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The action of Thompson’s group on a CAT.0/ boundary

Daniel Farley

Abstract. For a given locally finite CAT.0/ cubical complex X with base vertex �, we define
the profile of a given geodesic ray c issuing from � to be the collection of all hyperplanes (in the
sense of Sageev) crossed by c. We give necessary conditions for a collection of hyperplanes to
form the profile of a geodesic ray, and conjecture that these conditions are also sufficient.

We show that profiles in diagram and picture complexes can be expressed naturally as
infinite pictures (or diagrams), and use this fact to describe the fixed points at infinity of the
actions by Thompson’s groups F , T , and V on their respective CAT.0/ cubical complexes. In
particular, the actions of T and V have no global fixed points. We obtain a partial description
of the fixed set of F ; it consists, at least, of an arc c of Tits length �=2, and any other fixed
points of F must have one particular profile, which we describe. We conjecture that all of the
fixed points of F lie on the arc c.

Our results are motivated by the problem of determining whether F is amenable.
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1. Introduction

Thompson’s group F is the group of piecewise linear homeomorphisms h W Œ0; 1� !
Œ0; 1� satisfying:

(1) the finitely many points at which h is non-differentiable are all dyadic rational
numbers, and

(2) if h is differentiable at x0, then h0.x0/ 2 f2i j i 2 Zg.

Thompson also described two other groups, T and V , which are (respectively) the
groups of piecewise linear homeomorphisms h of the circle Œ0; 1�=.0 D 1/ and the
right-continuous bijections h of Œ0; 1/; in both cases the functions h are required to
satisfy (1) and (2). The survey by Cannon, Floyd, and Parry [5] is a useful introduction
to all of these groups.

We are interested in the following question:
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Question 1.1 ([10]). Is Thompson’s group F amenable?

To explain the original interest in Question 1.1, we will need a few definitions. A
group G is elementary amenable if it is in the smallest class of groups that is closed
under extensions and direct limits, and contains finite and abelian groups. A group
G is amenable if there is a measure � W P .G/ ! Œ0; 1� (P .G/ is the power set of G)
such that: i)� is finitely additive; ii)� is left invariant; and iii)�.G/ D 1. We letEG,
AG, and NF denote the classes of elementary amenable groups, amenable groups,
and groups with no free non-abelian subgroups (respectively). Von Neumann showed
that EG � AG � NF . The problem of determining whether these inclusions are
proper was posed by Day [7].

Brin and Squier [4] showed that F 2 NF . It is proved in [5] that F 62 EG.
Thus, the existence of F implies that at least one of the inclusionsEG � AG � NF

is proper for finitely presented groups: a positive answer to Question 1.1 shows that
F 2 AG�EG, and a negative answer shows thatF 2 NF �AG. Since at least 1980,
when Geoghegan posed Question 1.1, Thompson’s group was expected by many to
be an example of a finitely presented non-amenable group with no free subgroups.

We know today that EG ¨ AG ¨ NF , and that the inclusions are proper for
both finitely generated and finitely presented groups. Grigorchuk found examples of
finitely generated groups in AG �EG [11] and, in 1998, finitely presented examples
as well [12]. In 1980, Ol’shanskii [15] found finitely generated groups inNF �AG.
He and Sapir constructed finitely presented groups in NF � AG in 2002 [16].

Although the original reason to consider Question 1.1 is thus obsolete, the problem
of determining whether F is amenable is still of great interest, and motivates much
of the current work about F .

Here we attempt to resolve Question 1.1 negatively using CAT.0/ geometry. Two
earlier results are of vital importance in this. First, Adams and Ballmann [1] showed
that an amenable group G which acts by isometries on a locally compact CAT.0/
space X must either leave a finite-dimensional flat invariant or fix a point at infinity.
Second, [8], [9] showed that Thompson’s groupsF , T , and V act properly, discretely,
and by isometries on proper CAT.0/ cubical complexes XF , XT , and XV . If F is
amenable, it must therefore either leave a flat invariant or fix a point at infinity inXF .
Elementary properties of F (for instance, the fact that

L1
nD1 Z � F [5]) imply that

F cannot act properly and freely on a finite-dimensional flat, so we would have a
proof that F is non-amenable if we showed that F has no global fixed points in @XF .
(Note that the groups T and V are known to be non-amenable, since both are known
to contain non-abelian free subgroups.)

Most of the effort in this paper goes into describing the spaces at infinity of
the locally finite complexes XF , XT , and XV . (In fact, our methods apply to all
diagram groups and picture groups [9].) At this point, some background on XF , XT ,
and XV is in order; we restrict our remarks to XF for the sake of simplicity. The
constructions in [8], [9] come from the theory of diagram groups, which is due to
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Guba and Sapir [13]. Each vertex of XF is labelled by a semigroup diagram, which
is essentially a picture demonstrating how to derive an equality w1 D w2 between
words w1, w2 over a semigroup presentation. The group F is itself a diagram group,
so every element in F can be represented by a semigroup diagram as well. The action
of F on XF is given by a natural operation on diagrams: if x 2 F and v 2 X0

F , then
x � v is obtained by stacking the pictures x and v, and then “reducing dipoles”. (We
refer the reader to Section 3 for more specifics, or to [13] for a complete introduction.)

Our description of @XF is of the same character. We represent regions of @XF as
infinite diagrams, which we call profiles. The action of F on profiles is determined,
as before, by stacking diagrams. As a result, we can largely reduce the problem of
finding fixed points in @XF to a much easier algebra problem, which can be handled
by a case analysis. Our main theorem is as follows:

Theorem 1.2. Thompson’s group F fixes an arc in the boundary @XF of Tits length
�=2. Any other fixed points on the boundary of F lie in the profile �1. Thompson’s
groups T and V act without global fixed points on their respective boundaries.

This unfortunately leaves Question 1.1 open.
The problem of finding any remaining fixed points of the action by F appears to

be rather delicate. In Section 7, we give some evidence for and against the existence
of additional fixed points in @XF .

The paper is organized as follows. In Section 2, we collect various facts about
CAT.0/ geometry which will be useful in later sections. In Section 3, we briefly
sketch the definitions of diagram groups and the cubical complexes, called diagram
complexes, on which they act. In Section 4, we describe regions in the space at infinity
of diagram complexes using infinite diagrams, and describe the action of a diagram
group on this space at infinity. Section 5 contains the main part of the argument,
where it is proved that Thompson’s group F fixes the profiles �L, �R, �L�R, and
�1, each of which can be described by an infinite tree. The groups T and V fix only
the profile�1. In Section 6, we show that the profiles�L�R,�L, and�R represent
(respectively) the interior of, the “left” endpoint of, and the “right” endpoint of an
arc of length �=2 in the Tits metric. We show moreover that all points on this arc are
fixed by F . Finally, in Section 7 we show that the region at infinity which we call
�1 contains no fixed points of T or V , even though it is fixed as a set. As a result,
one has a proof that T and V fix no point at infinity. We also discuss the problem of
determining whether F fixes any points in �1.

I would like to thank Kim Ruane for suggesting a version of Conjecture 2.9 to
me. I also thank the Max Planck Institute for Mathematics, where I wrote most of
the paper, for the excellent working conditions it provided. I thank the referee for
making helpful comments, and especially for telling me about the work [14] of Dan
Guralnik, which led me to alter Conjecture 2.9. Guralnik independently develops a
more general theory of the Roller boundary of a CAT.0/ cubical complex. I believe
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that the description of the boundaries @XF , @XT , and @XV using profiles is really a
description of their Roller boundaries in different language and notation.

2. Background on CAT.0/spaces

2.1. Basic definitions. We begin by recalling several basic facts about CAT.0/
spaces, all of which are taken directly from [2].

A metric space X is geodesic if, for any x1; x2 2 X , there is an isometric
embedding c W Œ0; d.x1; x2/� ! X , called a geodesic, such that c.0/ D x1 and
c.d.x1; x2// D x2. We frequently confuse a geodesic with its image. A geodesic tri-
angle�.x; y; z/ consists of three points x; y; z 2 X and choices of geodesics Œx; y�,
Œy; z�, Œx; z� connecting them. Given such a triangle, it is always possible to find points
Nx, Ny, Nz in two-dimensional Euclidean space E2 such that dX .x; y/ D dE2. Nx; Ny/,
dX .y; z/ D dE2. Ny; Nz/, and dX .x; z/ D dE2. Nx; Nz/. The triangle x�. Nx; Ny; Nz/ in E2

determined by Nx, Ny, and Nz is called a comparison triangle for �. There is a map
h W � ! x�which sends sides of� isometrically to the corresponding sides of x�. We
say that the triangle� satisfies the CAT.0/ inequality if dX .a; b/ � dE2.h.a/; h.b//

whenever a; b 2 �. A geodesic metric space X is CAT.0/ if all geodesic triangles
in X satisfy the CAT.0/ inequality. CAT.0/ spaces are contractible, and uniquely
geodesic, i.e., given any two points x1, x2 in a CAT.0/ space X , there is a unique
geodesic connecting x1 to x2.

IfX is an arbitrary metric space, and c W Œ0; a� ! X , c0 W Œ0; a0� ! X are geodesic
segments satisfying c.0/ D c0.0/, then we define the Alexandrov angle †.c; c0/ as
follows:

†.c; c0/ ´ lim
�!0

sup
0<t;t 0<�

x†c.0/.c.t/; c
0.t 0//:

Here x†c.0/.c.t/; c
0.t 0// is the angle at c.0/ in the comparison triangle x� for

�.c.0/; c.t/; c0.t 0//. Given three points x, y, z in a CAT.0/ spaceX , we let †y.x; z/

denote the Alexandrov angle between the (unique) geodesics Œy; x� and Œy; z�.
The CAT.0/ inequality can also be expressed in terms of the Alexandrov angle. If

� is a geodesic triangle in the metric spaceX , then� satisfies the CAT.0/ inequality
if and only if each Alexandrov angle in�measures less than the corresponding angle
in the comparison triangle x�. We say that a geodesic metric space X is CAT.0/ if
every geodesic triangle in X satisfies this version of the CAT.0/ inequality. Bridson
and Haefliger [2] show that this definition of CAT.0/ spaces is equivalent to the earlier
one.

A complete CAT.0/ space X has a natural space at infinity @X , which we now
define. Two geodesic rays c; c0 W Œ0;1/ ! X are said to be asymptotic if there exists
a constant K such that d.c.t/; c0.t// � K for all t � 0. The set @X of boundary
points of X (or points at infinity) is the set of equivalence classes of geodesic rays,
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where two geodesic rays are equivalent if and only if they are asymptotic. In practice,
we will always use a basepointed version of this construction. Fix a point x 2 X . We
define @X to be the set of geodesic rays c W Œ0;1/ ! X issuing from x, i.e., satisfying
c.0/ D x. These two definitions of @X are equivalent in a complete CAT.0/ space
by the following proposition:

Proposition 2.1 ([2]). If X is a complete CAT.0/ space and c W Œ0;1/ ! X is a
geodesic ray issuing from x, then for every point x0 2 X there is a unique geodesic
ray c0 which issues from x0 and is asymptotic to c.

