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A commutator description of the solvable radical of a finite group

Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii and Eugene Plotkin

Abstract. We are looking for the smallest integer k > 1 providing the following characteri-
zation of the solvable radical R.G/ of any finite group G: R.G/ coincides with the collection
of all g 2 G such that for any k elements a1; a2; : : : ; ak 2 G the subgroup generated by the
elements g; ai ga�1

i
, i D 1; : : : ; k, is solvable. We consider a similar problem of finding the

smallest integer ` > 1 with the property that R.G/ coincides with the collection of all g 2 G

such that for any ` elements b1; b2; : : : ; b` 2 G the subgroup generated by the commutators
Œg; bi �, i D 1; : : : ; `, is solvable. Conjecturally, k D ` D 3. We prove that both k and ` are at
most 7. In particular, this means that a finite group G is solvable if and only if every 8 conjugate
elements of G generate a solvable subgroup.
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1. Introduction

1.1. Main results. Let F2 D F.x; y/ be the free two generator group. Define a
sequence Ee D e1; e2; e3; : : : ; where ei .x; y/ 2 F2, by

e1.x; y/ D Œx; y� D xyx�1y�1; : : : ; en.x; y/ D Œen�1.x; y/; y�; : : : :

An element g of a group G is called an Engel element if for every a 2 G there
exists a number n D n.a; g/ such that en.a; g/ D 1.

In 1957 R. Baer proved the following theorem [Ba], [H]:

Theorem 1.1. The nilpotent radical of a noetherian group G coincides with the
collection of all Engel elements of G.

In particular, Baer’s theorem is true for finite groups. Similar theorems have been
established for many classes of infinite groups satisfying some additional conditions
(see for example [Plo], [Pla]).
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A tempting but difficult problem is to find a counterpart of Baer’s theorem for
the solvable radical of a finite group, in other words, to find an Engel-like sequence
Eu D un.x; y/ such that an element g of a finite group G belongs to the solvable
radical R.G/ of G if and only if for any a 2 G there exists a number n D n.a; g/

such that un.a; g/ D 1. The first results towards a solution of this problem have been
obtained in [BGGKPP1], [BGGKPP2], [BWW], and [BBGKP].

In the paper [GKPS] a Thompson-like characterization of the solvable radical of
finite groups (and, more generally, linear groups and PI-groups) has been obtained.

Theorem 1.2 ([GKPS]). The solvable radical R.G/ of a finite group G coincides
with the set of all elements g 2 G with the following property: for any a 2 G the
subgroup generated by g and a is solvable.

This theorem can be viewed as an implicit description of the solvable radical since
it does not provide explicit formulas which determine if a particular element belongs
to R.G/.

In the present paper our goal is to obtain a new characterization of the solvable
radical R.G/ of a finite group G.

Theorem 1.3. The solvable radical of any finite group G coincides with the collection
of all g 2 G satisfying the following property: for any 7 elements a1; a2; : : : ; a7 2 G

the subgroup generated by the elements g; aiga�1
i , i D 1; : : : ; 7, is solvable.

The proof involves the classification of finite simple groups.
This theorem implies the following characterization of finite solvable groups:

Theorem 1.4. A finite group G is solvable if and only if every 8 conjugate elements
of G generate a solvable subgroup.

We hope to sharpen these results.

Conjecture 1.5. The solvable radical of a finite group G coincides with the collection
of all g 2 G satisfying the following property: for any 3 elements a; b; c 2 G the
subgroup generated by the conjugates g; aga�1; bgb�1; cgc�1 is solvable.

This statement implies

Conjecture 1.6. A finite group G is solvable if and only if every 4 conjugate elements
of G generate a solvable subgroup.

Remark 1.7. These characterizations are the best possible: in the symmetric groups
Sn .n � 5/ any triple of transpositions generates a solvable subgroup.
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Remark 1.8. The main step in our proof of Theorem 1.3 is Theorem 1.11 below. To
prove Conjecture 1.5 (and hence Conjecture 1.6), one has to extend the statement of
Theorem 1.11 to all almost simple groups, i.e. to the groups H such that G � H �
Aut.G/ for some simple group G.

Remark 1.9. The statements of Theorems 1.3 and 1.4 remain true for arbitrary linear
groups. The proof is similar to the proof of Theorem 4.1 in [GKPS]. Once Conjec-
tures 1.5 and 1.6 are proved, they can also be extended to arbitrary linear groups.

Throughout the paper ha1; : : : ; aki stands for the subgroup of G generated by
a1; : : : ; ak 2 G. We define the commutator of x; y 2 G by Œx; y� D xyx�1y�1.

Definition 1.10. Let k � 2 be an integer. We say that g 2 G is a k-radical element
if for any a1; : : : ; ak 2 G the subgroup H D hŒa1; g�; : : : ; Œak; g�i is solvable.

We prove the following result.

Theorem 1.11. Let G be a finite nonabelian simple group. Then G does not contain
nontrivial 3-radical elements.

This theorem implies Theorems 1.3 and 1.4.
The proof goes by case-by-case inspection of simple groups (alternating groups,

groups of Lie type, sporadic groups). In fact we prove a more precise result (Theo-
rem 1.15) which distinguishes between 2-radical and 3-radical elements.

The following simple fact allows us to define a new invariant of a finite group.

Proposition 1.12. Let G be a group which has no nontrivial solvable normal sub-
groups. Then for every g 2 G, g ¤ 1 the group Hg D hŒg; G�i is not solvable.

Proof. For every x; y 2 G we have

Œg; x��1Œg; y� D .xgx�1g�1/.gyg�1y�1/ D .xgx�1/.yg�1y�1/ 2 Hg :

Thus, CgCg�1 � Hg where Cg ; Cg�1 are the corresponding conjugacy classes. Since
the set CgCg�1 is invariant under conjugation, the subgroup F D hCgCg�1i � Hg

is normal in G and therefore cannot be solvable.

Corollary 1.13. Let G be a finite group, and let R.G/ denote the solvable radical
of G. Then g … R.G/ if and only if there exist an integer n and x1; : : : ; xn 2 G such
that the subgroup hŒg; x1�; : : : ; Œg; xn�i is not solvable.

Definition 1.14. Denote by �.g/ the smallest possible n with the following prop-
erty: g … R.G/ if and only if there exist x1; : : : ; xn 2 G such that the subgroup
hŒg; x1�; : : : ; Œg; xn�i is not solvable. We call the number �.G/ WD maxg2GnR.G/ �.g/

the radical degree of G.
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In these terms we have to prove that the radical degree of a finite nonabelian
simple group G is � 3. Our strongest result, which implies Theorem 1.11 and,
correspondingly, Theorems 1.3 and 1.4, is the following

Theorem 1.15. If G is a finite nonabelian simple group, then �.G/ � 3. If G is
an alternating group G D An, n � 5, or a group of Lie type over a field K with
char.K/ ¤ 2 and K ¤ F3, or a sporadic group not isomorphic to Fi22 or Fi23, then
�.G/ D 2:

1.2. Notation and conventions. First introduce some standard notation which mostly
follows [St], [Ca1], [Ca2].

Denote by G D G.ˆ; K/ a Chevalley group where ˆ is a reduced irreducible
root system and K is a field. Assume that ˆ is generated by a set of simple roots
… D f˛1; : : : ; ˛rg, that is ˆ D h˛1; : : : ; ˛ri. We number the roots according to [Bou].
Let W D W.ˆ/ be the Weyl group corresponding to ˆ. Denote by ˆC, ˆ� the sets
of positive and negative roots, respectively.

We use the standard notation u˛.t/, ˛ 2 ˆ, t 2 K, for elementary root unipotent
elements of G. Correspondingly, split semisimple elements will be denoted by h˛.t/;

t 2 K�, where K� is the multiplicative group of K. For ˛ 2 ˆ, let U˛ denote the
root subgroup generated by all elementary root unipotent elements u˛.t/.

For the sake of completeness, recall that w˛.t/ D u˛.t/u�˛.�t�1/u˛.t/, w˛ D
w˛.1/ and h˛.t/ D w˛.t/w�1

˛ . Define the subgroups U D U C D hu˛.t/; ˛ 2
ˆC; t 2 Ki, V D U � D hu˛.t/; ˛ 2 ˆ�; t 2 Ki, T D hh˛.t/; ˛ 2 ˆ; t 2 K�i, and
N D hw˛.t/; ˛ 2 ˆ; t 2 K�i.

As usual, the Borel subgroups B˙ are B D BC D T U , B� D T U �. The group
N contains T , and N=T Š W . Denote by Pw a preimage of w 2 W in N .

We also consider twisted Chevalley groups over finite fields. Assume that K is a
finite field of characteristic p and jKj D q D ps . By a twisted Chevalley group we
mean the group GF D GF .ˆ; xK/ of fixed points of the simply connected Chevalley
group G.ˆ; xK/ under the Frobenius map F (see [St], [Ca1], [Ca2]). Here xK stands
for the algebraic closure of K. Let � be the field automorphism corresponding to F .
Denote by k D K� the subfield of � -fixed points for all cases except for the Suzuki
groups and the Ree groups. For the latter groups suppose that k D K. Let � be the
graph automorphism corresponding to F . We denote by ˆ� the root system which
determines the structure of the group GF D GF .ˆ; xK/. Elementary root unipotent
elements u˛.t/, ˛ 2 ˆ� , have either one parameter t 2 K or t 2 k, or two parameters
u˛.t; u/; t; u 2 K (for the cases 2A2, 2B2, 2F4), or three parameters u˛.t; u; v/;

t; u; v 2 K (for 2G2), see [St]. Again, the root subgroups U˛ are generated by root

unipotent elements. The subgroups BF , W F , T F , H F , U ˙F
in GF are defined in a

standard way, see [Ca2]. A maximal torus of GF is a subgroup of the form T F , where
T is an F -stable maximal torus of G. A maximal torus T F is called quasisplit if it
is contained in BF . Throughout the paper we suppress the map F in the notations.
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We also suppress � in the notation of the root system corresponding to the group GF .
Whenever we need to specify the type of a group, it will be written explicitly.

We follow [Ca2] in the notation of twisted forms. Thus unitary groups are de-
noted by PSUn.q2/ (and not by PSUn.q/), the notation 2F4.22mC1/ means that
q D p

22mC1, etc.
The paper is organized as follows. In Section 2 we reduce Theorem 1.4 to Theo-

rem 1.15. In Sections 3–9 we prove Theorem 1.15 using case-by-case analysis.
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2. Reduction theorem

Let us show how Theorem 1.15 implies Theorem 1.4.
Suppose Theorem 1.15 is proven, and let us show that the solvable radical R.G/

of a finite group G coincides with the collection of all g 2 G satisfying the property:
for any 7 elements a1; a2; : : : ; a7 2 G the subgroup generated by the elements g,
aiga�1

i , i D 1; : : : ; 7, is solvable.
For the sake of convenience, let us call the elements g 2 G satisfying the condition

of the theorem, suitable.
Suppose g 2 R.G/. Since R.G/ is a normal subgroup, aga�1 belongs to

R.G/ for any a 2 G. Hence for any k the subgroup ha1ga�1
1 ; : : : ; akga�1

k
i, where

a1; : : : ; ak 2 G, is solvable. Therefore, all the elements of R.G/ are suitable.
Suppose now that g 2 G is a suitable element. We want to show that g belongs

to R.G/. It is enough to prove that there are no nontrivial suitable elements in the
semisimple group G=R.G/. So one can assume that the group G is semisimple in the
sense that R.G/ D 1.

