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Morita classes in the homology of Aut.Fn/ vanish after one
stabilization

James Conant and Karen Vogtmann

Abstract. There is a series of cycles in the rational homology of the groups Out.Fn/, first
discovered by S. Morita, which have an elementary description in terms of finite graphs. The
first two of these give nontrivial homology classes, and it is conjectured that they are all
nontrivial. These cycles have natural lifts to the homology of Aut.Fn/, which is stably trivial
by a recent result of Galatius. We show that in fact a single application of the stabilization map
Aut.Fn/ ! Aut.FnC1/ kills the Morita classes, so that they disappear immediately after they
appear.
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1. Introduction

In [9] S. Morita constructed a series of cycles in the rational homology of Out.Fn/.
These homology classes are related to Morita’s trace map, defined in [8], which has
interesting connections to a number of different problems in topology. These include
understanding the group of homology cobordism classes of homology cylinders and
understanding the arithmetic mapping class group, an extension of the mapping class
group by the Galois group of SQ=Q (for more information, see Morita’s survey arti-
cle, [10]). Morita showed that the first of his cycles gives a non-trivial homology class
in H4.Out.F4/I Q/, and Conant and Vogtmann [1] proved that the second cycle also
gives a non-trivial homology class, this time in H8.Out.F6/I Q/. It is conjectured
that in fact all of Morita’s cycles are nontrivial in homology, a conjecture which would
have intriguing implications for the related problems.

The homology H4.Out.F4/I Q/ Š H4.Aut.F4/I Q/ was known to be 1-dimen-
sional [5], so that Morita’s class generates the entire group. Recently Ohashi cal-
culated that H8.Out.F6/I Q/ is also 1-dimensional [11], so again the Morita cycle
generates the entire homology. This leads to the more speculative conjecture that
Morita’s cycles, together with cycles obtained by a natural generalization of Morita’s
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construction, in fact generate all of the rational homology of Out.Fn/. This homology
has been completely computed up to dimension 7, but H8 is not fully known. For
example,H8.Out.F7/I Q/ is not known, and indeed two Morita cycles give potential
classes there.

Morita’s cycles have natural lifts to cycles for Aut.Fn/, which we also call Morita
cycles. We note that Gerlits [3] found a rational class in H7.Aut.F5/I Q/ that, for
degree reasons, cannot be a Morita cycle, so that the rational homology of Aut.Fn/

is not given entirely by these classes.
Hatcher and Vogtmann [4] showed that the natural map Aut.Fn/ ! Aut.FnC1/

induces an isomorphism Hi .Aut.Fn/I Q/ ! Hi .Aut.FnC1/I Q// for n � 5i=4. In
addition, the map Hi .Aut.Fn// ! Hi .Out.Fn// is an isomorphism for n > 2i C 4

([6], [7]), so that the homology of Out.Fn/ is also independent of n for n sufficiently
large. The purpose of this article is to show that the Morita cycles in the homology
of Aut.Fn/ vanish immediately after they appear: the i -th Morita class is a cycle in
Z4k.Aut.F2kC2//, and we show that the image of this cycle in Z4k.Aut.F2kC3// is
a boundary, and hence the image in Z4k.Out.F2kC3// is also a boundary.

In a recent paper, S. Galatius constructed an infinite loop space which computes
the stable homology of Aut.Fn/ (and Out.Fn/) and then proved that this space is
homotopy equivalent to �1S1 [2]. In particular, this shows that the stable rational
homology of Aut.Fn/ and Out.Fn/ is zero. Thus the Morita classes, which are in
the unstable range, must eventually vanish under the stabilization maps Aut.Fn/ !
Aut.FnC1/ ! Aut.FnC2/ ! � � � . Our theorem shows that this happens after a
single stabilization. If the Morita classes do in fact generate the homology, then this
homology is ephemeral indeed, and the homology stabilizes earlier than stated in the
known stability theorem.

Acknowledgments. The first author is supported by NSF grant DMS 0604351. The
second author is supported by NSF grant DMS 0204185.

2. Chain and cochain complexes

In order to compute rational homology of Aut.Fn/ and Out.Fn/ we need to produce
suitable chain complexes. In this section we describe how this is done.