If a group G acts by isometries on the CAT.0/ space X , then it is clear that there
is an induced action on @X , if we regard the latter as the collection of equivalence
classes of geodesic rays in X . If we use the basepointed version of the construction,
then the action � can be described as follows: Let c 2 @X ; i.e., c W Œ0;1/ ! X is a
geodesic ray and c.0/ D x. For an isometry g 2 G, g � c is the unique geodesic ray
issuing from x and asymptotic to the left-translate g � c of c.

2.2. Convexity in CAT.0/ spaces. A subset C of a CAT.0/ space X is convex if,
given any two points x1; x2 2 C , the (unique) geodesic segment Œx1; x2� is contained
inC . A function f W X ! R on a geodesic metric space is convex if, for any geodesic
c W I ! X , the composition f B c is convex in the ordinary sense, i.e., if, for any
t; t 0 2 I and s 2 Œ0; 1�,

.f B c/..1 � s/t C st 0/ � .1 � s/.f B c/.t/C s.f B c/.t 0/:
Bridson and Haefliger [2] show that there is a natural projection �C W X ! C

defined whenever X is a complete CAT.0/ space and C is a closed convex subspace.
We collect some basic properties of �C here.

Proposition 2.2. LetC be a closed, convex subspace of a complete CAT.0/ spaceX .

(1) Let dC W X ! R be defined by the rule

dC .x/ D inf
y2C

d.x; y/:

The function dC is convex ([2]).

(2) For any x 2 X , there is a unique point �C .x/ 2 C such that d.x; �C .x// D
dC .x/. The function �C W X ! C does not increase distances ([2]).

(3) If x 2 X � C and y 2 C � f�.x/g, then †�.x/.x; y/ � �=2 ([2]).

(4) Fix x 2 X � C . If y 2 C satisfies †y.x; y
0/ � �=2 for all y0 2 C � fyg, then

y D �C .x/.
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Proof. (4) Assume that y satisfies the above condition and y ¤ �.x/. Consider
the comparison triangle x�. Nx; Ny; �.x// for the geodesic triangle �.x; y; �.x// in X .
Since the comparison triangle is non-degenerate by our assumptions, at least one of
the comparison angles x† Ny. Nx; �.x//, x†�.x/. Nx; Ny/ measures less than �=2. Our as-

sumptions and the CAT.0/ inequality imply that x†�.x/. Nx; Ny/ < �=2. By the CAT.0/
inequality, †�.x/.x; y/ < �=2 as well. This violates (3).

We say that a geodesic ray c W Œ0;1/ ! X crosses a closed, convex subset C if
.Im c/ \ C is a non-empty, compact interval and .Im c/ � C is disconnected.

Lemma 2.3. Let X be a CAT.0/ space.

(1) Suppose thatC is a closed convex subset ofX , c W Œ0;1/ ! X is a geodesic ray
which crosses C , and .Im c/ \ C D c.Œt1; t2�/. The function dC B c is strictly
monotonically increasing on Œt2;1/, and .dC B c/.t/ ! 1 as t ! 1.

(2) If c; c0 W Œ0;1/ ! X are two asymptotic geodesic rays in X , then the function
d.c. /; c0. / W Œ0;1/ ! Œ0;1/ is non-increasing.

Proof. Both parts are standard exercises using basic properties of convex functions.
Part (1) follows from the fact thatdC Bc W Œ0;1/ ! Œ0;1/ is convex, .dC Bc/.t2/ D 0,
and .dC B c/.t 0/ > 0 for some t 0 > t2. Part (2) follows from the fact that the function
d.c. /; c0. // W Œ0;1/ ! Œ0;1/ is convex and bounded (see [2], p. 261).

2.3. CAT.0/ cubical complexes. We take the following definition of a cubical com-
plex from [2]:

Definition 2.4 ([2], p. 112). A cubical complex K is the quotient of a disjoint union
of cubesX D `

ƒ I
n� by an equivalence relation �. The restrictions p� W I n� ! K

of the natural projection p W X ! K D X= � are required to satisfy:

(1) for every � 2 ƒ the map p� is injective;

(2) ifp�.I
n�/\p�0.I n�0 / ¤ ; then there is an isometry h�;�0 from a faceT� � I n�

onto a face T�0 � I n�0 such that p�.x/ D p�0.x0/ if and only if x0 D h�;�0.x/.

Let x and y be points in X , and let l.c/ denote the length of a path c.

d`.x; y/ D inffl.c/ j c.0/ D xI c.1/ D yg:
The function d` W X 	 X ! Œ0;1� defines a metric on any cubical complex, called
the length metric [2]. A well-known theorem due to Gromov [2] says that the length
metric on a cubical complex X is a CAT.0/ metric if and only if X satisfies the link
condition. We avoid recounting the precise statement here, but will work exclusively
with CAT.0/ cubical complexes from now on.
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LetX be a complete CAT.0/ cubical complex. Following [17], define a relation �
on edges ofX , such that e1 � e2 if and only if e1 and e2 are opposite sides of a square
(2-cell) inX . We will sometimes call this relation simple square equivalence, although
it is not an equivalence relation. The transitive, reflexive closure of this relation, also
denoted �, is called square equivalence. It is clear that square equivalence is an
equivalence relation.

A combinatorial hyperplane in X is an equivalence class of edges under �. One
obtains a geometric hyperplane H as follows: let Me be the set of all midpoints of
all edges square equivalent to e. If C is an arbitrary cube, define H \ C to be the
convex hull of Me \ C in the cube C . This description determines H .

We now collect some basic properties of CAT.0/ cubical complexes.

Theorem 2.5 ([17]). Let X be a CAT.0/ cubical complex.

(1) IfJ is a geometric hyperplane inX , thenJ does not intersect itself and partitions
X into two convex components.

(2) If J1; : : : ; Jk are a collection of geometric hyperplanes inX such that Jm\Jn ¤
; for all m; n, then

T
Ji ¤ ;.

(3) If x and y are vertices in X connected by a geodesic edge-path p of length
n, then p crosses n distinct hyperplanes J1; : : : ; Jn, and these are precisely
the hyperplanes which separate x from y. In particular, any other geodesic
edge-path p0 connecting x to y must cross precisely the same hyperplanes.

(4) Each geometric hyperplane J is itself a CAT.0/ cubical complex.

The following lemma will be useful in Section 2.4.

Lemma 2.6. Let X be a locally finite CAT.0/ cubical complex.

(1) The closed 1
2

-neighborhood of a hyperplane H in X factors isometrically as
H 	 Œ0; 1�.

(2) Let c W Œ0;1/ ! X be a geodesic ray issuing from a vertex � ofX . If c.Œ0;1//\
C ¤ ; for some open cube C in X , then c crosses every hyperplane passing
through C .

(3) If H is a hyperplane in X , dH is non-constant on an open cell C in X , and
H \C D ;, then there exists some hyperplaneH1 passing through C such that
H1 \H D ;.

(4) Let H1 and H2 be hyperplanes in the CAT.0/ cubical complex X , and, for
i D 1; 2, let HC

i , H�
i be the two open, convex components of X � Hi . If

the intersections HC
1 \ H�

2 , HC
1 \ HC

2 , H�
1 \ H�

2 , and H�
1 \ HC

2 are all
non-empty, then H1 \H2 is also non-empty.
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Proof. (1) This is a consequence of the proof for Theorem 4.10 (p. 611) of [17].
(2) Suppose that c.t1/ 2 C ; let H be any hyperplane passing through C . Thus

c.t1/ 2 H 	 .0; 1/; say c.t1/ 2 H 	 ft 0g. Let s1, s2 be arbitrary numbers such
that s1 < t 0 < s2 and 1

2
2 .s1; s2/. The hyperplanes H 	 fsig D Hsi

.i D 1; 2/

separate X into three distinct connected components, one of which is H 	 .s1; s2/.
Note that H 	 Œs1; s2� does not contain �, so c must therefore cross either Hs1

or
Hs2

. If we assume, without loss of generality, that c crosses Hs1
, then it must be

that dHs1
.c.t// ! 1 monotonically on Œt1;1/, for appropriate t1, by Lemma 2.3.

The function dHs1
is bounded onH 	 Œs1; s2�, so the geodesic ray c eventually leaves

H 	Œs1; s2�, and it cannot crossHs1
a second time, due to the monotonicity of dHs1

Bc
on Œt1;1/. It follows that c crosses Hs2

, and thus also H1=2 D H .
(3) We prove the contrapositive. Suppose that H is a hyperplane, C is an open

cell such that H \ C D ;, and every hyperplane H 0 passing through C satisfies
H 0 \H ¤ ;. We wish to show that dH is constant on C .

Identify C with .0; 1/n and fix a factor of .0; 1/n (the last one, without loss
of generality). There is a hyperplane H 0 such that H 0 \ C D .0; 1/n�1 	 ˚

1
2

�
.

Let x1, x2 2 C be two points in C which differ only in the last coordinate, say
x1 D .c1; c2; : : : ; cn/ and x2 D .c1; c2; c3; : : : ; Ocn/. We regard these as points in
H 0

cn
´ H 0 	fcng andH 0

Ocn
´ H 0 	f Ocng, respectively. Let x D .c1; c2; : : : ; cn�1;

1
2
/

be in H 0, which we identify with H 0 	 f1
2
g.

We consider the projection�H\H 0 W H 0 ! H\H 0. Suppose that�H\H 0.x/ 2 C 0
whereC 0 D .0; 1/m is an open cube (of dimension at least 2, sinceH andH 0 both pass
through C 0, andH ¤ H 0). We make the identificationsH 0 \C 0 D f.d1; : : : ; dm/ 2
C 0 j dm D 1=2g and H \ C 0 D f.d1; : : : ; dm/ 2 C 0 j dm�1 D 1=2g.

Suppose that �H\H 0.x/ D .d 0
1; d

0
2; : : : ; d

0
m�2; 1=2; 1=2/. The requirement that

†�H\H 0 .x/.x; y/ � �=2 for all y ¤ �H\H 0.x/ in H \ H 0 guarantees that
Œx; �H\H 0.x/� \ C 0 � fd 0

1g 	 � � � 	 fd 0
m�2g 	 .0; 1/ 	 f1=2g (note: the last co-

ordinate must be 1=2 since Œx; �H\H 0.x/� � H 0). But it follows from this that
†�H\H 0 .x/.x; y/ � �=2 for all y ¤ �H\H 0.x/ inH . That is: �H\H 0.x/ D �H .x/,
by Proposition 2.2 (4), where �H\H 0 W H 0 ! H \ H 0 and �H W X ! H are the
projections.

