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Abstract. Given a groupG and an integer n � 2we construct a new group zK.G; n/. Although
this construction naturally occurs in the context of finding new invariants for complex algebraic
surfaces, it is related to the theory of central extensions and the Schur multiplier. A surprising
application is that Abelian groups of odd order possess naturally defined covers that can be
computed from a given cover by a kind of warped Baer sum.
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Introduction

Given a group G and an integer n � 2 we introduce a new group zK.G; n/.
It originates from the author’s work [Li] on Moishezon’s programme [Mo] for

complex algebraic surfaces. More precisely, to obtain finer invariants for surfaces, one
attaches to a surface and an embedding into projective space the fundamental group
of �1.P 2 �D/, where D is a curve (the branch locus of a generic projection) in the
projective plane P 2. Although knowing this fundamental group (and its monodromy
morphism, see Section 5 for a precise statement) one can reconstruct the given surface,
this fundamental group is too complicated and too large to be useful.

Instead one looks for subgroups and subquotients of this group �1.P 2 � D/ to
obtain the desired invariants. The most prominent one is a naturally defined sub-
quotient that has itself a geometric interpretation, namely the fundamental group of
the Galois closure of a generic projection from the given surface. Its computation
already in special cases by Moishezon and Teicher [MoTe] led to counter-examples
to Bogomolov’s watershed conjecture.

Our construction zK.G; n/ is closely related to the fundamental group of the Galois
closure just mentioned (see Section 5 for an exposition). Here, we will be concerned
with its group theoretical properties:
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In general, it is difficult to compute zK.G; n/ for given G and n. For example,
if G is Abelian we usually obtain a nilpotent group of class 2. On the other hand,
zK.G; n/ inherits many properties from G: for example, if G is finite, nilpotent, or
solvable, then the same will be true for zK.G; n/ and for all n � 2. This construction,
defined in Section 2, is in the spirit of Hopf’s computation ofH2.G;Z/ in terms of a
presentation of G. And so it is not surprising there is a connection with the theory of
central extensions, covers and the Schur multiplier.

Let G be a finite group and M ´ M.G/ be its Schur multiplier. Then a cover of
a finite group G is defined to be a group G�, which is a central extension

0 ! M ! G� ! G ! 1

of M by G such that M lies in the commutator subgroup of G�. The notion of
covers comes from the study of central extensions and projective representations, see
e.g. [Ka].

Every perfect group has unique cover, which is called its universal central exten-
sion. However, non-perfect groups usually do not have unique or natural covers.

If we apply our construction to an Abelian group G, we obtain for every n � 2 a
naturally defined central extension

0 ! M.G/ ! zK.G; n/ ! Gn�1 ! 1:

If n � 3 or if n D 2 and G has odd order, then M.G/ lies in the centre of zK.G; n/.
A surprising application (the case n D 2) is the existence of natural covers for

Abelian groups of odd order. This natural cover can be computed from a given cover
by a sort of warped Baer sum of this given cover with itself.

This article is organised as follows.
In Section 1 we construct the auxiliary group K.G; n/ for n � 2 and a given

group G. It is a subgroup of Gn and not so difficult to compute, especially when G
is perfect or Abelian.

In Section 2 we use this auxiliary construction to define zK.G; n/, the main object
of this article. We show that it is a central extension of H2.G;Z/ by K.G; n/. Also,
we prove that it inherits properties such as finiteness, nilpotency or solvability fromG.

In Section 3 we prove that zK.G; n/ can be computed from an arbitrary cover ofG.
In particular, it contains the universal central extension of G in case G is perfect.

In Section 4 we determine the structure, i.e. the centre, Frattini and commutator
subgroup, of zK.G; n/ in case G is Abelian. Here we also prove that Abelian groups
of odd order possess natural covers.

In Section 5 we describe the relation to fundamental groups of algebraic surfaces
and to Moishezon’s programme to find finer invariants for surfaces.
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1. An auxiliary construction

We let G be a group and n � 2 a natural number. We denote by Gab ´ G= ŒG;G�

the Abelianisation of G. Then we define a map

 W Gn ! Gab;

.g1; : : : ; gn/ 7! g1 : : : gnŒG;G�;

which is a homomorphism as Gab is Abelian.

Definition 1.1. For a group G and a natural number n � 2 we define K.G; n/ to be
the kernel of the homomorphism  W Gn ! Gab.

Clearly K.�; n/ is functorial in its first argument. We start with the

Proposition 1.2. Let G1, G2, G be arbitrary groups and n � 2 a natural number.

(1) If G1 ! G2 is an injective or a surjective homomorphism then the same is true
for the induced maps K.G1; n/ ! K.G2; n/.

(2) There exists a natural isomorphism K.G1 �G2; n/ Š K.G1; n/ � K.G2; n/.

