large n. In particular, V is not trivial.

Now 
0 is residually (finite soluble of rank at most r). It follows by the main
theorem of [S] that 
0 is an extension of a nilpotent group by a subdirect product of
finitely many linear groups. As V.
0/ D 1, Platonov’s theorem [W], 10.15 (cited
above) implies that each of these linear groups is virtually soluble, and hence that 
0

has a soluble normal subgroup 
1 of finite index. The second part of the theorem
of [S] now shows that 
1 is virtually nilpotent-by-abelian, and we conclude that 
0

is virtually nilpotent-by-abelian. Below I will prove the following:

Lemma 2. Let H be a finitely generated group and N a torsion-free nilpotent normal
subgroup such that H=N is abelian. Then either H has finite rank or H has a section
isomorphic to C1 o C1.

Lemma 3. Let T be a periodic nilpotent group and X a filter base of normal sub-
groups. If the members of X intersect in 1 and the quotients T=K with K 2 X have
bounded finite ranks then T has finite rank.

(To say that X is a filter base means that the intersection of any two members
of X contains a member of X.)
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To continue with the proof of Theorem 3, let 
2 � 
3 be normal subgroups
of 
0 such that 
0=
2 is finite, 
2=
3 is abelian and 
3 is nilpotent. Let T be the
torsion subgroup of 
3 and put H D 
2=T , N D 
3=T . Since V.
0/ D 1 while
V.Cp o Cpn/ ¤ 1 for large n, the group C1 o C1 cannot be a section of H , so H has
finite rank by Lemma 2. Now let

X D fM \ T j M C 
0; 
0=M 2 Cg :

Then X satisfies the hypotheses of Lemma 3, and we may infer that T has finite rank.
It follows that 
0 has finite rank. As remarked in Section 4, residual finiteness

implies that 
0 is virtually torsion-free. Noting that C is a subgroup-closed formation,
it is easy to see that 
C is fully invariant in 
 , and hence that 
0 D 
=
C is
a relatively free group. Applying Proposition 1 (a) we deduce that 
0 is virtually

nilpotent. Therefore so is b.
0/C Š G and Theorem 3 is proved.

Proof of Lemma 2. Assuming that C1 o C1 is not a section of H , we need to show
that N has finite rank.

Suppose to begin with that N is abelian. The result then follows from the main
theorem of [K]; but let me sketch the proof of this easy special case. We con-
sider N as an additively-written module for H=N D hx1; : : : ; xni. Since H is
finitely generated and H=N is finitely presented, N is finitely generated as a module,
say N D a1Z.H=N /C� � �CarZ.H=N /. If v 2 N then each v �Z hxi i has finite rank
(otherwise hv; exi i Š C1 o C1 where exi is a pre-image of xi in H ). Now fix k � r

and suppose that ak � Z hx1; : : : ; xmi has finite rank for some m < n; let fv1; : : : ; vd g
be a maximal linearly independent subset. Then

Pd
j D1vj � Z hxmC1i has finite rank

and contains a maximal linearly independent subset of ak � Z hx1; : : : ; xm; xmC1i,
which therefore has finite rank. It follows by induction that akZ.H=N / has finite
rank. As this holds for each k we see that N has finite rank.

In the general case, we may infer that N=T has finite rank where T=�2.N / is the
torsion subgroup of N ab D N=�2.N /. Each lower central factor �i .N /=�iC1.N / is
an epimorphic image of a tensor power of N ab ([LR], 1.2.12), so the lower central
series of N is a finite filtration with each factor abelian of finite torsion-free rank.
Each upper central factor Zj .N /=Zj �1.N / of N then inherits such a filtration. But
Zj .N /=Zj �1.N / is torsion-free ([LR], 2.3.8), and therefore has finite rank. It follows
that N has finite rank.

Proof of Lemma 3. Let Z be the centre of T . Elementary arguments show that T=Z

and its family of normal subgroups fKZ=Z j K 2 Xg satisfy the hypotheses of the
lemma; arguing by induction on the nilpotency class of T , we may suppose that T=Z

has finite rank s, say. Now let r be an upper bound for the ranks of the quotients
T=K with K 2 X, and let E be an elementary abelian p-subgroup of Z. Then
jE W E \ Kj � pr for each K 2 X, and the hypotheses on X then imply that
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jEj � pr . As Z is a periodic abelian group it follows that Z rank at most r . We
conclude that T has rank at most r C s.