The spine of Outer space is a locally finite, contractible simplicial complex Kn

on which the group Out.Fn/ acts cocompactly with finite stabilizers (see, e.g., [12]).
Thus the rational homology of the quotient Kn=Out.Fn/ is equal to the rational
homology of Out.Fn/. Vertices ofKn are “minimal marked graphs” .g;G/. Here the
marking g is a homotopy equivalence from a fixed standard rose Rn to the graph G,
and a graph is minimal if it is connected with no univalent or bivalent vertices. If the
graphs have specified basepoints, the analogous spine Ln has an action of Aut.Fn/.
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In [5] it was shown that the spine can be given the structure of a cube complex,
and a chain complex was constructed to compute the homology of the quotient space.
For the convenience of the reader, we briefly recall this construction. The spine has
one cube .g;G; F / for every marked graph .g;G/ and forest F � G, where a forest
is a subgraph with no cycles. The dimension of the cube is equal to the number of
edges in F , and an orientation on the cube is specified by ordering the edges of F , up
to even permutation. The codimension 1 faces of .G; F / are of two types, obtained
from .G; F / by either removing an edge from F or by collapsing an edge of F ; in
either case the ordering on the remaining edges of F determines an orientation of the
face.

The action of Out.Fn/ onKn (or Aut.Fn/ on Ln) simply changes the marking g.
This action preserves the cube-complex structure, and is transitive when restricted to
a given isomorphism class of pairs .G; F /. The quotient Qn by this action is a cell
complex, with one cell for each isomorphism class of pairs .G; F /. It is no longer a
cube complex because faces of a cube may be folded or identified with other faces
under the action. The rational homology ofQn is computed by the chain complex C�,
which is the quotient of the vector space spanned by isomorphism classes of oriented
pairs .G; F / modulo the relations .G; F / C .G;�F / D 0. The boundary map is
given by the formula

@.G; F / D
X

ei 2F

.�1/i�.G; F � ei / � .Gei
; Fei

/
�
;

where .Gei
; Fei

/ denotes the result of contracting the edge ei .
The k-chains Ck can be decomposed further according to the number of vertices

of G, i.e.
Ck D

M
pCqDk

Cp;q;

where Cp;q has one generator for each pair .G; F / such thatG has q vertices. SinceG
has no univalent or bivalent vertices and �.G/ D 1�n, we have 1 � q � 2n� 2 and
2 � 2n � p � �1. The boundary operator d W Ck ! Ck�1 is the sum of horizontal
boundary operators

dR W Cp;q ! Cp�1;q

corresponding to faces obtained by removing an edge from F and vertical operators

dC W Cp;q ! Cp;q�1

corresponding to faces obtained by collapsing an edge of F . Thus fCp;q; dR; dC g
is a second-quadrant double complex so that the horizontal and vertical filtrations
of fCp;q; dR; dC g give rise to second-quadrant spectral sequences converging to the
rational homology of Qn.
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There is also a dual complex C� D p̊;qCp;q which computes the cohomology
of Qn. This arises in the same way, except that the coboundary operator is defined
on a cube as the sum of cubes for which the original cube is a codimension 1 face. As
before, the coboundary operator decomposes as a sum of the coboundary operators
ıR and ıC , which add an edge to the forest in all ways and expand a vertex into an
edge in all ways, respectively. If jF j denotes the number of edges in a forest F , then

ıR.G; F / D .�1/jF jC1
X

e

.G; F [ e/;

where e runs over all edges e 2 G n F with F [ e a forest, and

ıC .G; F / D .�1/jF j X
P

.GP ; F P /;

where P runs over all partitions of the incoming edges at each vertex into two sets,
each of cardinality at least 2. Each such partition can be used to blow up the vertex
into an edge eP of the forest, and .GP ; F P / denotes the resulting forested graph. The
orientations on .G; F [ e/ and .GP ; F P / are determined by placing the new edges e
and eP last in the ordering of the forest edges.