As usual we consider a minimal counterexample G to the statement above.
Recall that any finite semisimple group G contains a unique maximal normal

centreless completely reducible (CR) subgroup (by definition, CR means a direct
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product of finite nonabelian simple groups) called the CR-radical of G (see [Ro,
3.3.16]). We call a product of the isomorphic factors in the decomposition of the
CR-radical an isotypic component of G. Denote the CR-radical of G by V . This is a
characteristic subgroup of G.

Let us show that V has only one isotypic component. Suppose V D N1 � N2,
where N1 \ N2 D 1. Consider xG D G=N1 and denote xR D R.G=N1/. Consider a
suitable g 2 G, g ¤ 1 and denote by Ng (resp. NNg) the image of g in xG (resp. xG= xR).
Since xG= xR is semisimple and NNg 2 xG= xR is suitable, we have NNg D 1 (because G

is a minimal counter-example) and hence Ng 2 R.G=N1/. Consider V=N1 ' N2.
Then V=N1 � G=N1 is semisimple and therefore V=N1 \ R.G=N1/ D 1. Since
Ng 2 R.G=N1/, we have Œ Ng; Nv� D N1 for every Nv 2 V=N1. Hence Œg; v� 2 N1 for every
v 2 V . Similarly, Œg; v� 2 N2 for every v 2 V . Therefore Œg; v� D 1. Hence g

centralizes every v 2 V . Since the centralizer of V in G is trivial, we get g D 1.
Contradiction.

Any g 2 G acts as an automorphism Qg on V D H1 � � � � � Hn, where all Hi ;

1 � i � n, are isomorphic nonabelian simple groups.
Suppose that g is a suitable element. Let us show that Qg cannot act on V as a

non-identity element of the symmetric group Sn. Denote by � the element of Sn

corresponding to Qg.
By definition, the subgroup � D hg; xigx�1

i i, i D 1; : : : ; 7, is solvable for any
elements xi 2 G. Evidently, the subgroup hŒg; x1�; Œg; x2�i lies in � .

Suppose � ¤ 1, and so �.k/ ¤ k for some k � n. Take Nx1 and Nx2 of the form

Nxi D .1; : : : ; x
.k/
i ; : : : ; 1/, where x

.k/
i ¤ 1 lies in Hk .i D 1; 2/. Then we may assume

. Nxi /
� D .x

.k/
i ; 1; : : : ; 1/, and so Œg; Nxi � D . Nxi /

� Nx�1
i D .x

.k/
i ; 1; : : : ; .x

.k/
i /�1; : : : ; 1/:

Since Hk is simple, it is generated by two elements, say a and b. On setting
x

.k/
1 D a, x

.k/
2 D b, we conclude that the group generated by Œg; Nx1� and Œg; Nx2�

cannot be solvable because the first components of these elements, a and b, generate
the simple group Hk . Contradiction with solvability of � .

So we can assume that a suitable element g 2 G acts as an automorphism of a
simple group H . Then we consider the extension of the group H with the automor-
phism Qg. Denote this almost simple group by G1. We shall use the formula

yŒx; g�y�1 D Œx; g�ŒŒg; x�; y�:

Since G1 has no centre, one can choose x 2 H such that Œx; Qg� ¤ 1: Evidently,
Œx; Qg� belongs to the simple group H . Then by Theorem 1.15, there exist y1; y2; y3 2
H such that the subgroup hŒŒx; g�; y1�; ŒŒx; g�; y2�; ŒŒx; g�; y3�i is not solvable. But

hŒŒx; g�; y1�; ŒŒx; g�; y2�; ŒŒx; g�; y3�i � hyi Œx; g�y�1
i ; Œx; g� j i D 1; 2; 3i

� hg; x�1gx; y�1
i gyi ; y�1

i x�1gxyi j i D 1; 2; 3i:
Since g is suitable, the latter subgroup must be solvable. Contradiction with the
choice of yi .



A commutator description of the solvable radical 91

3. Alternating groups

Proposition 3.1. Let G D An, n � 5. Then �.G/ D 2.

Proof. Let us proceed by induction. For n D 5 the statement can be checked in
a straightforward manner. Straightforward computations also work for n D 6; 7.
Assume n � 8. Let y 2 G, y ¤ 1. First suppose that y can be written in the form

y D ��; � 2 Am; � ¤ 1; 5 � m < n; (1)

where � and � are disjoint (and thus commute). Then by induction hypothesis there
exist �1; �2 2 Am such that the subgroup generated by Œ�; �1� and Œ�; �2� is not
solvable. Take xi D �i� , i D 1; 2. Then Œy; xi � D Œ�; �i �, and we are done.

Suppose y cannot be represented in the form (1). Then we have one of the fol-
lowing cases: either n is odd and y D .12 : : : n/, or n is even and y D .12 : : : n � 2/

.n � 1; n/. In any of these cases we take x1 D .123/ and x2 D .345/ and get
hŒx1; y�; Œx2; y�i Š A5.

4. Groups of Lie type of small rank over fields of large characteristic

Proposition 4.1. Let G be one of the groups A1.q/ .q ¤ 2; 3/, 2A2.q2/ .q ¤ 2/,
2B2.22mC1/ .m � 1/, 2G2.32mC1/ .m � 0/: Then �.G/ D 2.

Remark 4.2. Obviously, it is enough to prove that �.G1/ D 2 for some group G1

lying between G and its simply connected cover. In each specific case the choice of
G1 will depend on the convenience of the proof. In particular, we shall often assume
the Chevalley group under consideration to be simply connected. We shall use this
observation without any special notice.

We start with computations for simple groups of Lie type of small Lie rank defined
over the finite fields of size 2, 3, 5. They will be used in several parts of our proof. The
computations were made for all groups of rank 1 and 2 and also for certain groups
of rank 3 and 4 needed for our arguments. The results of MAGMA computations
for groups over F2 and F3 are exhibited in Table 1 (over F5 these groups contain
no nontrivial 2-radical elements). Each entry of Table 1 displays the number of
nontrivial 2-radical elements in the corresponding group (up to conjugacy) and their
orders (in parentheses). Dash means that the corresponding group either is solvable
or does not exist (for this reason the types A1 and 2B2 do not appear at all). Asterisks
mean that the corresponding group G is not simple, and computations were made
for the derived subgroup G0, which is simple. It is worth recalling the isomorphisms
B2.q/ Š C2.q/, B2.3/ Š C2.3/ Š 2A3.22/, G2.2/0 Š 2A2.32/, A3.2/ Š A8. Note
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Table 1. 2-radical elements in simple groups of small Lie rank.

F2 F3 Remarks
2A2 — 0
2G2 — 0� (*) Computed for G0
A2 0 0
B2 0�� 3 (2,3,3) (**) Computed for G0
C2 0�� 3 (2,3,3)
G2 0��� 0 (***) Computed for G0

2A3 3 (2,3,3) 0
2A4 3 (2,3,3) 0
3D4 0 0
A3 0 0
B3 1 (2) 1 (2)
C3 1 (2) 2 (3,3)

2F4 0���� — (****) Computed for G0
D4 0 0

that our computations show that whenever nontrivial 2-radical elements do exist, there
are no nontrivial 3-radical elements.

Before starting the proof of the proposition, we recall the following result from
[Gow] (compare with [EG2]) regarding conjugacy classes of semisimple elements in
Chevalley groups. This fact is essential for our arguments.

Theorem 4.3 ([Gow]). Let G be a finite simple group of Lie type, and let g ¤ 1 be
a semisimple element in G. Let C be a conjugacy class of G consisting of regular
semisimple elements. Then there exist a regular semisimple x 2 C and z 2 G such
that g D Œx; z�.

Let us now go over to the proof of Proposition 4.1.

Proof. First note that for the groups G D 2A2.32/ and G D 2G2.3/ the statement
of the proposition follows from calculations presented in Table 1. So we exclude
these groups from consideration in the rest of the proof. We start with several simple
lemmas (recall that G is a finite group).

Lemma 4.4. Let G D B[B PwB be a group of rank 1. Let 1 ¤ u 2 U . If gug�1 2 U ,
then g 2 B .

Proof. Suppose g D u2 Pwu1 where u1; u2 2 U . Then v D u2 Pwu1uu�1
1 Pw�1u�1

2 2 U .
Hence

U 3 u�1
2 vu2 D Pwu1uu�1

1 Pw�1 2 U �:
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This contradicts the assumption u ¤ 1.

Lemma 4.5. Let G be a group of rank 1. Then every nontrivial unipotent element is
contained in only one Borel subgroup.

Proof. Suppose 1 ¤ u 2 U � B and u 2 B 0, where B 0 D xBx�1; x … B [St].
Then u D xvx�1 for some v 2 U . By Lemma 4.4, x 2 B , contradiction.

Lemma 4.6. Let G be a group of rank 1. Then, up to conjugacy, for every g 2 G

we have either g 2 T , or g 2 U , or g D tu with t 2 T; u 2 U; tu D ut , or g is a
regular semisimple element which is not contained in any Borel subgroup.

Proof. Indeed, let g D su D us be the Jordan decomposition of g. We may and shall
assume u 2 U . If s D 1, then g D u 2 U , so we assume further s ¤ 1. Suppose
u ¤ 1 2 U . Then sus�1 D u 2 U and therefore, by Lemma 4.4, we have s 2 B .
Since s 2 B , s lies in some quasisplit torus. As all quasisplit tori are conjugate [Ca2],
we have s0 D bsb�1 2 T for some b 2 B . Thus we get

bgb�1 D bsb�1bub�1 D s0u0

with s0 2 T , u0 2 U . Suppose now u D 1. We have g D s, and if s lies in a
Borel subgroup, then s is conjugate to an element of T , as above. Finally, if s is a
semisimple element which does not belong to any Borel subgroup, then according
to Lemma 4.4 it does not commute with any unipotent element, and thus g D s is a
regular semisimple element.

Definition 4.7. Let t 2 T . Define

t Œ2� WD Pwt�1 Pw�1t:

If G is of the type A1, 2B2; or 2G2, we have t Œ2� D t2. If G is of the type 2A2.q2/

and t D diag.	; 	�1	q; 	�q/, we have t Œ2� D diag.		q; 1; 	�1	�q/:

Lemma 4.8. Let G be a group of rank 1, let g … Z.G/, and let t be a generator of
T . Suppose t Œ2� is a regular element. Then there exists x 2 G such that Œg; x� is of
the form 
Œ2� where 
 is a generator of a quasisplit torus of G.

Proof. We may assume g D u Pw. Put x D t�1. Then

� D Œg; t�1� D u Pwt�1 Pw�1t t�1u�1t D ut Œ2�t�1u�1t

which is conjugate to t Œ2�v for some v 2 U . Since t Œ2� and, correspondingly, t�Œ2� are
regular elements, there exists y such that v D Œt�Œ2�; y� (see, for example, [EG2]).
Then yt Œ2�y�1 D t Œ2�Œt�Œ2�; y� D t Œ2�v. Put 
 D yty�1. Then 
 is a generator of a
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quasisplit torus T 0 D yTy�1 and w1 D y Pwy�1 is a preimage of the generator of the
Weyl group. We have

yt Œ2�y�1 D y Pwt�1 Pw�1ty�1 D .y Pwy�1/.yt�1y�1/.y Pw�1y�1/.yty�1/

D Pw1
�1w�1
1 
 D 
Œ2�:

Remark 4.9. Explicit calculations with the matrices

t D diag.	; 	�1/;

t D diag.	; 	�1	q; 	�q/;

t D diag.	; 	2��1; 	�1; 	1�2� /;

t D diag.	� ; 	1�� ; 	2��1; 1; 	1�2� ; 	��1; 	�� /;

corresponding, respectively, to the natural representation of SL2.q/, natural rep-
resentation of SU3.q2/, 4-dimensional representation of the Suzuki group and 7-
dimensional representation of the Ree group, show that the hypothesis of Lemma 4.8
holds for every group from Proposition 4.1 except for A1.5/ and 2A2.32/. These two
groups were considered separately (note that PSL2.5/ Š A5).

