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Abstract. This paper is the second in a series in which the authors study the conjugacy decision
problem (CDP) and the conjugacy search problem (CSP) in Garside groups.

The ultra summit set USS.X/ of an element X in a Garside group G is a finite set of
elements in G, which is a complete invariant of the conjugacy class of X in G. A fundamental
question, if one wishes to find bounds on the size of USS.X/, is to understand its structure. In
this paper we introduce two new operations on elements Y 2 USS.X/, called ‘partial cycling’
and ‘partial twisted decycling’, and prove that if Y; Z 2 USS.X/, then Y and Z are related by
sequences of partial cyclings and partial twisted decyclings. These operations are a concrete
way to understand the minimal simple elements whose existence follows from the convexity
property of ultra summit sets.

Using partial cycling and partial twisted decycling, we investigate the structure of a directed
graph �X determined by USS.X/, and show that �X can be decomposed into ‘black’and ‘grey’
subgraphs. There are applications relating to the authors’ program for finding a polynomial
solution to the CDP/CSP in the case of braids, which is outlined in the first paper of this series.
A different application is to give a new algorithm for solving the CDP/CSP in Garside groups
which is faster than all other known algorithms, even though its theoretical complexity is the
same as that of the established algorithm using ultra summit sets. There are also applications
to the theory of reductive groups.
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1. Introduction

Garside groups were introduced by P. Dehornoy and L. Paris in [11]. Roughly speak-
ing, they are groups that satisfy the same kind of properties that were shown to hold in
Artin’s braid groups fBn; n D 1; 2; : : : g in the foundational paper of F. Garside [17],
and soon afterwards in spherical Artin–Tits groups by Brieskorn and Saito [7]. More
precisely, they are groups admitting a lattice structure, invariant under left multipli-
cation, and satisfying some additional conditions. The focus of this paper and of its
companions [3] and [4] is on gaining an improved understanding of the known algo-
rithmic solutions in Garside groups of the conjugacy decision problem (CDP), that is,
to decide, for arbitrary X; Y 2 G whether there exists Z such that Y D Z�1XZ; and
also the conjugacy search problem (CSP), that is, to find Z as above when X and Y

are known to be conjugate.
In the manuscript [18] the second author of this paper introduced a complete

invariant of the conjugacy class of an arbitrary element X in an arbitrary Garside
group G, which is a certain finite set of elements, called the ‘ultra summit set’USS.X/

(Definition 1.9.) For arbitrary X; Y 2 G either USS.X/ D USS.Y / (in which case
X is conjugate to Y ) or USS.X/ \ USS.Y / D ;. From this it follows that in order to
determine whether X and Y are conjugate, one must compute the entire set USS.X/

and a single element in USS.Y /. That leads one immediately to ask about bounds
on the number of elements in USS.X/. This paper is a first step toward answering
that question. The focus of this paper is on the structure of USS.X/, a matter which
we isolated as being a key issue as we worked toward a polynomial algorithm for the
CDP/CSP in Bn. See �1.4 of [3] for an outline of our approach to that problem, and a
discussion of how the work in this paper fits into that program and the open problems
that remain.
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Here is a brief overview of the contents of this paper. In �1.1 we give a quick
review of the necessary background, with all essential definitions. In �2 we will
describe new properties of the structure of ultra summit sets, showing that in order to
compute them one only needs to apply two special kinds of conjugation, which we call
‘partial cycling’and ‘partial twisted decycling’ (Definition 2.9). Using it, we discover
new aspects of the combinatorics that are both closely related to things we already
understand well, but at the same time present new challenges. We will study the graph
�X which describes USS.X/ of an element X 2 G, a Garside group, and prove that
�X splits into two subgraphs, which we call ‘black’ and ‘grey’. The similarities and
differences between the graphs �X and �X�1 are particularly interesting. In �2 we
also give several key examples which illustrate our new discoveries.

In �3 and �4 we examine the effects of partial cycling on two special kinds of
elements in a Garside group G: rigid elements and periodic elements. In this regard
we note that, while the work in this paper is applicable to all Garside groups and no
assumptions are made that restrict attention to the braid groups Bn, the reader who is
familiar with the Thurston–Nielsen trichotomy (see �1.3 of [3]) in braid groups and
with the main result in [3] will recognize that rigid elements and periodic elements
have particular importance in the case of braids. This is relevant for the program that
we outlined in �1.4 of [3] for studying the CDP/CSP in the braid groups.

The final section, �5 is devoted to applications. The first application, in �5.1, is to
show how our new knowledge of the structure of USS.X/ in �3 and �4 advances our
efforts to find a polynomial solution to the CDP/CSP in the special case of the braid
groups. Unfortunately, we were unable to find a bound for the number of elements
in USS.X/ in this paper, even when we restrict to rigid elements. Finding such a
bound is open question 2 of �1.4 of [3], and remains for future work. Examples are
given in �5.1 that illustrate the remaining difficulties. Such examples would have
been impossible to understand without the work in this paper. We then discuss the
periodic case, briefly. A polynomial solution to the CDP/CSP for periodic braids will
be given in the next paper in this series, [4].

The second application, in �5.2 is to develop a new solution to the CDP/CSP in
arbitrary Garside groups. This new algorithm is faster than the one in [18], although
its theoretical complexity is essentially the same. The third application, in �5.3 is
to show that, in a sense, partial cycling subsumes cycling. This is probably more of
theoretical interest than of interest for complexity. The final application, in �5.4, is a
brief note to mention that, as was communicated to us by Jean Michel, our work on
the structure of the USS.X/ of a periodic element has implications for the theory of
reductive groups. We refer to [12] for details.

1.1. Definitions and basic facts. Our review of what we need from the literature
will be brief. We strongly recommend that non-experts consult �1 of [3] for a more
leisurely introduction to Garside groups and a review of what is known about the
CDP/CSP with lots of examples.
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Definition 1.1. A group G is said to be a Garside group (of finite type) if it satisfies
the following three properties:

(A) G admits a lattice order .G; 4; _; ^/, invariant under left-multiplication.

This means in particular that, with respect to the order 4, every pair of elements
s; t 2 G admits a unique lcm s _ t and a unique gcd s ^ t . Let P D fp 2
GI 1 4 pg. Then P � G is a monoid. We call the elements of P the positive
elements of G.

(B) There exists an element � 2 P , called the Garside element, satisfying two
properties: (a) The interval Œ1; �� D fs 2 GI 1 4 s 4 �g is finite and generates
G; (b) ��1P� D P .

(C) The monoid P is atomic, that is, for all X 2 P there exists an upper bound on
the length of a chain 1 � X1 � � � � � Xn D X . The atoms are those elements
a 2 P for which u 2 P; 1 ¤ u 4 a H) u D a. The atoms are in Œ1; �� � P

and they generate G.

Many examples of Garside groups can be found in [3].

Definition 1.2. The elements in Œ1; �� are called the simple elements of G. A prefix
of x 2 G is an element q 2 G such that q�1x 2 P . A simple prefix q of x is a prefix
of x which is simple.

Definition 1.3. Given X 2 G, we say that a decomposition of X is in left normal
form:

X D �px1 : : : xr .r � 0/ (1)

if p 2 Z is the maximal power such that �p 4 X , and xi 6D 1 is the maximal simple
prefix of xixiC1 : : : xr for every i D 1; : : : ; r . A pair of simple elements a; b 2 Œ1; ��

is left weighted if the product ab is in left normal form as written. If X D �px1 : : : xr

is in left normal form, the infimum, supremum and canonical length of X , are defined
by inf.X/ D p, sup.X/ D p C r and `.X/ D r , respectively.

Definition 1.4. The symbol � denotes the inner automorphism of G that is defined
by �.x/ D ��1x�. It is called the twisting automorphism.

Definition 1.5. If u; v 2 G and uv D �, then v D @.u/. It is a basic property of
the lattice structure on G that the map u ! @.u/ is a permutation of the finite set of
simple elements. Therefore if u is simple and v D @.u/, it makes sense to say that
u D @�1.v/.

There are two special types of conjugations that have been recognized, ever since
the work of Elrifai and Morton in [14], to be of fundamental importance in the com-
binatorics that underlie all of our work:
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Definition 1.6. If `.X/ > 0 and has left normal form as in (1), then cycling c.X/ and
decycling d.X/ are the special conjugates of X that are defined by:

c.X/ D �px2 : : : xr ��p.x1/ and d.X/ D xr�px1 : : : xr�1 (2)

We now define twisted decycling of X to mean �.d.X//.

Twisted decycling will be important later. To see how cycling and decycling enter
into the picture, recall the following definition [14]:

Definition 1.7. The super summit set SSS.X/ of an element X 2 G is the set of all
elements Y in the conjugacy class of X with the property that if Y D �qy1 : : : ys in
left normal form, then q D inf.Y / is maximal and q C s D sup.Y / is minimal.

Remark 1.8. It is known that SSS.X/ is always non-empty and finite and that SSS.X/

consists of the conjugates of X having minimal canonical length [14, Corollary 4.4].
Let us also recall (e.g. [14, proof of Proposition 4.5]) that if X has left normal

form as in (1), then the left normal form of X�1 is determined by that of X :

X�1 D ��p�rx0
r : : : x0

1; where x0
i D ��p�i .@.xi //: (3)

In particular, `.Y �1/ D `.Y / for arbitrary Y , which implies that SSS.X�1/ D
fy�1 j y 2 SSS.X/g.

This interplay between X and X�1 will play an important role in our work.

See Theorem 1.10 of [3] and the discussion that precedes it for a description of how
cycling and decycling enable one, for any X 2 G, to compute at least one element
zX 2 SSS.X/. However, we will not be working with SSS.X/ in this paper. Instead,

we consider a subset of SSS.X/ which was introduced by the second author of this
paper in [18].

Definition 1.9. The ultra summit set USS.X/ of an element X 2 G is the subset of
elements Y 2 SSS.X/ such that cm.Y / D Y , for some m > 0.

Note that USS.X/ is always non-empty, because if Y 2 SSS.X/, then c.Y / gives
us another element of SSS.X/, and since SSS.X/ is finite, it follows that after some
number of iterations of cycling we will find integers m1; m2, with m1 < m2; such
that cm1.Y / D cm2.Y /. But then cm1.Y / is in USS.X/.

Definition 1.10. Given X 2 G and Y 2 USS.X/, we say that a simple element s 6D 1

is a minimal simple element for Y with respect to USS.X/ if Y s D s�1Ys 2 USS.X/,
and no proper prefix of s satisfies this property.
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Remark 1.11. If X 2 G and Y; Y u 2 USS.X/ for a positive element u such that s

is a minimal simple element for Y satisfying s 4 u, it is clear by induction that u

admits a decomposition u D s1 : : : sm as a product of minimal simple elements such
that s1 D s.

In [18] it is shown how to compute the minimal simple elements corresponding
to a given Y 2 USS.X/, and this allows one to compute the whole USS.X/, starting
with a single element zX 2 USS.X/. To state the theorem that we will use from [18],
we need one more concept:

Definition 1.12. Given X 2 G, there is a directed graph, �X , which describes the
entire set USS.X/, and is defined by the following data:

(1) Each vertex represents an element Y 2 USS.X/.

(2) For every Y 2 USS.X/ and every minimal simple element s for Y with respect
to USS.X/, there is an arrow labeled by s going from Y to Y s .

The algorithm in [18] computes the graph �X using the following ‘convexity
theorem’, which is analogous to a related convexity theorem proved for super summit
sets in [16]. It will be seen to be of fundamental importance in our work, and will be
given concrete meaning in many examples.

Theorem 1.13 ([18, Theorem 1.18 and Corollary 1.19]). Let X 2 G and Y 2
USS.X/.

(i) If s; t 2 G are such that Y s 2 USS.X/ and Y t 2 USS.X/, then Y s^t 2
USS.X/.

(ii) For every u 2 P there is a unique element cY .u/ which is minimal with respect
to 4 among the elements satisfying u 4 cY .u/ and Y cY .u/ 2 USS.X/:

(iii) The graph �X that is described in Definition 1.12 is connected.

Notice that the set of minimal simple elements for Y is contained in cY .A/ D
fcY .a/ j a is an atomg, hence the number of minimal simple elements for Y is
bounded by the number of atoms. In the case of Bn, with its classical Garside
structure, there are n � 1 atoms, so in �X there are at most n � 1 arrows starting at a
given vertex.

We remark that one obtains an element in USS.X/ by iterated application of
cycling to an element in SSS.X/. The number of times one needs to apply cycling,
in order to go from an element in SSS.X/ to an element in USS.X/ is not known
in general. That is open question 3 in �1.4 of [3]. Nevertheless, the theoretical
complexity of the algorithm in [18] is not worse than the theoretical complexity of the
algorithm in [16], which is based upon SSS.X/, and the performance of the algorithm
is substantially better in practice. Later in this paper, in �5.2, we will obtain yet another
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algorithm which is faster than the one in [18], although its theoretical complexity is
unchanged.

The conjugating elements involved in cycling or decycling will play a crucial role
in our work (as they did in [3]), so to avoid repeated references to the automorphism
� we introduce convenient shorthand:

Definition 1.14. Given X 2 G whose left normal form is X D �px1 : : : xr (r > 0),
we define the initial factor of X as �.X/ D ��p.x1/, and the final factor of X

as '.X/ D xr . If r D 0 we define �.�p/ D 1 and '.�p/ D �. Equivalently
�.X/ D X��p ^ � and '.X/ D .�pCr�1 ^ X/�1X:

Rigid elements in a Garside group were introduced in [3]:

Definition 1.15. Let X D �px1 : : : xr be in left normal form, with r D `.X/ > 0.
Then X is rigid if the element �p x1 : : : xr ��p.x1/ is in left normal form as written.

Remark 1.16. Notice that if X is rigid, then the cycling of X , that is, c.X/ D
�p x2 : : : xr ��p.x1/ is in left normal form as written. Actually, this latter property
is equivalent to X being rigid if r > 1. But we prefer the definition above, otherwise
every element of canonical length 1 would be rigid.

Proposition 1.17 ([3, Proposition 3.2]). The following are equivalent characteriza-
tions of rigid elements. (i) X is rigid. (ii) `.X/ > 0 and '.X/�.X/ is left weighted
as written. In particular normal forms are preserved under cycling. (iii) `.X/ > 0

and �.X/ ^ �.X�1/ D 1.

Remark 1.18. The third condition implies that X is rigid if and only if X�1 is rigid.
It is important to notice that the assumption `.X/ > 0 implies that � and its powers
are not rigid.