Remark. The signs in the above formulas arise in the following way. Every edge e
of the forest corresponds to an axis of the cube, which starts at the face where the
edge is collapsed, and ends at the opposite face where the edge is removed from the
forest. This determines a unit tangent vector Eve in the tangent bundle of the cube, the
fibres of which are all canonically identified. Thus an ordering of the edges gives rise
to an orientation or D Eve1

^ � � � ^ EvejF j
. In (co)homology calculations, the induced

orientation when passing to a face is given by rewriting the orientation as or D En^�,
where En is the unit inward-pointing normal to the face. One then takes � as the
induced orientation. The signs in dC , dR, ıC , ıR can all be easily calculated using
this formalism. For example, the sign for ıR is computed by analyzing the sign from
passing from the cube .G; F [ e/ to the face .G; F /. Let vF be the orientation of
this face given by vF D Eve1

^ � � � ^ EvejF j
coming from the edge ordering. Then the

orientation of the whole cube is given by vF ^ Eve . The inward pointing normal to
the face is �Eve , and so vF ^ Eve D .�1/jF jC1.�Eve/ ^ vF , giving rise to the sign
.�1/jF jC1.

The complexes C� and C� are related by a bilinear form

h � ; � i W C� ˝ C� ! Q;

defined on the level of oriented pairs X D .G; F / as follows: hX; Y i is equal to
zero unless X and Y are isomorphic as pairs and neither has an orientation reversing
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automorphism. In this case

hX; Y i D
(

j Iso.X; Y /j if X Š Y ,

�j Iso.X;�Y /j if X Š �Y ;
where Iso.X; Y / is the number of (orientation-preserving) isomorphisms between X
and Y .

Proposition 1. h.ıR C ıC /X; Y i D hX; .dR C dC /Y i.
Proof. We actually prove that both hıRX; Y i D hX; dRY i and hıCX; Y i D hX; dCY i
for all oriented pairs X D .G; F / and Y D .G0; F 0/.

Suppose X has an orientation reversing automorphism. Then X and hence ıRX

and ıCX are all zero in C�. Thus the two equations trivially hold. Similarly, the
equations trivially hold if Y has orientation reversing automorphisms. So we may
assume that neither X nor Y has an orientation-reversing automorphism.

We first establish hıRX; Y i D hX; dRY i. Consider the sets

AC D f.e; �/ j e 2 G n F; � W .G; F [ e/ Š�! .G0; F 0/g;
A� D f.e; �/ j e 2 G n F; � W .G; F [ e/ Š�! � .G0; F 0/g;

where � ranges over all orientation-preserving isomorphisms. Then hıRX; Y i D
.�1/jF jC1.jACj � jA�j/, for each term of ıRX corresponds to a choice of e, and the
inner product then decides if the resulting graph is isomorphic to ˙Y , multiplying by
j Aut.Y /j if it is. This is the same as counting all possible isomorphisms with ˙Y ,
(which all must have the same sign since Y has no orientation-reversing symmetries.)

Similarly define

BC D f.e0
i ;  / j e0

i 2 F 0;  W .�1/jF jC1�i .G0; F 0 � e0
i /

Š�! .G; F /g;
B� D f.e0

i ;  / j e0
i 2 F 0;  W .�1/jF jC1�i .G0; F 0 � e0

i /
Š�! � .G; F /g;

where �0 ranges over orientation-preserving isomorphisms. Then

hX; dRY i D .�1/jF jC1.jBCj � jB�j/:
We claim that there is a bijection from AC to BC. Given .e; �/ 2 AC, set

e0
i D �.e/ and let  be equal to the inverse of the restriction of � to .G; F /. Since
� is an isomorphism, the ordering on the edges of F 0 induced by � is compati-
ble with the orientation of F 0. In this ordering, �.e/ is last, i.e. i D jF j C 1, so
.�1/jF jC1�i .G0; F 0 � e0

i / D .G0; F 0 � e0
i / and the formula is correct. For the inverse

map, given .e0
i ;  / 2 BC, set e D  �1.e0

i / and let � be equal to the extension of �1

to .G0; F 0/. The sign .�1/jF jC1�i comes from the fact that we need to move e0
i to
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the end of the ordering since the ordering of F [ e has e last. An identical argument
gives a bijection from A� to B�, and we conclude that hıRX; Y i D hX; dRY i.