References

[BM] R. G. Burns andY.Medvedev, Analytic relatively free pro-p groups. J. Group Theory
7 (2004), 533–541. Zbl 1073.20021 MR 2080450

[DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups. 2nd
ed., Cambridge Stud. Adv. Math. 61, Cambridge University Press, Cambridge 1999.
Zbl 0934.20001 MR 1720368

[FP] E. Formanek and C. Procesi, The automorphism group of a free group is not linear.
J. Algebra 149 (1992), 494–499. Zbl 0780.20023 MR 1172442

[JZ] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups. Rev. Mat.
Iberoamericana, to appear.
http://www.uam.es/personal_pdi/ciencias/ajaikin/preprints/verbal.pdf

[K] P. H. Kropholler, On finitely generated soluble groups with no large wreath prod-
uct sections. Proc. London Math. Soc. (3) 49 (1984), 155–169. Zbl 0537.20013
MR 743376

[LR] J. C. Lennox and D. J. S. Robinson, The theory of infinite soluble groups. Ox-
ford Math. Monographs, The Clarendon Press, Oxford 2004. Zbl 1059.20001
MR 2093872

[LS] A. Lubotzky and D. Segal, Subgroup growth. Progr. Math. 212, Birkhäuser, Basel
2003. Zbl 1071.20033 MR 1978431

[MS] A. Mann and D. Segal, Uniform finiteness conditions in residually finite groups.
Proc. London Math. Soc. (3) 61 (1990), 529–545. Zbl 0722.20021 MR 1069514

[N] H. Neumann,Varieties of groups. Ergeb. Math. Grenzgeb. 37, Springer-Verlag, Berlin
1967. Zbl 0251.20001 MR 0215899

[RZ] L. Ribes and P. Zalesskii, Profinite groups. Ergeb. Math. Grenzgeb. (3) 40, Springer-
Verlag, Berlin 2000. Zbl 0949.20017 MR 1775104

[S] D. Segal, A footnote on residually finite groups. Israel J. Math. 94 (1996), 1–5.
Zbl 0849.20017 MR 1394563

[W] B.A. F.Wehrfritz, Infinite linear groups. Ergeb. Math. Grenzgeb. 76, Springer-Verlag,
New York 1973. Zbl 0261.20038 MR 0335656

Received November 30, 2006

D. Segal, All Souls College, Oxford OX1 4AL, UK

E-mail: dan.segal@all-souls.ox.ac.uk

http://www.emis.de/MATH-item?1073.20021
http://www.ams.org/mathscinet-getitem?mr=2080450
http://www.emis.de/MATH-item?0934.20001
http://www.ams.org/mathscinet-getitem?mr=1720368
http://www.emis.de/MATH-item?0780.20023
http://www.ams.org/mathscinet-getitem?mr=1172442
http://www.uam.es/personal_pdi/ciencias/ajaikin/preprints/verbal.pdf
http://www.emis.de/MATH-item?0537.20013
http://www.ams.org/mathscinet-getitem?mr=743376
http://www.emis.de/MATH-item?1059.20001
http://www.ams.org/mathscinet-getitem?mr=2093872
http://www.emis.de/MATH-item?1071.20033
http://www.ams.org/mathscinet-getitem?mr=1978431
http://www.emis.de/MATH-item?0722.20021
http://www.ams.org/mathscinet-getitem?mr=1069514
http://www.emis.de/MATH-item?0251.20001
http://www.ams.org/mathscinet-getitem?mr=0215899
http://www.emis.de/MATH-item?0949.20017
http://www.ams.org/mathscinet-getitem?mr=1775104
http://www.emis.de/MATH-item?0849.20017
http://www.ams.org/mathscinet-getitem?mr=1394563
http://www.emis.de/MATH-item?0261.20038
http://www.ams.org/mathscinet-getitem?mr=0335656

	Introduction
	The main step
	Pro-p groups
	Abstract groups
	Profinite groups
	References