Remark 1.19. We need one more set of ideas from the existing literature before we
can begin our new work. In �5.1 we will specialize our work about Garside groups to
the braid groups Bn. In addition, all of our examples will be taken from braid groups.
It therefore is important to keep in mind that the braid group Bn acts on the n-times
punctured disc Dn, and that this action determines a faithful representation of Bn as
the mapping class group of Dn, that is, the group �0.DiffC.Dn//. The reason this
is important is that, as a consequence, the well-known Thurston–Nielsen Trichotomy,
introduced by Thurston in [22] applies: braids come in three flavors: pseudo-Anosov
(or PA), periodic and reducible. We refer the reader to [22] for the foundational paper
in this area and to [3] for a very brief description of the trichotomy. We will not
discuss it here because we use it in a very peripheral way: to identify our examples as
being PA or periodic. We note, however, that in [3] the authors of this paper proved
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the important fact that every PA braid in its USS has a ‘small’ rigid power, so that
all results about rigid elements in Garside groups apply ipso-facto to powers of PA
braids. A major part of the work in this paper, notably the work in �3 concerns rigid
elements in Garside groups. As a result, much of the work in this paper has special
relevance in the key case of PA braids.
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2. The structure of the ultra summit set

In this section we begin the new work in this paper. In �2.1 we begin to investigate
the minimal simple elements whose existence was established in statement (ii) of
Theorem 1.13. In particular, in Theorem 2.5 we give new meaning to the somewhat
elusive element cY .u/. Using our description, we introduce partial cycling and partial
twisted decycling in Definition 2.9. The main result in �2.1 is Corollary 2.10. As a
result of this corollary, we will prove that �X , X 2 G splits into two (in general not
connected) subgraphs which we call ‘grey’ and ‘black’. The properties of the grey
and black subgraphs are studied in �2.2 and �2.3.

2.1. Description of the minimal simple elements. As was proved in [3], the initial
and final factors �.X/; '.X/ and �.X�1/, '.X�1/ are closely related:

Lemma 2.1 ([3, Lemma 1.8]). For X 2 G one has �.X�1/ D @.'.X// and '.X�1/ D
@�1.�.X//.

We saw in Theorem 1.13 that, given one element X 2 USS.X/, one can obtain
any other element in USS.X/ just through conjugations by minimal simple elements.
In this section we will describe the minimal simple elements for X 2 USS.X/, and
show how they determine the graph �X . See Corollary 2.7 and the examples which
follow it. These examples will be used throughout the paper.
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Lemma 2.2. Given X 2 G with `.X/ > 0, one has:

X �.X/ D c.X/; X'.X/�1 D d.X/; X �.X�1/ D X@.'.X// D �.d.X//:

Proof. The first two claims follow from the definitions. The third one is shown as
follows: X@.'.X// D X'.X/�1� D .d.X//� D �.d.X//.

Remark 2.3. By the above result, the cycling and the twisted decycling of X are con-
jugates of X by simple elements. Moreover, the twisted decycling of X corresponds
to a cycling of X�1, since it is a conjugation by �.X�1/. In the same way, the cycling
of X corresponds to a twisted decycling of X�1.

Lemma 2.4. The twisting automorphism � commutes with both cycling and decycling.
Moreover, the USS of an element is closed under twisting, cycling and decycling.

Proof. It is clear from the definitions that �.�.X// D �.�.X// and '.�.X// D
�.'.X//. In particular, c.�.X// D �.X/�.�.X// D �.X �.X// D �.c.X//, and
d.�.X// D �.X/�.'.X/�1/ D �.X'.X/�1

/ D �.d.X//, that is, � commutes with
both cycling and decycling.

From now on let X 2 USS.X/. It is well known that c.X/ 2 USS.X/ [18,
§ 1]. It remains to be shown that �.X/ and d.X/ belong to USS.X/. Since X 2
USS.X/ � SSS.X/, and �.X/ has the same canonical length as X , it follows that
�.X/ 2 SSS.X/. Moreover, one has cm.X/ D X for some m. Then, cm.�.X// D
�.cm.X// D �.X/ and therefore �.X/ 2 USS.X/.

Finally, XX D X 2 USS.X/ and X�pCr�1 D �pCr�1.X/ 2 USS.X/. Then, by
Theorem 1.13, d.X/ D X .�px1:::xr�1/ D XX^�pCr�1 2 USS.X/.

Theorem 2.5. Let X 2 USS.X/ and let s be a minimal simple element for X . Then
one and only one of the following conditions holds:

(1) '.X/s is a simple element.

(2) '.X/s is left weighted as written.

Proof. Recall from Lemma 2.2 that X@.'.X// D X'.X/�1� D .d.X//� D �.d.X//.
Hence, by Lemma 2.4, X@.'.X// 2 USS.X/. On the other hand, since s is a minimal
simple element for X , one has X s 2 USS.X/. Therefore, by Theorem 1.13 it follows
that X@.'.X//^s 2 USS.X/.

Consider t D @.'.X// ^ s. By definition, t 4 s, and we just saw that X t 2
USS.X/. Since s is a minimal simple element for X , this implies that either t D s or
t D 1.

Notice that the first factor in the left normal form of '.X/s (which is possibly �)
is equal to '.X/s ^ � D '.X/s ^ '.X/@.'.X// D '.X/.s ^ @.'.X/// D '.X/t .
Hence it is equal to either '.X/s or '.X/. The first case implies that '.X/s is simple,
while the second one means that '.X/s is left weighted.
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Proposition 2.6. Let X 2 SSS.X/ with `.X/ > 0 and let s be a simple element such
that s�1Xs 2 SSS.X/. If '.X/s is left weighted, then s 4 �.X/.

Proof. Let �px1 : : : xr be the left normal form of X . If '.X/s D xrs is left weighted,
then �px1 : : : xrs is the left normal form of Xs. However, we know that s�1Xs D
�p�p.s/�1x1 : : : xrs 2 SSS.X/, hence �p.s/�1x1 : : : xrs 2 P , which is equivalent
to �p.s/ 4 x1 : : : xrs. Since �p.s/ is simple, this in turn is equivalent to �p.s/ 4
x1 : : : xrs ^ �. Finally, since x1 : : : xrs is in left normal form with r > 0, this means
that �p.s/ 4 x1, thus s 4 ��p.x1/ D �.X/, as we wanted to show.

Corollary 2.7. Let X 2 USS.X/ with `.X/ > 0 and let s be a minimal simple
element for X . Then s is a prefix of either �.X/ or �.X�1/, or both.

Proof. We have seen in Lemma 2.1 that �.X�1/ D @.'.X// and we know by Theo-
rem 2.5 that '.X/s is either simple or left weighted. In the first case, s 4 @.'.X// D
�.X�1/, whereas in the second case s 4 �.X/, by Proposition 2.6.

Notice that we could have at the same time s 4 �.X/ and s 4 �.X�1/, but this is
only possible in the first case, where '.X/s is simple.

Remark 2.8. We remark that the statements of Proposition 2.6 and Corollary 2.7 are
wrong for elements X with `.X/ D 0, as in this case �.X/ D �.X�1/ D 1.

Recall that every two elements in USS.X/ can be joined by a sequence of conjuga-
tions by minimal simple elements. We have just seen that the minimal simple elements
for each Y 2 USS.X/ with `.Y / > 0 are prefixes of either �.Y / or �.Y �1/ D @.'.Y //.
Let us give a name to these special kinds of conjugations.

Definition 2.9. Let X 2 G. A partial cycling of X is a conjugation of X by a prefix
of �.X/. A partial twisted decycling of X is a conjugation of X by a prefix of �.X�1/,
or equivalently (using Lemma 2.1), by a prefix of @.'.X//.

Corollary 2.10. Given X; Y 2 USS.X/, there exists a sequence of partial cyclings
and partial twisted decyclings joining X to Y .

Proof. This is a direct consequence of Theorem 1.13 and Corollary 2.7.

We end this section with several examples which will be used now and later in
this paper to illustrate various points. All of our examples will be taken from braid
groups, with the classical Garside structure that was discovered in [17], and with the
elementary braids 	1; : : : ; 	n�1 as atoms. By Corollary 2.7, there are two kinds of
minimal simple elements, hence there are two kinds of arrows in �X . We say that an
arrow s starting at a vertex Y D �py1 : : : yr is black if s is a prefix of �.Y /, and grey
if s is a prefix of �.Y �1/ or, equivalently, if yrs is a simple element. In other words,
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an arrow starting at Y is black if it corresponds to a partial cycling of Y , and it is grey
if it corresponds to a partial twisted decycling of Y .

Example 2.11. Our first example is the 4-braid, A D 	1	2	3	2	2	1	3	1	3. The
reader is referred to Remark 1.19 and thence to �1.3 of [3] and [22] for a brief
description of the so-called Thurston–Nielsen trichotomy in mapping class groups.
The braid A is PA and rigid (see Remark 1.19 and Definition 1.15). Its first cycling
orbit A1 has length 3, and by Lemma 2.4, since �.A1/ 6D A1 there is a second orbit
A2 D �.A1/. A computation shows that USS.A/ has exactly these two cycling orbits,
with 3 elements each, namely:

A1 D f A1;1 D 	1	2	3	2 � 	2	1	3 � 	1	3;

A1;2 D 	2	1	3 � 	1	3 � 	1	2	3	2;

A1;3 D 	1	3 � 	1	2	3	2 � 	2	1	3 g
A2 D fA2;1 D 	1	3	2	1 � 	2	1	3 � 	1	3;

A2;2 D 	2	1	3 � 	1	3 � 	1	3	2	1;

A2;3 D 	1	3 � 	1	3	2	1 � 	2	1	3 g
It is easy to check (Lemma 2.4) that USS.A/ is invariant under decycling, which for
rigid braids is simply reverse cycling. Observe that �.A1;j / D A2;j for j D 1; 2; 3

and that �2 D 1, so that our example also illustrates the fact that USS.A/ is invariant
under � .

The graph �A is illustrated in Figure 1. Since all black arrows (partial cyclings)
in �A correspond to cyclings, the only question in constructing the graph is how to
relate vertices in A1 to vertices in A2 by partial twisted decyclings. For that, we
need to know the prefixes of the inverses. By Lemma 2.1, for every X 2 G one has
�.X�1/ D @.'.X//, and in this way we find that �.A�1

1;1/ D 	2	1	3	2, and in fact

Figure 1. The graphs �A and � xA D �A�1 .
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.A1;1/�2�1�3�2 D A2;3. All other arrows on the graph �A, which can be seen in the
left sketch in Figure 1, can be computed in a similar way. In this very simple example
it happens that both �.Ai;j / and �.A�1

i;j / are minimal simple elements, for every i; j .
Hence, all partial cyclings are actually cyclings, and all partial twisted decyclings are
actually twisted decyclings, so they connect Ai;j to �.d.Ai;j //.

Let xA D A�1. The right sketch in Figure 1 depicts the graph �A�1 D � xA.
There are 6 elements in the cycling orbit of xA. We have set xA1;1 D xA and xA1;j D
cj �1. xA /; j D 2; : : : ; 6. In this case there are 3 elements in each of 2 cycling orbits
in �A, but 6 elements in 1 cycling orbit for �A�1 . We will have more to say about this
and about Example A (and other examples) later. See, in particular, Example 3.11
below.

In the graph �A all partial cyclings were actual cyclings, but that is far from the
case in general:

Example 2.12. Consider the 6-braid B D 	2	1	4	3	2	1	5	4 � 	2	4 whose graph
is depicted in Figure 2. Braid B , like braid A, is PA and rigid. A computation shows

Figure 2. �B :

that USS.B/ has 4 cycling orbits, Bi ; i D 1; 2; 3; 4 with 2 elements each, Bi;1 and
Bi;2 D c.Bi;1/ D d.Bi;1/. Also �.Bi;j / D BiC1;j for i D 1; 3 and j D 1; 2:

B1;1 D 	2	1	4	3	2	1	5	4 � 	2	4; B1;2 D 	2	4 � 	2	1	4	3	2	1	5	4;

B2;1 D 	2	1	3	4	3	2	5	4 � 	2	4; B2;2 D 	2	4 � 	2	1	3	4	3	2	5	4;

B3;1 D 	1	4	3	2	1	5	4 � 	2	1	4; B3;2 D 	2	1	4 � 	1	4	3	2	1	5	4;

B4;1 D 	2	1	3	2	4	5	4 � 	2	4	5; B4;2 D 	2	4	5 � 	2	1	3	2	4	5	4:

In this example every black arrow is a partial cycling (see Definition 2.9) and the
concatenation of two consecutive black arrows corresponds to a cycling. Hence the
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product of four consecutive black arrows starting at Bi;j is a circuit at Bi;j , and the
product of its labels is equal to Bi;j . The grey arrow starting at Bi;j is @.'.Bi;j // for
every i; j . Hence, it corresponds to a twisted decycling. We have not written down
the labels for the grey arrows because of space considerations, but will compute some
of them later, in Example 3.25.

In the graphs �A; �A�1 ; and �B all arrows were either black or grey. Lest the reader
think that this is always the case, the left and right sketches in Figure 3 illustrate two
different types of examples. We begin with the left sketch in Figure 3:

Example 2.13. We consider the 5-braid C D 	4	1	2	3	4. Since C is a simple braid,
we have inf.C / D 0; sup.C / D 1; `.C / D 1. Its Thurston–Nielsen classification
is periodic. A computer calculation shows that USS.C / has 12 elements, each of
canonical length 1. The graph �C is illustrated in the left sketch in Figure 3.

Figure 3. �C and �D :

The 12 elements in USS.C / are labeled C1; C2; : : : ; C12. We observe that, whereas
in Example 2.11 every arrow was either black or grey, one sees that in Example 2.13
every arrow is both black and grey, that is, it is bi-colored! Moreover, in the braid A

every arrow that begins at a vertex Ai;j is labeled by either the simple element �.Ai;j /

or the simple element �.A�1
i;j /, and so is never a proper prefix, but in the braid C every

vertex is a simple element of letter length 5, and every arrow is labeled by a simple
element of letter length 1 (an atom), from which it follows that every arrow at every
vertex Cj is a proper prefix of both Cj D �.Cj / and of @.Cj / D �.C �1

j /. (Note that
Cj is simple, but C �1

j is not simple.) Lest the reader think that these two extreme
cases are the only ones that occur, we give one more example, in the right sketch in
Figure 3.
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Example 2.14. Consider the 4-braid D D D1 D 	1	3 � 	1. Its graph �D , illustrated
in the right sketch in Figure 3, has arrows of all three types: black, grey and bi-colored.
The Thurston–Nielsen classification of this braid shows it to be reducible. While there
is no shortage of reducible braids that are rigid, this one is not rigid. Its graph has 2
cycling orbits, each having one element, the first that of D1 and the second that of
D2 D 	1	3 � 	3.

2.2. Black and grey components of USS.X/. The examples that we just discussed
should make it clear that we need to study and try to uncover underlying structure, if
possible. Keeping in mind all of our examples, we begin our work by asking what
happens to the graph �X if one considers only black arrows, or only grey arrows. We
denote by �black

X [�grey
X ] the subgraph of �X having the same set of vertices, but just

the black [grey] arrows. The main difference between these graphs and �X is that
they are not necessarily connected. Therefore, in general one cannot generate the
whole USS.X/ by using only partial cyclings [partial twisted decyclings]; both types
of conjugations are, in general, required.