Therefore the geodesic segment Œx; �H .x/� (D Œx; �H\H 0.x/�) is a subset of
H 0. Now we consider the geodesic segments Œx; �H .x/� 	 fcng � H 0 	 fcng and
Œx; �H .x/� 	 f Ocng � H 0 	 f Ocng. These run parallel to Œx; �H .x/�, and meet H
perpendicularly for similar reasons. It follows that Œx1; �H .x1/� D Œx; �H .x/�	fcng
and Œx2; �H .x2/� D Œx; �H .x/� 	 f Ocng.

This implies that dH .x1/ D dH .x/ D dH .x2/, which implies that the value of
dH is independent of the last coordinate. Now we can argue coordinate by coordinate
to conclude that dH is constant on C .

(4) Assume that the four intersections in the hypothesis are all non-empty. If we
assume also thatH1 \H2 D ;, then it follows that fHC

1 [HC
2 ;H

�
1 [H�

2 g is an open
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cover ofX . Now each of the half-spacesHC
1 ,H�

1 ,HC
2 , andH�

2 is a convex subspace
of a CAT.0/ space, and therefore CAT.0/ itself. It follows that each is contractible.
The same reasoning also applies to the four intersections in the hypothesis: each is
CAT.0/, and therefore contractible.

It then follows that each of the setsXC D HC
1 [HC

2 ,X� D H�
1 [H�

2 is simply
connected, since each is the union of two open contractible sets which intersect in
an open contractible set. The intersection XC \ X� is the union of two disjoint
open contractible sets: HC

1 \H�
2 and HC

2 \H�
1 . Let c be an arc contained in XC

connecting HC
1 \H�

2 to HC
2 \H�

1 and meeting each in an open segment.
We apply van Kampen’s theorem to the pieces X� [ c and XC. The first piece

X� [ c satisfies �1.X
� [ c/ Š Z, while the second is simply connected. The

intersection of these two pieces is the simply connected set .HC
1 \ H�

2 / [ .HC
2 \

H�
1 / [ c. It follows that �1.X

� [ XC/ D �1.X/ is isomorphic to Z. The space X
is CAT.0/, however, and therefore contractible. We have a contradiction.

2.4. Profiles of geodesic rays in CAT.0/ cubical complexes. Suppose now that
X is locally finite, and let � be a vertex, which will serve as a basepoint. If H is
any hyperplane in X , let HC, the positive half-space determined by H , be the open
complementary component ofX �H that does not contain �; we letH� be the other
open complementary component of X � H . If H1 and H2 are hyperplanes in X ,
write HC

1 � HC
2 if HC

2 � HC
1 . Clearly � is a partial order on positive half-spaces.

We also regard � as a partial order on hyperplanes, writing H1 � H2 if HC
1 � HC

2 .
For any geodesic ray c inX issuing from �, define P.c/, the profile of c, to be the

collection of all positive half-spaces HC such that H is crossed by c.

Proposition 2.7. If c W Œ0;1/ ! X is a geodesic ray issuing from �, then P.c/ is
non-empty and satisfies:

(1) for any finite subset fHC
1 ; : : : ;H

C
n g � P.c/, HC

1 \ � � � \HC
n ¤ ;;

(2) the partially ordered set .P.c/;�/ has no maximal elements, and

(3) if HC
1 2 P.c/ and HC

2 � HC
1 , then HC

2 2 P.c/.

Proof. If HC
1 , HC

2 , : : : , HC
n are contained in P.c/, then there exist real numbers

t1; t2; : : : ; tn > 0 such that c.Œti ;1// 
 HC
i , by Lemma 2.3. If t is the largest number

in ft1; : : : ; tng, then clearly c.Œt;1// � HC
1 \ HC

2 \ � � � \ HC
n . This proves that

property (1) holds for P.c/.
It is obvious that property (3) is true of P.c/.
Suppose that HC 2 P.c/ is a maximal element, and let c.Œt;1// � HC. Since

dH .c.t
0// ! 1 as t 0 ! 1 by Lemma 2.3, we can choose t so that dH .c.t// > 1=2.

We consider the collection C of all open cells C such that c.Œt;1// \ C ¤ ;. Note
that if yC \H ¤ ;, then any point in c.Œt;1// \ yC is at most 1=2-distant from H ,
so that every cell C in C satisfies C \H D ;.
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Let C 2 C . If dH is non-constant on C , then, by Lemma 2.6 (3), there is a
hyperplaneH 0 passing through C such thatH 0 \H D ;. We claim that this implies
HC < .H 0/C. If HC 6< .H 0/C, i.e., if .H 0/C 6� HC, then .H 0/C \ H� ¤ ;.
We also know that � 2 H� \ .H 0/�, HC \ .H 0/� ¤ ; (since C � HC and
C \ .H 0/� ¤ ;), and HC \ .H 0/C ¤ ; (since the geodesic ray must cross H 0
by Lemma 2.6 (2)). Now it follows from Lemma 2.6 (4) that H 0 \ H ¤ ;, which
is a contradiction. This proves the claim. Now HC < .H 0/C and c crosses H 0 by
Lemma 2.6 (2), which contradicts the maximality of HC.

It follows that dH is constant on all of the cells C in C . This contradicts the fact
that dH B c is strictly monotonically increasing on Œt;1/. It follows that property (2)
holds.

It is obvious that P.c/ is non-empty.

From now on, we call a collection of positive half-spaces H a profile if it is non-
empty and satisfies properties (1)–(3) in Proposition 2.7. In an earlier version of this
paper, I asked if every profile H in this sense is realized by a geodesic ray, i.e., if
there is some geodesic ray c issuing from � such that Im c \HC ¤ ; if and only if
HC 2 H . The referee pointed out that Guralnik answered this question negatively
in [14]. We include his example here.

Example 2.8 ([14], Example 6.11). Consider the space

X D S
n2N

Œn � 1; n� 	 Œn2;1/;

given the standard cubulation. Let .0; 0/ be the basepoint. We note that there are
three profiles: one consists of all half-spaces HC

i (i 2 N) having the form HC
i D

f.x; y/ 2 X j y > i � 1=2g; another consists of all half-spaces yHC
i (i 2 N) having

the form yHC
i D f.x; y/ 2 X j x > i�1=2g; a third is the collection of all half-spaces

HC
i and yHC

i . It is not difficult to check that only the first of these profiles can be
realized by a geodesic ray.

It is natural to ask if every profile can be realized in a restricted class of cubical
complexes, such as those admitting cocompact actions. Guralnik [14] considers some
hypotheses under which one can guarantee a positive answer after his Example 6.11.
His Question 6.1 suggests that it is not known whether all profiles are realized, even
if one assumes that X has a cocompact action.

The following conjecture was originally suggested to me by Kim Ruane.

Conjecture 2.9. LetX be a locally finite CAT.0/ cubical complex with base vertex �.
The collection of geodesic rays c having a given, fixed profile H forms a subset of
@X of diameter less than or equal to �=2, where the distance in question is the angle
metric .see [2]/.
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We note that Guralnik (in [14]) has shown that Conjecture 2.9 is true, provided
we replace the bound �=2 with � .

Conjecture 2.9 implies, in particular, that each profile represents a contractible
subset of @X , since @X is a CAT(1) space with respect to the angular metric, and
sets of diameter less than � are contractible in CAT(1) spaces (Proposition 1.4 (4)
in [2]). If Conjecture 2.9 is true, then the description of @X in terms of profiles may
therefore give a useful homotopical view of the space at infinity, especially if profiles
have a convenient description. We will give such a description of profiles in diagram
complexes later in Section 4.

3. Diagram groups

3.1. Basic definitions. IfA is a set (alphabet), then the free semigroup onA, denoted
AC, is the collection of all positive, non-empty words in A, with the operation of
concatenation. Let P D h† j Ri be a semigroup presentation. Thus, † is an
alphabet and R � †C 	 †C is a collection of equalities between elements of †C.
We will follow the convention of [8] and impose the additional assumption that no
relation of the form .w;w/ occurs in R.

We now define pictures over P . Begin with a frame @.Œ0; 1�2/, a finite, possibly
empty, collection T of transistors, each homeomorphic to Œ0; 1�2, and a finite, non-
empty collection W of wires, each homeomorphic to Œ0; 1�. The frame and transistors
all have well-defined top, bottom, left, and right sides, which are the open sides parallel
to the coordinate axes, and do not include the corners. A wire has well-defined initial
and terminal points (i.e., 0 and 1, respectively). A picture over P , denoted �, is a
quotient of

@.Œ0; 1�2/
` � `

T 2T

T
� ` � `

w2W

w
�

(for a choice of sets T and W ) by an equivalence relation �, together with a labelling
function ` W W ! †, satisfying:

(1) The initial point of any given wire is attached either to the bottom of a transistor,
or to the top of the frame. The terminal point of any given wire is attached either
to the bottom of the frame, or to the top of some transistor. If w is a wire and T
is a transistor, then w \ T � � is either empty or a singleton set.

(2) Let T1 and T2 be transistors. Write T1 < T2 if there is some wire w such that
the initial point of w is attached to the bottom of T1 and the terminal point of w
is attached to the top of T2. Let< also denote the transitive closure of the above
relation. The relation < is required to be a strict partial order.

(3) The equivalence classes of � are either singleton sets or consist of exactly two
points, exactly one of which is an endpoint of a wire. In other words, the only



196 D. Farley

identifications in
@.Œ0; 1�2/

` � `
T 2T

T
� ` � `

w2W

w
�

are generated by the attaching maps of the wires, and no two wires have points
in common. The endpoints of the wires are called contacts.

(4) Suppose the top of the transistor T meets the wires wi1 , wi2 , : : : , wim , reading
from the left side of T to the right. Suppose that the bottom of the transistor T
meets the wires wj1

, : : : , wjn
, again reading from left to right. The top label of

T , denoted LT , is
`.wi1/`.wi2/ : : : `.wim/I

the bottom label of T , denoted LB , is

`.wj1
/`.wj2

/ : : : `.wjn
/:

We require that .LT ; LB/ 2 R or .LB ; LT / 2 R.

We can define the top and bottom labels of the frame just as we did for a transistor T .
If the top label of the frame is w1 and the bottom label is w2, then � is a .w1; w2/-
picture over P . We say that � is a .w;�/-picture if the top label of � is w, and the
bottom label is arbitrary.

Two pictures�1 and�2 are isomorphic,�1 � �2, if there is a homeomorphism
between them which matches labels and preserves the top-bottom- and left-right-
orientations on the frame and transistors.