Next we show that hıCX; Y i D hX; dCY i. As above, we define sets

A˙ D f.P; �/ j P is a partition of edges at a vertex; � W .GP ; F P /
Š�! ˙ .G0; F 0/g;

where � ranges over all orientation-preserving isomorphisms. Then hıCX; Y i D
.�1/jF j.jACj � jA�j/. Also as above set

B˙ D f.e0
i ;  / j e0

i 2 F 0;  W .�1/jF jC1�i .G0
e0

i

; F 0
e0

i

/
Š�! ˙ .G; F /g;

where�0 ranges over orientation preserving isomorphisms. We still have hX; dCY i D
.�1/jF j.jBCj � jB�j/. (Recall that dC has an extra minus sign.)

As before, we will show that A˙ has the same size as B˙. Given .P; �/ 2 A˙
let e0

i D �.eP / and define  as follows. First note that ��1 gives an isomorphism
from .G0; F 0/ to .GP ; F P /. Thus we get an induced isomorphism .G0

e0
i

; F 0
e0

i

/ !
..GP /eP

; .F P /eP
/ D .G; F /, which we define to be . This gives a mapA˙ ! B˙.

The inverse map is defined analogously.

3. Morita cycles

In this section we fix an odd-valent graph � together with certain orientation data, and
use it to construct a cycle z.�/ in the chain complex C�. In the next section we will
show that this cycle corresponds to the cocycle �� defined in [1].

The idea is to form z.�/ by replacing each vertex x of � by an jxj-gon Cx (where
jxj is the valence of x), i.e. removing x and attaching the edges that used to terminate
at x to the vertices of Cx . The isomorphism type of the resulting graph depends on
exactly how we reattach the edges to Cx , so we make this operation canonical by
summing over all possibilities. With a careful choice of signs, this sum is a cycle; in
fact, it is a cycle for both components dR and dC of the boundary operator d of C�.

Here are the details of the construction.

Definition 1. A graph � is admissible if � is connected and all vertices have odd
valence greater than or equal to 3.

Definition 2. An orientation at a vertex of a graph is an ordering of the half-edges
incident to that vertex, up to even permutation. A graph is vertex-oriented if every
vertex has an orientation

Let � be an admissible, vertex-oriented graph For each vertex x of � , choose an
ordering of the edges at x compatible with the vertex-orientation, let Cx be an jxj-
gon, with vertices v1; : : : ; vjxj ordered cyclically and edges e1; : : : ; ejxj also ordered
cyclically, ei ending at vi .
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Given any permutation �x of f1; : : : ; jxjg we can form a new graph by removing
x then re-attaching the j -th edge in the ordering to v�x.j /, for j D 1; : : : ; jxj. Given
a collection � D f�xg of permutations, one for each vertex x of � , we can perform
this operation at each vertex of � to obtain a new graph G� .

We will be interested in forests F which are maximal forests of the subgraph of
G� consisting of the union of the cycles Cx . The intersection F \Cx is obtained by
deleting a single edge of Cx . If this edge is ej , set 	.F; x/ D .�1/j .

The cycle z.�/ is now defined by summing over all collections of permutations
� D f�xg and all maximal forests F in

S
Cx:

z.�/ D
X

�

X
F

	�	F .G
� ; F /;

where 	F D Q
x 	.F; x/ and 	� D Q

x sign.�x/.
Note that this sum is independent of the choice of representatives for the vertex

orientations, since an even permutation of the edges at x does not change the sign
of �x . We also remark that if a vertex x had even valence, then there would be an
automorphism of Cx inducing an odd permutation of its vertices, and the terms in the
sum would cancel in pairs, giving z.�/ D 0. This is the reason for the restriction to
odd-valent graphs.

Recall that the differential d in C� is the sum dR C dC ; we actually show that
each of these is zero on z.�/.

3.1. dR.z.�// D 0. The ambient G is constant in this computation, so we can
suppress it in the notation, and write dR.F / instead of dR.G; F /; thus dR.F / DP

ei 2F .�1/i .F � ei /.
In fact, the operator dR makes sense in a more general context. An ordered graph

is a graph A together with an ordering on the edges of A. An ordering on A induces a
natural ordering on any subgraph B of A. We say two orderings on A are equivalent
if they differ by an even permutation, and let E denote the vector space spanned by
equivalence classes of ordered graphs modulo the relation .A; ord/ D �.A;�ord/.
An edge-oriented graph is an equivalence class of ordered graphs.