Lemma 4.10. Let T 0 be a quasisplit torus in a group G of rank 1, and let S be a
subgroup of T 0 such that CG.S/ D T 0. Then NG.S/ D NG.T 0/.

Proof. Let B 0 D T 0U 0 be a Borel subgroup containing T 0, and let G D B 0 [ B 0 Pw0B 0
be the corresponding Bruhat decomposition. Let g 2 NG.S/. Suppose g D u1 Pw0u2

where u1; u2 2 U 0. Then for every s 2 S we have

gsg�1 D .u1 Pw0u2/s.u�1
2 Pw0�1u�1

1 / D s0 2 S

H) B 0� 3 . Pw0s Pw0�1/. Pw0Œs�1; u2� Pw0�1/ D s0Œs0�1; u�1
1 � 2 B 0

B0�\B0DT 0

H) Œs�1; u2� D Œs0�1; u�1
1 � D 1

CG.S/DT 0

H) u1 D u2 D 1

H) g D Pw0:

Suppose g 2 B 0. Then g D tu for some t 2 T 0; u 2 U 0, and for every s 2 S we have

gsg�1 D st Œs�1; u�t�1 2 S H) Œs�1; u� D 1
CG.S/DT 0

H) u D 1:

Hence g 2 NG.T 0/ and therefore NG.S/ � NG.T 0/.
Further, using the same arguments as above (put S D T 0) one can see that

NG.T 0/ D hT 0; Pw0i. Note that the conjugation with w0 is an automorphism of T 0 and
T 0 is a cyclic group. Hence the conjugation with w0 is an automorphism of S . Thus
NG.T 0/ � NG.S/:
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Lemma 4.11. Suppose the hypothesis of Lemma 4.8 holds. Suppose that for every
nonregular s 2 T and for every regular t 2 T the element st is regular. Then for
every g … Z.G/ there exist x; y 2 G such that the group H generated by � D Œg; x�

and � D Œg; y� is not contained in any Borel subgroup. Moreover, � … NG.h�i/.

Proof. We shall divide the proof into two cases: 1) g is not a regular semisimple
element; 2) g is a regular semisimple element. Case 1, in turn, will be subdivided
into two subcases: 1a) char.K/ ¤ 2; 1b) char.K/ D 2.

Case 1a). First suppose g is not a regular semisimple element. By Lemma 4.6, we have
g 2 B , g D su with su D us, s 2 T is a nonregular element, and u 2 U . Then we can
get 1 ¤ � D Œg; x� 2 U . Indeed, if u ¤ 1, we take x D s1 2 T such that Œu; s1� ¤ 1.
Then Œg; x� D Œg; s1� D Œus; s1� D Œs; s1�uŒu; s1� D Œu; s1� D us1u�1s�1

1 2 U . If
u D 1, then s … Z.G/, and hence 1 ¤ Œs; v� 2 U for some v 2 U .

Then by Lemma 4.8, we get � D Œg; y� D 
Œ2� where 
 is a generator of a quasisplit
torus. Suppose h�; �i D H � B 0 for some Borel subgroup B 0. Since � is a unipotent
element, by Lemma 4.5 we have B 0 D B and therefore gyg�1y�1 D � 2 B .
Consider the element g�1� D u�1s�1� . Since � 2 B , we have � D s0u0 where
s0 2 T is semisimple and u0 2 U . Since � is regular, so is s0. Then g�1� D
u�1s�1s0u0 D s�1u�1s0u0 D s�1s0u1u0 D s�1s0u00 for some u00 2 U . By the
hypothesis of the lemma, s�1s0 is a regular semisimple element. Hence g�1� D
s�1s0u00 is a regular semisimple element. Contradiction, since yg�1y�1 D g�1� is
not a regular semisimple element.

Let us now prove that � … NG.h�i/. Assume the contrary. Since � is a reg-
ular semisimple element, we have CG.�/ D CG.h�i/ D T 0. Lemma 4.10 gives
NG.h�i/ D NG.T 0/. Therefore � 2 NG.T 0/.

Hence �2 2 T 0. Indeed, since � 2 NG.T 0/, we have � D Pw0 where Pw0 is a
preimage of an element of the Weyl group (possibly, w0 D 1/ corresponding to T 0.
Thus �2 2 T 0. But � 2 U . Hence � is a unipotent element of order 2 which contradicts
to the assumption char.k/ ¤ 2.

Case 1b). Suppose g is not a regular semisimple element and char.k/ D 2. In this
case we may assume g D Pw.

Indeed, let g D su be the Jordan form for g. Suppose the order of u is greater
than 2. On setting x D t 2 T , we get the element Œg; x� 2 U of order greater than 2.
Then, by the arguments of Case 1a, we have � … NG.h�i/. Thus the order of u is one
or two. As char.k/ D 2, every nonregular element of T lies in the centre of G, and
therefore we may assume s D 1. Hence we may assume g D u to be an element of
order 2.

As char.k/ D 2, in each of the Lie rank 1 groups, SL2.2m/, SU3.22m/ and
2B2.22mC1/, all involutions are conjugate, and we may assume g D Pw.

Therefore we can take � D Œg; t � D Œ Pw; t� D t Œ2�; and � D Œg; u� D Œ Pw; u� D
Pwu Pw�1u�1 D vu�1 where u 2 U and 1 ¤ v 2 U �. Suppose �; � 2 B 0 for some
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Borel subgroup B 0. Then T � B 0 and therefore B 0 D B or B 0 D B�. Contradiction,
since � … B , � … B�.

Suppose now � D vu�1 2 NG.h�i/ D NG.T /. This is impossible:

vu�1tuv�1 D t 0 2 T H) .B n T / 3 u�1tu D v�1t 0v 2 .B� n T /:

Case 2. Let g be a regular semisimple element. By [Gow], we can get � D Œg; y� to
be a generator of a quasisplit torus and � D Œg; x� to be a regular semisimple element
which is not contained in any Borel subgroup.

We have

• jT j D q � 1 if G D SL2.q/;

• jT j D q2 � 1 if G D SU3.q2/ or G is a Suzuki or a Ree group.

Further,

• .q C 1/ divides jGj if G D SL2.q/, .q C 1; q � 1/ D 2 or 1 (if q is even);

• .q2 � q C 1/ divides jGj if G D SU3.q2/, .q2 � 1; q2 � q C 1/ equals 3 or
1 (indeed, p divides .q � 1/ implies q � 1 .mod p/, hence q2 � q C 1 � 1

.mod p/). Correspondingly, p jj q C 1 implies .q2 � q C 1/ � 3 .mod p/;

• .q4 C 1/ divides jGj if G is a Suzuki group, q2 D 22mC1, .q2 � 1; q4 C 1/ D 1;

• .q4�q2C1/ divides jGj if G is a Ree group, q2 D 32mC1, .q4�q2C1; q2�1/ D 1.

Let now G D SL2.q/. Then the maximal nonsplit torus is a cyclic group of order
q C 1. By [Gow], we can take � D Œg; y� to be a generator of such a group. Then
the order of �2 is equal to q C 1 > 2 if q D 2m or .q C 1/=2 > 2 (note that q > 3).
Hence � … NG.h�i/ D NG.T / (because �2 … T ). Also � does not belong to a Borel
subgroup.

Let G D SU3.q2/. Suppose that 3 divides q2 � q C 1. Then q � �1 .mod 3/,
hence q � 2; 5; 8 .mod 9/ and, therefore, 9 does not divide q2 � q C 1. Then there
exists a prime p ¤ 2; 3, p jj q2 � q C 1. By [Gow], we can obtain an element of
order p of the form � D Œg; y�. Then � … NG.h�i/, and � does not belong to a Borel
subgroup.

If G is of Suzuki or Ree type, take p jj q4 C 1 or p jj q4 � q2 C 1, respectively, and
proceed as above.

Thus, in all the cases � … NG.h�i/.

Remark 4.12. The hypotheses of Lemma 4.11 hold for every group from Proposi-
tion 4.1. This can also be checked by explicit calculations with diagonal matrices
(see [Ca2] and [KLM]).

Lemma 4.13. There exist � D Œg; x� and � D Œg; y� such that the subgroup H D
h�; �i is not solvable.
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We choose � D Œg; x� and � D Œg; y� as in the previous lemma.
It is enough to show that H does not contain abelian normal subgroups. Let A

be a maximal abelian normal subgroup of H . We want to check that A is a reductive
group. Suppose p D char.K/ divides the order of A. Then the Sylow p-subgroup of
A is normalized by H . By Lemma 4.6, H � B 0 for some Borel subgroup B 0. This is
impossible in view of Lemma 4.11. Hence the order of A is not divisible by p, and
A is a reductive group.

Let us now view H as a subgroup of GL.V / where V is a finite dimensional vector
space over an algebraically closed field and dim V D 3 (if G D PSL2.q/; q ¤ 2n),
dim V D 2 (if G D SL2.2m/), dim V D 8 (if G D PSU3.q2/), dim V D 4

(case 2B2), or dim V D 7 (case 2G2). Then A is diagonalizable in GL.V / and
not all irreducible components of the A-module V are isomorphic (if A ¤ Z.H/).
Thus there exists a nontrivial homomorphism ' W H ! Sk , k � 3; 2; 8; 4; 7 which
corresponds to permutations of isotypical components (otherwise, A � Z.H/).

Case 1. Let G D PSL2.q/; q ¤ 2m. For q � 25 the statement of the lemma is
checked by explicit computer calculations with MAGMA. Let now q > 25. Recall
that � D t2 or � D t for hti D T 0, where T 0 is a split torus in G. Since the order of T 0
is � .q�1/=2, the order of � is � .q�1/=4 . Since '.�/ lies in S3, we have '.�n/ D 1

for some n � 3. Thus ord �n � .q � 1/=12 > 2. Hence CG.�n/ D T 0 because �n

is a regular semisimple element of T 0. Since '.�n/ D 1, we have �n 2 CH .A/.

Sublemma 4.14. i) With the above notation, suppose there exists h 2 H such that
1. h 2 CH .A/; 2. h 2 T 0; 3. CG.h/ D T 0. Then A 	 T 0.

ii) If, in addition, there exists a 2 A such that CG.a/ D T 0, then NG.hhi/ D
NG.A/ D NG.T 0/.

Proof. The first assertion of the sublemma is obvious: if h 2 CH .A/, then a 2 CG.h/

for any a 2 A. The second assertion follows from Lemma 4.10 applied to S D A

and S D hhi.
On setting h D �n, we conclude that A 	 T 0.
Suppose there exists a generating A such that CG.a/ D T 0. Then by the above

sublemma we have NG.h�ni/ D NG.A/ D NG.T 0/: On the other hand, we have
NG.T 0/ D NG.h�i/. (Indeed, the inclusion NG.h�i/ 	 NG.h�ni/ is obvious, and
the inclusion NG.T 0/ 	 NG.h�i/ follows from the fact that in the groups of Lie
rank 1 the generator w of the Weyl group normalizes t 2 T and hence � .) Thus we
conclude that NG.h�i/ D NG.A/ 
 H , which contradicts the choice of � .