(3) For n � 3 the natural homomorphism from K.G; n/ab onto K.Gab; n/ is an
isomorphism.

Proof. The first two assertions follow immediately from the definition.
The surjection G ! Gab and the universal property of the Abelianisation im-

ply that there is a natural surjective homomorphism K.G; n/ab ! K.Gab; n/. An
element of the kernel K.G; n/ ! K.Gab; n/ is also an element of the kernel
Gn ! .Gab/n, which is ŒG;G�n. Since we assumed that n � 3, we may write

.Œh1; h2�; 1; : : : ; 1/ D Œ.h1; h1
�1; 1; : : : ; 1/; .h2; 1; h2

�1; : : : ; 1/� 2 Gn: (1)

Thus ŒG;G�n is not only a subgroup of K.G; n/ but also lies inside the commutator
subgroup of K.G; n/. Hence the kernel K.G; n/ ! K.Gab; n/ is the commutator
subgroup of K.G; n/, and we are done.

Remark 1.3. Already here we see that the case n D 2 has to be treated separately.
If we need n � 3 for a statement it is usually easy to obtain a counter-example for
the corresponding statement for n D 2 using elementary Abelian 2-groups, dihedral
groups or the quaternion group.
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In the following two cases it is particularly easy to determine K.G; n/.

Proposition 1.4. (1) If G is perfect then K.G; n/ Š Gn.

(2) If G is Abelian then K.G; n/ Š Gn�1. This isomorphism is not canonical.

Proof. TheAbelianisation of a perfect group is trivial, and so the first assertion follows
from the definition of K.G; n/.

Now let G be an Abelian group. Then the map

Gn�1 ! Gn;

.g1; : : : ; gn�1/ 7! .g1; : : : ; gn�1; .g1 : : : gn�1/
�1/;

defines a homomorphism. It is injective with image K.G; n/.

Proposition 1.5. Let n � 2 and let P be one of the following properties:

Abelian; finite; nilpotent; perfect; solvable.

Then G has the property P if and only if K.G; n/ has the same property.

Proof. By definition, K.G; n/ is a subgroup of Gn. Therefore if G is Abelian
(resp. finite, nilpotent, solvable) the same is true for K.G; n/. If G is perfect then
K.G; n/ D Gn, which is also perfect.

The projection onto the first factor Gn ! G induces a surjective homomorphism
from K.G; n/ onto G. Hence G is a quotient of K.G; n/. Therefore if K.G; n/ is
Abelian (resp. finite, nilpotent, perfect, solvable) the same is true for G.

2. The main construction

As in the previous section, we let G be a group and n � 2 be a natural number.
We choose a presentation G Š F=N where F is a free group. Then K.N; n/ is a
subgroup of K.F; n/ which is a subgroup of F n.

We denote by hhK.N; n/ii the subgroup normally generated by K.N; n/ inside
F n. For n � 3, it is not difficult to see (using formula (1)) that the normal closure
hhK.N; n/ii of K.N; n/ inside F n is equal to the normal closure of K.N; n/ inside
K.F; n/.

Definition 2.1. We let G be a group and n � 2 be a natural number. We define

zK.G; n/ ´ K.F; n/=hhK.N; n/ii:
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Theorem 2.2. The group zK.G; n/ does not depend upon the choice of a presentation.
There exists a central short exact sequence

0 ! H2.G;Z/ ! zK.G; n/ ! K.G; n/ ! 1: (2)

For n � 3 the group H2.G;Z/ lies inside the commutator subgroup of zK.G; n/.

Proof. We choose a presentation G Š F=N and abbreviate the normal closure
hhK.N; n/ii of K.N; n/ in F n by R.

First, we will prove the short exact sequence of the statement of the theorem: Let
� be the projection of F n onto its last n� 1 factors. By abuse of notation we denote
its restriction to K.F; n/ again by � . We obtain a short exact sequence

1 ! ŒF; F � ! K.F; n/
�! F n�1 ! 1:

An easy computation with commutators shows that R \ ker � D ŒF;N �. Via � we
obtain the following diagram with exact rows and columns:

1 �� ŒF;N � ��

��

R ��

��

N n�1 ��

��

1

1 �� N \ ŒF; F � ��

��

N n \ K.F; n/ ��

��

N n�1 ��

��

1

1 �� ŒF; F � �� K.F; n/
� �� F n�1 �� 1.