Given a .u; v/-picture�1 and a .v; w/-picture�2, one can define the concatena-
tion �1 B �2, which is the .u;w/-picture obtained by identifying the bottom of the
frame for �1 with the top of the frame for �2 by a homeomorphism which matches
the endpoints of the wires, and then removing the line segment corresponding to
the bottom of �1 in the quotient, while keeping the wires passing through this line
segment intact.

Figure 1 illustrates the operation of concatenation in a particular case. All of the
semigroup pictures in the figure are pictures over the presentation hx j x D x2i. For
this reason, we leave off the labels of the wires, since the label of each one is x. Note
that on the top left is an .x; x3/-picture, and on the bottom left is an .x3; x/-picture.

Figure 1. On the left, we have two pictures �1 and �2 (reading from top to bottom); on the
right we have the concatenation �1 B�2.
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If we denote these pictures �1 and �2, respectively, then the .x; x/-picture on the
right is �1 B�2.

Note that Figure 1 also illustrates our conventions for drawing pictures in the
plane. If � is a semigroup picture, then a function � W � ! R2 is a projection of �
if:

(1) The image of each transistor is a rectangle whose sides are parallel to the coordi-
nate axes. The map � takes the top, left, right, and bottom of any given transistor
to the corresponding sides in the image.

(2) The image of the frame is an empty rectangle, and the map � is again orientation-
preserving, in the sense of (1). The image of � is contained inside the image of
the frame.

(3) The image of each wire meets any given horizontal line at most once, and

(4) The function � is an embedding, except possibly at finitely many double points.
The inverse image of any double point x is a set of two points on distinct wires
w1 and w2. We assume that the images of w1 and w2 are transverse at x.

It is rather clear that all of the defining features of a semigroup picture can be recovered
from any of its suitably labelled projections. From now on, we will usually confuse
a picture with any of its projections without further comment.

Two transistors T1 < T2 form a dipole if the top label of T1 is identical (as a word
in †C) to the bottom label of T2, and the bottom contacts of T1 are paired off by
wires in order with the top contacts of T2. To remove a dipole, delete the transistors
T1 and T2 and all wires connecting them, and then glue together in order the wires
that formed top contacts of T1 with those that formed bottom contacts of T2. The
inverse operation is called inserting a dipole. Two pictures are equal modulo dipoles,
�1 D �2, if one can be obtained from the other by repeatedly inserting and removing
dipoles. A picture is called reduced if it contains no dipoles. Any equivalence class
modulo dipoles contains a unique reduced picture [9], [13].

In Figure 2 we have two .acbd; abab/-pictures over the presentation P D
ha; b; c; d j ab D cd; cb D bc; ab D bai. In the left picture, we have circled

a c b d

b c

a b
c d

ba ba

c b d

c

a b

ba ba

a

Figure 2. The circled transistors in the left half of the figure form a dipole; on the right, we
have the result of removing this dipole.
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two transistors which form a dipole. If we remove this dipole, we arrive at the picture
on the right. Notice that the two right-most transistors in the right half of the figure
do not form a dipole: the top label of the top transistor is cd , but the bottom label of
the bottom transistor is ba.

For a fixed word w 2 †C, the set of all .w;w/-pictures over P , modulo dipoles,
forms a group Db.P ; w/ under the operation of concatenation. We will follow [13]
and call Db.P ; w/ the braided diagram group over P , based at w. (Warning: the
word “braided” is rather unfortunate. In fact, as the above definition shows, we do
not care about any possible braiding of the wires, since equivalence between pictures
does not depend on any embedding into an ambient space. Moreover, there is now a
growing literature (see for example [3]) on a braided version of Thompson’s group V ,
which is something quite different from the older group V which we consider here.
Nevertheless, there seems to be no better term.) A picture � is planar if there is a
projection � W � ! R2 which is also an embedding. The set of all planar .w;w/-
pictures over P , modulo dipoles, forms a group D.P ; w/, which we will call the
diagram group over P , based at w. Annular pictures can be defined as follows.
Suppose that � is a picture, and let �0 be the space obtained from � by removing
the sides of the frame. We say that � is annular if there is an orientation-preserving
immersion of�0 intoA D f.x; y/ 2 R2 j 1 � x2Cy2 � 4g such that: i) the top of the
frame for�0 is wrapped around the circle x2 C y2 D 1 once in the counterclockwise
direction. The initial and terminal points of the top are both mapped to .1; 0/ 2 A;
ii) the bottom of the frame for �0 is wrapped around the circle x2 C y2 D 4 once in
the counterclockwise direction. The initial and terminal points of the bottom are both
mapped to .2; 0/ 2 A; iii) the only double points of � are .1; 0/ and .2; 0/; � is an
embedding otherwise. The set of all annular pictures over P is a group Da.P ; w/,
called the annular diagram group over P , based at w.

Three groups are of special interest to us. Let P D hx j x D x2i. The groups
D.P ; x/, Da.P ; x/, and Db.P ; x/ are, respectively, Thompson’s groups F , T ,
and V . The original observation that D.P ; x/ Š F was due to Victor Guba; Guba
and Sapir (in [13]) sketched the theory of annular and braided diagram groups ex-
pressly for the purpose of bringing their techniques to bear on the study of T and V .
Section 6 of [9] describes an isomorphism between the groups F , T , and V , and the
corresponding diagram groups.

3.2. Diagram complexes. If G is a diagram group of the standard, annular, or
braided variety, then a theorem of [9] (see also [8]) says that G acts properly by
isometries on a CAT.0/ cubical complex. We briefly describe the construction of the
cubical complex in this subsection.

Fix a braided diagram group Db.P ; w/. We define a complex zKb.P ; w/, called
the diagram complex for Db.P ; w/, as follows. A vertex v 2 zKb.P ; w/

0 is an
equivalence class � of reduced braided .w;�/-pictures, where �1 � �2 if and only
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if there is some braided permutation picture ‰, such that �1 B ‰ D �2. Here a
permutation picture is one with no transistors. It is convenient to depict a vertex as a
.w;�/-picture in which all wires which would ordinarily be connected to the bottom
of the frame have been cut, as in Figure 3.

Figure 3. This is a vertex in the cubical complex zKb.P ; x/, where P D hx j x D x2i.

An n-dimensional cube in zKb.P ; w/ is denoted by a reduced braided .w;�/-pic-
ture� in which all of the bottom wires have been cut (as above), and n of the maximal
transistors of � have been drawn as white. The picture Figure 4 a) denotes a 2-cube,
for example.

a) b)

Figure 4. a) This notation describes a cube in the complex zKb.P ; x/. b) This is the labelled
cube in zKb.P ; x/ denoted by the picture in a).

If we arbitrarily number the white transistors 1; 2; : : : ; n, then there is a natural
way to label the vertices of an n-cube Œ0; 1�n, corresponding to this numbering of �.
Namely, if .a1; : : : ; an/ 2 f0; 1gn label .a1; : : : ; an/ by the picture�.a1;:::;an/, where
the i th transistor is left off if ai D 0 and the i th transistor is filled in if ai D 1. For
instance, Figure 4 b) shows how to label the corners of Œ0; 1�2 if� is as in Figure 4 a)
and the white transistors are numbered from left to right.

If we let � vary over all possible isomorphism classes of cube representatives
(where isomorphisms send white transistors to white transistors), and, for each �,
choose as above a labelling of Œ0; 1�n for the appropriate n, then zKb.P ; w/ is the
quotient of the resulting labelled cubes by the equivalence relation which identifies
the cubes along faces with the same labels. It is proved in [9] that zKb.P ; w/ is a
proper CAT.0/ cubical complex if P is a finite presentation, and that Db.P ; w/ acts
properly and cellularly on zKb.P ; w/. The action is usually not cocompact, and, in
particular, is not for any of the groups F , T , and V .

We note that entirely similar statements are true for ordinary and annular diagram
groups. It is only necessary to replace pictures with planar pictures and annular
pictures (respectively) in the above discussion to get the descriptions of zK.P ; w/ and
zKa.P ; w/, respectively.
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Lastly, we recall a useful partial order on vertices. If Œ�1� and Œ�2� are vertices
in a diagram complex, we write Œ�1� � Œ�2� if there exists some picture � such that
�1 B � � �2. Note that this means �1 B � and �2 are isomorphic before reducing
dipoles. It is not difficult to see that � is a well-defined partial order.

Suppose T 0 � T�, where T� is the collection of transistors in a picture �. We
say that T 0 is an initial subset of T� if whenever T1 < T2 and T2 2 T 0, then T1 2 T 0
also. We reproduce a lemma from [9].

Lemma 3.1 ([9]). Let � be a vertex, and let T� be its set of transistors. There is a
one-to-one correspondence between initial subsets of T� and vertices�1 satisfying
�1 � �. The function  is order-preserving and has an order-preserving inverse,
i.e., the initial subsets T 0; T 00 satisfy T 0 � T 00 if and only if  .T 0/ �  .T 00/.

The map  in the above lemma is easy to define: if T 0 is an initial subset of
transistors, then  .T 0/ is obtained by removing all transistors in T� � T 0, along with
all of their bottom wires. The result is easily seen to be a vertex. The argument
that the map  is injective can be extended to prove that the automorphism group
of a diagram is trivial, at least combinatorially speaking. That is, if 	 W � ! � is a
isomorphism, then 	 leaves the frame, each transistor, and each wire invariant, and
restricts to a self-homeomorphism of each of these. It therefore follows, for instance,
that in a concatenation�1 B�2 of pictures, one can speak of the transistors that were
contributed by �i for i D 1; 2, and this is a well-defined notion even after reducing
dipoles. We shall need this observation in future sections, and use it without further
comment.

4. Geodesic profiles in diagram complexes

We now describe profiles in diagram complexes. Our main goals here are, first, to
describe a profile as an infinite picture of a certain kind, and then to describe the action
on profiles in terms of picture multiplication.

Throughout this section, we use only the complex zKb.P ; w/, but the discussion
carries over to zK.P ; w/ and zKa.P ; w/ in an obvious way.

4.1. Description of profiles. The first step is to describe hyperplanes in zKb.P ; w/.
Recall that a combinatorial hyperplane is an equivalence class of 1-cells under the
relation � of square equivalence. The square equivalence relation is generated by
simple square equivalence (also denoted �), where two 1-cells e1, e2 are simple
square equivalent if they are opposite faces of a 2-cell (square).

We describe combinatorial hyperplanes in zKb.P ; w/ with help from an example.
First, fix a 1-cell in zKb.P ; w/, such as the one in Figure 5 a), which we will call �.
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a) b)

Figure 5. a) An edge � in zKb.P ; x/, and b) a collection of edges that are square equivalent
to �.