Suppose now there is no a 2 A such that CG.a/ D T 0. Then A D hai is a cyclic
subgroup of order 2 (all other elements of T 0 are regular). Since the order of a equals 2,
we have NG.A/ D CG.A/. On the other hand, CG.A/ D NG.T 0/ D NG.h�i/.
Again we get a contradiction since � belongs to H 	 NG.A/ but does not belong to
NG.h�i/.
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Case 2. Let G D SL2.2m/; m > 1. In this case G has no centre, any element of
T 0 D hti is regular, the order of t equals 2m � 1. Hence the order of �2 equals
2m � 1 > 1. Therefore we can use the same argument as in the preceding case.

Case 3. Let G D PSU3.q2/; q > 3: In this case the semisimple element � equals t

or t Œ2�. The order of the image of � in PSU3.q2/ is � q � 1 (recall that the centre
of SU3.q2/ is nontrivial if and only if q C 1 D 3k for some k). Note that �n is a
nonregular nontrivial element if and only if �n D diag.�1; 1; �1/. Hence if n � 8

and q > 17, the order of �n � .q � 1/=8 > 2 and therefore the image of �m

in PSU3.q2/ is a regular element. Thus we may use the same arguments as in the
previous case. Explicit computer calculations with MAGMA prove the statement for
the remaining cases q � 17.

Case 4. Let G be a Suzuki or a Ree group. Every nontrivial element of T is regular
if G is a Suzuki group [Ca2], and every element of T of order greater than two is
regular if G is a Ree group [KLM]. Note that if G is a Ree group, then the order of a
maximal torus T 0 is equal to 32mC1 � 1. Hence 2 jj jT 0j, 4 − jT 0j. The element � is a
generator or the square of a generator of T 0. In particular, � is not an involution. So
if n is less than the order of �2, then �n is a regular element of a maximal quasisplit
torus.

Consider the permutation '.�/ 2 Sk . First suppose '.�/ D 1. Arguing as in
Case 1, we arrive at a contradiction with the choice of � whenever we can choose
a 2 A such that CG.a/ D A. This is always possible except for the case where G is
a Ree group and A is generated by the (unique up to conjugacy) involution a of G.
But in this latter case we have NG.A/ D CG.a/ D Z=2 � PSL2.32mC1/ [Gor2,
Theorem 3.33 (iv)]. Hence H � PSL2.32mC1/, and we are reduced to Case 1.

Thus we may assume '.�/ ¤ 1. Then the same argument as above with �n

replacing � shows that '.�n/ ¤ 1 for every n < ord �2. This means that the
restriction of ' to h�2i is faithful. But this is impossible since '.�2/ 2 S4 for the
Suzuki groups and the order of '.�/ must be less than or equal to 4. However in
this case ord '.�2/ D ord �2 D 22mC1 � 1 > 4. The same situation takes place for
the Ree groups: ord '.�2/ D ord �2 D .32mC1 � 1/=2 > 12, and therefore '.�2/

cannot belong to S7.
Thus in the Suzuki and Ree groups there are no nontrivial abelian normal subgroups

in H , and hence H is not solvable.

Lemma 4.13 (and hence Proposition 4.1) is proved.

To use Proposition 4.1 as induction base, we have to extend it from the simple
groups of rank 1 to some reductive groups of semisimple rank 1, namely to the case
where G is an extension of a simple group by a diagonal automorphism, because
such groups appear as Levi factors of parabolic subgroups of simple groups of higher
ranks; see Lemma 5.6 below.
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Proposition 4.15. Let G be one of the groups from the list of Proposition 4.1, let h be
a diagonal automorphism of G, and let L denote the corresponding extension. Then
�.L/ D 2 with the sole exception L D PGL2.5/ for which we have �.L/ D 3.

Proof. The exceptional case is not a surprise in light of the isomorphism PGL2.5/ Š
S5. In order not to overload the reader with technicalities, we shall only sketch the
proof. The key point is the following generalization of Gow’s Theorem 4.3:

Theorem 4.16 ([Gord]). Let L D zLF be the group of fixed points of the Frobenius
map F acting on a connected reductive group zL defined over xFp such that the derived
subgroup zL0 is a simple algebraic group, and denote L0 D . zL0/F . Suppose that
.ŒL W L0�; p/ D 1. Let �; g 2 L be semisimple elements such that � is regular,
g 2 L0, g … Z.L/. Then there exist g0 2 Cg and x 2 L such that g0 D Œ�; x�:

Note that the hypotheses of the theorem hold if L0 is generated by the root sub-
groups of L. The proof goes along the same lines as in [Gow].

Furthermore, Lemmas 4.4–4.6 hold for all reductive groups of semisimple rank 1,
and Lemmas 4.8, 4.11, 4.13 admit appropriate modifications. For example, the state-
ment of Lemma 4.8 should be modified as follows:

Lemma 4.17. Let L D HG be a reductive group of semisimple rank 1, where G is
the derived subgroup of L and H is generated by a diagonal automorphism h of G.
Let g 2 L, g … Z.G/, and let t be a generator of T . Suppose t Œ2� is a regular element.
Then there exists x 2 G such that Œg; x� is of the form 
Œ2� where 
 is a generator of
a quasisplit torus of G.

Note that to prove the modified Lemma 4.13, additional MAGMA computations
are needed to treat the reductive groups PGL2.q/ (q � 25) and PGU3.q/ (q � 17).

5. Groups of Lie type of arbitrary rank over fields of large characteristic

Theorem 5.1. Let G be a Chevalley group of rank > 1 over a field K, char.K/ ¤ 2,
K ¤ F3. Then �.G/ D 2.

Proof. We need several lemmas (most of whose statements are independent of the
characteristic of the ground field).

Lemma 5.2. Let … D f˛1; : : : ; ˛rg, r � 2; be a basis of an irreducible root system
R ¤ A2, where the numbering of the simple roots is as in [Bou] in the case R ¤ Er ,
and ˛2 and ˛3 are interchanged in the case R D Er . Denote by wc D w˛1

: : : w˛r
w˛2
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the corresponding Coxeter element. Then wc.˛1/ > 0; wc.˛1/ … … and w�1
c .˛2/ >

0; w�1
c .˛2/ … ….

Proof. Let r D 2. We proceed case by case.
1. R D B2: We have ˛1 D �1 � �2; ˛2 D �2, and

wc.˛1/ D �1 C �2 D ˛1 C 2˛2; w�1
c .˛2/ D �1 D ˛1 C ˛2:

2. R D C2: We have ˛1 D �1 � �2; ˛2 D 2�2, and

wc.˛1/ D �1 C �2 D ˛1 C ˛2; w�1
c .˛2/ D 2�1 D 2˛1 C ˛2:

3. R D G2. Then ˛1 D �1 � �2; ˛2 D �2�1 C �2 C �3. We have

wc.˛1/ D �3 � �2 D 2˛1 C ˛2; w�1
c .˛2/ D 2�3 � �1 � �2 D 3˛1 C 2˛2:

Let r > 3: Note that our numbering of roots gives h˛1; ˛2i D A2. Therefore

w˛1
.˛2/ D ˛1 C ˛2; w˛2

.˛1/ D ˛1 C ˛2; (2)

w˛1
.˛1 C ˛2/ D ˛2; w˛2

.˛1 C ˛2/ D ˛1: (3)

Put ! D w˛3
: : : w˛r

. Since ! has no factors w˛1;2
, we have

!˙1.˛1;2/ > 0: (4)

Moreover,
!˙1.˛1/ D ˛1; !˙1.˛2/ … h˛1; ˛2i: (5)

From (2)–(5) we get

!˙1.˛1 C ˛2/ D ˛1 C ˛2 C � � � ¤ ˛1 C ˛2; !˙1.˛1 C ˛2/ > 0: (6)

From (6) we get

0 < wc.˛1/ D w˛1
!.˛1 C ˛2/ … …;

0 < w�1
c .˛2/ D w˛2

!�1.˛1 C ˛2/ … …:

Lemma 5.3. Let g D u�1 Pw�1
c ; where wc is the Coxeter element from the previous

lemma and u 2 U . Then there exists x 2 G such that Œg; x� D u˛1
u˛2

u0, where
u˛1

¤ 1, u˛2
¤ 1 are the corresponding root subgroup elements and u0 2 U does

not contain root subgroups factors of type u˛1
; u˛2

. Moreover, every u˛1
2 U˛1

can
be obtained in such a way.
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Proof. Let R D A2. Put 1 ¤ x D u0̨
2

2 U˛2
. Then Pw�1

c u0̨
2

Pwc D u0̨
1

2 U˛1
and

Œg; x� D u�1. Pw�1
c u0̨

2
Pwc/uu0�1

˛2
D .u�1u0̨

1
u/u0�1

˛2
D u˛1

u˛2
u0

where u˛1
D u0̨

1
; u˛2

D u0�1
˛2

, and u0 D u0̨
2
Œu0�1

˛1
; u�1�u0�1

˛2
does not contain factors

from U˛1
, U˛2

.
On varying x D u0

˛0
2

, we can get an arbitrary u˛1
.

Let now R ¤ A2. We use Lemma 5.2. Put x D u0̨
2
u0

ˇ
where ˇ D wc.˛1/. Then

Pw�1
c u0̨

2
Pwc D u0

� ; � > 0; � … …, Pw�1
c u0

ˇ
Pwc D u0̨

1
2 U˛1

, and

Œg; x� D u�1. Pw�1
c u0̨

2
u0

ˇ Pwc/uu0�1
ˇ u0�1

˛2
D .u�1u0

�u0̨
1
u/u0�1

ˇ u0�1
˛2

D u˛1
u˛2

u0;

with u0 as required.

Lemma 5.4. Let g D u�1 Pw�1
c , where wc is the Coxeter element from Lemma 5.2.

Then there exists y 2 G such that Œg; y� D u�˛1
u0 where u�˛1

2 U�˛1
, u0 2 U .

Moreover, every u�˛1
2 U�˛1

can be obtained in such a way.

Proof. Put y D u�1�˛1
. We have Pw�1

c u�1�˛1
Pwc D uˇ ; ˇ > 0, and ˇ ¤ ˛1 (this follows

from the definition of wc). Then

Œg; y� D u�1 Pw�1
c u�1�˛1

Pwcuu�˛1
D u�1. Pw�1

c u�1�˛1
Pwc/uu�˛1

D u�1u�1
ˇ uu�˛1

D u�˛1
.u�1�˛1

u�1u�1
ˇ uu�˛1

/ D u�˛1
u0:

The last equality follows from the fact that u�1u�1
ˇ

u belongs to the unipotent radical
of the minimal parabolic subgroup corresponding to the root ˛1.

Lemma 5.5. Let G ¤ A1.2m/ be a quasisimple Chevalley group of rank 1. Then
there exist u1 2 U �, u2 2 U C such that hu1; u2i is not solvable.

Proof. The proof immediately follows from Dickson’s lemma (see [Gor2, Theo-
rem 2.8.4] and [Nu]), where there are exhibited explicit pairs of unipotent elements
u1 2 U �, u2 2 U C such that the subgroup hu1; u2i is not solvable.