(3)

Taking quotients of successive rows we exhibit K.F; n/=R as an extension of .N \
ŒF; F �/=ŒF;N � by K.F; n/=.N n \ K.F; n//. The latter group is isomorphic to
K.G; n/. By Hopf’s theorem (cf. [Br, Theorem II.5.3]), the group .N\ŒF; F �/=ŒF;N �
is isomorphic to H2.G;Z/. Hence we obtain an extension

1 ! H2.G;Z/ ! K.F; n/=R ! K.G; n/ ! 1:

Next, we will show that this extension is central: Every element ofH2.G;Z/ can
be lifted to an element of the form Ex ´ .x; 1; : : : ; 1/ of K.F; n/with x 2 N\ŒF; F �.
For Ey ´ .y1; : : : ; yn/ 2 K.F; n/ we compute

Ey Ex Ey�1 D .Œy1; x�„ƒ‚…
2ŒF;N �

; 1; : : : ; 1/ � .x; 1; : : : ; 1/ � Ex mod ŒF;N �:

Hence H2.G;Z/ lies inside the centre of K.F; n/=R.
We now prove that zK.G; n/ is well defined: Let ˛ W F=N Š F 0=N 0 be another

presentation of G. We lift this isomorphism to a map ' W F ! F 0. Then ' maps N
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to N 0 and hence K.N; n/ to K.N 0; n/. Let R0 be the normal closure of K.N 0; n/
inside F 0n. Then ' induces a homomorphism

' W K.F; n/=R ! K.F 0; n/=R0:

We let '0 be another map lifting ˛ to a homomorphism from F to F 0.
Suppose now that n � 3. Then elements of the form .1; : : : ; f; 1; : : : ; f �1; 1; : : : /

generate K.F; n/ and so in this case it is enough to compare the maps induced by '
and'0 on such elements. For f 2 F there existsn0

f
2 N 0 such that'.f / D '0.f /n0

f
.

Hence

'..f; f �1; : : : // D .'0.f /n0
f ; n

0�1
f '0.f /�1; : : : /

D '0..f; f �1; : : : // � .n0
f ; '

0.f /n0�1
f '0.f /�1; : : : /„ ƒ‚ …

2R0

:

Hence the induced maps coincide. For n D 2, the group K.F; 2/ is generated by
elements of the form .f; f �1/ and .Œf1; f2�; 1/. It is easy to see that also in this case
the induced maps coincide.

In particular, if we choose F D F 0 and N D N 0 with ˛ and ' the identity then
every other lift '0 of the identity induces the identity on K.F; n/=R.

Coming back to the general case, we letF=N andF 0=N 0 be two presentations ofG
and let ˛ be an isomorphism between them. Then ˛ and ˛�1 induce maps between
K.F; n/=R and K.F 0; n/=R0 such that the composites of these induced maps have
to be the identity by the previous paragraph. Hence ˛ induces an isomorphism from
K.F; n/=R to K.F 0; n/=R0. Thus, zK.G; n/ is well defined.

Taking the quotient of the top row by the bottom row of (3) we obtain a short exact
sequence

1 ! ŒF; F �=ŒF;N � ! K.F; n/=R ! Gn�1 ! 1: (4)

The inclusion of H2.G;Z/ into K.F; n/=R factors over ŒF; F �=ŒF;N �. Suppose
now that n � 3. Then ŒF; F � lies inside the commutator subgroup of K.F; n/,
cf. formula (1). HenceH2.G;Z/ lies inside the commutator subgroup of K.F; n/=R.

Corollary 2.3. A homomorphism ˛ W G ! H induces a map zK.G; n/ ! zK.H; n/.
The short exact sequence (2) induces maps H2.G;Z/ ! H2.H;Z/ and

K.G; n/ ! K.H; n/. These maps coincide with the map induced by ˛ on homology
and the map induced by ˛ from K.G; n/ to K.H; n/, respectively.

Proof. We choose presentations G Š F=N and H Š F 0=N 0. In the proof of Theo-
rem 2.2 we did not need that the map ˛ considered there was an isomorphism to prove
that it induces a unique map from zK.G; n/ to zK.H; n/. This shows functoriality.
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It is easy to see that the induced map coming from zK.�; n/ is compatible with
the map induced by ˛ from K.G; n/ to K.H; n/.

We have to prove that the homomorphism induced on homology is compatible with
the one coming from zK.�; n/. However, this follows from [Br], Exercise II.6.3.b.

Corollary 2.4. For n � 3 there exist isomorphisms

zK.G; n/ab Š K.G; n/ab Š K.Gab; n/ Š .Gab/n�1:

Proof. The first isomorphism follows from the fact that H2.G;Z/ lies inside the
commutator subgroup of zK.G; n/. The remaining isomorphisms follow from Propo-
sition 1.2 and Proposition 1.4.

Corollary 2.5. If G is cyclic then zK.G; n/ Š Gn�1. This isomorphism is not
canonical.

Proof. If G is cyclic then H2.G;Z/ vanishes. Hence zK.G; n/ is isomorphic to
K.G; n/, which is isomorphic to Gn�1 by Proposition 1.4.