We consider a small number of 1-cells that are square equivalent to � (there are
infinitely many such 1-cells for this �). These are the vertical edges in Figure 5 b).
We denote these edges �1, �2 D �, �3, and �4, reading from left to right. Note
the interpretation of simple square equivalence in terms of diagrams: for i D 1; 2; 3,
�i � �iC1 since �i can be obtained from �iC1 by removing a maximal shaded
transistor and all of its bottom wires from �iC1, or the reverse, i.e., �iC1 can be
obtained in the same way from �i . This observation is general, and holds true in all
of the complexes zK.P ; w/, zKa.P ; w/, and zKb.P ; w/, for all P and w, and indeed
follows easily from the definition of the 2-cells in a diagram complex. We record this
in a lemma.

Lemma 4.1. Let �0, �00 be 1-cells in zKb.P ; w/. The following statements are
equivalent:

(1) �0 and �00 are simple square equivalent;

(2) There is some maximal shaded transistor T in �0 such that �00 is the result of
removing T and all of its bottom wires from�0 .or the reverse statement is true,
with �0 and �00 reversing roles/.

Fix a 1-cell � � zKb.P ; w/. Let H� denote the combinatorial hyperplane
corresponding to �. Let T� denote the collection of transistors of �. Let T de-
note the (unique) white transistor in T�. Consider the collection M� D fT 0 j
T 0 is a transistor in �;T 0 � T g (the inequality sign refers to the partial order on
transistors). We can associate to this collection of transistors a vertex min.H�/,
called the minimal vertex of H�. Simply remove all transistors in T� � M� along
with their bottom wires, and then shade the white transistor. The result is necessarily
a vertex by Lemma 3.1. It is clear that min.H�/ depends only on the hyperplaneH�.

For example, if � D �1, �2, �3, or �4 from Figure 5 b), then min.H�/ is
the vertex at the top of �2. We note one property of minimal vertices: a vertex is
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minimal if and only if it contains a unique maximal transistor. If a vertex � has a
unique maximal transistor, then the hyperplaneH� corresponding to� is the square
equivalence class of the edge obtained by painting the maximal transistor white.

We are interested in min.H�/ because of the following lemma. In all that follows,
we let our basepoint � be the unique vertex in zKb.P ; w/ having no transistors.

Lemma 4.2. Let H be a hyperplane in zKb.P ; w/. If x� is an arbitrary vertex in
zKb.P ; w/, then x� and the basepoint � lie in different components of zKb.P ; w/�H

if and only if min.H/ � x�.

Proof. Let x� be a vertex in zKb.P ; w/; let Tx� denote the collection of transistors
in x�. Choose a function ˛ W Tx� ! f1; : : : ; jTx�jg satisfying:

(1) ˛ is one-to-one;

(2) if T1 < T2, then ˛.T1/ < ˛.T2/.

We associate a sequence of vertices � D x�0, x�1, … , x�jT x�j D x�, where x�i is
the (unique) vertex determined by ˛�1.f1; 2; : : : ; ig/ under the correspondence in
Lemma 3.1. It is not difficult to see that x�i is connected to x�iC1 by a unique edge for
i D 0; 1; : : : ; jT .x�/j � 1. We let p˛ denote the edge-path consisting of these edges.

For example, Figure 6 a) shows a picture with a numbering ˛ of its transistors,
along with the corresponding edge-path (Figure 6 b)).

1)

2)

3)

4)a) b)

Figure 6. a) A labelling ˛ of the picture x�, and b) the associated edge-path in zKb.P ; x/.

We claim that p˛ is a geodesic in the 1-skeleton zKb.P ; w/
1. Suppose that p is

an arbitrary edge-path connecting � to x�; let � D x�0
0, x�0

1, … , x�0
m D x� be the

vertices lying along the path p, listed in the order they are visited. It is clear from the
definition of edges in zKb.P ; w/ that x�0

iC1 is obtained from x�0
i (0 � i � m � 1) by

either removing a maximal transistor from the bottom of x�0
i , or adding a new maximal

transistor to x�0
i . It immediately follows from this that `.p/ � jTx�j. This proves the

claim.
Suppose that min.H�/ � x�. Lemma 3.1 implies that min.H�/ corresponds to an

initial collection T of transistors. Suppose that jT j D n. It follows that we can define
˛ W Tx� ! f1; : : : ; n; : : : ; jTx�jg in such a way that ˛jT W T ! f1; : : : ; ng is another
labelling function satisfying (1) and (2) above. In this case, x�n D min.H�/ and
x�n�1 is the vertex obtained by removing the (unique) maximal transistor in x�n. It
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immediately follows that the edge Œx�n�1; x�n� is a member of the combinatorial hyper-
plane H�. Since a geodesic edge-path p˛ from � to x� crosses H�, Theorem 2.5 (3)
implies that � and x� lie on opposite sides of H�, proving one direction.

Conversely, suppose that x� and � are separated by the hyperplane H�. Theo-
rem 2.5 (3) says that a geodesic edge-path p crosses precisely the hyperplanes sepa-
rating the initial vertex of p from the terminal vertex of p. It follows that, for some
k 2 f0; : : : ; jTx�j�1g, the edge Œx�k; x�kC1� represents the hyperplaneH�. Under the
correspondence in Lemma 3.1, x�k corresponds to a collection Tx�kC1

�fT g of transis-

tors in x�kC1, where T 2 Tx�kC1
. The edge Œx�k; x�kC1� can be described in terms of

pictures as follows: draw x�kC1, but leave the transistor T unshaded. According to the
definition, we obtain min.H�/ by shading T , and then taking the picture correspond-
ing to fT 0 2 Tx�kC1

j T 0 � T g. It is thus clear that min.H�/ � x�kC1 � x�.

Proposition 4.3. LetHC
1 andHC

2 be two positive half-spaces in zKb.P ; w/. Let�1

and �2 be their minimal vertices.

(1) HC
2 � HC

1 if and only if �2 � �1.

(2) HC
1 \HC

2 ¤ ; if and only if f�1; �2g has an upper bound in zKb.P ; w/
0.

Proof. (1) .)/ Suppose HC
2 � HC

1 . This means that HC
1 � HC

2 . Thus, every
vertex � 2 HC

1 is separated from � by H2. In particular, �1 is so separated from �.
By the previous lemma, �2 � �1.

.(/ Suppose �2 � �1. It is sufficient to check the inclusion HC
1 � HC

2 on
vertices. If � is a vertex in HC

1 , then �1 � �. It follows that �2 � �, so � 2 HC
2

by the previous lemma.
(2) Both directions are immediate consequences of the previous lemma.

We now obtain the desired characterization of profiles in terms of pictures.

Theorem 4.4. Let the basepoint � 2 zKb.P ; w/ be the unique vertex having no
transistors. Let � be an infinite .w;�/-picture over the semigroup presentation P ,
i.e., a picture in the sense of Section 3, except that the transistor and wire sets are
countably infinite. Let us suppose as well that � satisfies the following conditions:

(1) For any transistor T 2 T�, the set .�1; T � D fT 0 2 T� j T 0 � T g is finite.

(2) There are no maximal elements in the set T� of transistors in �.

(3) No wire is attached to the bottom of the frame of �.

The picture� determines a unique profile, i.e., a non-empty collection of positive half-
spaces H� in zKb.P ; w/ satisfying properties (1)–(3) in Proposition 2.7. Conversely,
a profile in zKb.P ; w/ determines a unique infinite picture � satisfying properties
(1)–(3) above.

The indicated correspondences are mutually inverse.
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Proof. Suppose that� is an infinite .w;�/-picture over the semigroup presentation P

satisfying the properties above. The transistors of� are in one-to-one correspondence
with a collection of hyperplanes in the following way. Let T be a transistor of�; we
consider the collection .�1; T � of all transistors in� which are less than or equal to
T in the partial order on transistors. By Lemma 3.1 and our assumption that .�1; T �

is finite, this collection of transistors corresponds to a unique vertex, and this vertex
is the minimal vertex of a unique hyperplane HT . Note that Lemma 3.1 also implies
that the correspondence between transistors and hyperplanes is one-to-one.

We consider the properties of the collection H� D fHT j T 2 T�g. First, let
HT1

, : : : , HTn
be hyperplanes in H�. Consider the collection T 0 D fT 2 T� j

T � Ti for some i 2 f1; : : : ; ngg. By Lemma 3.1, the collection T 0 corresponds
to a vertex �T 0 . Moreover, we have that .�1; Ti � � T 0, for i D 1; : : : ; n, from
which it follows that min.HTi

/ � �T 0 , for i D 1; : : : ; n. This, in turn, implies that
�T 0 2 HC

T1
\ � � � \ HC

Tn
, by Lemma 4.2. Thus property (1) from Proposition 2.7

holds.
IfHT 2 H�, then, by the assumption thatT is not maximal, there is someT1 2 T�

such that T < T1. It follows from this that .�1; T � ¨ .�1; T1�; this implies
that the vertices min.HT /, min.HT1

/ under the correspondence from Lemma 3.1
satisfy min.HT / < min.HT1

/. By Lemma 4.3, HC
T < HC

T1
, so property (2) from

Proposition 2.7 holds.
Checking property (3) from Proposition 2.7 is an easy exercise using the properties

of the correspondence in Lemma 3.1.
Conversely, suppose that H is a non-empty collection of hyperplanes in zKb.P ; w/

satisfying properties (1)–(3) of Proposition 2.7. Choose a finite collection of hyper-
planesHT1

;HT2
; : : : ;HTn

. By property (1) from Proposition 2.7,HC
T1

\HC
T2

\� � �\
HC

Tn
¤ ;. This implies that there is some vertex O� in the latter intersection, which

means, by Lemma 4.2, that min.HTi
/ � O� for i D 1; : : : ; n. Since the collection

fmin.HTi
/ j i D 1; : : : ; ng has an upper bound, Lemma 3.2 (2) of [9] implies that it

has a least upper bound. Thus, we have shown that any finite collection of minimal
vertices for hyperplanes in H has a least upper bound. (This least upper bound is a
“union” of the labels for these vertices, in an appropriate sense. Note that it will not
in general be a minimal vertex itself.)

Let �1; �2; : : : ; �n; : : : be the sequence consisting of all minimal vertices for
hyperplanes in H . Since any finite collection of these hyperplanes has a least upper
bound, we can identify the direct limit of this sequence with an infinite diagram�. It is
clear that� has properties (1) and (3) from the statement of the Theorem. Property (2)
follows easily from the fact that the collection H satisfies (2) from Proposition 2.7.

We leave the proof of the final statement to the reader.