If A and B are edge-oriented graphs, choose orderings representing the edge-
orientations and define A � B to be the (equivalence class of the) disjoint union of
A and B , with ordering given by increasing the labels on edges of B by the number
e.A/ of edges of A. We see immediately that

Lemma 1. A � B D .�1/e.A/e.B/B � A
Now define dR W E ! E by the formula

dR.A/ D
X
ei 2A

.�1/i .A � ei /;

where ei is the i -th edge of A.
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Lemma 2. d2
R D 0

Proof. This is the standard argument:

d2
R.A/ D

X
j <i

.�1/i .�1/j .A � ei � ej /C
X
j >i

.�1/i .�1/j �1.A � ei � ej /

so that the terms cancel in pairs.

Lemma 3. dR.A � B/ D dR.A/ � B C .�1/e.A/A � dR.B/

Proof. This is immediate.

Proposition 2. Let G be a graph, and C a subgraph which is the disjoint union
of polygons C1; : : : ; Ck . Order the edges of each Ci , and let C D C1 : : : Ck . Set
	F D Q

i .�1/ij , where if F is obtained by deleting the ij -th edge from Ci . Let

Z D
X
F

	F .G; F /

where the sum is over all maximal forests F of C and the ordering on F is induced
from the ordering on C D C1 : : : Ck . Then dR.Z/ D 0.

Proof. The terms of dR.C1/ � dR.C2/ : : : dR.Ck/ are precisely the maximal forests
in C , with sign 	F . Thus

dR.
X
F

	F .G; F // D dR.dR.C1/ : : : dR.Ck//

D
X

i

˙.dR.C1/ : : : d
2
R.Ci / : : : dR.Ck// D 0:

The cycle Z is illustrated in Figure 1; the forests F are all maximal forests in the
gray subgraph.

Corollary 1. dR.z.�// D 0

Proof. In our construction of G� we fixed a cyclic ordering of the edges of each Cx .
Let Z� denote the corresponding dR-cycle from Proposition 2. Then

z.�/ D
X

�

X
F

	�	F .G
� ; F / D

X
�

	�Z� ;

so
dR.z.�// D

X
�

	�dr.Z� / D 0:
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C1

C2

C3

C4

Figure 1. The dR-cycle Z.

3.2. dC .z.�// D 0. Here, too, we introduce a slightly more general context for
future convenience:

Proposition 3. Let G be a trivalent graph, and C a subgraph which is the disjoint
union of polygons C1; : : : ; Ck . Fix a maximal forest F of C , order its edges and set

Z D
X

�

	� .G
� ; F /

where 	� is the sign of � and G� is obtained from G by permuting the edges coming
into each Ci by the permutation �i . Then dC .Z/ D 0.

Proof. For this, we simply note that .G�
e ; Fe/ D .G�

e ; Fe/ if � and 
 differ only by
transposing the two edges coming into the vertices of e. Since in this case 	� D �	� ,
all terms of dC .z.�// cancel in pairs.

Corollary 2. dC .z.�// D 0.

Proof. We have

dC .z.�// D dC

� X
�

X
F

	�	F .G
� ; F /

�

D
X
F

	F dC

� X
�

	� .G
� ; F /

�
D

X
F

0 D 0:

Remark. The same construction as above gives a cycle z.�/ associated to any graph �
with orientations at any (non-empty) subset of its odd-valent vertices. These cycles
correspond to the cocycles defined in [1] which take values in the space of “AB-
graphs.” If � is unoriented at sufficiently many vertices, then z.�/ lies in the stable
range, and must be trivial in homology by Galatius’s result. In fact, as mentioned in
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the introduction, only two z.�/ are known to be non-trivial in homology. These arise
from the graph with two vertices and three edges and the graph with two vertices and
five edges (with orientations at both vertices); the status of the rest is unknown. It
is possible to extend the methods of this paper to give a proof that many graphs �
with unoriented vertices give rise to trivial classes, including many that do not lie in
the stable range. Based on these remarks, it is reasonable to conjecture that z.�/ is a
nontrivial homology class if and only if all vertices of � are oriented.

4. Relation to the Morita cocycle

In this section we show that the cycles z.�/ correspond to the cocycles �� described
in [1]. First we review the definition of these cocycles in the present context.