Proposition 2.6. Let P be one of the following properties:

finite; nilpotent; perfect; solvable.

Then G has the property P if and only if zK.G; n/ has the same property.

Proof. If G is finite then so are H2.G;Z/ and K.G; n/. Hence zK.G; n/ is finite
because it is an extension of H2.G;Z/ by K.G; n/.

SinceH2.G;Z/ is Abelian it is nilpotent. Hence if G is solvable (resp. nilpotent)
then so is zK.G; n/ because it is a (central) extension of two solvable (resp. nilpotent)
groups.

If G is perfect and G Š F=N then also zG ´ ŒF; F � = ŒF;N � is perfect. By the
short exact sequence (4) the group zK.G; n/ is an extension of zG by Gn�1. Thus
zK.G; n/ is perfect being an extension of two perfect groups.

The group G is a quotient of zK.G; n/. So, if zK.G; n/ is finite (resp. nilpotent,
perfect, solvable) the same is true for G.

We end this section by a remark on group actions on K.�; n/ and zK.�; n/.
Given a group F , the symmetric group Sn on n letters acts on F n by permuting

its n factors. Clearly, this action preserves K.F; n/. It is not difficult to see that if
G Š F=N is a presentation ofG, then the Sn-action on K.F; n/ induces a Sn-action
on zK.G; n/ that does not depend on the choice of a presentation of G.

We let Sn�1 be the subgroup of Sn of those permutations that fix, say, the first
letter. Inside K.G; n/ (resp. zK.G; n/) we form the normal closure N (resp. zN )
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of the subgroup generated by the elements g � �.g�1/, for all � 2 Sn�1 and all
g 2 K.G; n/ (resp. g 2 zK.G; n/). Then the quotients K.G; n/=N and zK.G; n/= zN
are isomorphic to G.

Thus, the Sn-actions on K.G; n/ and zK.G; n/ allow us to recoverG as a quotient
of these groups. Although we do not need this result here, it is crucial in the context
of the geometric origin of these groups. We refer to [Li], Section 5, for proofs.

3. Central extensions and covers

We recall that a group G� is called a cover (or a representation group) of the finite
group G if there exists a central short exact sequence

0 ! M ! G� ! G ! 1

with M � ŒG�; G�� and such that M is isomorphic to the Schur multiplier of G.
For a perfect group there exists a unique cover up to isomorphism, which is called its
universal central extension.

IfG is finite then Pontryagin duality provides us with a non-canonical isomorphism
of its Schur multiplier M.G/ ´ H 2.G;C�/ with H2.G;Z/.

Proposition 3.1. IfG is a finite and perfect group there exists a short exact sequence

1 ! zG ! zK.G; n/ ! Gn�1 ! 1:

Here zG denotes the universal central extension of G.

Proof. If G is perfect with presentation F=N then its universal central extension is
isomorphic to ŒF; F � = ŒF;N �, cf. [Ka], Theorem 2.10.3. The statement follows from
the short exact sequence (4).

This result suggests that there is a connection of zK.�; n/with the theory of central
extensions. This is in fact true by the following theorem which tells us that we can
compute zK.G; n/ using an arbitrary cover of G.

Theorem 3.2. Let G� be a cover of the finite group G and M be the kernel of the
map from G� onto G. For n � 2 there exists an isomorphism

K.G�; n/=K.M; n/ Š zK.G; n/:

In particular, the group on the left depends on G and n only.
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Proof. By Schur’s theorem [Ka], Theorem 2.4.6, there exists a free group F and two
normal subgroups N and S such that G Š F=N , G� Š F=S and N= ŒF;N � D
S= ŒF;N � � .N \ ŒF; F �/= ŒF;N �.

First, we show that

H ´ hK.F; n/ \ Sn;K.N; n/i
is a normal subgroup of F n contained in K.F; n/. Since both Sn and K.F; n/ are
normal in F n we see that K.F; n/ \ Sn is a normal subgroup of F n contained in
K.F; n/. This already shows that H is a subgroup of K.F; n/. To show normality
in F n it is enough to show that conjugates of K.N; n/ by elements of F n lie inside
H . So let .x1; : : : ; xn/ 2 K.N; n/ and f 2 F . Then

.f; 1; : : : /.x1; : : : ; xn/.f; 1; : : : /
�1 D .Œf; x1�; 1; : : : /„ ƒ‚ …

2ŒF;N �

� .x1; : : : ; xn/„ ƒ‚ …
2K.N;n/

:

By Schur’s theorem mentioned in the beginning, ŒF;N � is contained in S and it is
straight forward to see that ŒF;N �n is contained in K.F; n/ \ Sn (both regarded as
subgroups of F n). Hence this conjugate lies inH and from this calculation it is easy
to deduce the normality of H in F n.