The following (obvious) lemma allows us to reduce to groups of small semisimple
rank.

Lemma 5.6. Let P D LV be a parabolic subgroup of a Chevalley group G where L is
a Levi factor and V is the unipotent radical of P . Further, let x1; : : : ; xs; g 2 P , and
let Nx1; : : : ; Nxs , Ng be their images in L=Z.L/ with respect to the natural homomorphism
P ! L ! L=Z.L/. If the group hŒ Ng; Nx1�; : : : ; Œ Ng; Nxs�i is not solvable, then the group
hŒg; x1�; : : : ; Œg; xs�i is not solvable too.
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Now we are able to finish the proof of the theorem. Let X � …, and let X D
X1 [� � �[Xl be the decomposition of X into a disjoint union of subsets Xi generating
irreducible subsystems of R. Put

wXi
D

Y

˛2Xi

w˛ (7)

where the product is taken in any order. Set

wX D
Y

i

wXi
:

(If X D ;, we set wX D 1.) Then wX is a generalized Coxeter element (see [GS])
corresponding to X . Denote PWX D h Pw˛; ˛ 2 hXii, where hXi stands for the root
system generated by X . Since char.K/ ¤ 2, G is not of type 2F4, and we can use
the following

Proposition 5.7 ([GS, Proposition 6]). Suppose G is not of type 2F4, and let g 2
G nZ.G/. Then the conjugacy class of g intersects a generalized Coxeter cell B PwXB

for some X .

Remark 5.8. For G D 2F4 it is not known whether the above statement is true or
not.

Thus we may assume
g D u PwX ; u 2 U:

To finish the proof of Theorem 5.1, we now consider three separate cases. (Note
that if X ¤ ;, we have jXi j ¤ ; for every i .)

Case 1. Suppose X D ;. Then g D hu; u 2 U; h 2 T . We may assume u ¤ 1

(otherwise we can conjugate g with an appropriate element from U ). Conjugating g

with an appropriate element Pw we can get an element g0 D h0u0 in the conjugacy class
of g such that u0 2 U and among root factors of u0 there is a simple root subgroup
factor u˛ .

Indeed, let
u D

Y

˛2M�RC

u˛; u˛ ¤ 1:

Let k D minfht.˛/ j ˛ 2 M g. Then there exists an element w 2 W such that
0 < minfht.˛/ j ˛ 2 w.M/g < k. Thus we can get minfht.˛/ j ˛ 2 w.M/g D 1

for an appropriate w 2 W .
Write g D hu˛u00:
Put P D T hU˙˛iU D Bh Pw˛iB . Now in the parabolic subgroup P we can take

the Levi factor L˛ of rank 1 corresponding to the root ˛. Denote by Ng the image of g in
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xL˛ D L˛=Z.L˛/. First suppose that Ng lies in the derived subgroup G˛ D L0̨ of L˛ .
Since G˛ is a simple group of rank 1, we can apply Lemma 5.6 and Proposition 4.1
and get the result. If Ng does not lie in G˛ , we can use Proposition 4.15 instead of
Proposition 4.1 except for the case p D 5. In this latter case we have G˛ Š PGL2.5/,
and we have a problem only when Ng is a (unique up to conjugacy) 2-radical element
of PGL2.5/. One can show that in fact this case cannot occur. Indeed, this 2-radical
element is an involution which can be represented by the matrix

�
0 1
3 0

� 2 PGL2.5/.
One can easily show that this matrix is not triangulizable which contradicts the form
of g.

Case 2. Suppose jXi j > 1 for every i . Put P D B PWXB . Consider the group Li D
T hU˙˛ j ˛ 2 hXi ii. This is a subgroup of a Levi factor L D T hU˙˛ j ˛ 2 hXii
of P . Let gi D uiwXi

be the i th component of g. We may assume that the order
of simple reflections in (7) corresponds to the order in Lemmas 5.2–5.4. Then by
Lemmas 5.3–5.4, given any u˙˛i

2 U˙˛i
, we have

Œgi ; x� D u˛i1
u00; Œgi ; y� D u�˛i1

u0

for some x; y 2 G and u0; u00 as specified there. It remains to use Lemmas 5.5
and 5.6; note that Lemmas 5.3–5.6 hold for the reductive (not necessarily simple)
groups appearing as Levi factors of parabolic subgroups.

Case 3. Suppose jXi j D 1 for some i . Let P D B PWXB . Then there exists a
simple component Li of a Levi factor of P which is of rank 1. If p > 5, we can use
Lemma 5.6 and Proposition 4.15. To treat the exceptional case p D 5, we reduce to
consideration of the reductive groups of ranks 2, 3, 4 over F5 (see Case 4 at the end
of the next section for a more detailed argument). MAGMA computations show that
these groups contain no nontrivial 2-radical elements, and we are done.

Theorem 5.1 is proved.

6. Groups of Lie type over fields of small characteristic

Proposition 6.1. Let G be a nonsolvable Chevalley group over a field K where either
char.K/ D 2 or K D F3. Then �.G/ � 3.

Proof. Throughout this section we assume G ¤ 2F4.q2/ leaving this case for separate
consideration in the next section.

We have to prove that for every g … Z.G/ one can find x1; x2; x3 2 G such that
the group F D hŒg; x1�; Œg; x2�; Œg; x3�i is not solvable.

By Proposition 4.1, for any nonsolvable rank 1 group G we have �.G/ D 2. Thus
we may and shall assume that rank G > 1.

First suppose char.K/ D 2, jKj > 2. We use the same case-by-case subdivision
as in the proof of Theorem 5.1 above. Cases 1 and 3 are treated in exactly the same
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way (two commutators are enough). Suppose that we are in the conditions of Case 2,
i.e. jXi j > 1 for every i . Arguing as in the proof of Theorem 5.1, we reduce to the case
of L˛=Z.L˛/, where L˛ is a Levi factor of semisimple rank 1. If L˛ is not of type
A1.2m/.m > 1/, we can use the same arguments as in Lemma 5.5 (once again, two
commutators are enough). So we may and shall assume G of type A1.2m/.m > 1/.

Arguing as in the proofs of Lemmas 5.3–5.4, we conclude that there exist x1, x2,
x3 2 G such that Œg; x1� D v 2 U �, Œg; x2� D u0 2 U; Œg; x3� D u 2 U; u … hu0i;
where v, u0, u are arbitrary given elements. Moreover, according to [EG1], [CEG],
we can arrange our choice so that to make s D vu0 a generator of a maximal split torus
of G. Finally, note that u is a regular unipotent element (as all unipotent elements in
SL2.2m/).

Put � D s; � D u. Since v; u0 are involutions, u0 belongs to NG.h�i/. Indeed,
we have u0�u0�1 D u0�u0 D u0su0 D u0vu0u0 D u0v D .vu0/�1 D ��1. Then
� D u does not belong to NG.h�i/ (otherwise we would have u; u0 2 NG.h�i/ and
jhu; u0ij D 4, contradiction to jNG.h�i/j D 2.2m �1/). Further, u and vu0 cannot be
in the same parabolic subgroup (u can belong only to B (Lemma 4.5), but vu0 … B).
Now we can repeat the arguments used in the proof for rank 1 groups over a field of
odd characteristic (see Lemmas 4.11 and 4.13).

Let now jKj D 2 or jKj D 3.

Case 1. X D ;. Then g D uh; u 2 U; h 2 T . We may assume u ¤ 1 (otherwise
we can conjugate g with an appropriate element from U ). Conjugating g with an
appropriate element Pw, we can get g0 D u0h0 in the conjugacy class of g such that
u0 2 U and among root factors of u0 there is a nontrivial simple root subgroup factor
u˛i

(see Case 1 in the end of the proof of Theorem 5.1). Let j̨ be any root adjacent
(in the Dynkin diagram) to ˛i . Then we can reduce to the case of a Levi factor of
semisimple rank 2, as above. For all groups of rank 2 over F2 and F3 we use explicit
MAGMA computations. Table 1 contains the needed data for simple groups. As to
reductive groups of semisimple rank 2, 2-radical elements can only appear in groups
of type C2 (isomorphic to B2) and in PGU4.22/ (isomorphic to PSp4.3/); in all these
cases there are no nontrivial 3-radical elements.

Case 2. jXi j D 2 for some i . Let P be a parabolic subgroup, P D B PWXB . Then
there exists a simple component Li of a Levi factor of P which is of semisimple
rank 2. Then we can use Lemma 5.6 and explicit MAGMA computations for the
groups of rank 2, as in the previous case.

Case 3. jXi j > 2 for some i . In this case, the arguments based on the use of
Lemmas 5.3–5.4 are not enough. Instead we shall use the following more subtle
version of Lemma 5.4. Note that as Lemma 5.4, this lemma holds for the reductive,
not necessarily simple, groups appearing as Levi factors of parabolic subgroups.

Lemma 6.2. Let g D u�1 Pw�1
c ; where wc is the Coxeter element from Lemma 5.2.

Then:
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1) there exists y 2 G such that Œg; y� D u�˛1
u0 where u�˛1

is any prescribed
element from U�˛1

and u0 2 U ;
2) there exists z 2 G such that Œg; z� D f u00 where f 2 hU˛2

; U�˛2
i; f … B and

u00 2 U .

Proof. 1) See Lemma 5.4.
2) Recall that wc D w˛1

: : : w˛r
w˛2

D !w˛2
. Since ! does not contain the factor

w˛2
, we have !.˛2/ D � > 0 and w�1

c .�/ D w˛2
!�1.�/ D w˛2

.˛2/ D �˛2. Put
z D u� 2 U� ; u� ¤ 1. Then Pw�1

c z Pwc D u�˛2
2 U�˛2

. Further, for every 0 < ˇ ¤
˛2 either ˇ C .�˛2/ is not a root or ˇ C .�˛2/ 2 RC. Hence uˇ u�˛2

u�1
ˇ

D u�˛2
v

for some v 2 U . Also, for every u0̨
2

2 U˛2

u0̨
2
u�˛2

u0�1
˛2

2 hU�˛2
; U˛2

i and u0̨
2
u�˛2

u0�1
˛2

… B:

Recall that g D u�1 Pw�1
c . We may assume u D vu0̨

2
where the element v 2 U does

not have factors from U˛2
. We have

Œg; z� D u0�1
˛2

v�1. Pw�1
c u� Pwc/vu0̨

2
u�1

� D u0�1
˛2

v�1u�˛2
vu0̨

2
u�1

�

D u0�1
˛2

u�˛2
u0̨

2
v0u�1

�

for some v0 2 U . Put f D u0�1
˛2

u�˛2
u0̨

2
and u00 D v0u�1

� . We have

Œg; z� D f u00

where f 2 hU˛2
; U�˛2

i; f … B and u00 2 U:

By Lemmas 5.2–5.6, we can come up with the situation when � � G corresponds
to the root system generated by ˛1; ˛2 (in our notation), i.e. � is of type A2 (here
� denotes the derived subgroup of the Levi factor of the corresponding parabolic
subgroup of G). By Lemmas 5.3 and 6.2, we have got the following elements in �

(which are images of commutators of G):

v1 D u�˛1
v0; v2 D f v00; u D u˛1

u˛2
u0;

where 1 ¤ u�˛1
2 U�˛1

, v0 2 U� WD hU˛1
; U˛2

i, f 2 hU�˛2
; U˛2

i, f … B ,
v00 2 U� , 1 ¤ u˛1

2 U˛1
, 1 ¤ u˛2

2 U˛2
, u0 2 U˛1C˛2

.
We have to show that the group hv1; v2; ui is not solvable. Consider the groups

P D hv1; ui � zP D hu�˛1
; U�i; P 0 D hv2; ui � zP 0 D hu�˛2

; U�i
and the natural homomorphisms

� W zP ! zP =Ru; � 0 W zP 0 ! zP 0=R0
u
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where Ru (resp. R0
u) is the unipotent radical of zP (resp. zP 0). We have

�. zP / D zP =Ru Š SL2.p/; � 0. zP 0/ D zP 0=R0
u Š SL2.p/

where p D 2; 3. Obviously, hu�˛1
; u˛1

i Š SL2.p/, hf; u˛2
i Š SL2.p/ if p D 2; 3.