We denote by B1; : : : ; Bs the connected components of �black
X and we refer to

them as the black components of �X . In the same way, we denote by G1; : : : ; Gt

the connected components of �
grey
X and we call them grey components of �X . Given

Y 2 USS.X/, we will also denote by BY [GY ] the black [grey] component of �X

containing Y as a vertex.
In this subsection we will see that a black or grey component can be computed the

same way as one computes �X . Starting with any vertex Y , one can obtain any other
vertex in BY [GY ] by applying repeated partial cyclings [partial twisted decyclings]
to Y . In other words, given any two vertices Y; Z 2 BY [GY ] there is a path of black
[grey] arrows that goes from Y to Z following the sense of the arrows. In order to
prove this property, we will study the paths in �X .

Definition 2.15. An arrow in �X is characterized by its starting point Y 2 USS.X/

and its label s which is a minimal simple element for Y ; the endpoint then is Y s .
In order to simplify notation we denote the arrow by its label s. The starting point
and endpoint of s�1 are the endpoint and starting point respectively of s. A path
in �X is a sequence .s

e1

1 ; : : : ; s
ek

k
/, possibly empty, where si is an arrow in �X and

ei D ˙1, such that the endpoint of s
ei

i is equal to the starting point of s
eiC1

iC1 for every
i D 1; : : : ; k � 1. A path is black [grey], if all of its arrows are black [grey]. We say
that a path .s

e1

1 ; : : : ; s
ek

k
/ is oriented if ei D 1 for i D 1; : : : ; k.

Notice that every path .s
e1

1 ; : : : ; s
ek

k
/ has an associated element ˛ D s

e1

1 : : : s
ek

k

and that different paths may have the same associated element. Since the labels of
arrows are simple elements, it follows that if the path is oriented then ˛ 2 P . Finally,
notice that if X and Y are the initial and final vertices of the above path, that is, if X

is the starting point of s
e1

1 and Y is the endpoint of s
ek

k
, then X˛ D Y .
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Notation. Given an element Y 2 G whose left normal form is �py1 : : : yr , we define
Y B D Y��p D ��p.y1 : : : yr/.

The following result will be seen to have important consequences:

Proposition 2.16. Let .s1; : : : ; sk/ be an oriented path in �X starting at a vertex Y ,
and let ˛ D s1 : : : sk 2 P be its corresponding element. Then one has:

(1) If ˛ 4 Y B then .s1; : : : ; sk/ is an oriented black path.

(2) If ˛ 4 .Y �1/B then .s1; : : : ; sk/ is an oriented grey path.

Proof. The claim is trivial if ˛ D 1, so we may assume that ˛ 6D 1. We will show
the result by induction on k. Suppose that ˛ 4 Y B. Notice that inf.Y B/ D 0 and
�.Y B/ D ��p.y1/ D �.Y /. Hence, since ˛ 4 Y B it follows that inf.˛/ D 0 and then
s1 4 �.˛/ 4 �.Y B/ D �.Y /, that is, s1 is a black arrow. In particular, the result is true
if k D 1. Suppose that k > 1 and that the result is true for oriented paths of length
k � 1.

We already know that s1 is a black arrow. Now denote T D Y s1 and notice
that one has T B D s�1

1 Y B��p.s1/ since T 2 USS.X/ � SSS.X/. Hence, since
˛ D s1 : : : sk 4 Y B it follows that s2 : : : sk 4 s�1

1 Y B 4 T B. By induction hypothesis
.s2; : : : ; sk/ is an oriented black path, hence .s1; : : : ; sk/ is also a black path and the
result follows.

The proof for s 4 .Y �1/B is similar; for the induction step note that Remark 1.8 im-
plies T �1 2 SSS.X�1/ for any T 2 USS.X/, whence .T �1/B D s�1

1 .Y �1/B��p.s1/

if T D Y s1 .

The following is a particular case of the above result, which makes the connection
with partial cyclings and partial twisted decyclings.

Corollary 2.17. Let .s1; : : : ; sk/ be an oriented path in �X starting at a vertex Y . If
the associated element s D s1 : : : sk is simple, then one has:

(1) If s 4 �.Y / then .s1; : : : ; sk/ is an oriented black path.

(2) If s 4 �.Y �1/ then .s1; : : : ; sk/ is an oriented grey path.

Proof. If s is simple, then s 4 Y B if and only if s 4 �.Y B/ D �.Y /, and s 4 .Y �1/B
if and only if s 4 �..Y �1/B/ D �.Y �1/. Therefore, this result is a direct consequence
of Proposition 2.16.

Example 2.18. The converse of the above result is not true. For instance, consider the
braid U D 	1	2	1	3	2, a simple element in B4. Then .	1; 	3/ is a black path in �U

starting at U , also s D 	1	3 is simple, but s is not a prefix of �.U / D U . Moreover
.	1; 	3/ is also a grey path but .	1	2	1	3	2/.	1	3/ is not simple, thus s 64 �.U �1/.
Hence this is a counterexample for the converse of the two properties above.
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Proposition 2.19. Given Y 2 USS.X/ and a black Œgrey� arrow s in �X starting
at Y , there exists an oriented black Œgrey� path .s1; : : : ; sk/ in �X starting and ending
at Y , such that s1 D s.

Proof. Suppose that s is a black arrow and let p D inf.Y /. Since Y Y B D ��p.Y / 2
USS.X/, we know by Proposition 2.16 that every decomposition of Y B as a product
of minimal simple elements corresponds to an oriented black path. Moreover, s is
a black arrow, that is, s 4 �.Y / 4 Y B, whence there is a decomposition of Y B as a
product of minimal simple elements whose first factor is s. Therefore, there exists a
black path .s1; : : : ; st / in �X , going from Y to ��p.Y /, such that s1 D s.

We can apply the same reasoning to show that there is an oriented black path from
��.m�1/p.Y / to ��mp.Y / for every m � 1. Concatenating these paths we obtain
for every m � 1 an oriented black path from Y to ��mp.Y / whose first arrow is s.
Since �e is central for some integer e, it follows that for m D e there is a black path
.s1; : : : ; sk/ going from Y to ��ep.Y / D Y , such that s1 D s.

The analogous proof works for grey arrows. We just need to notice that Y .Y �1/B D
..Y �1/.Y �1/B

/�1 D .�pCr.Y �1//�1 D �pCr.Y / 2 USS.X/, where r D `.Y /.

Corollary 2.20. Given two elements Y and Z in a black component Bi Œgrey com-
ponent Gi � of �X , there exists an oriented black Œgrey� path going from Y to Z.

Proof. Suppose that Y and Z belong to the same black component. Hence one can
go from Y to Z along a black path .s

e1

1 ; : : : ; s
et
t /. Suppose that ej D �1 for some j ,

where sj is a black arrow going from U to V (so s�1
j goes from V to U ). By the

above result there exists an oriented black path .sj ; b2; : : : ; bk/ going from U to itself.
Therefore .b2; : : : ; bk/ is an oriented black path going from V to U , so one can replace
s�1
j by .b2; : : : ; bk/ in the above path. Applying the same procedure for every j such

that ej D �1, we obtain an oriented black path going from Y to Z. The analogous
proof works for grey arrows.

We establish one more property of the black and grey components:

Proposition 2.21. The set of vertices in a black component of �X is a union of orbits
under cycling. This is not necessarily true for grey components.

Proof. To prove the first statement, we just need to show that c.Y / is a vertex of
BY , for every Y 2 USS.X/. But this is clear, since �.Y / can be decomposed as a
product of minimal simple elements, �.Y / D s1 : : : sk . By Corollary 2.17, the path
.s1; : : : ; sk/ is black, and it goes from Y to Y �.Y / D c.Y /. Hence, Y and c.Y / belong
to the same black component, as we wanted to show.

To prove that the analogous statement for grey components is false, it suffices to
produce an example. See the graph �B in Figure 2. Observe that fB1;1; B2;2g is not
a union of orbits.
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Thanks to the above results, we can give an algorithm to compute the black or
the grey component of an element in its USS. It is analogous to the corresponding
algorithms computing SSS.X/ [14], [16] or USS.X/ [18]. We just need to recall
from Theorem 1.13 that given Y 2 USS.X/ and an atom a 2 P , there exists a unique
element cY .a/ minimal with respect to the condition that Y cY .a/ 2 USS.Y / and
a 4 cY .a/.

The algorithm to compute BX goes as follows. Starting with X , conjugate it by
all its minimal simple elements which are prefixes of �.X/. For each new element Y

which appears in this way, conjugate it by all its minimal simple elements which
are prefixes of �.Y /. Keep going until no new element appears. At this point, by
Corollary 2.20, the black component BX has been computed. The computation of
GX is analogous. More precisely, the algorithms are as follows.

Algorithm 1

Input: X 2 USS.X/.
Output: BX .

(1) Set V D fXg and V 0 D ;.
(2) While V ¤ V 0 do

(a) Take Y 2 VnV 0.
(b) For every atom a 4 �.Y / do

(i) Compute cY .a/.
(ii) If cY .a/ is a minimal simple element, set V D V [ fY cY .a/g, and

store cY .a/ as a black arrow going from Y to Y cY .a/.
(c) Set V 0 D V 0 [ fY g.

(3) Return V , together with the information on all black arrows.

Algorithm 2

Input: X 2 USS.X/.
Output: GX .

(1) Set V D fXg and V 0 D ;.
(2) While V ¤ V 0 do

(a) Take Y 2 VnV 0.
(b) For every atom a such that '.Y /a is simple do

(i) Compute cY .a/.
(ii) If cY .a/ is a minimal simple element, set V D V [ fY cY .a/g, and

store cY .a/ as a grey arrow going from Y to Y cY .a/.
(c) Set V 0 D V 0 [ fY g.

(3) Return V , together with the information on all grey arrows.
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2.3. Intersection of black and grey components. Now that we know how to com-
pute the black and grey components of any element in USS.X/, we will see how this
can be used to solve the conjugacy problem in G. Recall that the algorithm in [18]
is based on the fact that X 2 USS.X/ and Y 2 USS.Y / are conjugate if and only if
USS.X/ D USS.Y /, or equivalently, if Y 2 USS.X/. But the analogous statement
does not hold for black or grey components, since �black

X and �
grey
X are not necessarily

connected. That is, we could have two conjugate elements X; Y 2 USS.X/ such that
BX \ BY D ;. Hence, computing just black components (or just grey components)
will not solve the conjugacy problem, in general.

However, we will see in this section that it is actually possible to determine whether
X 2 USS.X/ and Y 2 USS.Y / are conjugate just by computing BX and GY , since
every black component intersects every grey component of �X . Hence, X and Y are
conjugate if and only if BX \ GY ¤ ;. This result will be achieved by showing that
every two elements in USS.X/ can be joined by a grey path followed by a black path.
First we need two preliminary results.

Proposition 2.22. Let .s1; : : : ; sk/ be an oriented path in �X starting at a vertex Y ,
with `.Y / > 0. If the associated element s D s1 : : : sk is simple, then one has:

(1) If '.Y /s is left weighted then .s1; : : : ; sk/ is an oriented black path.

(2) If '.Y �1/s is left weighted then .s1; : : : ; sk/ is an oriented grey path.

Proof. The first claim follows immediately from Proposition 2.6 and Corollary 2.17.
The second claim is proved by applying the same techniques to Y �1 2 SSS.X�1/.

Let us extend the above result to non-simple elements.

Proposition 2.23. Let X 2 G and Y 2 USS.X/, with `.Y / > 0. Suppose that
˛ 2 P is such that inf.˛/ D 0 and Y ˛ 2 USS.X/.

If '.Y /�.˛/ is left weighted, then ˛ can be decomposed as ˛ D s1 : : : sk , where
.s1; : : : ; sk/ is an oriented black path.

If '.Y �1/�.˛/ is left weighted, then ˛ can be decomposed as ˛ D s1 : : : sk , where
.s1; : : : ; sk/ is an oriented grey path.

Proof. If ˛ D 1 the result follows from Proposition 2.22. Let �py1 : : : yr be the left
normal form of Y and let ˛1 : : : ˛t be the left normal form of ˛. Since ˛1 D ˛ ^ �,
Theorem 1.13 tells us that Y ˛1 2 USS.X/. Suppose first that '.Y /�.˛/ D yr˛1 is
left weighted. Then, by Proposition 2.22, ˛1 can be decomposed as a product of black
arrows.

Now consider Z D Y ˛1 2 USS.X/ � SSS.X/ whose left normal form is
�pz1 : : : zr , and ˛0 D ˛2 : : : ˛t . The result will follow by induction on t if we show
that zr˛2 is left weighted. But since yr˛1 is left weighted and Z D ˛�1

1 �py1 : : : yr˛1,
it follows (see, for example, [18, Proposition 2.1]) that zr D ˇ˛1, where yr < ˇ.
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Therefore zr˛2 D .ˇ˛1/˛2 is left weighted, since so is ˛1˛2. Hence, '.Z/�.˛0/ D
zr˛2 is left weighted, so induction on t can be applied and the result follows.

If '.Y �1/˛ is left weighted, we can apply a similar reasoning to show that ˛ D
s1 : : : sk where .s1; : : : ; sk/ is an oriented grey path. For the induction step note that
if Z D Y ˛1 2 USS.X/, then Z�1 D .Y �1/˛1 2 SSS.X�1/.

Now we are able to show that every pair of elements in USS.X/ can be joined by
a (possibly empty) grey path followed by a (possibly empty) black path, and also by
a (possibly empty) black path followed by a (possibly empty) grey path. The black–
grey path and the grey–black path can either be distinct or coincide. For examples,
see Figure 2.

Theorem 2.24. Let X 2 G. Given Y; Z 2 USS.X/, with `.Y / > 0, there exists an
oriented path .g1; : : : ; gs; b1; : : : ; bt / in �X going from Y to Z, such that .g1; : : : ; gs/

is a .possibly empty/ grey path and .b1; : : : ; bt / is a .possibly empty/ black path. If
Z D Y ˛ with ˛ 2 P , then the paths can be chosen such that g1 : : : gsb1 : : : bt D ˛.

Proof. Since Y and Z are conjugate, there exists some ˛ 2 G such that Y ˛ D Z. Let
�m˛1 : : : ˛t be the left normal form of ˛. Since some power of �, say �e , belongs
to the center of G, it follows that �keCm˛1 : : : ˛t also conjugates Y to Z for every
integer k. Hence we can assume inf.˛/ � 0, that is, ˛ 2 P .

Denote Y .1/ D Y , and let �py1 : : : yr be its left normal form. Moreover let
˛.1/ D ˛. If inf.˛.1// > 0 then � 4 ˛.1/, so every simple element is a prefix of
˛.1/. In particular, all grey arrows for Y .1/ are prefixes of ˛.1/. Let us then choose
g1 4 @.yr/ 4 ˛.1/, a grey arrow starting at Y .1/, and denote Y .2/ D Y g1 and
˛.2/ D g�1

1 ˛.1/. We continue this process while inf.˛.i// > 0, finding grey arrows
g1; : : : ; gi such that ˛ D g1 : : : gi˛

.iC1/ and Y .iC1/ D Y g1:::gi . Since the length of
possible decompositions of ˛ as a product of simple elements is finite, this process
must stop, and we will have ˛ D g1 : : : gk�1˛.k/, where .g1; : : : ; gk�1/ is an oriented
grey path and inf.˛.k// D 0. Notice that ˛.k/ conjugates Y .k/ D Y g1:::gk�1 to Z.