Let G denote the vector space spanned by admissible vertex-oriented graphs,
modulo the relations .G; or/ C .G;�or/ D 0, where or denotes the total vertex
orientation. (A consequence of these relations is that a graph with an orientation-rever-
sing automorphism is zero in G .) The Morita cocycle is a linear map � W C� ! G ,
defined as follows.

On a generator .G; F /, the Morita cocycle is zero unless .G; F / has the following
very special form:

� G is trivalent.
� G decomposes as a subgraph C , which is the union of disjoint odd-sided simple

polygons Ci , together with edges E connecting these polygons.
� F is a maximal forest in C .

In this case �.G;F / is equal to the graph � formed by collapsing each component
Ci of C to a vertex of � (see Figure 2). The orientation at the vertex of �.G;F /
corresponding to Ci is induced by the orientation of .G; F /. Specifically, we have
.G; F / D ˙.G; F 0/, where F 0 has the same edges as F , ordered so that the edges
in each linear component F \ Ci are numbered consecutively along the line. This
induces a cyclic orientation of Ci , which can be used to orient the incoming edges of
the vertex in �.G;F 0/ D ˙�.G;F /.

The Morita cocycle takes values in a large vector space, G . Projecting G onto
1-dimensional subspaces produces infinitely many cocycles as follows.

Definition 3. Let 0 ¤ g 2 G . The cocycle �g W C� ! Q is defined to be �
composed with the projection onto the subspace generated by g. In particular, we get
a cocycle �� with values in Q for every admissible vertex-oriented graph � with no
orientation-reversing automorphisms.

To state the following theorem we need some preliminaries. Let f ; g denote the
canonical pairing V � ˝ V ! Q of a vector space with its dual, i.e. f�; Evg D �.Ev/.
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C1

C1

C2

C2

C3

C3

C4

C4

��

Figure 2. Two graphs (G,F) with the same image under �.

We have chain isomorphisms

Cp;q ! �
Cp;q

��� ! .Cp;q/
�

The left isomorphism is the canonical one between a finite dimensional vector space
and its double dual, sending Ev to the functional  Ev determined by f Ev; �g D �.Ev/.
The right isomorphism is induced by the isomorphism

Cp;q ! �
Cp;q

��

given by the chain map X 7! h � ; Xi. We denote the composition by � W Cp;q !
.Cp;q/�.

Theorem 3. For every admissible vertex-oriented graph � , we have

c� � �� D �.z.�//;

where c� is a nonzero integer.

Proof. Analyzing what happens to z.�/ in the above diagram, we see that z.�/ is
mapped to a functional f� defined by ff� ; Y g D hz.�/; Y i. The theorem will follow
once we show that

hz.�/; Xi D c� � �� .X/
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where
c� D j Aut.�/j

Y
v

.2jvj/

the product ranging over all vertices of � and jvj denoting the valence of v. To see
this, first note that Aut.�/ acts by permuting the summands of z.�/. Secondly, if
two summands are isomorphic, it is clear that the isomorphism must correspond to an
automorphism of � . Thirdly, If this corresponding automorphism of � is the identity,
this means that the permutations at each vertex actually differ by elements of the
dihedral group. Thus we can conclude each termX in z.�/ appears j Aut.�/j

j Aut.X/j
Q

v.2jvj/
times, from which the desired conclusion follows.

In [1] we defined the Morita cocycle �old
� on the forested graph complex, f G .

The superscript refers to the fact that this is the “old” definition. This forested graph
complex is obtained by considering the vertical filtration of the double complex C�.
The columns are exact except at the top (where the graphs G are trivalent), so the
E1 page of the associated spectral sequence collapses to a single row, with terms
Cp;2n�2= im.ıC / and differentials induced by ıR. This is exactly the forested graph
complex, with IHX-relations exactly corresponding to im.ıC /. Thus, we have a quasi-
isomorphism � W C� ! f G defined by passing to the second page of the spectral
sequence.

The next proposition states that the Morita cocycle we defined in [1] is the same
as the cocycle � defined in this section.

Proposition 4. The Morita cocycle, �old
� , is equal to the functional �� B � .

Proof. This follows straight from the definitions.

5. Stable triviality

If we choose a basepoint b onC1, the cycle z.�/ defined in Section 3 becomes a cycle
z.�/ in the quotient of the spine Ln of Auter space. In Figure 3 we indicate z.�/
in a neighborhood of C1, where the shading is meant to represent the sum over all
maximal forests in the shaded circle.