Hence

�.P / D hu�˛1
; u˛1

i Š SL2.p/; � 0.P 0/ D hf; u˛2
i Š SL2.p/; p D 2; 3:

Let us show that

Ker � \ P ¤ 1; Ker � 0 \ P 0 ¤ 1:

Recall that u is regular, so if jKj D 2, then u2 2 U˛1C˛2
, and thus the order of u

equals 4. Hence u2 2 Ker � \ P (u2 2 Ker � 0 \ P 0). Let now jKj D 3. Take h 2 P

(or h 2 P 0) such that �.h/ (or � 0.h// equals diag.�1; �1/ 2 SL2.3/. Then explicit
matrix calculations show that

Œh; u� D u˛2
u˛1C˛2

2 Ker � \ P .or Œh; u� D u˛1
u˛1C˛2

2 Ker � 0 \ P 0/:

We proved that Ker � \ P (resp. Ker � 0 \ P 0 ) is not trivial. Let us show that
Ker � \ P D Ker � (resp. Ker � 0 \ P 0 D Ker � 0). Note that Ker � Š K2 is a 2-
dimensional vector K-space on which P acts by conjugation. Since �.P / Š SL2.p/,
we have only one nonzero orbit of P in Ker � Š K2. Hence Ker � \ P D Ker � Š
K2, and therefore P D zP . By the same arguments, Ker � 0 \ P 0 D Ker � 0 and
P 0 D zP 0. Hence

P D hv1; ui D zP D hu�˛1
; U�i; P 0 D hv2; ui D zP 0 D hu�˛2

; U�i:
Thus, U� ; u�˛1

; u�˛2
are all contained in hv1; v2; ui, and therefore

� D hv1; v2; ui Š SL3.p/:

Case 4. jXi j D 1 for every i . Since for all groups of rank 1 or 2 the proposition has
been checked, we may assume rank G > 2.

First suppose that the root system corresponding to G does not contain D4, i.e. is
of one of the types Ar , Br , Cr , F4. Suppose Xi D f j̨ g, where j is the number of the
root in the standard numbering. Note that by construction of X , neither j̨ �1, nor j̨ C1

belong to X . Suppose that j̨ C2 … X or j̨ �2 … X (in particular, this assumption holds
if j̨ ˙2 does not exist). Then the subgroup L of G generated by U˙ j̨

and U˙ j̨ C1

(or U˙ j̨ �1
) commutes with the elements U˙ˇ for every ˇ 2 X n Xi . Thus we are

reduced to the group L of rank 2, and the statement is proved. Let us now suppose
that j̨ C2 2 X . Then we can consider the group L D hU˙ j̨

; U˙ j̨ C1
; U˙ j̨ C2

i
which commutes with the groups U˙ˇ , ˇ 2 X n .Xi [ f j̨ C2g/. Hence we may
assume rank G D 3 and g D Pw˛1

Pw˛3
u for some u 2 U . Here we have to check
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the groups A3.p/, B3.p/, C3.p/, 2D4.p2/, 2A5.p2/, 2A6.p2/, p D 2; 3. We can
exclude 2D4.p2/, 2A5.p2/, 2A6.p2/, p D 2; 3, because these groups have a root
subgroup G˛; ˛ D ˛1 or ˛ D ˛3, which is isomorphic to SL2.p2/, and we can use
our considerations for rank 1. Since A3.2/ Š A8, B3.2/ Š C3.2/; it remains to
calculate in the groups A3.3/, B3.2/, B3.3/, C3.3/: These groups are checked by
explicit MAGMA calculations. Table 1 contains the results for the simple groups.
For the reductive groups of type A3 we have PGL4.2/ Š PSL4.2/ Š A8, and we
only have to compute PGL4.3/. This group contains no nontrivial 2-radical elements.

Suppose now that the root system of G is of type Dr or Er . Let ˇ be the root
corresponding to the node with 3 edges on the Dynkin diagram. First suppose ˇ 2 X .
Then we can take � 2 … which is joined with ˇ and disjoint from all other roots.
As ˇ 2 X , we have � … X , and L D hU˙ˇ ; U˙� i commutes with every U˙ı ; ı ¤
ˇ; ı 2 X . Thus we may reduce our considerations to groups of rank 2. Let now
ˇ … X . Suppose r > 4. If none of ˛1, ˛2 belongs to X , we are reduced to the case
of type A2 treated above. If not, we are reduced to the case of groups of rank 1. So
it remains to consider the case r D 4, i.e., the case of the groups D4.p/; p D 2; 3:

This is checked by MAGMA (see Table 1).

7. Groups 2F4.q2/

Recall that in light of Remark 5.8 we have to consider the groups of type 2F4.q2/

separately.
If R is a root system and GR is a connected reductive algebraic group with root

system R defined over some algebraically closed field, we denote by zGR the uni-
versal cover of the derived group of GR. If it is clear what is the root system under
consideration, we often drop the subscript R. In particular, throughout this section
we denote by G the twisted Chevalley group 2F4.q2/, q D p

22mC1, and by zG the
simple algebraic group of type F4 defined over F2 (identifying it with its group of
xF2-points). We have G � zG. Correspondingly, tilde always indicates to subgroups
of zG. We denote K D Fq2 .

Theorem 7.1. Let G D 2F4.q2/. Then �.G/ D 2.

Proof. For m D 0, the group G is not simple; its derived subgroup (the Tits group)
is checked by MAGMA (see Table 1). So throughout below we assume m > 0.

Let 1 ¤ g 2 G. First suppose g 2 P for some parabolic subgroup P . Any
parabolic subgroup is conjugate to a standard parabolic subgroup (see [Ca2]). We may
thus assume P to be a standard parabolic subgroup. We have P D LV; V D Ru.P /.
We may assume that the image of g in P=Z.L/V is not trivial (as above) and reduce
the consideration to the group L=Z.L/ of semisimple rank 1.



108 N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin

Hence we may assume that g does not belong to any parabolic subgroup P . Then
(see [Ca2, 6.4.5]) the order of CG.g/ is prime to p D 2 (and so is an odd number).
Hence g is a regular semisimple element, and by [Gow] we can get representatives
of any two semisimple conjugacy classes of G in the form � D Œg; x�; � D Œg; y�.

Put H D h�; �i: Suppose H is solvable. Denote by I D fp1; : : : ; pkg some set
of prime divisors of jH j and by HI a Hall subgroup of H corresponding to I . Let A

be a maximal normal abelian subgroup of HI .

Let us now consider two separate cases: m � 2 and m D 1.

General case q D p
22mC1, m � 2. We have [Ca2, 2.9, p. 76]

jGj D q24.q2 � 1/.q6 C 1/.q8 � 1/.q12 C 1/

D .q2/12.q2 � 1/2.q2 C 1/2..q2/2 C 1/2..q2/2 � q2 C 1/..q2/4 � .q2/2 C 1/;

where q D p
22mC1.

Lemma 7.2. Let T be a maximal quasisplit torus of G. Then there exists t 2 T such
that t is a regular element of zG, i.e. C zG.t/ D zS is a maximal torus in zG.

Proof. Let zS be a maximal torus of zG containing T . Let ˛ be a positive root of
R D F4 corresponding to zS , and let ˛T W T ! xF�

2 be the restriction of ˛ to T .
Let us show that

Im ˛T D K� (8)

for every ˛ 2 R.F4/. We have the following simple root system

˛1 D �2 � �3; ˛2 D �3 � �4; ˛3 D �4; ˛4 D 1

2
.�1 � �2 � �3 � �4/;

and
T D hh1.t/ D h˛1

.t/h˛4
.t� /; h2.s/ D h˛2

.s/h˛3
.s� /i

where s; t 2 K�; 2�2 D 1. Further,

�1.h1.t// D t� ; �2.h1.t// D t1�� ; �3.h2.s// D s; �4.h1.t// D t��

(note that 2.1 � �/.1 C �/ D 2 � 2�2 D 2 � 1 D 1),

.�1 C �2/.h1.t// D t; .�1 � �2/.h1.t// D t2��1

..1 � 2�/.1 C 2�/ D 1 � 4�2 D 1 � 2 D �1/,

.�1 ˙ �3/.h2.s// D s˙1; .�1 ˙ �4/.h2.s// D s˙1˙2� ;

.�2 ˙ �3/.h2.s// D s˙1; .�2 ˙ �4/.h2.s// D s˙1˙2� ;

.�3 C �4/.h2.s// D s2� ; .�3 � �4/.h2.s// D s2�2� ;
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1

2
.�1 ˙ �2 ˙ �3 ˙ �4/.h2.s// D s˙1˙� or s˙� :

Thus we have (8). From (8) we get

j Ker ˛T j D .q2 � 1/

and ˇ̌
ˇ

[

˛2RC.F4/

Ker ˛T

ˇ̌
ˇ < .q2 � 1/ � 24 < .q2 � 1/2: (9)

From (9) we conclude that the set M D T n S
˛2RC.F4/ Ker ˛T is not empty.

Any element t 2 M is regular. The lemma is proved.

Lemma 7.3. There exists a prime p ¤ 2; 3, .p; q2 � 1/ D 1 such that p jj q2 C 1 or
p jj q4 C 1.

Proof. This follows from the fact that .q2 �1; q2 C1/ D 1 and .q2 C1; q4 C1/ D 1.

Lemma 7.4. Let R be a root system, and let GR be a connected reductive group.
Further, let A 	 GR be a finite abelian subgroup consisting of semisimple elements
and such that .jAj; jW.R/j/ D 1. Then there exists a maximal torus S in GR such
that A 	 S .

Proof. Let GR D S 0G0
R, where S 0 � Z.GR/ is a torus of GR and G0

R is semisimple.
Hence Z.GR/ D S 0A0, where A0 D Z.G0

R/ is a finite abelian group. Suppose
A 	 Z.GR/. Since .jAj; jW.R/j/ D 1, we have .jAj; jA0j/ D 1 (because jW.R/j is
divisible by jA0j), and hence A � S 0. Suppose a … Z.G/ for some a 2 A. Let S be
a maximal torus of GR containing a. By [Ca2, Theorem 3.5.3], we have

CGR
.a/ D hS; U˛; Pw j ˛.a/ D 1; w 2 CW.R/.a/i;

CG.a/0 D hT1; U˛ j ˛.a/ D 1i:
Hence jCG.a/=CG.a/0j divides jW.R/j, and therefore A � CG.a/0 ¤ GR. To finish
the proof, we use induction by jRj.

Before going over to the proof of the assertion of the theorem, we shall describe
some general construction (parallel to that of Lemma 4.10).