We already mentioned that K.F; n/ \ Sn is a normal subgroup of F n contained
in K.F; n/ and from the presentation G� Š F=S we easily get an isomorphism

K.G�; n/ Š K.F; n/=.K.F; n/ \ Sn/: (5)

Since the image of N in F=S Š G� is M , we see that K.N; n/ maps to K.M; n/

inside K.G�; n/ under the isomorphism (5). K.M; n/ is generated by elements of
the form .1; : : : ; m; 1; : : : ; m�1; 1; : : : / with m 2 M , which is also true for n D 2

sinceM is Abelian. Such elements of K.G�; n/ can be lifted to elements of K.F; n/

lying inside K.N; n/. Hence K.N; n/ maps surjectively onto K.M; n/.
Putting these results together we obtain an isomorphism

K.G�; n/=K.M; n/ Š K.F; n/=H:

By definition, the quotient of K.F; n/ by the normal closure hhK.N; n/ii of
K.N; n/ inside F n is zK.G; n/. Clearly, K.N; n/ is contained in H and since H is
normal in F n, also hhK.N; n/ii is contained in H . Hence the inclusion of these two
normal subgroups induces a surjective homomorphism

 W zK.G; n/ ! K.G�; n/=K.M; n/:

On the other hand, both groups are extensions of H2.G;Z/ by K.G; n/. The
surjective map  induces an isomorphism between the kernel and the quotient of
these extensions. Hence  is an isomorphism.
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4. Abelian groups

We will now see that already in the case of finite Abelian groups it is quite difficult
to determine the structure of zK.G; n/. Thanks to Proposition 1.4, we know that
K.G; n/ is isomorphic to Gn�1.

The following proposition implies that we may restrict ourselves to p-groups:

Proposition 4.1. Let G be a finite nilpotent group and n � 2. Let Sp be its unique
Sylow p-subgroup. There exists an isomorphism

zK.G; n/ Š
Y
p

zK.Sp; n/;

where p runs over all prime numbers. More precisely, the short exact sequence (2)
for G is the product of the short exact sequences (2) taken over all its Sylow p-sub-
groups Sp .

Proof. By functoriality, there exists a commutative diagram with exact rows:

1 ��
Q

p H2.Sp/ ��

'1

��

Q
p

zK.Sp; n/ ��

'2

��

Q
p K.Sp; n/ ��

'3

��

1

1 �� H2.G/ �� zK.G; n/ �� K.G; n/ �� 1.

From [Ka], Corollary 2.2.11, and Proposition 1.2 it follows that '1 and '3 are iso-
morphisms. Hence '2 is an isomorphism.

First, we deal with n D 2, which is the most interesting case from the point of view
of group theory. Since G is Abelian, K.G; 2/ is isomorphic to G and (2) becomes

0 ! H2.G;Z/ ! zK.G; 2/ ! G ! 1: (6)

Proposition 4.2. Let G be a finite Abelian p-group.

(1) If p ¤ 2 then zK.G; 2/ is a cover of G via the short exact sequence (6).

(2) If G is an elementary Abelian 2-group then zK.G; 2/ is an elementary Abelian
2-group. More precisely, it is the product of G and H2.G;Z/.

Proof. Let G be an Abelian p-group with p ¤ 2. Every cover of G is nilpotent of
class at most 2. The same is true for zK.G; 2/ by (6). Hence for arbitrary elements in
these groups the commutator relation Œxi ; yj � D Œx; y�ij holds true.

To prove our statement we have to show thatH2.G;Z/ in (6) lies in the commutator
subgroup of zK.G; 2/. We choose an arbitrary cover G� ! G with kernel M and
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exhibit zK.G; 2/ as in Theorem 3.2. It is enough to prove that h.m; 1/ j m 2 M i lies
inside the commutator subgroup of K.G�; 2/ modulo elements of K.M; 2/

SinceG is Abelian,M coincides with the commutator subgroup ofG� and so we
have to check that the commutator subgroup of G� is a subgroup of the commutator
subgroup of K.G�; 2/modulo elements of K.M; 2/. Given x; y 2 G�, the elements
.x; x�1/ and .y; y�1/ lie in K.G�; 2/ and hence .Œx; y�; Œx�1; y�1�/ lies inside the
commutator subgroup of K.G�; 2/. Modulo K.M; 2/ this element is congruent to
.Œx; y�2; 1/.

Since G has odd order, also M has odd order by Schur’s theorem, cf. [Ka],
Theorem 2.1.5. Hence .Œx; y�; 1/ is a power of .Œx; y�2; 1/. Thus, modulo elements
of K.M; 2/, the element .Œx; y�; 1/ lies in the commutator subgroup of K.G�; 2/.