Now let �py
.k/
1 : : : y

.k/
r be the left normal form of Y .k/, and suppose that

y
.k/
r �.˛.k// is not left weighted. This means that @.y

.k/
r / ^ �.˛.k// ¤ 1. By Theo-

rem 1.13, this element conjugates Y .k/ to another element in USS.X/, hence there is
a minimal simple element gk 4 @.y

.k/
r / ^ �.˛.k//. Since gk 4 @.y

.k/
r /, one has that

gk is a grey arrow and since gk 4 �.˛.k//, it follows that ˛.kC1/ D g�1
k

˛.k/ 2 P .
We can continue this process while '.Y .i//�.˛.i// is not left weighted, adding new
arrows to our oriented grey path dividing ˛.

As above, this process must stop. We will then obtain ˛ D g1 : : : gs˛.sC1/, and
Y .sC1/ D Y g1:::gs 2 USS.X/, where .g1; : : : ; gs/ is a grey path, inf.˛.sC1// D 0 and
'.Y .sC1//�.˛.sC1// is left weighted. Since ˛.sC1/ conjugates Y .sC1/ to Z 2 USS.X/,
it follows by Proposition 2.23 that ˛.sC1/ can be decomposed as a product of black
arrows, as we wanted to show.
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Theorem 2.25. Let X 2 G. Given Y; Z 2 USS.X/, with `.Y / > 0, there exists an
oriented path .b1; : : : ; bt ; g1; : : : ; gs/ in �X going from Y to Z, such that .b1; : : : ; bt /

is a .possibly empty/ black path and .g1; : : : ; gs/ is a .possibly empty/ grey path. If
Z D Y ˛ with ˛ 2 P , then the paths can be chosen such that b1 : : : btg1 : : : gs D ˛.

Proof. The proof is analogous to the proof of the previous result. There exists some
˛ 2 P such that Y ˛ D Z. We then construct a sequence fY .i/gi�1 and f˛.i/gi�1,
where ˛.1/ D ˛ and Y .1/ D Y . If inf.˛.i// > 0, there exists a black arrow bi dividing
˛.i/, and we define Y .iC1/ D .Y .i//bi and ˛.iC1/ D b�1

i ˛.i/.
If inf.˛.i// D 0 and '..Y .i//�1/�.˛.i// is not left weighted, then there is a prefix

ˇ 4 �.˛.i// such that '..Y .i//�1/ˇ is simple and .Y .i//ˇ 2 USS.X/, for instance, one
can take ˇ D @.'..Y .i//�1// ^ �.˛.i// 4 @.'..Y .i//�1// D �.Y .i// by Lemma 2.1.
Hence, every minimal simple element dividing ˇ (and thus ˛.i/) is a black arrow.
Therefore, if '..Y .i//�1/�.˛.i// is not left weighted, there exists a black arrow divid-
ing ˛.i/.

We keep going, finding new black arrows dividing each ˛.j /, until we obtain some
˛.tC1/ such that '..Y .tC1//�1/�.˛.tC1// is left weighted. Then, by Proposition 2.23,
˛.tC1/ can be decomposed as a product of grey arrows, and the result follows.

Corollary 2.26. Let X 2 G. Given Y; Z 2 USS.X/, one has BY \ GZ ¤ ;.

Proof. This is a straightforward consequence of the previous result. For instance, we
know that there exists an oriented path .b1; : : : ; bt ; g1; : : : ; gs/ going from Y to Z,
such that .b1; : : : ; bt / is a black path and .g1; : : : ; gs/ is a grey path. If we define
V D Y b1:::bt D Zg�1

s :::g�1
1 , then V belongs to the same black component as Y , and

to the same grey component as Z, hence V 2 BY \ GZ .

Corollary 2.27. Given X; Y 2 G, let X 0 2 USS.X/ and Y 0 2 USS.Y /. Then X and
Y are conjugate if and only if BX 0 \ GY 0 ¤ ;.

Proof. We know that X and Y are conjugate if and only if USS.X/ D USS.Y /.
In this case, X 0; Y 0 2 USS.X/, hence Corollary 2.26 tells us that BX 0 \ GY 0 ¤ ;.
Conversely, if there exists some V 2 BX 0 \ GY 0 , then V is conjugate to X 0 and also
to Y 0. Since X is conjugate to X 0 and Y is conjugate to Y 0, it follows that X and Y

are conjugate.

Using the above results, we will be able to obtain a new algorithm to solve the
CDP/CSP in Garside groups. See �5.2 below.
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3. Rigid elements

Rigid elements in Garside groups were studied in [3]. The structure of �X which we
described in the previous section, will be seen in this section to be particularly simple
in the case of rigid elements. This is important for the following reasons:

(1) It was proved in Theorems 3.21 and 3.22 of [3] that a wide class of elements in
Garside groups have rigid powers. Also, if X has a rigid power, then all elements
in USS.X/ have rigid powers. Moreover if one element in USS.Xk/ is rigid,
then all elements in USS.Xk/ are rigid.

(2) Corollary 3.24 of [3] asserts, in particular, that every PA braid has a small power
whose ultra summit set consists of rigid braids, also an explicit bound for the
power was found in �3.5 of [3]. This allows us to study the conjugacy problem
for PA braids, using the properties of rigid elements.

As noted earlier, the ultra summit set of a rigid element in a Garside group often
exhibits a transparently simple structure similar to the one seen in Example 2.11, that
is, the cycling orbits have length `.X/ or 2`.X/ and the number of orbits is 2 or 1.
However, there are examples of braids (and thus of elements in Garside groups) whose
ultra summit set is bigger than expected. Hence, a deeper study of ultra summit sets is
needed to understand this phenomenon. As will be seen, the combinatorics are quite
complicated and the bounds we seek are well-hidden.

3.1. Vertices and arrows in the USS graph of a rigid element. The effect of a
partial cycling on the normal form of a rigid element can be described explicitly:

Lemma 3.1. Let X 2 G be a rigid element, whose left normal form is �px1 : : : xr .
Let s 4 �.X/, such that X s 2 SSS.X/. Then there is a decomposition of each factor
xi D aibi , such that ai ; bi are simple elements for i D 1; : : : ; r , also s D ��p.a1/,
and the left normal forms of X and X s are

X D �p.a1b1/.a2b2/ : : : .arbr/; X s D �p.b1a2/.b2a3/ : : : .br��p.a1//:

Proof. As s 4 �.X/ D ��p.x1/, we have a1 4 x1, where a1 D �p.s/. Moreover,
by the rigidity of X , the left normal form of X ��p.x1/ is �px2 : : : xr��p.x1/ D
�p.x�1

1 x1x2/ : : : .x�1
r�1xr�1xr/.x�1

r xr��p.x1//. Since X s 2 SSS.X/, the left nor-
mal form of X s is given by �p.a�1

1 x1a2/ : : : .a�1
r�1xr�1ar/.a�1

r xr��p.a1//, where
ai 4 xi for i D 1; : : : ; r by monotonicity [18, Corollary 2.2]. Defining bi D a�1

i xi

for i D 1; : : : ; r shows the claim.

We remark that the above result also follows easily from [8, Proposition 3.1] or [21,
Lemma 4.6].

Concerning the arrows of �X , the first difference between the case of a rigid
element and the general case is the following:
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Lemma 3.2. Let X 2 USS.X/ and `.X/ > 0. Then X is rigid if and only if there
are no bi-colored arrows starting at X .

Proof. If an arrow s starting at X is black and grey at the same time, then it is a left
divisor of both �.X/ and �.X�1/. This is only possible if �.X/ ^ �.X�1/ ¤ 1, that is,
if X is not rigid.

Conversely, suppose that X is not rigid. We know that X �.X/ D c.X/ 2 USS.X/,
but also X �.X�1/ D �.d.X// 2 USS.X/. Hence, by Theorem 1.13, X �.X/^�.X�1/ 2
USS.X/, so there is a minimal simple element for X which is a divisor of �.X/ ^
�.X�1/. In other words, there is a bi-colored arrow starting at X .

We now recall several results about the vertices in USS.X/, when X is rigid, all
proved by the authors of this paper in the manuscript [3].

Proposition 3.3 ([3, Theorem 3.15]). Let X be rigid and `.X/ > 1. Then every
element in the ultra summit set of X is rigid.

Corollary 3.4 ([3, Corollary 3.16]). If X is rigid and `.X/ > 1, then USS.X/ is the
set of rigid conjugates of X .

Corollary 3.5 ([3, Corollary 3.17]). If X is rigid and `.X/ > 1, then USS.X�1/ is
the set of inverses of the elements in USS.X/.

Corollary 3.6. Let X 2 USS.X/ and `.X/ > 1. Then X is rigid if and only if there
are no bi-colored arrows in �X .

Proof. This follows directly from Lemma 3.2 and Proposition 3.3.

For example, the reader may wish to go back and compare Example 2.11 and
Example 2.12, both of which were rigid braids, and Example 2.13 and Example 2.14,
which were not rigid braids. In this regard, we note that Example 2.13 is a periodic
braid (peek ahead to �4), whereas Example 2.14 is reducible. The additional structure
in the periodic case will be elucidated when we get to �4.

We continue our investigations of the graph of USS.X/ when X is rigid. We know
that X is rigid if and only if X�1 is rigid. Now we show that the arrows starting at X

in �X are the same as the arrows starting at X�1 in �X�1 .
The next lemma will be important when we study the periodic elements in the

braid groups, in [4], We will also use it in the proof of Proposition 3.8.

Lemma 3.7. If X 2 SSS.X/ and `.X/ D 1, then X 2 USS.X/. Moreover,
USS.X/ D SSS.X/, and it consists of the conjugates to X whose canonical length
is 1.
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Proof. Notice that, if `.X/ D 1 then c.X/ D ��p.X/, where p D inf.X/. Since
some power of � is trivial, it follows that ck.X/ D X for some k. Therefore,
X 2 USS.X/.

If we apply this reasoning to every element in SSS.X/, it follows that SSS.X/ �
USS.X/. Since USS.X/ � SSS.X/ by definition, equality holds. By definition,
SSS.X/ consists of the conjugates to X of minimal canonical length. Since X 2
SSS.X/, and `.X/ D 1, the elements in SSS.X/ D USS.X/ are precisely the
conjugates of X of canonical length 1.

Proposition 3.8. Let X be rigid. Then s is a minimal simple element for X if and
only if it is a minimal simple element for X�1.

Proof. By definition, `.X/ > 0. If `.X/ D 1 then USS.X�1/ D fy�1 j y 2
USS.X/g follows from Lemma 3.7 and Remark 1.8. In the case `.X/ > 1 the set
USS.X/ is made of rigid elements by Proposition 3.3 and USS.X�1/ D fy�1 j y 2
USS.X/g by Corollary 3.5.

Hence, if s is a simple element such that s�1Xs 2 USS.X/, then s�1Xs either
has canonical length 1, or is rigid. In either case, s�1X�1s satisfies the same property,
so s�1X�1s 2 USS.X�1/. Hence the set of simple elements conjugating X to an
element in USS.X/ coincides with the set of simple elements conjugating X�1 to an
element in USS.X�1/. Since the minimal simple elements for X and for X�1 are the
4-minimal elements in these sets, it follows that the sets of minimal simple elements
for X and for X�1 coincide.

Corollary 3.9. If X is rigid and s is a minimal simple element for X , then s is a black
Œgrey� arrow in �X if and only if it is a grey Œblack� arrow in �X�1 .

Proof. By the above result, s is an arrow in �X starting at X if and only if it is also
an arrow in �X�1 starting at X�1. The statement about the color of the arrow is then
given by definition.

Corollary 3.10. If X is rigid and `.X/ > 1, then �X and �X�1 are isomorphic
graphs, with the same labels but interchanged colors.

Proof. By Corollary 3.5 we have USS.X�1/ D fy�1 j y 2 USS.X/g and by Propo-
sition 3.3, every element in USS.X/ is rigid, so Corollary 3.9 can be applied to every
vertex in �X . Hence, an isomorphism between �X and �X�1 can be defined by send-
ing every vertex Y to Y �1, and every arrow s to itself. It is an isomorphism since
every arrow s in �X starting at Y and ending at Z (thus s�1Ys D Z) is sent to an
arrow s in �X�1 starting at Y �1, whose final vertex is precisely s�1Y �1s D Z�1.
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Example 3.11. We return to the example that we gave earlier, in Figure 1. We included
all edge labels, for easy comparison between the two graphs. Recall that xA D A�1.
The reader will see that the two black cycling orbits of length 3 in �A correspond to
two grey orbits in � xA, whereas the black cycling orbit of length 6 in � xA corresponds to
a grey orbit of length 6 in �A. The correspondence between vertex labels in �A and � xA
is as follows: A�1

1;1 D xA1;1, A�1
1;2 D xA1;3, A�1

1;3 D xA1;5, A�1
2;1 D xA1;4, A�1

2;2 D xA1;6,
A�1

2;3 D xA1;2.

In the case of rigid elements, there is a characterization of black and grey arrows
which does not hold in the general case.

Proposition 3.12. If X is rigid and s is a minimal simple element for X , then the
following conditions are equivalent.

(1) s is a black arrow in �X .that is, s 4 �.X//.

(2) '.X�1/s is simple.

(3) '.X/s is left weighted.

(4) s ^ �.X�1/ D 1.

The equivalence of conditions .1/ and .2/ and the equivalence of conditions .3/ and
.4/ hold for arbitrary X 2 USS.X/.

Proof. For arbitrary X 2 USS.X/, the product '.X/s is left weighted if and only
if s ^ @.'.X// D 1. By Lemma 2.1, we know that @.'.X// D �.X�1/, hence
conditions (3) and (4) are equivalent. Moreover, �.X/ D @.'.X�1//, so s is black
if and only if s 4 @.'.X�1// or, in other words, if and only if '.X�1/s is simple.
Hence, conditions (1) and (2) are equivalent.

If X is rigid, we know by Theorem 2.5 that '.X/s is either simple or left weighted.
By Lemma 3.2 we know that s is black if and only if it is not grey, which happens,
since �.X�1/ D @.'.X//, if and only if '.X/s is not simple. Therefore, conditions
(1) and (3) are equivalent.

Proposition 3.13. If X is rigid and s is a minimal simple element for X , then the
following conditions are equivalent.

(1) s is a grey arrow in �X .that is, s 4 �.X�1//.

(2) '.X/s is simple.

(3) '.X�1/s is left-weighted.

(4) s ^ �.X/ D 1.

The equivalence of conditions .1/ and .2/ and the equivalence of conditions .3/ and
.4/ hold for arbitrary X 2 USS.X/.
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Proof. The equivalence of conditions (1) and (2) and the equivalence of conditions
(3) and (4) can be shown as in the proof of Proposition 3.12 with X replaced by X�1.

The rest is a consequence of Proposition 3.12, together with Corollary 3.9.

3.2. Paths in the USS graph of a rigid element. In the general case, we saw how
two elements in USS.X/ are always joined by an oriented black path followed by
an oriented grey path, and vice versa. In the rigid case, we will see that we can say
much more. First, we can characterize black or grey oriented paths according to their
associated conjugating element.