Let GR be a connected semisimple group corresponding to a root system R, and
let S be a maximal torus of GR. Further, let M 	 S , let g 2 NGR

.M/, and let
g D u Pwv be a Bruhat decomposition of g in GR with respect to a Borel subgroup
containing S . We may assume Pwv Pw�1 2 U �. Let s 2 M . Then

gsg�1 D u Pwvsv�1 Pw�1u�1 D uw.s/v0u�1 D s0 2 M 	 S;
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where v0 2 U �. Hence w.s/v0 D u�1s0u D s0Œs0�1; u�1�. Since Œs0�1; u�1� 2
U; v0 D Œw.s/�1; v� 2 U �, we have Œs0�1; u�1� D 1; Œw.s/�1; v� D 1; s0 D w.s/.
Since we can consider any s 2 M , we have u; v 2 CGR

.M/. Now we have a
homomorphism

� W NG.R/.M/ ! W.R/

with
Ker � D CG.R/.M/0: (10)

We can now go over to the proof of Theorem 7.1.
Set � D t , where t is chosen as in Lemma 4.11. Let � be an element of order p

(it exists by Lemma 7.3). Denote by I the set consisting of p and all prime divisors
of q � 1. Since all Hall subgroups HI are conjugate and each element of order p

belongs to one of those, we may assume t 2 HI and some element � 0 of order p is
also in HI .

Note that 2; 3 − .q2 � 1/. Since jW.F4/j D 2732, we have �; � 0 2 C zG.A/0 (by
(10) and Lemma 7.4). Then A 	 T 	 zT where zT is the unique maximal torus of zG
containing T (recall that T contains a regular semisimple element of zG).

Denote by R � R.F4/ the minimal (with respect to inclusion) root subsystem
such that

�; � 0 2 GR D h zT ; U˛ j ˛ 2 Ri:
First note that R ¤ R.F4/ because otherwise we would have A 	 Z.F4/ D 1

(recall that H � C zG.A/0). Second, note that R ¤ ; because � 0 … T D zT F . Set
G0

R D hU˛ j ˛ 2 Ri. Then GR D SG0
R where S � zT \ Z.GR/ is a subtorus of zT .

Then Z.GR/ D SZ.G0
R/. Since the orders of �; � 0 are prime to 2; 3, we have �; � 0 …

Z.G0
R/, and hence so are the orders of their images N�; N� 0 in xG0

R D G0
R=.Z.G0

R/\S/.
Now we have a semisimple group xG0

R with a maximal torus xT D zT =S which contains
the solvable group xHI D hN�; N� 0i ¤ 1, where N� 2 xT is a regular element. Let A1 be
a maximal abelian normal subgroup of xHI . Then A1 	 xT and A1 ª Z. xG0

R/ (note
that 2; 3 are the only primes dividing both jW.R/j and Z. xG0

R/). By (10), we have

N�; N� 0 2 C xG0
R

.A1/0 D h xT 0; Uˇ j ˇ.A1/ D 1i D h xT 0; Uˇ j ˇ 2 R0 ¤ Ri:

Hence
�; � 0 2 h zT ; Uˇ j ˇ 2 R0i:

This is a contradiction with the choice of R.

Let us now consider the remaining special case m D 1.

Case q D p
23. Here jGj D 236 � 35 � 52 � 72 � 132 � 19 � 37 � 109.

Let jh�ij D 109, jh�ij D 37, and let H0 	 H be a Hall subgroup of H of order
37 � 109. Since .37; 109 � 1/ D 1, the group H0 D hhi is cyclic of order 37 � 109.



A commutator description of the solvable radical 111

Let, as above, zG denote the simple algebraic group of type F4 over the field F2,
and let F be the Frobenius map of G such that G D zGF . Since h 2 zGF , the
centralizer C zG.h/ is an F -stable connected reductive group ([Ca2, 3.5.6]) which, in
turn, contains an F -stable maximal torus zT (which is also a maximal torus of zG).
Hence h 2 zT F . But

j zT F j D
4Y

iD1

.q � �i /

where each �i is a root of unity [Ca2, 3.3.5]. Since

jq � �i j � q C 1 D p
8 C 1 � 4;

we conclude that j zT F j � 256 < 37 � 109. Contradiction.
The theorem is proved.

8. Groups generated by 3-transpositions

In this section we show that the estimate of Proposition 6.1 is sharp as follows from
the case of groups generated by 3-transpositions (see [Fi], [As] for definitions and
notation).

Definition 8.1. [Fi] Let G be a finite group generated by a class D of conjugate
involutions such that any pair of non-commuting elements of D generates a dihedral
group of order 6; then D is a class of conjugate 3-transpositions of G.

Equivalently, the product of any two involutions from D is of order 1, 2, or 3.

Proposition 8.2. Let G be a finite group generated by a class D of conjugate 3-trans-
positions. Then any element of D is 2-radical.

Proof. This is an immediate consequence of [Fi, Corollary 1.6].

Corollary 8.3. Let G be one of the following groups:

� a symmetric group Sn;

� a symplectic group Sp.2n; 2/.n � 2/;

� an orthogonal group O�.2n; 2/ for  2 f�1; 1g and n � 2;

� a unitary group PSU.n; 2/.n � 4/;

� an orthogonal group O�;�.n; 3/ for  2 f�1; 1g, � 2 f�1; 1g, and n � 4;

� one of Fischer’s groups Fi22, Fi23, Fi24.

Then G contains a nontrivial 2-radical element.
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Proof. This immediately follows from the above proposition taking into account the
fact that all the listed groups are generated by a class of conjugate 3-transpositions [Fi].

9. Sporadic groups

Proposition 9.1. Let G be a sporadic simple group. Then �.G/ D 3 for G D Fi22,
Fi23 and �.G/ D 2 for all the remaining groups.

More precisely, we shall prove that if g ¤ 1 is a 2-radical element of a sporadic
simple group G, then G D Fi22 or G D Fi23 and g is a 3-transposition. (In the latter
cases MAGMA computations show that g is not a 3-radical element.)

The proof goes case by case. Apart from the theoretical arguments presented
below, we used MAGMA for rechecking them (in all the cases except for the Monster).
For larger sporadic groups we had to replace most standard MAGMA procedures
with our own ones in order to avoid storing the whole group and large subgroups. In
particular, to check whether a subgroup under consideration is not solvable, we used
the Hall–Thompson criterion [Th]: a group H is nonsolvable if and only if it contains
nonidentity elements a, b, c of pairwise coprime orders such that abc D 1.

Both in the theoretical proof and in the computer-aided one, we rely on the ATLAS
classification of conjugacy classes of maximal cyclic subgroups [Wi].

Let us now prove the proposition. The exposition below is sometimes sketchy, we
omit some cases where the proof uses arguments similar to earlier ones.

The main idea is very simple. We first consider the elements of prime order. It
turns out that in most cases one can include a given element g of prime order p of
a group G in its proper simple subgroup H . If there is a single conjugacy class of
cyclic subgroups of order p, it is enough to indicate H whose order is divisible by p.
In the case where there are several conjugacy classes of cyclic subgroups of order p,
more subtle arguments are needed. We either use ATLAS information on elements h

of order mp for some m whose powering gives g and try to include h in some proper
simple subgroup H , or use some information on subgroup structure of G from the
literature. Finally, if g is not contained in any proper simple subgroup of G, it happens
that its normalizer N D NG.g/ is the unique maximal subgroup of G containing g.
In that case, one can take x 2 N and get a D Œg; x� 2 hgi, and take y such that
b D Œg; y� … N . Then ha; bi D G is not solvable.

If an element g under consideration is of a composite order mp, we note that it
belongs to the centralizer of h D gm which is of prime order p. It remains to use the
information from ATLAS on the centralizers of elements of prime orders in sporadic
groups. It turns out that in many cases the structure of CG.h/ is as follows: it contains
a normal subgroup Z of small exponent such that the quotient G0 D CG.H/=Z is
either a smaller simple group or an extension of a simple group by a group of small
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exponent. Thus if g is a 2-radical element of sufficiently large exponent, then its
image in G0 is a nonidentity 2-radical element, and we arrive at a contradiction by
induction. In some cases, elements of small exponents require separate consideration.

Below we mostly present theoretical arguments as above for elements of prime
orders. We present a more detailed proof for the baby-monster B and a complete
proof for the monster M .

We follow the subdivision of sporadic groups from the ATLAS.

Mathieu groups: M11; M12; M22; M23; M24:

M11. The elements of orders 2, 3 and 5 are included in A5, and those of order 11
in PSL2.11/.

M12. Any element of order 11 is included in PSL2.11/. All the remaining ones,
of types 2A, 2B, 3A, 3B, 5A, are included in A5 (according to [CCNPW, p. 33], M12

contains A5’s of types (2A, 3B, 5A) and (2B, 3A, 5A)).

M22. The elements of orders 2, 3, 5 and 7 are included in A7, and the elements
of order 11 are included in PSL2.11/.

M23. The elements of orders 2, 3, 5 and 11 are included in M11. The elements
of order 7 are contained in A7, and the normalizer N D 23 � 11 of an element g of
order 23 is the unique maximal subgroup of M23 containing g, so we can apply the
argument mentioned above.

M24. Any element of order 23 is included in PSL2.23/. The elements of order 11
are included in M23, and the elements of orders 7 and 5 are contained in in PSL2.7/

and in A5, respectively. According to [CCNPW, p. 96], M24 contains A5’s of types
(2B, 3A, 5A) and (2B, 3B, 5A), so it remains to consider the class 2A. Fix an element z

of type 2B. We have CG.z/ D E26 �S5, where E26 is an elementary abelian subgroup.
Let g be any involution of A5 � S5. Since g centralizes z, it cannot be conjugate
to z, hence g is of type 2A, and we are done.

Leech lattice groups: HS, J2, Co1, Co2, Co3, McL, Suz.

Here we shall be a little sketchy describing only the largest Conway group Co1

among the three ones.

HS. The elements of orders 3,7 and 11are included in M22. According to [CCNPW,
p. 80], there is an M11 < HS containing elements of types 2A and 5C, and there is
an A5 containing elements of type 2B and 5A. The remaining class 5B also has a
representative lying in A5 [GLS, p. 274].

J2. Any element of order 7 can be included in PSL3.2/. According to [CCNPW,
p. 42], there are A5’s of types (2B, 3A, 5CD), (2A, 3B, 5AB), thus including the
elements of all the other classes.

McL. There are no problems with the elements of orders 2, 7 and 11, they can
all be included, say, in M11. By [CCNPW, p. 100], there is a subgroup PSU3.52/
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containing representatives of 3B, 5A and 5B. It remains to consider the class 3A. Take
an element of order 9 in PSU4.32/. According to [Wi], its cube belongs to 3A.

Suz. Any element of order 13 belongs to a maximal subgroup G2.4/, and hence to
an even smaller subgroup PSL2.13/. The elements of orders 7 and 11 belong to M11.
On [CCNPW, p. 131] we find an A7 containing representatives of 2B, 3C and 5B, a
PSL3.3/ containing representatives of 3B, and a PSL2.25/ containing representatives
of 5A and 5B. It thus remains to consider the classes 2A and 3A. To treat 2A, take an
element of order 8 in M11, then its cube is of type 2A [Wi]. Similarly, the fifth power
of an element of order 15 in J2 is of type 3A.