The vertices and edges have been given names, for convenience, where the edges
of C1 have been numbered consistently with the definition of z.�/ coming from
Proposition 2. Finally, the fact that the fj edges attach to the rest of the graph via the
permutation �1 has been indicated.

The stabilization map s W Hi .Aut.Fn// ! Hi .Aut.FnC1// is induced by the map
Ln ! LnC1 which adds a loop to the basepoint of each marked graph .G; g/. In this
section we show that the image of z.�/ under this map is a boundary in the quotient
of LnC1, i.e. the homology stabilization map sends z.�/ to zero.
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e2k

f2k

�1.2k/

v2k

e2kC1

b

�1.0/

v2

v1

e1

f2

e2

f1

�1.2/

�1.1/

Figure 3. z.�/ near C1.

We first establish some notation. IfG is any graph, b is the basepoint ofG and e is
any edge of G, let GŒe
 denote the graph obtained from G by adding an edge from b

to the midpoint of e. This divides the edge e into two new edges and increases the
rank of G by one. Similarly, for any vertex v, let GŒv
 denote the graph obtained
fromG by adding an edge from b to v. Finally, ifA is a subgraph ofG, let @A denote
the boundary of A, i.e. the set of edges of G with one vertex in A and one vertex in
G � A.

Theorem 4. For any admissible vertex-oriented graph � , and any choice of basepoint,
the image of z.�/ under the stabilization map

Hi .Aut.Fn// ! Hi .Aut.FnC1//

is null-homologous.

Proof. Recall that the edges of each Ci are ordered cyclically, and the basepoint of
G is on C1, between the first and last edges of that polygon. Let ZC D s.z.�// be
the stabilization of z.�/, i.e. ZC is equal to z.�/ with loops added at the basepoints
of all graphs. We need to produce a chain W with @.W / D ZC.

The polygon C1 has n D 2kC 1 edges e1; : : : ; en. If we divide ei into two edges,
we obtain a new polygonC .i/

1 withnC1 D 2kC2 edges, ordered cyclically so that the

two halves of ei become i -th and .i C 1/-st edges inC .i/
1 . SetC .i/ D C

.i/
1 �C2 : : : Ck .

Define
Xi D

X
�

X
F 0

	�	F 0.G� Œei 
; F
0/;

where F 0 runs over all maximal subforests of C .i/. Since all of the “action” in what
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follows will be at C .i/
1 , we represent Xi in Figure 4 by showing C .i/

1 in gray and

indicating �1 at the tips of the edges emanating from C
.i/
1 .

�1.i/

vi

b

�1.0/

ei

vi�1

�1.i � 1/

Figure 4. Xi near C1.

We have dR.Xi / D P
� 	� dR

� P
F 0 	F 0.G� Œei 
; F

0/
� D 0 by Proposition 2.

Let v0 D b; v1; : : : ; v2k be the vertices of C1, and fi the edge in @C1 attached
at vi . Let mi denote the midpoint of fi and define

Yi D
X

�

X
F

	�	F .G
� Œfi 
; F � Œvi ; mi 
/;

where F runs through all maximal forests in C and

Y 0
i D

X
�

X
F

	�	F .G
� Œfi 
; F � Œb;mi 
/

(see Figure 5).
Then

dR.Yi / D
X

�

X
F

	�	F .G
� Œfi 
; F /C

X
�

X
F

	�	F .G
� Œfi 
; dR.F / � Œb;mi 
/

D
X

�

X
F

	�	F .G
� Œfi 
; F /;

where the second summation term is zero by Proposition 2 and, similarly,

dR.Y
0

i / D
X

�

X
F

	�	F .G
� Œfi 
; F /C

X
�

X
F

	�	F .G
� Œfi 
; dR.F / � Œvi ; mi 
/

D
X

�

X
F

	�	F .G
� Œfi 
; F /:
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�1.2k/ �1.2k/

b b

�1.0/�1.0/

�1.i C 1/�1.i C 1/

vivi

mi
mi

�1.i � 1/ �1.i � 1/

�1.i/�1.i/

Figure 5. Yi and Y 0
i

near C1

Thus dR.Yi � Y 0
i / D 0.