Lemma 3.14. Let X 2 G be rigid, and `.X/ > 1. Let .s1; : : : ; sk/ be an oriented
path in �X starting at a vertex Y , and let ˛ D s1 : : : sk . The following properties are
equivalent:

(1) The path .s1; : : : ; sk/ is black.

(2) ˛ 4 .Y m/B for some positive integer m.

(3) ˛ ^ �.Y �1/ D 1.

Proof. We will show the result by induction on k. The case k D 0 is trivial. If k D 1

then ˛ D s1 is simple, hence the result follows from the definition of a black arrow,
since in this case s1 4 .Y m/B if and only if s1 4 �..Y m/B/ D �.Y m/. Note that Y is
rigid by Proposition 3.3. Therefore �.Y m/ D �.Y /, hence s1 4 .Y m/B if and only if
s1 4 �.Y /, that is, if and only if s1 is a black arrow. Hence Properties (1) and (2) are
equivalent if k D 1. In the case ˛ D s1, Property (3) just means that s1 is not a grey
arrow, which by Lemma 3.2 and the rigidity of Y , is equivalent to Property (1).

Suppose that k > 1 and that the result is true for k � 1. Let �py1 : : : yr be
the left normal form of Y and define Z D s�1

1 Ys1. Notice that .s2; : : : ; sk/ is an
oriented path starting at Z. Notice also that, since Z 2 USS.X/, one has ZB D
s�1

1 Y B��p.s1/. Moreover, we know by Proposition 3.3 that Y and Z are rigid, so
Y m and Zm are also rigid, hence Y m; Zm 2 USS.Xm/ for every m > 0. Therefore
.Zm/B D .s�1

1 Y ms1/B D s�1
1 .Y m/B��pm.s1/ for every m > 0.

By induction hypothesis we have that .s2; : : : ; sk/ is a black path if and only if
s2 : : : sk 4 .Zm/B for some positive m. Therefore, if .s1 : : : ; sk/ is a black path,
then ˛ D s1s2 : : : sk 4 s1.Zm/B D s1s�1

1 .Y m/B��pm.s1/ D .Y m/B��pm.s1/.
But s1 is a black arrow, hence s1 4 �.Y / D ��p.y1/, so .Y m/B��pm.s1/ 4
.Y m/B��p.mC1/.y1/ 4 .Y mC1/B, where the last claim is true due to the rigidity of Y .
Therefore, if .s1; : : : ; sk/ is a black path, then ˛ 4 .Y mC1/B for some positive m, so
Property (1) implies Property (2).

Conversely, suppose that ˛ 4 .Y m/B for some positive integer m. Then s1 4
˛ 4 .Y m/B, and since s1 is simple s1 4 �..Y m/B/ D �.Y m/ D �.Y /, whence
s1 is a black arrow. Moreover, ˛ D s1 : : : sk 4 .Y m/B 4 .Y m/B��mp.s1/, so
s2 : : : sk 4 s�1

1 .Y m/B��mp.s1/ D .Zm/B. By induction hypothesis this means that
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.s2; : : : ; sk/ is a black path, hence .s1; : : : ; sk/ is a black path, that is, Property (2)
implies Property (1). The first two properties are thus equivalent.

Now suppose again that ˛ 4 .Y m/B for some positive m. In particular, one has
inf.˛/ D 0, so it follows that �.˛/ 4 �..Y m/B/ D �.Y m/ D �.Y /, where the last
equality follows from the rigidity of Y . Since Y is rigid, �.Y / ^ �.Y �1/ D 1, hence
�.˛/ ^ �.Y �1/ D 1 and therefore ˛ ^ �.Y �1/ D 1. This shows that Property (2)
implies Property (3).

Finally, suppose that ˛ ^ �.Y �1/ D 1. This implies that inf.˛/ D 0, so the left
normal form of ˛ has the form ˛1 : : : ˛t . Since ˛ ^ �.Y �1/ D ˛ ^ @.yr/ D 1, the left
normal form of Y˛ is precisely �py1 : : : yr˛1 : : : ˛t . Moreover, since Y is rigid, it
follows that for every m > 0 the left normal form of Y m˛ is

Y m˛ D �pm�p.m�1/.y1/ : : : �p.m�1/.yr/�p.m�2/.y1/ : : : �p.m�2/.yr/ : : :

: : : y1 : : : yr˛1 : : : ˛t :

That is, there is no contribution of ˛ to the first mr non-� factors of the left normal
form of Y m˛. However, ˛�1Y m˛ D Zm 2 USS.Xm/, whence ˛ 4 .Y m˛/B for
every m > 0. This means that, for m big enough (such that t � mr) one has
˛ 4 .Y m/B. Hence Property (3) implies Property (2), thus the last two properties are
also equivalent.

Here is the analogous result for grey paths.

Lemma 3.15. Let X 2 G be rigid, and `.X/ > 1. Let .s1; : : : ; sk/ be an oriented
path in �X starting at a vertex Y , and let ˛ D s1 : : : sk . Then the following properties
are equivalent:

(1) The path .s1; : : : ; sk/ is grey.

(2) ˛ 4 .Y �m/B for some positive integer m.

(3) ˛ ^ �.Y / D 1.

Proof. By Corollary 3.10 this is analogous to the above result, considering the graph
�X�1 instead of �X .

In the particular case where ˛ above is simple, the characterization of black or
grey paths can be made more precise.

Corollary 3.16. Let X 2 G be rigid and `.X/ > 1. Let .s1; : : : ; sk/ be an oriented
path in �X starting at a vertex Y and let s D s1 : : : sk . If s is simple, the following
properties are equivalent:

(1) The path .s1; : : : ; sk/ is black.

(2) s 4 �.Y /.
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(3) s ^ �.Y �1/ D 1.

(4) '.Y �1/s is simple.

Proof. The equivalence of Properties (1)–(3) is a consequence of Lemma 3.14, to-
gether with the fact that, if s is simple and Y is rigid, s 4 .Y m/B if and only
if s 4 �.Y m/B D �.Y /. The equivalence of Properties (2) and (4) follows from
�.Y / D @.'.Y �1//.

Corollary 3.17. Let X 2 G be rigid, and `.X/ > 1. Let .s1; : : : ; sk/ be an oriented
path in �X starting at a vertex Y , and let s D s1 : : : sk . If s is simple, the following
properties are equivalent:

(1) The path .s1; : : : ; sk/ is grey.

(2) s 4 �.Y �1/.

(3) s ^ �.Y / D 1.

(4) '.Y /s is simple.

Proof. This result is the same as the above one, but applied to �X�1 instead of �X ,
thanks to Corollary 3.10.

Remark 3.18. Using the same kind of proofs as above, one can show that Corol-
lary 3.16 and Corollary 3.17 are also true if Y is rigid and `.Y / D 1. But this
cannot be generalized to paths whose associated element is not simple, so we will
keep considering rigid elements of canonical length greater than 1.

Now recall that we showed, in the general case, that every oriented path could be
transformed into the concatenation of a black path and a grey path, whose associated
element was the same as the original one. We will now see that, if X is rigid and
`.X/ > 1, the elements associated to those oriented black and grey paths are, in fact,
determined by the associated element of the whole path.

Lemma 3.19. Let X be a rigid element with canonical length `.X/ D r > 1 and let
.b1; : : : ; bs; g1; : : : ; gt / be an oriented path in �X starting at Y , such that .b1; : : : ; bs/

is a black path and .g1; : : : ; gt / is a grey one. Let b D b1 : : : bs , g D g1 : : : gt , and
˛ D bg. Let m be an integer big enough such that `.b/ � mr . Then, b D .Y m/B ^˛.
In particular, b and g are uniquely determined by ˛.

Proof. Since .b1; : : : ; bs/ is a black path, Lemma 3.14 tells us that b 4 .Y m/B
for some m big enough. Actually, by the rigidity of Y , it suffices to take m such
that `.b/ � `..Y m/B/ D mr . Since we also have b 4 bg D ˛, it follows that
b 4 .Y m/B ^ ˛.
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Now let Z D b�1Y b and p D inf.Y /. Since Z is also rigid, both Y m and Zm

belong to USS.Xm/. Hence .Zm/B D b�1.Y m/B��pm.b/. Moreover, �..Zm/B/ D
�.Z/. However, .g1; : : : ; gt / is a grey path starting at Z, hence by Lemma 3.15
g^�.Z/ D g^�..Zm/B/ D 1. Since inf..Zm/B/ D 0, this implies that g ^ .Zm/B D 1,
that is, g ^ .b�1.Y m/B��pm.b// D 1. As b 4 .Y m/B, we in particular have g ^
b�1.Y m/B D 1. Multiplying on the left by b, one gets ˛ ^ .Y m/B D b, as we wanted
to show.

The analogous result holds for the concatenation of a grey path followed by a
black path.

Lemma 3.20. Let X be a rigid element with canonical length `.X/ D r > 1 and let
.g1; : : : ; gt ; b1; : : : ; bs/ be an oriented path in �X starting at Y , such that .g1; : : : ; gt /

is a grey path and .b1; : : : ; bs/ is a black one. Let g D g1 : : : gt , b D b1 : : : bs , and
˛ D gb. Let m be an integer big enough such that `.g/ � mr . Then, g D .Y �m/B^˛.
In particular, g and b are uniquely determined by ˛.

Proof. Corollary 3.10 implies that this result is equivalent to the previous one.

In the case that ˛ above is simple, one can simplify the characterization of the
elements b and g. We will state the two analogous results since we will use them
later.

Corollary 3.21. Let X be a rigid element with canonical length `.X/ > 1 and let
.b1; : : : ; bs; g1; : : : ; gt / be an oriented path in �X starting at Y , such that .b1; : : : ; bs/

is a black path and .g1; : : : ; gt / is a grey one. Let b D b1 : : : bs , g D g1 : : : gt and
s D bg. If s is simple, then b D �.Y / ^ s. In particular, b and g are uniquely
determined by s.

Proof. This follows from Lemma 3.19, since by the simplicity of s and the rigidity of
Y , one has b D .Y m/B ^s D �^.Y m/B ^s D �..Y m/B/^s D �.Y m/^s D �.Y /^s.

Corollary 3.22. Let X be a rigid element with canonical length `.X/ > 1 and let
.g1; : : : ; gt ; b1; : : : ; bs/ be an oriented path in �X starting at Y , such that .g1; : : : ; gt /

is a grey path and .b1; : : : ; bs/ is a black one. Let g D g1 : : : gt , b D b1 : : : bs and
s D gb. If s is simple, then g D @.'.Y // ^ s, that is, the left normal form of '.Y /s

is .'.Y /g/ b. In particular, g and b are uniquely determined by s.

Proof. This follows by applying Corollary 3.21 to �X�1 .

Remark. In the above results, the elements b and g are determined by ˛ (or s).
But this does not mean that the paths .b1; : : : ; bs/ and .g1; : : : ; gt / are determined
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by ˛, since there could exist distinct paths .b1; : : : ; bs/ and .b0
1; : : : ; b0

u/ such that
b D b1 : : : bs D b0

1 : : : b0
u. The same could happen for g.

The situation is more interesting if each of the above paths consists only of one ar-
row. Consider then the following situation. Let X D �px1 : : : xr , Y D �py1 : : : yr

and Z D �pz1 : : : zr be three vertices of �X , where X is rigid and `.X/ > 1. Sup-
pose that X and Y are joined by a black arrow b, while Y and Z are joined by a grey
arrow g. That is,

X
b �� Y

g

��
Z.

Proposition 3.23. In the above situation, the product bg is simple, and there exist a
unique grey arrow g0 and a unique black arrow b0 such that bg D g0b0:

X

g0

��

b �� Y

g

��
T

b0
�� Z.

Specifically, g0 D @.'.X// ^ bg and b0 D .g0/�1bg.

Proof. Since b 4 �.X/ (b is a black arrow), one can decompose �.X/ D bc so
that Y D �p�p.c/x2 : : : xrb, where x2 : : : xrb is in left normal form as written, by
the rigidity of X . Hence, when we compute the left normal form of Y , we see that
yr D !b for some ! such that xr < !. However, g is a grey arrow for Y , hence
yrg D !bg is simple, thus bg is also simple.

Consider b0 and g0 as defined above. We know that, since .b; g/ is an oriented path
going from X to Z, there exists another path .g1; : : : ; gt ; b1; : : : ; bs/ also going from
X to Z, which is the concatenation of a grey path and a black path, such that bg D
g1 : : : gtb1 : : : bs . Moreover, by Corollary 3.22, g0 D g1 : : : gt and b0 D b1 : : : bs .
We just need to show that t D s D 1, that is, g0 D g1 and b0 D b1.

Firstly, we cannot have t D 0 or s D 0, since otherwise we would have an oriented
black path, or an oriented grey path, whose associated element is bg. But this is not
possible, since in that case .b; g/ would be either a black path or a grey path, by
Lemma 3.14 or Lemma 3.15, and we know this is not true.

Suppose now that t > 1. Then .gt ; b1; : : : ; bs/ is a path which has black and
grey arrows, that can be transformed into a path .b0

1; : : : ; b0
u; g0

1; : : : ; g0
v/ where

every b0
i is black, every g0

i is grey, and v > 0 by the above reasoning. There-



42 J. S. Birman, V. Gebhardt and J. González-Meneses

fore .g1; : : : ; gt�1; b0
1; : : : ; b0

u; g0
1; : : : ; g0

v/ is a path going from X to Z. Now
.g1; : : : ; gt�1; b0

1; : : : ; b0
u/ can also be replaced by a path .b00

1 ; : : : ; b00
�; g00

1 ; : : : ; g00
� /,

where every b00
i is black, every g00

i is grey, and 
 > 0. Hence, if t > 1 we could
obtain a path .b00

1 ; : : : b00
�; g00

1 ; : : : ; g00
� ; g0

1; : : : ; g0
v/, whose associated element is bg,

and 
 C v > 1. But by Lemma 3.19, g D g00
1 : : : g00

�g0
1 : : : g0

v , that is, the grey arrow g

could be decomposed into a product of more than one grey arrow. This contradicts
the fact that g is a minimal simple element, since in that case g00

1 would be a proper
prefix of g. Therefore t D 1.

We can use the same reasoning to show that s D 1, so .g0; b0/ is an oriented path,
where g0 is a grey arrow and b0 is a black arrow. The uniqueness of g0 and b0 follows
from Lemma 3.20.

We have then shown how to transform any black–grey path .b; g/ into a grey–black
path .g0; b0/ such that bg D g0b0. Moreover, by Corollary 3.21 and Corollary 3.22,
these two decompositions bg D g0b0 are the only two ways to decompose bg into a
product of minimal simple elements.

By symmetry, if we start with a grey–black path .g; b/, we can transform it into a
black–grey path .b0; g0/, where gb D b0g0.

Proposition 3.24. Let X 2 G be rigid and `.X/ > 1. Let .g; b/ be a path in �X

starting at X , where g is a grey arrow and b is a black one. If we define b0 D gb^�.X/

and g0 D .b0/�1gb, then .b0; g0/ is a path in �X such that b0 is black, g0 is grey, and
gb D b0g0. Moreover, b0 and g0 are the unique such arrows.