We will sometimes require a lemma which gives a necessary condition on the
open cube C through which a geodesic ray c with profile P.c/ can travel. The
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condition involves the largest vertex �C in the closure xC , which always exists, and
can be obtained by shading each transistor in the picture representative for C (see for
instance Figure 4 in Section 3).

Lemma 4.5. Let c W Œ0;1/ ! zKb.P ; w/ be a geodesic ray issuing from the base
vertex �. Let � be the infinite picture representing the profile of c. Let C be an open
cube of zKb.P ; w/ satisfying .Im c/ \ C ¤ ;.

If �C is the largest vertex in xC , then �C � �.

Proof. Let �C be the largest vertex of C . Consider the collection of all maximal
transistors T1; : : : ; Tn in �C ; let �Ti

be the unique vertex determined by .�1; Ti �

under the correspondence from Lemma 3.1. Note that each�Ti
is the minimal vertex

of a hyperplane HTi
, and all of the hyperplanes HT1

; : : : ;HTn
are distinct.

Let y�C denote the representative for C , which is a picture consisting of shaded
and unshaded transistors, as in Figure 4. Some of the transistors Ti are shaded in y�C ;
others are unshaded in y�C .

If Ti is shaded, then �Ti
� �C , so that HTi

separates �C from �. Moreover,
HTi

does not pass through C , since the hyperplanes H satisfying H \ C ¤ ; are
precisely the collection of all HTj

such that Tj is unshaded in y�C . It follows that
each point x in .Im c/ \ C can be connected to �C without crossing HTi

; therefore
x 2 HC

Ti
, so HC

Ti
2 P.c/.

If Ti is unshaded in y�C , then HTi
\ C ¤ ;. It follows from Lemma 2.6 (2) that

HC
Ti

2 P.c/.
The correspondence of Theorem 4.4 implies that�T1

; : : : ; �Tn
� �. This means

that the least upper bound z� of f�T1
; : : : ; �Tn

g exists, and satisfies z� � �. But
clearly z� D �C , since the latter vertex is an upper bound of f�T1

; : : : ; �Tn
g, and

any proper initial subset of T�C
would fail to contain at least one of the transistors

T1; : : : ; Tn.

4.2. The action on profiles

Proposition 4.6. There is a well-defined action of Db.P ; w/ on the set of all profiles.
If� is a profile and�1 2 Db.P ; w/, then�1 �� can be computed as follows. First,
form the concatenation �1 B� and remove all dipoles. Second, remove all maximal
transistors from the resulting infinite diagram, until no maximal transistors remain.
The result is �1 ��.

Proof. Let H , H 0 be two collections of positive half-spaces in zKb.P ; w/. We write
H � H 0 and ŒH � D ŒH 0� if H and H 0 are cofinal, i.e., if for any HC

1 2 H , there
exists .H 0

1/
C 2 H 0 such that HC

1 � .H 0
1/

C and for any .H 0
2/

C 2 H 0, there exists
HC

2 2 H such that .H 0
2/

C � HC
2 . It is fairly clear that � is an equivalence relation

on the set of all collections of positive half-spaces in zKb.P ; w/.
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The group Db.P ; w/ does not act in an obvious way on the set of equivalence
classes, since a group element x� 2 Db.P ; w/does not necessarily map a positive half-
space to a positive half-space. Indeed, x� �HC is a negative half-space if and only if
� 2 x� � HC, i.e., if and only if x��1 � � 2 HC. Now x��1 � � 2 HC if and only if
min.HC/ � x��1 ��. There are only finitely many vertices�0 satisfying�0 � x��1 ��
(all determined by the correspondence in Lemma 3.1). It follows from this that a given
x� 2 Db.P ; w/ maps at most finitely many positive half-spaces to negative ones.

We obtain an action on profiles in the following way. Identify a profile�with the
unique equivalence class ŒH � such that� 2 ŒH �. For a given x� 2 Db.P ; w/, choose
a collection H 0 2 ŒH � such that x� �HC is a positive half-space, for each HC 2 H 0.
It is possible to do this since each H 0 2 ŒH � is necessarily infinite. We define x� ��
to be Œx� � H 0�. It is not difficult to see that Œx� � H 0� contains a unique profile, and that
the definition of � does not depend upon the choice of H 0 2 ŒH �. It follows that � is
an action on profiles.

We claim two things: first, that � � P.c/ D P.� � c/, for any geodesic ray
c W Œ0;1/ ! zKb.P ; w/ issuing from �; second, that the action � from the previous
paragraph has the description promised in the statement of the proposition.

Recall the definition of the action �W Db.P ; w/	 @ zKb.P ; w/ ! @ zKb.P ; w/ on
the space at infinity. If c 2 @Db.P ; w/, then, for any x� 2 Db.P ; w/, x� � c is simply
the translate of c by the usual action of x� on zKb.P ; w/. The ray x� � c is the unique
ray issuing from � and asymptotic to � � c, the existence of which is guaranteed by
Proposition 2.1.

We now prove the first claim. Let c 2 @ zKb.P ; w/ and let x� 2 Db.P ; w/. We
choose some cofinal subset H � P.c/ such that x� �HC is a positive half-space, for
any HC 2 H . It is clear that x� � c crosses each of the hyperplanes in x� � H , since
c crosses each of the hyperplanes in H . Since x� maps positive half-spaces in H to
positive half-spaces, x� � c intersects each x� �HC 2 x� � H in an open ray, just as c
intersects each HC 2 H in an open ray. By Lemma 2.3, dx��H .x� � c.t// ! 1 as
t ! 1 for anyH such thatHC 2 H . It follows from this, first, that dx��H .x�� c.t//
also goes to infinity as t ! 1, and second, that .x��c/.t/ 2 x� �HC for t sufficiently
large. This implies that x� � H � P.x� � c/.

Next, we need to show that, for any positive half-space HC 2 P.x� � c/, there
is xHC 2 x� � H such that HC � xHC. Choose a sequence of positive half-spaces
HC D HC

0 < HC
1 < HC

2 < : : : in P.x� � c/. By Lemma 2.3, we know that
dHi

..x� � c/.t// ! 1 as t ! 1, for any i 2 f0; 1; : : : ; n; : : : g. By the definition of
P.x� � c/, for any i , .x� � c/.t/ 2 HC

i for t sufficiently large. It now follows from
the fact that x� � c and x� � c are asymptotic that, for any i , .x� � c/.t/ 2 HC

i for t
sufficiently large. This implies that x� � c crosses at least one of theHi , and therefore
all Hj for j sufficiently large, for otherwise

.x� � c/.Œ0;1// �
1T

iD0

HC
i D ;:
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We choose some HC
j large enough that x��1 � HC

j is a positive half-space. Since c

crosses x��1 �Hj , it follows that x��1 �HC
j 2 P.c/. Since H is cofinal in P.c/, there

is OHC 2 H such that x��1 �HC
j � OHC. This implies that HC

j � x� � OHC 2 x� � H .

Now we have shown that HC � HC
j 2 x� � H .

It follows that P.x� � H / D Œx� � H � under the identification of Œx� � H � with a
profile. We have thus shown that P.x�� c/ D x��P.c/. It immediately follows from
this that the action of Db.P ; w/ on profiles is well defined: if c; c0 have the same
profile, then so also do x� � c and x� � c0.

Now we prove the second claim. Let � be an infinite picture representing a
profile and let x� 2 Db.P ; w/. We choose a cofinal collection of transistors T 0 in �
(which are identified with positive half-spaces by the correspondence in Theorem 4.4)
such that no transistor in T 0 forms a dipole in the concatenation x� B �. The above
description of the action implies that x� � � is the collection of all positive half-
spaces such that HC � x� � HC

T 0 , for some T 0 2 T 0. This collection of positive
half-spaces may be identified with the collection of transistors T in the reduced
concatenation x� B � satisfying T � T 0, for some T 0 2 T 0. By the cofinality of
T 0 in �, these transistors T are precisely those for which there exists an infinite
sequence T D T0 < T1 < � � � < Tn < � � � where each Ti is a transistor of x� B �.
The second claim follows.

5. Fixed profiles under the actions of F , T , and V

The results of the previous section largely reduce the problem of finding fixed points in
@ zK.P ; x/, @ zKa.P ; x/, and @ zKb.P ; x/ ( where P D hx j x D x2i) to the algebraic
problem of finding globally fixed profiles. The latter problem is quite easy; we give
a complete classification of fixed profiles for F , T , and V in this section.

5.1. Conventions. We fix some conventions for portraying profiles (and pictures)
over the semigroup presentation hx j x D x2i.

First, we draw every transistor in a picture or profile as a point and omit the frame,
so that, for instance, the element x0 2 F (depicted as an ordinary picture on the left)
looks like the right half of Figure 7.

Figure 7. A convention for drawing pictures over the semigroup presentation P D hx j x D
x2i. On the left, we have a picture drawn in the usual fashion; on the right is its equivalent.
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We also need some conventions that will allow us to portray infinite pictures using
a finite amount of space. We draw an empty dot at the end of a wire to indicate that
the bottom of the wire does not connect to any transistor. A solid dot at the end of
a wire indicates that the wire connects to the top of some transistor. This transistor
may be either an .x; x2/-transistor or an .x2; x/-transistor. (In particular, one should
not assume that the pictures below the solid dots are trees. Indeed, we will consider
several cases in which it is possible to connect two solid dots by a path whose interior
lies entirely in the omitted portion of the picture.) A wire with no dot at the end may
connect to a transistor or not; we make no assumption one way or the other.

Finally, we let Tm denote the full ordered rooted binary tree of depthm. We let PTm

denote the full ordered rooted binary tree of depth m, where each leaf ends in a solid
dot. Thus, PTm is the unique ordered rooted binary tree having 2m dotted leaves, each
at distancem from the root. The dot on each leaf (wire) implies that each connects to
the top of some transistor. The picture Tm is the same tree, but without the dots on the
leaves. Thus, no particular wire in Tm which corresponds to a leaf necessarily leads
to the top of a transistor. Notice, however, that in a profile at least one of the leaves
beneath a given degree 3 vertex must attach to the top of a transistor, since there are
no maximal transistors in a profile (by Theorem 4.4).

5.2. Thompson’s group F . Let � be a profile of zK.P ; w/ which is fixed by all of
F . Without loss of generality, we can assume that� has one of the forms in Figure 8.
(The only other possible cases are 10–60, which are obtained by reflecting 1–6 across
a vertical axis. Note that the resulting cases are not mutually exclusive.)

3) 4) 5) 6)1) 2)

Figure 8. The six cases.

5.2.1. The even-numbered cases. We consider even-numbered cases first. Let x0

act on any profile� covered by Case 2, 4, or 6. The results appear in Figure 9. After
cancelling dipoles twice, we arrive at the infinite pictures in the column at the far right
of the figure. We claim that these infinite pictures necessarily contain no dipoles, no
matter how the wires terminating in black dots are connected to transistors. (It is clear
also that these contain no maximal transistors.)