Next we compute dC of Xi ; Yi and Y 0
i . To simplify notation, we define the

following three chains (see Figure 6).

�1.2k/ �1.2k/ �1.2k/
b bb

�1.0/�1.0/�1.0/

vv
v

�1.1/ �1.1/
�1.1/

m m ff

˛.v/ ˇ.e/ �.e/

Figure 6. The chains ˛.v/, ˇ.e/ and �.e/

For any vertex v of C1, we set

˛.v/ D
X

�

X
F

	�	F .G
� Œv
; F /;

where F runs over all maximal subforests of C . In particular, ˛.b/ D ZC. For any
edge e of C1, set

ˇ.e/ D
X

�

X
Fe

	�	Fe
.G�

e Œf 
; Fe � Œb;m
/;

where f is the boundary edge attached at the end of e,m is the midpoint of f , Œb;m

is the edge from b to m, and Fe runs over all maximal forests in the image Ce of C
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in Ge and
�.e/ D

X
�

X
Fe

	�	Fe
.G�

e Œf 
; Fe � Œv;m
/;

where f is the boundary edge attached at the end of e,m is the midpoint of f , Œv;m

is the edge from the endpoint of e to m, and Fe runs over all maximal forests in the
image Ce of C in Ge .

Lemma 4. dC .Xi / D .�1/i Œ˛.vi / � ˛.vi�1/
: In particular, dC .X1/ D �˛.v1/C
ZC:

Proof. All terms other than ˛.vi / and ˛.vi�1/ cancel upon symmetrization. (That is,
as in the proof of Proposition 3, there are two edges emanating from the same vertex
of G�

e . When summing over all � , this term will cancel with the term where these
edges are transposed.) See Figure 7.

�1.i/�1.i/

vi
vi

bb

�1.0/�1.0/

e1 e1

vi�1vi�1

�1.i � 1/ �1.i � 1/

˛.vi / ˛.vi�1/

Figure 7. dC .Xi / near C1.

Lemma 5. dC .Yi / D ˛.vi /C .�1/i Œ�.eiC1/C �.ei /
.

Proof. All terms other than ˛.vi /; �.eiC1/ and �.ei / cancel upon symmetrization
(see Figure 8).

Lemma 6. dC .Y
0

i / D .�1/i Œˇ.eiC1/C ˇ.ei /
.

Proof. All terms other than ˇ.eiC1/ and ˇ.ei / cancel upon symmetrization (see
Figure 9).

Now set Y D P2k
iD1 Yi and Y 0 D P2k

iD1 Y
0

i . All terms of dC .Y
0/ cancel and we

get dC .Y
0/ D 0. The terms of dC .Y / also cancel except for the terms ˛.vi /, and we



Morita classes in the homology of Aut.Fn/ vanish after one stabilization 137

�1.i C 1/
�1.i C 1/

�1.i C 1/

v1

v1

b b

�1.0/ �1.0/�1.0/

ei

�1.i/

�1.i/

�1.i/

�1.i � 1/
�1.i � 1/�1.i � 1/

C
�1.2k/�1.2k/

mi

mi

�

˛.vi / �.i C 1/ �.i/

Figure 8. dC .Yi / near C1.

�1.2k/�1.2k/

b

�1.0/�1.0/

�1.i C 1/

�1.i C 1/

mi

mi

�1.i/

�1.i/

�1.i � 1/
�1.i � 1/

�

ˇ.i/ ˇ.i � 1/

Figure 9. dC .Y
0

i
/ near C1.

obtain dC .Y / D P2k
iD1 ˛.vi /. We remark that there is symmetry in the picture, and

in fact ˛.vi / D ˛.vn�i /, so we can write dC .Y / D 2
Pk

iD1 ˛.vi /.
Finally, define

W D 1

2k
.Y � Y 0/CX1 � k � 1

k
X2 C k � 2

k
X3 C � � � C .�1/kC1 1

k
Xk :

Our computations give dR.W / D 0 and

dC .W / D 1

k
Œ˛.v1/C � � � C ˛.vk/


C ŒZC � ˛.v1/
C k � 1
k

Œ˛.v1/ � ˛.v2/
C � � � C 1

k
Œ˛.vk�1/ � ˛.vk/


D ZC
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