Proof. The result follows by applying Proposition 3.23 to the graph �X�1 and using
@.'.X�1// D �.X/.

We have thus shown that, if X and Y are two rigid elements connected by a black
arrow, then every grey arrow for Y is related to a grey arrow for X . However, we
do not yet know whether every grey arrow of X is related to one of Y . Similarly,
if X and Y are two rigid elements connected by a grey arrow, the question arises of
whether every black arrow of X is related to one of Y .

Using the language of Proposition 3.23, we need to show that given a black arrow b

and a grey arrow g0 for X , a grey arrow g for Xb and a black arrow b0 for Xg0

exist
such that .Xb/g D .Xg0

/b0

. In the next subsection, we will see that this is true.
As a consequence, we will show that every two elements in the same black com-

ponent have the same number of grey arrows and that every two elements in the same
grey component have the same number of black arrows.

3.3. Partial transport. Let X D �px1 : : : xr 2 G be in left normal form, such that
X 2 SSS.X/. We start this subsection by recalling the definition of the transport of
a simple element, given in [18]. Let s be a simple element such that s�1Xs D Y 2
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SSS.X/. We can write this by X
s�! Y . We know from [14, § 4] that c.X/ and

c.Y / also belong to SSS.X/. Notice that X
�.X/�! c.X/ and Y

�.Y /�! c.Y /. In [18,
Lemma 2.3] it is shown that, in this situation, c.X/ and c.Y / are also conjugate by
a simple element, s.1/, where s.1/ is defined as the element making the following
diagram commutative in the sense explained below:

X

s

��

�.X/ �� c.X/

s.1/

��
Y

�.Y /
�� c.Y /.

More precisely, s.1/ D �.X/�1s �.Y /. The nontrivial fact shown in [18, Corollary 2.2]
is that s.1/ is simple. The simple element s.1/ is the transport of s.

Remark. When we deal with a diagram such as the previous one, in which the arrows
represent conjugating elements, then by saying that the diagram is commutative we
mean the following: for every two paths in the diagram whose starting and ending
vertices coincide, the products of the arrows forming every path (with the corre-
sponding signs) are the same. For instance, in the above diagram this is equivalent to
�.X/ s.1/ D s �.Y /, that is, s.1/ D �.X/�1 s �.Y /.

We can then define the transport of s.1/, denoted s.2/, and so on. In general, the
transport of s.i�1/ is denoted s.i/ and the above definition tells us that

s.i/ D �.ci�1.X//�1 : : : �.c.X//�1�.X/�1 s �.Y /�.c.Y // : : : �.ci�1.Y //:

We can easily see that, if X 2 USS.X/ is rigid and `.X/ > 1, the situation is
much simpler. In this case, if the left normal form of X is �px1 : : : xr , that is
�.X/ D ��p.x1/, rigidity of ck.X/ for all k � 0 implies �.c.X// D ��p.x2/,
�.c2.X// D ��p.x3/ and so on. We also know that Y D �py1 : : : yr must be rigid,
so the same formulae hold for Y . Hence, for i D 1; : : : ; r we have

s.i/ D ��p.x�1
i : : : x�1

1 / s ��p.y1 : : : yi /:

Eventually, one has

s.r/ D ��p.x�1
r : : : x�1

1 / s ��p.y1 : : : yr/ D �pX�1s Y��p

D �pX�1s.s�1Xs/��p D �ps ��p D ��p.s/:

Hence, if m is an integer such that pm is a multiple of e (where �e is central), one
has s.rm/ D �pm.s/ D s. For instance, in braid groups with the Garside structure
given by the Artin generators, one has e D 2, so we always have s.2r/ D s. If p is
even, s.r/ D s holds.
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There is another way of looking at the transports of s in the rigid case. By
definition, we have s.1/ D ��p.x1/�1s ��p.y1/, whence y1 D �p.s�1/ x1 �p.s.1//.
But since X and Y are rigid, we have �.c.X// D ��p.x2/ and �.c.Y // D ��p.y2/,
whence, y2 D �p.s.1//�1 x2 �p.s.2//. In general, yi D �p.s.i�1//�1xi�

p.s.i// for
i D 1; : : : ; r . Recalling s.r/ D ��p.s/, the normal form of Y is

Y D �py1y2 : : : yr

D �p
�
�p.s/�1x1 �p.s.1//

��
�p.s.1//�1x2 �p.s.2//

�
: : :

�
�p.s.r�1//�1xr s

�
:

Hence, in the rigid case, the first r transports of s are precisely the simple elements
that tell us how to relate the left normal forms of X and Y (conjugated by ��p).

By [18, Corollary 2.7] the transport is a bijection from the minimal simple elements
for X to the minimal simple elements for c.X/. Hence the map � from the graph
�X to itself defined by sending every vertex Y to c.Y / and every arrow s to s.1/ is
an automorphism of �X . It is also shown in [18, Corollary 2.2] that s 4 t implies
s.1/ 4 t .1/ and by definition .�.Y //.1/ D �.c.Y //. Again by definition this means
that � sends black arrows to black arrows. It is elementary to check that the image
of a grey arrow is a grey arrow. Hence � is an automorphism of �X preserving the
colors of arrows.

Example 3.25. Recall that the braids we called A and B , with �A illustrated in the
left sketch in Figure 1 and �B illustrated in Figure 2 are both rigid braids. Both will
give us examples of the transport. We consider A first. It has two cycling orbits, A1

and A2, with 3 elements each. Let s be the grey arrow from A1;1 ! A2;3. Then
the transport of s must be a grey arrow from c.A1;1/ D A1;2 to c.A2;3/ D A2;1, and
indeed such an arrow exists and is labeled by the simple element 	1	2 D s.1/.

Example B is more complicated. Going back to Example 2.12 we study the two
cycling orbits B1 D fB1;1; B1;2g and B2 D fB2;1; B2;2g. Since B1;1 and B2;1 are
rigid the data given in Example 2.12 tells us that

B1;1 D 	2	1	4	3	2	1	5	4 � 	2	4;

B1;2 D 	2	4 � 	2	1	4	3	2	1	5	4;

B2;2 D 	2	4 � 	2	1	3	4	3	2	5	4;

B2;1 D 	2	1	3	4	3	2	5	4 � 	2	4;

and that the conjugating element for cycling 	2	1	4	3	2	1	5	4 which takes us from
B1;1 ! B1;2 is the product of the two black arrows 	2	1 and 	4	3	2	1	5	4 in
Figure 2, both of which are minimal partial cyclings. Also, the conjugating element
for cycling which takes us from B2;2 ! B2;1 is 	2	4, which is the same as the
product of the two black arrows 	4 and 	2. We also see a grey arrow, call it s, from
B1;1 ! B2;2 and its label (which we did not compute explicitly in Example 2.12) is
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s D 	1	2	3	2	1	4	3	2	5	4	3	2	1: The grey arrow from B1;2 to B2;1 has the label
t D 	3	2	1	4	5	4	3. One checks easily that this part of the diagram is commutative,
so that t D s.1/ is the transport of s.

Let us remember that each black arrow represents partial cycling. This imme-
diately raises a question about the grey arrow that we see from B3;1 to B4;2. Is it,
too, determined by a commutative diagram? That leads us to the title of this section:
“Partial transport”. It will take a while for us to define the concept precisely.

We will show that, in the rigid case, there is a notion of ‘partial transport’ of a
minimal simple element, related to a partial cycling in the same way as the transport
is related to the cycling. More precisely, we will see that a grey arrow g starting at a
vertex X can be partially transported along a black arrow b, yielding a grey arrow gŒb�

starting at Xb . Similarly, we will define the partial transport of b along g, which is a
black arrow bŒg� starting at Xg . We will see that some natural properties are satisfied,
and this will give us more information about the structure of �X . In particular, we
will show that every two vertices in the same black component have the same number
of grey arrows, and vice versa.

Let X D �px1 : : : xr and Y D �py1 : : : yr be two vertices of �X , where we
assume that X is rigid and r > 1. Let b be a black arrow going from X to Y , that is

X
b�! Y and b 4 �.X/. We saw that when we conjugate X by b we are performing

a partial cycling of X . Now we want to transport the grey arrows starting at X along
this partial cycling.

We have �.X/ D bc for some simple element c. Then c conjugates Y to c.X/, and
these two elements belong to USS.X/. Therefore we can decompose c D b2 : : : bs as
a product of minimal simple elements. Denote b D b1. Notice that �.X/ D b1 : : : bs ,
where .b1; : : : ; bs/ is an oriented black path in �X by Corollary 3.16.

On the other hand, consider a grey arrow g starting at X , and let T D Xg , whose
left normal form is �pt1 : : : tr . We know that its transport g.1/ is defined in such a
way that the following diagram is commutative:

X

g

��

�.X/ �� c.X/

g.1/

��
T

�.T /
�� c.T /.

Moreover, since g is a grey arrow starting at X , we have �.X/ ^ g D 1 by
Proposition 3.13. Hence, by [18, Corollary 2.2], �.X/.1/ ^ g.1/ D 1. As c.X/ D
X �.X/, the definition of the transport yields �.X/.1/ D �.c.X//, whence �.c.X// ^
g.1/ D 1. That is, g.1/ is a grey arrow starting at c.X/.
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Since we have decomposed �.X/ as a product of black arrows, the situation is the
following:

X

g

��

b1 �� XŒ1�
b2 �� XŒ2�

b3 �� : : : bs�1 �� XŒs�1�
bs �� c.X/

g.1/

��
T c.T /,

where XŒi� is the conjugate of X by b1 : : : bi . Notice that XŒ1� D Y .
We saw in the previous subsection how to transform the black–grey path .bs; g.1//

into a grey–black path .gs�1; b0
s/ such that the following diagram is commutative:

X

g

��

b1 �� XŒ1�
b2 �� XŒ2�

b3 �� : : : bs�1 �� XŒs�1�

gs�1

��

bs �� c.X/

g.1/

��
T TŒs�1�

b0
s

�� c.T /.

We can continue this process, defining for every black–grey path .bi ; gi / a new
grey–black path .gi�1; b0

i /. At the end we will obtain the following commutative
diagram:

X

g0

��

b1 �� XŒ1�
b2 ��

g1

��

XŒ2�
b3 ��

g2

��

: : : bs�1 �� XŒs�1�

gs�1

��

bs �� c.X/

g.1/

��
T

b0
1

�� TŒ1�
b0

2

�� TŒ2�
b0

3

�� : : :
b0

s�1

�� TŒs�1�
b0

s

�� c.T /.

Lemma 3.26. In the above situation, g0 D g and b0
1 : : : b0

s D �.T /.

Proof. Since g.1/ is a grey arrow starting at c.X/, we know by Proposition 3.13
that '.c.X//g.1/ is a simple element. Since X is rigid, '.c.X// D �.X/, whence
�.X/g.1/ is simple. That is, the element ˛ D b1 : : : bsg.1/ is simple.

By the above commutative diagram, we know that ˛ D b1 : : : bsg.1/ D g0b0
1 : : : b0

s ,
where g0 is a grey arrow and .b0

1; : : : ; b0
s/ is a black path. Hence, by Corollary 3.22,

g0 and b0
1 : : : b0

s are determined by ˛. More precisely, the left normal form of '.X/˛

is equal to .'.X/g0/.b0
1 : : : b0

s/.
On the other hand, we know by [18, Lemma 2.3] that ˛ D �.X/g.1/ D g �.T /.

Since �.T / is an element that conjugates T to c.T / and since T , c.T / 2 USS.X/, the
element �.T / can be decomposed as a product of minimal simple elements �.T / D



Conjugacy in Garside groups II: structure of the ultra summit set 47

b00
1 : : : b00

t . Moreover, .b00
1 ; : : : ; b00

t / is an oriented path starting at T , whose associated
conjugating element is �.T /. By Corollary 3.16, .b00

1 ; : : : ; b00
t / is a black path. Hence,

.g; b00
1 ; : : : ; b00

t / is a grey–black path, whose associated conjugating element is ˛.
By Corollary 3.22, the left normal form of '.X/˛ is equal to .'.X/g/.b00

1 : : : b00
t /.

Therefore g0 D g and b0
1 : : : b0

s D b00
1 : : : b00

t D �.T /, as we wanted to show.

Consider the first square of the above commutative diagram:

X

g

��

b �� Y

g1

��
T

b0
1

�� TŒ1�.

We want to define g1 as being the partial transport of g along b. But this will
only be consistent if g1 is completely determined by X , b and g (and does not depend
on the decomposition c D b2 : : : bs chosen). We will see that this is the case. Indeed,
g.1/ is completely determined by X and g, while c is determined by X and b. Hence
cg.1/ is determined by X , b and g. We then use a decomposition cg.1/ D g1b0

2 : : : b0
s ,

where .g1; b0
2; : : : ; b0

s/ is a grey–black path starting at Y . By Corollary 3.22, the
grey part of this path, that is g1, is determined by cg.1/ and Y D Xb , hence it is
determined by X , b and g, as we wanted to show. More specifically, Corollary 3.22
yields g1 D @.'.Y // ^ cg.1/.

Recalling bc D �.X/ and �.X/g.1/ D g �.T / [18, Lemma 2.3], we can rewrite
this as

g1 D @.'.Y //^.b�1�.X/g.1// D @.'.Y //^.b�1g�.T // D @.'.Xb//^.b�1g�.Xg//:

In particular, this expression for g1 depends only on X , b and g.

Definition 3.27. Let X 2 G be rigid and `.X/ > 1. Let b and g be arrows in �X

starting at X , where b is black and g is grey, and let Y D Xb and T D Xg . Then we
define the partial transport of g along b as follows:

gŒb� D @.'.Y // ^ .b�1g �.T //:

Before showing some properties of this partial transport, it will be helpful to also
define the partial transport of a black arrow along a grey one. Using the analogy
between grey and black arrows, considering the graph �X�1 , we just need to recall
that @.'.T �1// D �.T / and �.Y �1/ D @.'.Y //. Hence we have

Definition 3.28. Let X 2 G be rigid and `.X/ > 1. Let b and g be arrows in �X

starting at X , where b is black and g is grey, and let Y D Xb and T D Xg . Then we
define the partial transport of b along g as follows:

bŒg� D �.T / ^ .g�1b @.'.Y ///:
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Fortunately, the partial transport bŒg� is precisely the element b0
1 in the above

commutative diagram. This is shown in the following result:

Lemma 3.29. In the above situation, the following diagram is commutative:

X

g

��

b �� Y

gŒb�

��
T

bŒg�

�� Z.

(4)

Proof. Since gŒb� D @.'.Y // ^ .b�1g �.T //, one has bgŒb� D b @.'.Y // ^ g �.T /.
On the other hand, since bŒg� D �.T / ^ .g�1b @.'.Y ///, one has gbŒg� D g �.T / ^
b @.'.Y //. Therefore, bgŒb� D gbŒg�, as we wanted to show.