Now, let G be an elementary Abelian 2-group. To prove the remaining statement
we can either proceed as above or we copy the first part of the proof of Proposition 4.7
below.

Definition 4.3. Let G be an Abelian group. We say that G has a natural cover if
zK.G; 2/ is a cover of G. In this case, we will also refer to zK.G; 2/ as the natural

cover of G.

The following result is an immediate corollary of the previous proposition.

Theorem 4.4. A finite Abelian group of odd order possesses a natural cover.
More precisely, let G� be an arbitrary cover of an Abelian group G of odd order

and let M be the kernel of G� ! G. Then we obtain the natural cover of G as a
subquotient of .G�/2 via

zK.G; 2/ Š h.g; g�1/; .m; 1/ j g 2 G�; m 2 M i=h.m;m�1/ j m 2 M i:
Thus, the natural cover can be obtained from an arbitrary cover G� by a kind of
warped Baer sum of G� with itself.

Proof. By Proposition 4.1 and Proposition 4.2 Abelian groups of odd order have natu-
ral covers. The definition of K.G�; 2/ and Theorem 3.2 give the explicit construction
of the natural cover starting from an arbitrary one.

We denote the centre of a group G by Z.G/. We denote its Frattini subgroup,
i.e. the intersection of all maximal subgroups of G, by ˆ.G/.

We recall that a p-group is called special if its centre is equal to its commutator
and its Frattini subgroup. A special p-group is called extra-special if its centre is
cyclic.

Proposition 4.5. Let p be an odd prime number.

(1) The natural cover of Z=pZ is just Z=pZ itself.
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(2) The natural cover of .Z=pZ/2 is the extra-special group of order p1C2 and
exponent p.

Proof. The first statement follows from Corollary 2.5.
The Schur multiplier of G D .Z=pZ/2 is Z=pZ. Hence zK.G; 2/ is a non-

Abelian group of order p3. Such a group is necessarily extra-special. The unique
extra-special groupG� of order p1C2 and exponent p is a cover ofG. Since zK.G; 2/

is a quotient of K.G�; 2/ by Theorem 3.2, the group zK.G; 2/ has exponent p. This
is enough to identify zK.G; 2/ as the unique extra-special group of order p1C2 and
exponent p.

For applications to algebraic geometry, especially the case n � 3 is relevant.
Using Proposition 1.4, the extension (2) becomes

0 ! H2.G;Z/ ! zK.G; n/ ! Gn�1 ! 1: (7)

Since n � 3, the group H2.G;Z/ lies inside the commutator subgroup of zK.G; n/

by Theorem 2.2.

Proposition 4.6. Let G be an Abelian p-group and n � 3 a natural number.

(1) Unless G is cyclic, the group zK.G; n/ is nilpotent of class 2.

(2) The commutator subgroup of zK.G; n/ is equal to H2.G;Z/ embedded via (7).

(3) The Frattini subgroup ˆ. zK.G; n// is an extension of H2.G;Z/ by ˆ.G/n�1.

Proof. IfG is not cyclic, thenH2.G;Z/ does not vanish by Schur’s theorem, cf. [Ka,
Corollary 2.2.12]. Since zK.G; n/ is a central extension of two Abelian groups, it is
nilpotent of class at most 2. Since H2.G;Z/ lies inside the commutator subgroup of
zK.G; n/ by Theorem 2.2, the group zK.G; n/ is not Abelian.

As n � 3, the groupH2.G;Z/ lies inside the commutator subgroup, which shows
one inclusion. On the other hand, the quotient of zK.G; n/ by H2.G;Z/ is Abelian,
showing the other inclusion.

Clearly, ˆ. zK.G; n// maps onto ˆ.Gn�1/ via (7). It is a general fact that I ´
Z.G�/\ ŒG�; G�� is contained inˆ.G�/. SinceH2.G;Z/ is contained in I (in fact,
they are equal in our case), it follows that ˆ. zK.G; n// is an extension of H2.G;Z/
by ˆ.Gn�1/ Š ˆ.G/n�1.

The structure of the centre of zK.G; n/ is much trickier. In fact, it depends on n.

Proposition 4.7. Let G be an Abelian p-group and n � 3 a natural number. Let
G� ! G be an arbitrary cover of G and denote byZ the image of the centreZ.G�/
inside G.
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(1) If the exponent of G divides n, then zK.G; n/ is the direct product of G and
zK.G; n � 1/.

(2) If p does not divide n, then the centre of zK.G; n/ is isomorphic to the product
of H2.G;Z/ and K.Z; n/.