To prove the claim, first note that any dipole in the product x0 ��must be formed
of one transistor in x0 and another in �. Thus, an infinite picture on the right side of
Figure 9 contains a dipole only if one of the two pictured vertices of degree 3 (both
of which represent transistors from x0) can form the top half of a dipole.
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2)

4)

6)

Figure 9. The even-numbered cases.

This is clearly impossible in Cases 2 and 6. In Case 4, it is enough to show that
the lower transistor cannot form the top half of a dipole. If we assume that it does,
then the original profile�would have the form in Figure 10. No profile can have this
form, however, since it is impossible to connect the black-dotted wire to a transistor
without forming a dipole, and � cannot contain dipoles. This proves the claim.

Figure 10. An impossible profile. No matter how we attach the black-dotted wire to the top of
a transistor, a dipole will be formed.

Finally, we compare the reduced profiles x0 �� at the right in Figure 9 with the
originals in Figure 8. Since � is fixed by all of F , we must have that x0 �� D �.
This is impossible, as we easily see. For instance, in Case 2, the left wire dangling
from the bottom of the topmost transistor in � does not connect to a transistor, but
the wire of the same description in x0 �� does. The other even cases are left as easy
exercises.

5.2.2. Cases 3 and 5. If � is represented in Case 5, then it must have the form in
Figure 11 a), where�0 is another profile. If we let x�1

0 act on�, then after removing a
dipole and an exposed transistor, we arrive at the profile on the far right of Figure 11 b).
A simple induction using the fact that � D x�1

0 � � now shows � is the (unique)
profile of the form depicted in Figure 11 c). It is easy to check that � is fixed by all
of F ; indeed, it is enough to show that � is fixed by the generators x0 and x1. We
leave this verification as an exercise.

If � is represented in Case 3, then it must have the form in Figure 12 a), where
�0 and �00 are profiles. An argument similar to the one used for Case 5 shows that
�00 has the form depicted in Figure 11 c), and �0 is the result of reflecting �00 across
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Δ

c) d)

Δ Δ
Δ

b)a)

D �R

Figure 11. a) The general form of a profile from Case 5. b) The effect of letting x�1
0

act. c) The
profile �R. d) The element x1 2 F .

Δ
Δ

a) b) D �L�R

Figure 12. a) The general form of a profile from Case 3. b) The profile �L�R.

a vertical axis. The details are left as an exercise. It follows that � is the profile
depicted in Figure 12 b), which is indeed fixed by both x0 and x1.

5.2.3. Case 1. We now turn to Case 1. Let x0 act on �. There are two subcases to
consider: either� has the form depicted in Figure 14 a) (and thus the infinite picture
at the far right in Figure 13 contains a dipole) or the infinite picture at the far right in
Figure 13 is reduced.

Figure 13. The action of x0 on a profile from Case 1.

We now rule out the first possibility using the fact that � is invariant under the
action of F . Let x1 act on �; after reducing two dipoles we arrive at the infinite
picture y� on the far right of Figure 14 b). The transistors enclosed by the dotted circle
were contributed by x1, and any dipole in y� would have to involve one of these three
transistors. Now note that, of these, only the transistor labelled � could form half of
a dipole; the others could not, even after we cancel any dipole involving �. Now we
compare� and y�. Under any isomorphism between� and y�, the transistors labelled
1 and 2 in y� must correspond (respectively) to the transistors labelled i) and ii) in �
(as depicted in Figure 14 a). This is not possible, since ii) is a .x2; x/-transistor and
2 is a .x; x2/-transistor.
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i)

ii) *

1
2a) b) D y�

Figure 14. a) If we let x0 act on this profile, the transistor labelled ii) will form half of a dipole.
b) The action of x1 on the profile from a).

It follows that we can assume that there are no dipoles in the infinite picture at the
far right of Figure 13. After comparing this profile with the profile�, we can conclude
that � has the form PT2. We now multiply � by x0, x0x1x

�1
0 , x1x

�1
0 and x�1

0 . The
results are listed in Figure 15 a)–d) (in the same order). Dotted circles enclose the

a)

b)

c)

d)

Figure 15. The actions of a) x0, b) x0x1x
�1
0

, c) x1x
�1
0

and d) x�1
0

on �.

transistors that were contributed by the acting element. If we knew that there were
no dipoles in the infinite pictures at the right, we could use the fact that all of them
are equal to � in order to conclude that � has the form PT3. The infinite pictures on
the far right of a) and d) in Figure 15 are necessarily reduced. The profiles in b) and
c) will be reduced unless � has the form in Figure 16 b).

i)

ii)

Figure 16. This profile would form dipoles in cases b) and c) from Figure 15.

We now rule out the latter possibility. Let x1 act on�. Any isomorphism between
y� and�must match the transistors labelled 1) and 2) in Figure 17 with the transistors
labelled i) and ii), respectively. This is impossible, since 2) is an .x; x2/-transistor
and ii) is an .x2; x/-transistor.

It now follows that� has the form of PT3. We multiply� by x0, x0x1x
�1
0 , x1x

�1
0 ,
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1
2

*  D y�

Figure 17. The action of x1 on the profile from Figure 16.

x�1
0 . The results appear in Figure 18. Note that it is no longer possible for the

transistors from the acting elements (circled) to form dipoles, so all of the profiles in
Figure 18 are reduced. Each of these profiles is equal to�, since� is invariant under
the action of F . It follows that � has the form of PT4.

a) b) c) d)

Figure 18. The results of letting a) x0, b) x0x1x
�1
0

, c) x1x
�1
0

, and d) x�1
0

act on PT3.

We now repeat this argument, letting the same four elements act on �. In this
way, we conclude by induction that� has the form of the full infinite binary T1. We
write � D �1.

We have now proved Theorem 5.1.

Theorem 5.1. Thompson’s group F fixes exactly four profiles:

�L; �R; �L�R; and �1:

These profiles come from Cases 50, 5, 3, and 1, respectively.

5.3. Thompson’s groups T and V . This subsection is devoted to a proof of the
following theorem:

Theorem 5.2. Thompson’s groups T and V fix only the profile �1.

Proof. Let P D hx j x D x2i. Suppose that the group Da.P ; x/ Š T fixes the
profile �. It is not difficult to see that � has the form in Figure 19 a), without loss of
generality. We let �1 2 Da.P ; x/ act on �; the result is portrayed in Figure 19 c),
where the circled transistor is contributed by �1. It follows that the picture in c) is
reduced. Combining a) and c), which are both equivalent since �1 �� D �, we have
that � has the form T2.
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a) b) c)D �1

Figure 19. a) The general form of a profile in the cubical complexes for T and V ; b) the acting
element �1, which represents a half-rotation of the circle; c) the effect of letting �1 act on the
profile from a).

Next, we claim that at least one of the four leaves of T2 connects to the top of an
.x; x2/-transistor. If not, then consider an .x; x2/-transistor T in � which is distinct
from the three .x; x2/-transistors in T2, and minimal among .x; x2/-transistors with
this property. The wire attached to the top of such a transistor could only lead up
to the bottom of an .x2; x/-transistor T 0. This implies that T and T 0 form a dipole,
which contradicts the fact that � is reduced.

We therefore assume, without loss of generality, that� has the form in Figure 20 a).
Now we multiply � by �2, �2

2 , and �3
2 , where �2 is as in Figure 20 b) to get the

a) b)

Figure 20. a) Without loss of generality,� has this form. b) The element �2, which represents
a quarter-turn of the circle.

three profiles in Figure 21. Since the profiles from Figure 21 and the profile from
Figure 20 a) are all equal to �, it follows that � has the form T3.

Figure 21. The results of letting the powers of �2 act on the profile from Figure 20 a).

We then argue, as before, that at least one of the eight leaves at the bottom of T3

must be attached to the top of an .x; x2/-transistor. We then multiply� by 1, �3, �2
3 ,

�3
3 , : : : , �7

3 , where �3 is a picture representing a one-eighth turn of the circle.
If we compare the eight resulting profiles, we conclude that� is equivalent to T4.

We can continue in a similar way, and eventually conclude that � D �1.
This proves the theorem in the case of T , and the proof for V is the same word

for word.
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6. The cases of �L, �R , and �L�R

Now we consider the geodesic rays c 2 �L [�R [�L�R. Consider first the profile
�L�R. By Lemma 4.5, any geodesic ray c in �L�R is contained in the subcomplex
K ofXF .D D.P ; w/, where P D hx j x D x2i andw D x) pictured in Figure 22.

*

Figure 22. A flat sector in XF . An integer lattice point .m; n/ (m; n � 0) corresponds to the
tree Tm;n having a root caret, m carets dangling to the left, and n carets dangling to the right.

ThusK may be naturally identified with R2;C [ I , where R2;C D f.x; y/ 2 R2 j
x; y � 0g, I is the unit interval, and R2;C \ I D f.0; 0/g.

Lemma 6.1. The inclusion i W K ! XF is an isometric embedding.

Proof. We appeal to Theorem 1 (2) of [6], which says: If X and Y are finite dimen-
sional CAT.0/ cubical complexes and ˆ W X ! Y is a cubical map, then the map ˆ
is an isometric embedding if and only if, for every vertex v 2 X , the simplicial map
between links Lk.x;X/ ! Lk.ˆ.x/; Y / induced by ˆ is injective with image a full
subcomplex of Lk.ˆ.x/; Y /. (We refer the reader to [2], p. 102, for a discussion of
the link; Crisp and Wiest define cubical maps on p. 443 of [6], and it is clear that the
inclusion map is cubical.)

We consider the link of a vertex Tm;n, wherem; n > 1, and leave the verifications
for the other vertices as an exercise. The link Lk.Tm;n; K/ is a square, i.e., the obvious
one-dimensional simplicial complex consisting of 4 vertices and 4 edges. This link
will be embedded in Lk.Tm;n; XF / as a full subcomplex if and only if (1) there is no
two-dimensional cube C in XF such that Tm;n�1 and Tm;nC1 are both vertices of C ,
and (2) there is no two-dimensional cube C in XF such that Tm�1;n and TmC1;n are
both vertices of C .
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We now check (1); the argument for (2) is similar. If there is such a cubeC , thenC
can be represented by a picture as in Figure 4, consisting of k shaded and 2 unshaded
transistors. The four corners of C are labelled by pictures having k, kC1, kC1, and
k C 2 transistors. It follows that k D mC n, that Tm;n�1 is the result of leaving off
both unshaded transistors, and that Tm;nC1 is the result of shading both transistors.
From this we get a contradiction, since the unshaded transistors of the cube C must
both be maximal, and there is no way to remove two transistors that are both maximal
in Tm;nC1 and arrive at Tm;n�1.