Co1. The elements of orders 23 and 11 belong to M23, and those of order 13 are
included in Suz. The classification of A5’s [Wi83] gives subgroups of types (2B, 3A,
5A), (2C, 3A, 5B), (2C, 3B, 5C), (2B, 3B, 5A), (2B, 3A, 5A). According to [Cu], the
classes 7A and 7B have their representatives in A7 and PSL2.7/, and the class 3D, as
3A, belongs to A5. It remains to consider 2A. One can take an element of order 18 in
Co3, its 9th power is of type 2A.

Monster sections: He, HN , Th, Fi22, Fi23, Fi024, B , M .

Here we shall skip HN (which can be treated using [CCNPW, p. 166] and [NW])
and two larger Fischer groups.

He. The elements of order 17 belong to PSp4.4/, and hence to PSL2.16/. The
elements of order 5 lie in A5. We have to consider the classes 2A, 2B, 3A, 3B, 7A, 7C
and 7D (7B is a power of 7A and 7E is a power of 7D). First we use the information
on (2,3,7)-subgroups from [CCNPW, p. 104]: a subgroup of type (2A, 3B, 7C) is
contained in 7 W 3 � PSL3.2/ (and hence 2A belongs to PSL3.2/), and a subgroup of
type (2B, 3A, 7AB) is contained in S4 � PSL3.2/ (and hence 7A belongs to PSL3.2/

too). Next, we use the information on the centralizers of involutions [GLS, p. 277].
Since 7D and 3B commute with 2B, they both belong to PSL3.2/. Since 3A commutes
with 2A, it belongs to the centralizer of 2A, and hence to PSL3.4/. As to 2A and 2B,
the same argument as in the case M24 applies, and we conclude that 2A belongs to
PSL3.2/ and 2B belongs to PSL3.4/. Finally, since 7C commutes with 3A, it belongs
to the centralizer of 3A and hence to A7.

Th. The normalizer N D 31 � 15 of an element g of order 31 is the unique
maximal subgroup of Th containing g, so we can proceed as in the case of an element
of order 23 in M23. Any element of order 19 belongs to PSL2.19/, the elements of
order 13 belong to 3D4.23/, and the elements of orders 2, 5 and 7 are contained in
A7. It remains to treat three classes of elements of order 3. Take an element of order
21 in PSL5.2/, its 7th power is of type 3A. Taking elements of orders 9 and 15 in
21C8 � A9, we obtain 3B and 3C as their 3rd and 5th power, respectively.

Fi22. First recall that this group does contain 2-radical elements, namely, those
of the class 2A (3-transpositions), see Section 8 above. Any element of order 13
belongs to O7.3/, and hence to PSL3.3/. The elements of orders 5, 7, 11 lie in M22.
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We have to consider the classes 2B, 2C, 3A, 3B, 3C, 3D. According to [CCNPW,
p. 163], there is an M12 containing representatives of 2B, 2C, 3C, 3D. We include 3A
in A10 representing it as the 5th power of an element of order 15 in A10. Similarly,
we represent 3B as the 6th power of an element of order 18 in OC

8 .2/.

B . The normalizer N D 47 �23 of an element g of order 47 is the unique maximal
subgroup of B containing g, so we can proceed as above. The cases of elements of
orders 31, 23, 19, 17, 13, 11 and 7 are easy: those of order 31 belong to PSL2.31/,
those of order 19 belong to Th, and all the remaining ones can be included, say, in
Fi23. Furthermore, we use the classification of A5’s [Wi93, Theorems 5.1, 5.2]: in
particular, there are subgroups of types (2B, 3A, 5A), (2D, 3B, 5B) and also those
containing 2C. It remains to consider 2A. We get it as the 13th power of an element
of order 26 in Fi23.

Let now g be an element of composite order mp, m � p. As p � 5, it suffices
to use information on the centralizers of the elements of orders 2, 3 and 5. We have
CB.2A/ D 2 � .2E6.22// W 2, CB.2B/ D 21C22

C � Co2, CB.2C/ D .22 � F4.2// W 2,
CB.2D/ D 29 � 216 � OC

8 .2/ � 2, CB.3A/ D 3 � Fi22 W 2, CB.3B/ D 31C8
C W 21C6� �

PSU4.22/, CB.5A/ D 5 � HS W 2, CB.5B/ D 51C4
C W 21C4� � A5.

First suppose g is of odd order mp, m > p. If p D 3, then g centralizes either
3A or 3B. As the exponent of the extraspecial group 31C8

C equals 3, we get the image
of g of order at least 5 in either Fi22 or PSU4.22/ whose 2-radical elements can only
be of order 2 or 3. Thus g is not 2-radical. (Note that this argument does not work
for the elements of order 9 which will be considered separately.) If p D 5, we have
to consider the elements of orders 35 and 55 which all centralize 5A. Hence each of
them maps to a nonidentity element of HS, and we are done. The elements of order 25
centralize 5B. As the exponent of the extraspecial group 51C4

C equals 5, each of them
maps to a nonidentity element of A5 which cannot be 2-radical. To finish with the
case of odd order, it remains to consider the elements of order 9. According to [Wi],
both 9A and 9B can be represented as the 4th power of an element of order 36. Hence
any element of order 9 centralizes either 2B or 2D and thus belongs to either Co2 or
OC

8 .2/, and we are done.
Suppose now g is of even order 2m so that g centralizes an involution of B . If

m is odd, then the image of g in the simple group involved in the centralizer of the
corresponding involution is nonidentity, and we are done. So assume m to be even,
i.e. g is of order 4n. The elements of order 4 were checked by MAGMA, so suppose
n > 1. According to [Wi], there are no elements of order 4n, n > 1, powering to
2A. If g centralizes 2B, then it maps to a nonidentity element of Co2, and we are
done. According to [Wi], the elements of order 4n, n > 1, powering to 2C are 12T,
20H and 52A, they were checked separately by MAGMA. Finally, suppose that g

centralizes 2D. If n > 2, then taking into account that CB.2D/ < 29 � 216 � PSp8.2/,
we conclude that g maps to a nonidentity 2-radical element of order greater than 2 in
PSp8.2/ which contradicts to MAGMA computations in that group. Thus it remains
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to check the elements of order 8 powering to 2D, i.e. 8G, 8J, 8K, 8M and 8N. This
was also done by MAGMA.

M . In this case no additional MAGMA computations were needed, we only used
the results for smaller groups. Our approach mimics the case of the baby-monster.

The normalizer N D 41 � 40 of an element g of order 41 is the unique maximal
subgroup of M containing g, so we can proceed as above. Relying on the existing
information on maximal subgroups of M [BrW], we include the elements of orders 71,
59, 47, 31, 29, 23, 19, 17, 11 in PSL2.71/, PSL2.59/, B , B , Fi024, B , B , B , B ,
respectively. Representatives of all the remaining classes appear in [No]: Table 1 on
p. 201 gives 13A and 13B lying in PSL3.3/, in Section 5 there are exhibited 7A and
7B lying in PSL3.2/, and the list of A5’s in Table 3 on p. 202 contains representatives
of all classes of elements of orders 2, 3 and 5.

Let now g be an element of composite order mp, m � p. Our arguments are similar
to the previous case. As for B , we have p � 5, and it suffices to use information
on the centralizers of the elements of orders 2, 3 and 5. We have CM .2A/ D 2 � B ,
CM .2B/ D 21C24

C � Co1, CM .3A/ D 3 � Fi024, CM .3B/ D 31C12
C � 2 Suz, CM .3C/ D

3 � Th, CM .5A/ D 5 � HN , CM .5B/ D 51C6
C W 2J2.

First suppose g is of odd order mp, m � p. If p D 3, then g centralizes either
3A, or 3B, or 3C. As the exponent of the extraspecial group 31C12

C equals 3, we get
the image of g of order at least 5 in either Fi022, or Suz, or Th which do not contain 2-
radical elements. Thus g is not 2-radical. If p D 5, we have to consider the elements
of orders 25, 35, 45, 55, 95 and 105. Any of those centralizes either 5A or 5B and
hence maps to a nonidentity element of either HN or J2. (We use the fact that the
exponent of the extraspecial group 51C6

C equals 5.)
If g is of even order 2m, it centralizes either 2A or 2B. If m > 2, then g maps to a

nonidentity element of either B or Co1 which do not contain 2-radical elements. Thus
g is not 2-radical and we are done. Let now g be of order 4. Any 4A-element is the
11th power of 44A and hence belongs to B . The square of a 4B-element belongs to
2A [Wi]. Therefore 4B centralizes 2A and thus maps to a nonidentity element of B .
According to [Wi], the 4th power of any element of order 16 belongs to 4C, hence 4C
lies, say, in Fi024. Finally, 4D is the cube of 12J whose 4th power is 3C. Therefore 12J
centralizes 3C and hence so does 4D. Thus 4D belongs to Th, and we are done.

Pariahs: J1, J3, J4, Ru, O’N ; Ly.

J1. The normalizer N D 19 � 6 of an element g of order 19 is the unique maximal
subgroup of J1 containing g, and the above argument applies. If the order of g

equals 7, its normalizer N equals 7 � 6 and is also a maximal subgroup of J1 but is
contained in another maximal subgroup of order 168. However, taking x 2 N and y

of order 3, we get a D Œg; x� 2 hgi and b D Œg; y� of order 15. Since b is outside
of both above mentioned maximal subgroups, we have ha; bi D J1. The elements of
order 11 belong to PSL2.11/, and the elements of orders 2, 3 and 5 belong to A5.
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J3. The elements of orders 2 and 5 belong to A5, those of orders 17 and 19 belong
to PSL2.17/ and PSL2.19/, respectively. Taking an element of order 9 in PSL2.17/,
we obtain 3B as its cube, and taking an element of order 15 in PSL2.16/, we obtain
3A as its 5th power.

J4. For p D 43 or 29, the normalizer of g of order p is the unique maximal
subgroup containing g, and we apply the above argument. The elements of order 37
lie in PSU3.112/. Elements of order 31 are contained in PSL2.32/, and elements of
orders 3, 5, 7, and 23 lie in M24. It remains to consider the classes 2A, 2B, 11A,
11B. The centralizers of each of 2A and 2B contain M22, and we embed both 2A
and 2B in M22 using the same argument as in the case M24 above. According to [J,
Propositions 22 and 26], we have 11A2 C (2B) and 11B2 C (2A), so they are both
included in M22 too.

Ru. The elements of orders 29 and 13 lie in the corresponding PSL’s, and those
of orders 7 and 3 lie in A7. The information on alternating subgroups in [CCNPW,
p. 126] gives 2B, 5A and 5B contained there. 2A appears as the square of an element
of order 4 in A6.

O’N. The elements of order 31 lie in PSL2.31/ and those of order 19 are contained
in PSL3.7/. Elements of orders 11, 5, 3 and 2 lie in M11. As to the classes 7A and 7B,
the first appears as the square of an element of order 14 in PSL3.7/, and the second
belongs to PSL2.7/ [Wi85, Section 4, p. 471].

Ly. For p D 67 and 37 we use the same maximal subgroup argument as above.
The elements of order 31 belong to G2.5/, and hence to PSL3.5/, and those of orders
11, 7 and 2 belong to A11. The classification of A5’s [Wi84, Section 6, p. 407] shows
that 3B and 5B are included in A5. Both 3A and 5A lie in G2.5/: they can be obtained
as the 3th power of an element of order 9 and the 4th power of an element of order 20,
respectively.

To finish the proof of the proposition, it remains to check all small groups of Lie
type appearing in the above arguments. This was done by straightforward computa-
tions.

Proposition 9.1, and hence Theorem 1.15 and Theorem 1.4, are proved.
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