Proof. We choose a coverG� ! G with kernelM and defineZ as in the statement of
the proposition. By Theorem 3.2, the quotient of K.G�; n/ by K.M; n/ is isomorphic
to zK.G; n/.

Suppose that the exponent ofG divides n. Then we obtain a well-defined injective
homomorphism � from G� to K.G�; n/ that sends g to .g; : : : ; g/. Since also M
has an exponent which divides n, we conclude that the intersection�.M/\K.M; n/

is equal to �.M/. Hence we obtain G�=M D G as a central subgroup of zK.G; n/.
This subgroup maps to a diagonally embeddedG inside K.G; n/ (under the map (2))
and hence we can split the induced injective map from G to zK.G; n/. Thus, G is a
direct factor of zK.G; n/ and it is easy to see that the quotient is in fact isomorphic to
zK.G; n � 1/. This also works for n D 2, but then the quotient of zK.G; 2/ by G is

equal to M .
To prove the second assertion we now assume thatp does not divide n. The preim-

age of the centre of zK.G; n/ in K.G�; n/ consists of those elements of K.G�; n/
for which every commutator lies in K.M; n/. Hence this preimage is equal to

zZ ´ ˚
.h1; : : : ; hn/ 2 K.G�; n/ j Pn

iD1Œgi ; hi � D 0 for all

.g1; : : : ; gn/ 2 K.G�; n/
�
:

Let .h1; : : : ; hn/ 2 zZ. For g 2 G�, the element .1; : : : ; g; 1; : : : ; g�1; 1; : : : / lies in
K.G�; n/ and we obtain Œhi ; g� D Œhj ; g� for all i; j . In particular, if hi 2 Z.G�/
for some i , then hi 2 Z.G�/ for all i .

Assume there exist an element Eh ´ .h1; : : : ; hn/ of zZ with hi 62 Z.G�/ for
some i , say i D 1. Inside .G�/n we can write this element as product of .h1; : : : ; h1/

by Ez ´ .1; h�1
1 h2; : : : ; h

�1
1 hn/, where all entries of Ez lie inZ.G�/. The sum over all

components of Ez is an element z0 of Z.G�/. Since p does not divide n, there exists
a power z00 of z0 that is an nth root of z0. We define Eh0 ´ .h1 � z00; : : : ; h1 � z00/ and
Ez0 ´ .z00; : : : ; z00/�1Ez. Then Eh D Eh0 � Ez0. We arranged Ez0 in such a way that it lies in
K.G�; n/ and so also Eh0 lies in K.G�; n/. Every component of Eh0 is equal to h1z

00.
Since h1z

00 does not lie ŒG�; G�� (this group is contained in the centre of G� and we
assumed h1 62 Z.G�/), also .h1z

00/n does not lie in ŒG�; G�� (using again the fact
that n is coprime to p). Hence Eh does not lie in K.G�; n/, a contradiction.

We conclude that the centre of zK.G; n/ is the image ofZ.G�/n \ K.G�; n/, i.e.,
we have to compute its quotient by K.M; n/. This group, however, is easily seen to
be an extension of M by K.Z; n/.
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Corollary 4.8 (Read’s theorem for Abelian groups). Let G� ! G be a cover of an
Abelian group G. Then the image Z of the centre Z.G�/ inside G does not depend
on the choice of the cover G�.

Proof. For a natural number n � 3 that is coprime to the order of G, the centre of
zK.G; n/ is a product of H2.G;Z/ and K.Z; n/. Since this centre does not depend

on the choice of a cover, also Z is independent of it.

Remark 4.9. In view of the last corollary it seems natural to ask whether zK.G; n/

captures interesting data about all cover groups of a given (not necessarily Abelian)
group G. For example, Schur’s theorem that ŒG�; G�� is an invariant of G and does
not depend on the choice of the coverG� also follows quite easily from Theorem 3.2.

5. Fundamental groups

We now sketch how K.G; n/ and zK.G; n/ are connected to fundamental groups of
algebraic surfaces and Moishezon’s programme to find new invariants for algebraic
surfaces. For details and references we refer to [Li].

For complex curves, it is already known since the 19th century, that their funda-
mental groups classify them up to diffeomorphism. However, although the Italian
school classified complex algebraic surfaces of special type in the early 20th century,
not much is known about surfaces of general type.

There is an approach towards a finer classification that uses embeddings of surfaces
into large projective spaces: LetX be a smooth projective surface and L a sufficiently
ample line bundle on X . Then we embed X via L into some projective space P N .
After that we choose a generic codimension three linear subspace in this P N and
consider the projection � away from this space. This is a rational map from P N

onto P 2. The restriction
f ´ �jX W X ! P 2

is a finite map, called a generic projection.
We denote by n the degree of f and by D its branch locus. If we know the fun-

damental group �1.P 2 �D/ and the monodromy morphism  W �1.P 2 �D/ ! Sn,
where Sn denotes the symmetric group on n letters, we can reconstruct X . Thus, if
we could extract invariants from these fundamental groups we would get a much finer
classification of algebraic surfaces. However, these groups �1.P 2 �D/ are huge and
may have a rather complicated structure, although a conjecture of Teicher states that
they are almost-solvable.