Remark. Looking at the above diagram, one may be tempted to conjecture that
bgŒb� D gbŒg� D b_g. This, however, is not true in general. A counterexample in the
braid group B4 is given by the rigid braid X D .	2/.	2	1	3	2/.	2	1	3/.	1	2/, g D
	1, b D 	2. In this case b_g D 	1	2	1 and Xb_g D .	1	3	2/.	2	1	3	2/.	2/.	2	1/

which is not rigid, that is, does not belong to USS.X/. Since gbŒg� conjugates X to
an element in USS.X/, it follows that b _ g ¤ gbŒg�. More precisely, in this case
bŒg� D 	2	1	3, hence gbŒg� D 	1	2	1	3 ¤ 	1	2	1 D b _ g.

We will now show some properties of the partial transport which shall provide
more information about the structure of �X . First, let us see that the diagram (4) is
the only possible commutative diagram that completes the diagram

X

g

��

b �� Y

T .

Proposition 3.30. Let X 2 G be rigid and `.X/ > 1. Let b be a black arrow in �X

starting at X and ending at Y and let g be a grey arrow starting at X and ending
at T . Suppose that b0 is a black arrow starting at T and g0 is a grey arrow starting
at Y , such that bg0 D gb0. Then b0 D bŒg� and g0 D gŒb�.

Proof. By definition, we have bgŒb� D b @.'.Y // ^ g �.T /. However, since g0 is a
grey arrow starting at Y one has g0 4 @.'.Y // so bg0 4 b @.'.Y //. Similarly, since
b0 is a black arrow starting at T , one has b0 4 �.T /, hence bg0 D gb0 4 g �.T /.
Therefore, bg0 4 bgŒb�, that is, g0 4 gŒb�. Since both arrows correspond to minimal
simple elements, they must be equal, that is, g0 D gŒb�.

Finally, one has gb0 D bg0 D bgŒb� D gbŒg�, hence b0 D bŒg�.
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Corollary 3.31. Let X 2 G be rigid and `.X/ > 1. Let b be a black arrow in �X

starting at X and ending at Y . Then the partial transport along b is a bijective map
from the set of grey arrows starting at X to the set of grey arrows starting at Y .

Proof. Suppose that g1 and g2 are two grey arrows starting at X such that g
Œb�
1 D g

Œb�
2 .

Then g1bŒg1� D bg
Œb�
1 D bg

Œb�
2 D g2bŒg2�. Hence, .g1; bŒg1�/ and .g2; bŒg2�/ are

two grey–black paths starting at X and having the same associated element. By
Corollary 3.22, the grey parts of these paths coincide, so g1 D g2. Hence, the partial
transport along b is injective.

Now let g0 be a grey arrow starting at Y . Then .b; g0/ is an oriented path starting
at X formed by a black arrow followed by a grey arrow. By Proposition 3.23, there
exist a unique grey arrow g and a unique black arrow b0 such that .g; b0/ is an oriented
path starting at X and bg0 D gb0. By the above result, one necessarily has g0 D gŒb�.
Hence the partial transport along b is surjective.

Corollary 3.32. Let X 2 G be rigid and `.X/ > 1. Let g be a grey arrow in �X

starting at X and ending at T . Then the partial transport along g is a bijective map
from the set of black arrows starting at X to the set of black arrows starting at T .

Proof. This result is equivalent to the previous one, if we replace X by X�1.

Corollary 3.33. Let X 2 G be rigid and `.X/ > 1. Then every two elements in a
black component of �X admit the same number of grey arrows and every two elements
in a grey component of �X admit the same number of black arrows.

Proof. If two elements Y and Z belong to the same black component of �X , then
they can be connected by a sequence of black arrows. By Corollary 3.31, the partial
transport along each one of these black arrows is a bijection. Hence, the composition
of all these partial transports is a bijection from the set of grey arrows starting at Y

to the set of grey arrows starting at Z. An analogous proof shows the same statement
with reversed colors.

In order to complete the picture, we will show that this definition of partial transport
is consistent with the transport defined in [18]. This is done by the following two
results.

Lemma 3.34. Let X , Y , T , b and g as above.

X

g

��

b �� Y

gŒb�

��

b�1�.X/ �� c.X/

g.1/

��

b.1/
�� c.Y /

.gŒb�/.1/

��
T

bŒg�

�� Z
.bŒg�/�1�.T /

�� c.T /
.bŒg�/.1/

�� c.Z/
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(1) The transport of gŒb� is equal to the partial transport of g.1/ along b.1/. That is,
.gŒb�/.1/ D .g.1//Œb.1/�.

(2) The transport of bŒg� is equal to the partial transport of b.1/ along g.1/. That is,
.bŒg�/.1/ D .b.1//Œg.1/�.

Proof. By [18, Corollary 2.2] the transport is multiplicative, whence .bgŒb�/.1/ D
b.1/.gŒb�/.1/. However, since bgŒb� D gbŒg�, one also has .bgŒb�/.1/ D .gbŒg�/.1/ D
g.1/.bŒg�/.1/. Hence, b.1/.gŒb�/.1/ D g.1/.bŒg�/.1/. In other words, if we consider the
subdiagrams

X

g

��

b �� Y

gŒb�

��
T

bŒg�

�� Z

and

c.X/

g.1/

��

b.1/
�� c.Y /

.gŒb�/.1/

��
c.T /

.bŒg�/.1/

�� c.Z/,

then the commutativity of the first one implies the commutativity of the second one.
The transport is monotonic with respect to 4 by [18, Corollary 2.2], whence

b 4 �.X/ implies b.1/ 4 �.X/.1/ D �.c.X//. That is, the transport sends black
arrows to black arrows. As the transport is a bijection on the set of all arrows and the
set of grey arrows is the complement of the set of black arrows as X is rigid, this means
that the transport sends grey arrows to grey arrows. In particular, b.1/ and .bŒg�/.1/

are black arrows and g.1/ and .gŒb�/.1/ are grey ones. By Proposition 3.30 and the
commutativity of the second diagram above, this implies .gŒb�/.1/ D .g.1//Œb.1/� and
.bŒg�/.1/ D .b.1//Œg.1/�, as we wanted to show.

We will finally show that several partial transports lead to a full transport. Recall
the commutative diagram

X

g

��

b �� XŒ1�
b2 ��

g1

��

XŒ2�
b3 ��

g2

��

: : : bs�1 �� XŒs�1�

gs�1

��

bs �� c.X/

g.1/

��
T

b0
1

�� TŒ1�
b0

2

�� TŒ2�
b0

3

�� : : :
b0

s�1

�� TŒs�1�
b0

s

�� c.T /.

Recall that g1 D gŒb� and b0
1 D bŒg�. Denote gŒb1;b2;:::;bi � D .: : : ..gŒb1�/Œb2�/ : : : /Œbi �,

where b1 D b. Denote also gs D g.1/.

Lemma 3.35. With the above notations, gŒb1;:::;bi � D gi for i D 1; : : : s. In particular,
gŒb1;:::;bs � D g.1/.
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Proof. We just need to notice that, by construction, each square in the above diagram
is commutative, and is made of black and grey arrows in the appropriate sense. Hence
by Proposition 3.30, gi D g

Œbi �
i�1 for i D 2; : : : ; s, so the result holds.

Therefore, the transport defined in [18] can be seen in the rigid case as an iterated
partial transport along a black path whose associated conjugating element is �.X/.
We have thus seen how special the structure of �X is when X is a rigid element with
`.X/ > 1.

4. Periodic elements

After the study of rigid elements, we will study other kind of elements in a Garside
group whose associated ultra summit graph is, in some sense, in the other extreme.
This is the case of periodic elements.

Definition 4.1. An element X 2 G is said to be periodic if Xm D �k for some
nonzero integers m and k.

Example 4.2. The 5-braid C that we gave earlier, in Example 2.13, is a periodic
braid. We shall see soon that its graph �C , depicted in the left sketch in Figure 3,
illustrates many of the results in this section.

In this section we will study the structure of the ultra summit set of a periodic
element X . We know that if X were rigid and `.X/ > 1, then no arrow in �X would
be bi-colored. The case of periodic elements is completely the opposite: we will
show that if X is periodic and `.X/ > 0, then every arrow in �X is bi-colored. Hence
�X D BX D GX . In particular, every two elements in USS.X/ can be connected by
a sequence of partial cyclings.

Theorem 4.3 ([2, Theorem 4.5] for Artin–Tits groups, [9, Corollary 6.9] for Garside
groups)). If X 2 SSS.X/ is periodic and it is not a power of �, then `.X/ D 1.

Remark 4.4. A new proof of Theorem 4.3 for all Garside groups follows immediately
from the decomposition that is given in [3, Theorem 2.9].

Recall that an atom is an indivisible simple element, and that every Garside group
G is generated by its atoms. We will show that if an element X 2 USS.X/ is periodic,
then all its minimal simple elements are atoms and correspond to partial cyclings. We
will also determine which atoms are minimal simple elements for a given periodic
element.

Here is the main result concerning periodic elements.



52 J. S. Birman, V. Gebhardt and J. González-Meneses

Proposition 4.5. Let X 2 USS.X/ be a periodic element which is not a power of �.
The set of minimal simple elements for X is equal to the set of atoms dividing �.X/ and
�.X�1/, that is, the left descent set of �.X/ ^ �.X�1/, in the terminology of Artin–Tits
groups.

Proof. For every Y 2 G, SSS.Y �1/ consists of the inverses of the elements in
SSS.Y /; see Remark 1.8. In our case, since X is periodic and it is not a power of �,
we have `.X/ D 1. Hence, USS.X/ D SSS.X/ and USS.X�1/ D SSS.X�1/ D
fY �1 j Y 2 SSS.X/g by Lemma 3.7. Moreover, a simple element t satisfies X t 2
USS.X/, that is `.t�1Xt/ D 1, if and only if `.t�1X�1t / D 1, which is equivalent
to .X�1/t 2 USS.X�1/. Therefore, the minimal simple elements for X and for X�1

coincide.
Let �px1 be the left normal form of X , and recall that �.X/ D ��p.x1/ and

�.X�1/ D @.x1/. Let s be a minimal simple element for X (thus for X�1). By
Corollary 2.7, we have s 4 �.X/ or s 4 �.X�1/. Replacing X by X�1 if necessary,
we can assume that s 4 �.X�1/ D @.x1/. This implies that x1s is simple.

We will show that we also have s 4 �.X/ D ��p.x1/ or, equivalently, that
�p.s/ 4 x1. We know that �p.s/ _ x1 D x1t , for some simple element t . We must
then show that t D 1.

Notice that `.s�1Xs/ D `.s�1�px1s/ D 1, hence �p.s/�1x1s is simple. That is,
�p.s/ 4 x1s. Then, x1s is a multiple of �p.s/ and of x1, so it follows that x1t 4 x1s,
thus t 4 s. This yields �p.t/ 4 �p.s/ 4 x1t , whence �p.t/�1x1t is simple, implying
`.t�1Xt/ D 1. By minimality of s, it follows that either t D 1 (as we want to show)
or t D s.

Suppose that t D s, that is, �p.s/ _ x1 D x1s. We will see that in this case
X cannot be periodic, since we will show by induction that `.Xk/ > 0 and that
s 64 �.Xk/, for every k > 0. For k D 1, we know that `.X/ D 1, and if we had
s 4 �.X/ D ��p.x1/, then �p.s/ 4 x1, so �p.s/ _ x1 D x1 D x1s, which would
imply that s D 1 in contradiction to our assumption. Hence, the claim is true for
k D 1.

Suppose the claim is true for some k � 1. Let �qz1 : : : zm be the left normal
form of Xk , where m � 1. Then XkC1 D �px1�qz1 : : : zm. In order to show that
`.XkC1/ > 0 it suffices to prove that x1��q.z1/ is not a multiple of �. This follows
if we can show that @.x1/ 64 ��q.z1/, that is, that �.X�1/ 64 �.Xk/. The latter is true
since we are assuming that s 4 �.X�1/, while by induction hypothesis s 64 �.Xk/.
Hence `.XkC1/ > 0. Moreover, in this case �.XkC1/ is the maximal simple prefix of
��p.x1/��p�q.z1/. If we had s 4 ��p.x1/��p�q.z1/, then �p.s/ 4 x1��q.z1/ D
x1 �.Xk/. In this case, x1 �.Xk/ would be a multiple of �p.s/ and of x1, whence we
would have x1s 4 x1�.Xk/ as we assume �p.s/_x1 D x1s. This is not possible, since
by induction hypothesis s 64 �.Xk/. Therefore, s 64 ��p.x1/��p�q.z1/, whence
s 64 �.XkC1/ which proves the claim.

We have then shown that if t D s, the element X would not be periodic. Hence,
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we have t D 1. This means that �p.s/ _ x1 D x1, that is, �p.s/ 4 x1, which implies
that s 4 ��p.x1/ D �.X/. Therefore, every minimal simple element s for X must be
a prefix of �.X�1/ and also of �.X/.

Now choose any atom a 4 s. We know that a 4 �.X/ D ��p.x1/ and that x1a

is simple. Therefore, a�1Xa has canonical length 1. By minimality of s, we have
a D s. Hence, every minimal simple element for X is an atom dividing both �.X/

and �.X�1/.
Conversely, an atom a which divides both �.X/ and �.X�1/ satisfies �p.a/ 4 x1

and x1a is simple, whence `.a�1Xa/ D 1. Since an atom has no proper prefixes, it
is a minimal simple element for X .

The most important consequence of this result is that one can connect every two
elements in the ultra summit set of a periodic element by a sequence of partial cyclings.

Corollary 4.6. Let X 2 USS.X/ and Y 2 USS.Y / be periodic elements. Then
X and Y are conjugate if and only if there exists a sequence of elements X D
X1; X2; : : : ; Xm D Y , such that for all i D 1; : : : ; m � 1, the element XiC1 is a
partial cycling of Xi and Xi 2 USS.Xi / D USS.X/.

Proof. If X D �m for some m, then USS.X/ D fXg, so the result is trivially true.
We can then assume that X is not a power of �.

Suppose that X and Y are conjugate. By [18, Corollary 1.19] and Remark 1.11
there exists a chain of elements X D X1; X2; : : : ; Xm D Y , such that XiC1 D X

si

i ,
where Xi 2 USS.X/ and si is a minimal simple element for Xi , for i D 1; : : : ; m�1.
By Proposition 4.5, each si is an atom dividing �.Xi /, whence XiC1 is a partial cycling
of Xi , for i D 1; : : : ; m � 1.

The converse is trivial.

We will see in Proposition 5.4 that, given X 2 G, we can obtain some X 0 2
USS.X/ by a finite number of partial cyclings. Given X; Y 2 G which are conjugate,
we can hence obtain X 0 2 USS.X/ and Y 0 2 USS.X/ using partial cyclings. If X

is periodic, we have also shown that one can go from X 0 to Y 0 by a finite number of
partial cyclings.

But in general, even if X is periodic, one cannot go from X to Y by partial cyclings,
since a partial cycling will never decrease the infimum of an element, and Y does not
necessarily have maximal infimum.

5. Applications

5.1. Complexity of the CDP/CSP for pseudo-Anosov and periodic braids. The
work in this paper is applicable to all Garside groups, and no assumptions are made
that restrict attention to the braid groups Bn. In this section we show, by applying our
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results to braids, that we have made progress toward one of our long-range goals. That
goal is to find a solution to the CDP/CSP for PA elements in Bn which is polynomial,
that is bounded above by a polynomial in both n and `.X/. In this section we discuss
our progress, at this time, toward that goal, and what remains to be done.

Putting X into left normal form is known to have polynomial complexity; see [15,
Corollary 9.5.3] and [5, Theorem 4.4]. It follows from [6, Theorem 1] that there is a
polynomial bound to how many times one must cycle and decycle an element X in
order to bring X to a representative which is in SSS.X/, so without loss of generality
we may assume that X is in left normal form and in SSS.X/. But at this time we do
not know how many times one must cycle to bring X into USS.X/. That problem
may yield, using the machinery developed in �2 of [3], however at this writing it
remains an open question. Let us assume from now on that X 2 USS.X/.

(A) The PA case. We have proved in [3, Theorem 3.37] that, if X is PA, then there is
an integer m which is at most ..n/.n � 1/=2/3, such that every element in USS.Xm/

is rigid if we use the usual Garside structure. If we use the BKL structure [5] then
m is bounded by .n � 1/3. In view of the fact, proved in [19, § 4.2], that roots of
PA braids are unique, this means that, in searching for a polynomial solution to the
CDP/CSP for PA braids, we may assume that they are rigid. Since any rigid element
X of a Garside group is in USS.X/, this means we may assume that X is PA and that
X 2 USS.X/ is rigid.

We have computed many many examples of USS.X/ when X is PA and rigid,
using random searches, and on the basis of the evidence found that in the generic case
USS.X/ has either 2 orbits, where one is the conjugate of the other by �, or 1 orbit
which is conjugate to itself by �. Those are the two cases that we saw in Example 2.11
and Figure 1. We found this behavior over and over again, in calculations with very
large numbers of randomly chosen examples, when we restricted our attention to PA
braids that are rigid. A question that remains, for future work, is: If X is a PA and rigid
element in Bn, is the size of USS.X/ bounded above by some polynomial in n and
`.X/? This is where our structure theorems about USS.X/ become very important.
We present two examples which illustrate the problems that remain to be solved in
the PA, rigid case. Let us remember that in such cases we understand cycling very
well, but the partial cyclings and partial twisted decyclings that connect cycling orbits
present new combinatorial challenges.

We would like to give some examples to illustrate the difficulties, but encounter a
problem on how to both present interesting examples and draw good pictures, when
USS.X/ is unexpectedly large. To overcome the difficulty, recall that for every X 2 G

there is an automorphism � of �X that sends every vertex Y to c.Y / and every arrow
s to its transport s.1/. We can hence define a quotient graph �X=� whose vertices are
the cycling orbits in the vertex set of �X . Recall also that � preserves the colors of
the arrows, hence the arrows in �X=� also have a well-defined color (black or grey).
We can then draw the quotient graphs �X=� to have an idea how the distinct orbits
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are connected in the graph �X . In the two quotient graphs, Figures 4 and 5 below, the
vertex label Ei or Fi means a cycling orbit.

Example 5.1. Figure 4 illustrates one of the difficulties using the 12-braid E:

E D .	2	1	7	6	5	4	3	8	7	11	10/ � .	1	2	3	2	1	4	3	10/

� .	1	3	4	10/ � .	1	10/ � .	1	10	9	8	7	11/ � .	1	2	7	11/

The braid E is a PA, rigid braid, with cycling orbits of length 6. It turns out that �E

has 264 elements, so the quotient graph �E =� has 44 vertices. Of course we cannot
distinguish between elements in the same cycling orbit in the quotient graph, however
with some extra information we will be able to understand �E too:

(1) There is a black arrow from Ei;j to EiC2;j for every i ¤ 43; 44.

(2) There is a black arrow from Ei;j to Ei�2;j C1 for every i ¤ 1; 2.

(3) The product of two consecutive black arrows in opposite senses is trivial on
orbits, but (in this example) corresponds to cycling of the elements in the orbit.

(4) There is a grey arrow from Ei;j to EiC1;j �1 if i is odd.

(5) There is a grey arrow from Ei;j to Ei�1;j �1 if i is even.

(6) Every grey arrow corresponds to a twisted decycling. (Hence �.Ei / D EiC1

for every odd i ).

Figure 4. The quotient graph �E=� illustrates a very long path of iterated partial cyclings.

Example 5.2. Figure 5 illustrates another way in which partial cycling leads to dif-
ficult combinatorial problems. Consider the 12-braid F :

F D .	3	2	1	4	6	8	7	6	9	10	11	10/ � .	1	2	4	3	2	1	5	7	10	11	10/

� .	3	5	7	10	11	10/ � .	3	5	7	6	8	10	11/

Since F is rigid and since `.F / D 4 each cycling orbit has 4 elements. The graph
�F has two isomorphic black components, each made of 29 cycling orbits. We show
one of them. Its graph has the following properties, the key one being Property (3):
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Figure 5. The quotient graph �F =� illustrates multiple minimal partial cyclings at a vertex.

(1) Every black arrow pointing toward the right (joining orbits i and j ) goes from
Fi;k to Fj;k .

(2) Every black arrow pointing to the left (joining orbits i and j ) goes from Fi;k to
Fj;kC1.

(3) The concatenation of three black arrows forming a ‘small triangle’ corresponds
to a cycling. Hence, by Lemma 3.1, the initial factor of every vertex of �F

which is not in F1 can be decomposed in several ways as a product of minimal
simple elements. For example, the element F11;1 has 6 different decompositions
of �.F11;1/, given by the small triangles 11-3-7, 11-3-5, 11-15-5, 11-15-21, 11-
17-21, 11-17-7. This causes ‘branching’ at the vertex F11;1.

(4) We have grey arrows, corresponding to partial twisted decyclings, going from
F2k�1;j to F2k;j �1 and also from F2k;j to F2k�1;j �1.

Here are the problems that remain, with regard to PA braids. First, we need to
learn how many times we must cycle to bring X 2 SSS.X/ into a closed cycling
orbit, i.e. into USS.X/. This is ‘Open question 3’ in [3, § 1.4]. We have shown in [3,
Theorem 3.37] that once we are in USS.X/, we may assume that X is rigid. If X is
in left normal form and is rigid, then the length of every cycling orbit is either `.X/

or 2`.X/. Lemma 3.1 shows that very very special combinatorial conditions are
required for partial cycling, and even more for iterated partial cycling, to occur. Yet
Examples E and F show that USS.X/ can have surprises. We must find polynomial
bounds on (i) the lengths of paths in �X and (ii) the number of such paths (that is, the
combinatorics introduced by branching). For fixed braid index and length `.X/ we
need a universal bound on the lengths and numbers of such paths. If we can solve all
these problems, then we should be able to solve ‘Open question 2’ of �1.4 of [3], that
is to find a polynomial bound on jUSS.X/j and so (using all our other work in [3] and
this paper, as well as drawing heavily on the literature), obtain a polynomial solution
to the CDP/CSP for PA braids.
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(B) The periodic case. The situation for periodic braids is quite different from that for
PA braids. On the one hand, periodic braids are quite simple. It is well-known from
the work of Eilenberg [13] and de Kerékjártó [20] that every periodic element X 2 Bn

is conjugate to a rotation which is either a power of ı D 	n�1	n�2 : : : 	1 or a power
of " D ı	1; see [10, Theorem 3.1] for a modern exposition of this work. However,
unfortunately, it turns out that jUSS.ı/j D 2n�2 and jUSS."/j D .n�2/2n�3 (this will
be proved in [4]), so without even considering powers of ı and " we have exponential
growth. We will nevertheless arrive at a polynomial solution to the CDP/CSP in [4],
by introducing new tricks that put the two known Garside structures on Bn to work,
and make use of Garside structures on other Artin groups too. That is the content of
the manuscript [4].

5.2. A new solution to the CDP/CSP in Garside groups. In this section, we use
earlier results to present a new solution of the CDP/CSP problem in a Garside group G,
that is, we give an algorithm which determines whether two elements X; Y 2 G are
conjugate. Moreover, if X and Y are conjugate, the algorithm finds a conjugating
element ˛ such that X˛ D Y .

Recall that the algorithm in [18] is based on computing USS.X/ and one element
Y 0 2 USS.Y /. Then, X and Y are conjugate if and only if Y 0 2 USS.X/. Hence,
if one uses the algorithm in [18], one must in the worst case compute the entire
set USS.X/. Corollary 2.26, however, shows that this can be avoided. Here is the
promised algorithm. It is based upon Corollary 2.27

Algorithm 3

Input: X; Y 2 G.
Output: ˛ 2 G such that X˛ D Y , or ‘Fail’ if X and Y are not conjugate.

(1) Using cyclings and decyclings, compute X 0 2 USS.X/ and a 2 G such that
Xa D X 0.

(2) Using cyclings and decyclings, compute Y 0 2 USS.Y / and b 2 G such that
Y b D Y 0.

(3) Using Algorithm 1, compute BX 0 and, for each vertex V of BX 0 , an element
c.X 0;V / conjugating X 0 to V .

(4) Using Algorithm 2, compute GY 0 and, for each vertex V of GY 0 , an element
c.Y 0;V / conjugating Y 0 to V .

(5) If BX 0 \ GY 0 D ; return ‘Fail’.

(6) Choose V 2 BX 0 \ GY 0 and return a c.X 0;V / c�1
.Y 0;V /

b�1.

Therefore, in order to determine whether X and Y are conjugate, we just need
to compute one black component and one grey component. The union of these two
sets is in general smaller than the whole ultra summit set. Moreover, this procedure
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provides a conjugating element, since the algorithm computes graphs in such a way
that we know how to join any two vertices in our graphs, and each path in the graph
yields a conjugating element between the initial and the final vertex.

It should be mentioned that, in the worst case, this new algorithm is not better
than the one in [18], since there are examples in which either BX 0 D USS.X/ or
GY 0 D USS.Y /. This is the case, for instance, for the periodic elements treated in
Section 4.

5.3. Partial cycling subsumes decycling. In Corollary 2.10 we showed that we only
need partial cyclings and partial twisted decyclings to connect a pair of elements in
the same ultra summit set. We now prove that, given any X 2 G, where in general
X … USS.X/, we can conjugate X to an element in USS.X/ by applying a finite
number of partial cyclings.

We know by [14, § 4] and [18, § 1] (see also the review in [3]) that we can obtain
an element in USS.X/ from any X 2 G by iterated cyclings and decyclings. It is
clear that a cycling is a particular case of a partial cycling, but we will now prove
that a decycling can also be seen, in some sense, as a composition of several partial
cyclings, provided that the element involved has maximal infimum in its conjugacy
class.

Lemma 5.3. Let X 2 G, and let p D inf.X/ and r D `.X/. If the infimum of X is
maximal in its conjugacy class, then there exists a sequence X D X1; X2; : : : ; Xr D
d.��p.X//, such that XiC1 is a partial cycling of Xi , for i D 1; : : : ; r � 1.

Proof. For simplicity, we will consider Y D ��p.X/, and we will show that there
is a sequence �p.Y / D Y1; Y2; : : : ; Yr D d.Y /, consisting of partial cyclings. The
claim is trivial for r D 0, so assume r > 0 and let �py1 : : : yr be the left normal
form of Y . By definition, d.Y / D yr�py1 : : : yr�1 D Y y�1

r . Since Y commutes
with itself, one also has d.Y / D Y .Yy�1

r / D Y .�py1:::yr�1/ D .�p.Y //.y1:::yr�1/.
Let Y1 D �p.Y / and YiC1 D Y

yi

i , for i D 1; : : : ; r � 1 (thus Yr D d.Y /). We
will show that YiC1 is a partial cycling of Yi for i D 1; : : : ; r � 1.

Notice that for every element Z such that inf.Z/ D p, the first factor in the left
normal form of Z��p (whose infimum equals 0) is �.Z/. In other words, a simple
element s performs a partial cycling on Z if and only if s is a prefix of Z��p .

Notice further that Y1��p D �p.Y /��p D ��pY D y1 : : : yr and that one
hence has Yi�

�p D Y
.y1:::yi�1/

1 ��p D .y1 : : : yi�1/�1.Y1��p/��p.y1 : : : yi�1/ D
yi : : : yr��p.y1 : : : yi�1/ for every i D 2; : : : ; r � 1. Moreover, inf.Yi / D p, since
it cannot be greater by hypothesis, and it cannot be smaller since Yi�

�p is positive.
This implies that for i D 1; : : : ; r � 1 the simple factor yi is a prefix of Yi�

�p ,
where inf.Yi / D p. Therefore, YiC1 D Y

yi

i is a partial cycling of Yi for i D
1; : : : ; r � 1.
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Proposition 5.4. For X 2 G, there exists a sequence X D X1; X2; : : : ; Xk D Y in
G, such that Y 2 USS.X/, and XiC1 is a partial cycling of Xi for i D 1; : : : ; k � 1.

Proof. It is well known [14, Lemma 4.3] that, by applying a finite sequence of cyclings
to an element in G, one can achieve the maximal infimum in its conjugacy class. Since
cyclings are a particular case of partial cyclings, we can assume that X has maximal
infimum in its conjugacy class.

By [14, § 4] and [18, § 1] we know that cs.dt .X// 2 USS.X/, for some positive
integers s and t . On the other hand, we know that the ultra summit set is invariant
under � . Hence, if we denote p D inf.X/, we have Y D ��pt .cs.dt .X/// 2
USS.X/.

By Lemma 2.4, � commutes with cycling and decycling, hence we can write
Y D cs..d B ��p/t .X// 2 USS.X/. Finally, by Lemma 5.3, together with the fact
that X has maximal infimum in its conjugacy class, one can decompose every .dB��p/

as a product of partial cyclings. Since the final application of cyclings also correspond
to partial cyclings, the result follows.

5.4. An application to the theory of reductive groups. In �4 we showed that if X is
periodic and `.X/ > 0, then every arrow in �X is bi-colored. Hence �X D BX D GX .
In particular, every two elements in USS.X/ can be connected by a sequence of partial
cyclings.

It was communicated to us by Jean Michel that this has important consequences
in the theory of reductive groups. Namely, in a reductive group, the Deligne–Lusztig
varieties are related to the elements of the braid monoid of the Weil group W . In
particular, the Deligne–Lusztig varieties which appear in Broué’s conjecture corre-
spond to periodic elements in an Artin–Tits group. There is a conjecture which states
that there is essentially a unique Deligne–Lusztig variety for each period. François
Digne and Jean Michel have shown that, if two periodic elements are conjugate by
a partial cycling, then their corresponding Deligne–Lusztig varieties are essentially
the same. In the case of Artin braid groups (which corresponds to the linear algebraic
groups), it is known that two periodic elements of the same period are conjugate [19,
Theorem 1.1]. Hence, the results of Section 4 show that the above conjecture is true,
at least for Artin braid groups (Artin–Tits groups of type A). In order to show the
conjecture in general, it remains to be shown that every two periodic elements of the
same period, in any spherical type Artin–Tits group, are conjugate. After this paper
was submitted, David Bessis solved this problem in [1], Theorem 2.15. Hence the
results in Section 4, together with Theorem 2.15 of [1], show the above conjecture in
its general setting. We refer to [12] for details on this problem.
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