Also this was known for some time, but it could not be used effectively since it
was too difficult to compute these fundamental groups. However, the braid group
techniques introduced by Moishezon in [Mo], and refined later on by Teicher and
others, made it possible to compute these groups �1.P 2 �D/ in many cases.
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One such invariant forX depending on the choice of an embedding ofX into pro-
jective space is the fundamental group of the Galois closure of this generic projection:
To a generic projection f of degree n we associate its so-called Galois closure

Xgal ´ f.x1; : : : ; xn/ j xi ¤ xj ; f .xi / D f .xj /g � Xn:

This turns out to be a smooth projective surface. In most cases it is of general type.
Apart from their connection with generic projections, there is another reason why

Galois closures are interesting: Using Galois closures of generic projections gives one
of the few known ways to construct series of surfaces of general type with positive
index, i.e., the Chern numbers ofXgal fulfil c1

2 > 2c2. For some time it was believed
that surfaces of general type with positive index should have infinite fundamental
groups. The first counter-examples to this conjecture were given by Moishezon and
Teicher via computing fundamental groups of Galois closures of generic projections
from X D P 1 � P 1 [MoTe].

Hence, determining �1.Xgal/ is interesting from the point of view of fundamental
groups of surfaces of general type. Also, these groups should give new invariants of
X as they occur as certain naturally defined subquotients of �1.P 2 �D/. In [Li] we
partly simplified the calculations of [MoTe] which led to zK.G; n/:

We fix a generic projection f W X ! P 2 of degree n and denote by Xgal its
associated Galois closure fgal W Xgal ! P 2. We fix a generic line in P 2 and denote its
complement by A2. Then we denote the inverse images of f �1.A2/ and fgal

�1.A2/

by X aff and X aff
gal , respectively. Since f is generic the Galois group of Xgal over P 2

is the whole symmetric group Sn. This group acts on Xgal and X aff
gal and we can form

the quotient

Xgal=Sn�1 Š X;

X aff
gal=Sn�1 Š X aff :

There are n distinct embeddings of Sn�1 into Sn yielding n distinct isomorphisms
and n distinct induced maps on fundamental groups, all of which are surjective:

�1.Xgal/ ! �1.X/;

�1.X
aff
gal/ ! �1.X

aff/:

Combining these n homomorphisms, we obtain a map from �1.Xgal/ to �1.X/
n, and

similarly for �1.X
aff
gal/. The following result determines the images of these maps.

Theorem 5.1. There exist surjective homomorphisms

�1.Xgal/ ! K.�1.X/; n/;

�1.X
aff
gal/ ! K.�1.X

aff/; n/:
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The arguments in the proof of Theorem 5.1 can be formalised in such a way that
the result remains true for étale fundamental groups and generic projections defined
over arbitrary algebraically closed fields of characteristic ¤ 2; 3. Of course, one has
to modify the statement for �1.X

aff
gal/ over fields of positive characteristic a little bit

since the affine plane is then no longer simply-connected.
Over the complex numbers the algorithm of Zariski and van Kampen provides us

with a presentation of fundamental groups of complements of curves in A2 or P 2.
Applying it to the branch curve D of f we find the fundamental group �1.X

aff
gal/ as

a subquotient of �1.A2 � D/. Combining this presentation with Theorem 5.1 we
obtain

Theorem 5.2. There exists a surjective homomorphism

�1.X
aff
gal/ ! zK.�1.X

aff/; n/:

The group �1.Xgal/ is a quotient of �1.X
aff
gal/ by a cyclic central subgroup.

In all known examples, where the generic projection was defined via a sufficiently
ample line bundle, the map of Theorem 5.2 is in fact an isomorphism.

This suggests to use Galois closures of generic projections to construct algebraic
surfaces with interesting fundamental groups. For example, starting from a surface
with Abelian fundamental group, iterated Galois closures should produce surfaces
with nilpotent fundamental groups of large class. Another project would be to obtain
new surfaces with fundamental groups that are not residually finite.

Whether the map of Theorem 5.2 is an isomorphism in all cases or at least for
large class of surfaces or generic projections is not clear at the moment, although
this is true in all known examples. In any case, we have a quotient of the group
we are interested in and the appearance of covering groups in connection with these
fundamental groups is quite surprising. Therefore, it is indispensable to have a better
understanding of zK.�; n/ to comprehend these fundamental groups.
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