Theorem 6.2. If c is a geodesic ray in XF issuing from � and c 62 �1, then c
represents a point at infinity that is fixed by all ofF if and only if c 2 �L[�R[�L�R.
The subspace of @XF consisting of �L [�R [�L�R is an arc of Tits length �=2.

Proof. If f W X ! Y is an isometric embedding between CAT.0/ spaces, then the
induced map f1 W @X ! @Y is an isometry, where the boundary is endowed with the
angular metric ([2], p. 280). By the previous lemma,K is isometrically embedded in
XF ; by Lemma 4.5, a geodesic ray c issuing from � represents Œc� 2 �L[�R[�L�R

if and only if Im c � K. It follows from this that the image of @K under the map
@K ! @XF is precisely�L [�R [�L�R. The second statement now follows from
the fact that @K is isometric to Œ0; �=2�.

Now suppose that c 62 �1 is a geodesic ray in XF issuing from �. If c is
fixed by all of F under the action �, then the argument of Section 5 shows that
c 2 �L [�R [�L�R.

Conversely, suppose that c 2 �L [ �R [ �L�R. It follows from this and
Lemma 4.5 that Im c � K, so every point x 2 Im c is within 1 C 2

p
2 of a

point in f2; 3; : : : g 	 f2; 3; : : : g � R2;C. We let yTm;n denote the tree in Figure 23,
which consists of Tm;n and one additional caret:

m  nodes
n nodes

Figure 23. A picture of the tree yTm;n, which consists of Tm;n and one additional caret.

If m; n � 2, it is routine to check that

x0 � Tm;n D TmC1;n�1;

x1 � Tm;n D yTm;n�1:

The trees Tm;n and TmC1;n�1 can be joined by an edge-path of length 2 in XF . The
same goes for Tm;n and yTm;n�1, so d.xi � Tm;n; Tm;n/ � 2 (i D 0; 1).
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Let t � 0. We have:

d.c.t/; xi � c.t// � d.c.t/; Tm;n/C d.Tm;n; xi � Tm;n/C d.xi � Tm;n; xi � c.t//
� 4C 4

p
2:

Since this estimate does not depend upon t , it follows that x0, x1 both fix c under
the action �. This implies that F fixes c, since x0, x1 generate F .

7. The case of �1

This section is devoted to an investigation of fixed points in �1. Our main result is
the following:

Theorem 7.1. The profile �1 contains no global fixed point of T or V .

An immediate consequence of Theorem 7.1 and Theorem 5.2 is:

Corollary 7.2. Thompson’s groups T and V act without global fixed points on the
boundaries-at-infinity of their respective picture complexes.

The case for Thompson’s group F is more complicated. I do not know whether
�1 � @XF contains fixed points of F or not. Example 7.7 and Proposition 7.5 give
evidence for and against the existence of fixed points in �1, respectively.

Our arguments will use a simple procedure for embedding any CAT.0/ cubical
complex into Hilbert space.

Proposition 7.3. If X is a CAT.0/ cubical complex, then there is an embedding
� W X ! `2.H /, where H is the collection of hyperplanes in X . The map � does not
increase distances.

Proof. Let X be a CAT.0/ cubical complex with a distinguished base vertex �. For
any given hyperplane H in X , we identify the closed 1=2-neighborhood of H with
H 	 Œ0; 1� in such a way that d.�;H 	 f0g/ < d.�;H 	 f1g/, and let Ht denote
H 	 ftg for t 2 Œ0; 1�.

Let � W X ! `2.H / send x to †H2HfH .x/H , where

fH .x/ D sup.ft 2 Œ0; 1� j Œ�; x� \Ht ¤ ;g [ f0g/:
It is clear that � is an embedding, that each cube of x is embedded into `2.H /

isometrically, and that the restrictions �jC (where C is a cube) agree on overlaps.
Note also that each sum †H2HfH .x/H is finite, since any pair of vertices in X are
separated by at most finitely many hyperplanes. The first statement follows.
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Let Œx; y� be a geodesic inX . Since the restriction of � to each cube is an isometry,
� preserves the lengths of paths. Therefore,

dX .x; y/ D `.�Œx; y�/ � d`2.H/.�.x/; �.y//:

Example 7.4. We consider the image of a certain x 2 XF under the map �.
Note that each hyperplane occurring in the sum �.x/ corresponds in a straightfor-

ward way to a particular transistor�1. We can use this fact to simplify our notation –
compare Figure 25 to the right half of Figure 24. In this way, we identify each point

3/4

2/3 x

+ + (3/4) + (2/3)�.x/ D

Figure 24. A point x in the cubical complex for Thompson’s group F (left) and its image under
the map � (right).

1
1

3/4
2/3�.x/ D

Figure 25. A simpler notation for �.x/.

of Im � with a picture � such that each maximal transistor is labelled by a number
t 2 .0; 1�, and every other transistor is labelled by the number 1. We will usually just
omit the label of a transistor T if T is not maximal.

With this convention, an element ofF , T , or V acts on a point of Im � by the usual
picture multiplication. This action is somewhat tricky to describe if a transistor from
the acting element forms a dipole with an exposed transistor labelled by a number
t ¤ 1. In practice, however, we will always be able to avoid considering this situation.
If there are no such dipoles, then the action is simple to describe: concatenate and
reduce dipoles.

It will be helpful to have a vocabulary for describing subtrees of a given labelled
tree T . If T1 is the full ordered rooted binary tree of infinite depth, we use binary
strings to denote the vertices of degree three in T1. We give each edge in T1 a label
of 0 or 1; the label is 0 if the edge forms the left half of a caret, and 1 if the edge forms
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the right half of a caret. Now label each vertex v in T1 by the label of the unique
geodesic path from the root to v. For instance, if the geodesic path from the root to v
passes through the right half of a caret twice, and then through the left half of a caret,
and then finally through the right half of a caret again, then the label of v is 1101.
The root has the empty label.

Now if T is an arbitrary labelled subtree (as in Figure 25) of T1 and bin is a
binary string, we let Tbin denote the labelled tree having the vertex bin as its root.
For instance, if T is the labelled tree in Figure 25, then T1 consists of a single caret,
labelled by the number 2=3. The tree T01 is a single caret labelled by 3=4.

The following partial result will be used in the proof of Theorem 7.1.

Proposition 7.5. Let c W Œ0;1/ ! X be a geodesic ray, where X D zK.P ; w/,
zKa.P ; w/, or zKb.P ; w/, P D hx j x D x2i, and w D x. Let T be some rooted

ordered binary tree in which each transistor is labelled by a 1 (and thusT corresponds
to a vertex in zK.P ; w/, zKa.P ; w/, or zKb.P ; w/, as the case may be) such that the
subtrees T10 and T11 each contain at least one caret.

If c.t/ D T for some t 2 Œ0;1/, then x0 � c ¤ c.

Proof. We can express �.c.t// as a tree of the form in Figure 26 a), where each tree
Ti , i D 1; 2; 3, is a labelled tree, i.e., a picture in which every transistor is an .x; x2/-
transistor, and the trees T2 and T3 each have at least one transistor. The effect of the
action by x0 is to transform the tree in Figure 26 a) into the tree in Figure 26 b).

a) b)
T1

T2 T3

T1 ^ T2

�1T3 �2T3

Figure 26. a) The form of �.c.t//. The trees T2 and T3 both contain at least one caret. b) The
effect of letting x0 act on �.c.t//.

Figure 26 b) also serves as a definition of three different operations on labelled
trees. We now make this more explicit. If T is a labelled tree having at least one
transistor labelled 1, then the act of removing the topmost transistor of T leaves an
ordered pair of trees .�1T; �2T /. If T1 and T2 are labelled trees, then T1 ^ T2 is the
unique labelled tree satisfying �1.T1 ^ T2/ D T1 and �2.T1 ^ T2/.

Note that

kT � x0 � T k2
2 D kT1 � T1 ^ T2k2

2 C kT2 � �1T3k2
2 C kT3 � �2T3k2

2:

Since each caret in each tree is labelled with a 1, each of the terms on the right side of
the equation is an integer which counts the number of carets that are in one tree but
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not in the other. It follows that kT1 � T1 ^ T2k2
2 � 2 and kT3 � �2T3k2

2 � 1. This
implies that

d.c.t/; x � c.t// � kT � x0 � T k2 � p
3:

Now we appeal to Lemma 2.3 (2), which implies that if there is t 0 < t such that
d.c.t 0/; x0 � c.t 0// < p

3, then c and x0 � c are not asymptotic, i.e., c ¤ x0 � c. We
produce a t 0 < t where d.c.t 0/; x0 � c.t 0// D p

2 in Figure 27.

*

x0 c c.

Figure 27. On the right, we have the general picture describing a geodesic ray c issuing from
the basepoint �. Every such geodesic ray must cross the dotted horizontal line; at the moment
it does so, it is precisely

p
2 units distant from its translate x0 � c.

Remark 7.6. (1) It is reasonably clear from the proof that there are variations on this
Proposition, in which the hypothesis that T10 and T11 are non-trivial is replaced by
similar assumptions on different subtrees.

(2) Let v be a vertex in the cubical complex for Thompson’s group F such that
�.v/ is an ordered labelled rooted binary tree yT . Note that the coefficient of each
caret in yT is either 1 or 0, since v is a vertex. The above argument shows that

d.v; x0 � v/ �
q
.1C .# of carets in yT10//C .1C .# of carets in yT11/; .�/

provided the trees yT10 and yT11 both contain at least one caret.
This suggests a strategy for proving that �1 contains no fixed points of Thomp-

son’s group F . Suppose that c is a geodesic ray having the profile �1. It follows
from Lemma 4.5 that �.c.t// is a labelled ordered rooted binary tree T .t/, for any
t � 0. For any given caret C 2 T1, C occurs in T .t/ with the coefficient 1 for t
sufficiently large, since c crosses every hyperplane in �1. If c.t/ passed close to a
vertex v for a large value of t , then the inequality .�/ shows that d.v; x0 � v/ would
be large, so that d.c.t/; x0 � c.t// would also be large, and thus c ¤ x0 � c. (Indeed,
the proof of Proposition 7.5 shows it suffices to prove that d.c.t/; x0 � c.t// > p

2.)
Unfortunately, I know of no way to control the distance of c.t/ from a vertex, since c
will generally travel through cubes of higher and higher dimension, whose diameters
go to infinity.
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Proof of Theorem 7.1. Let c 2 �1 be a geodesic ray in either XT or XV which
represents a fixed point at infinity. We note first that c.1/ is the vertex labelled by the
finite tree T1. If �1 2 T � V is as in Figure 19 b), it is clear that �1 � T1 D T1. Now
since .�1 � c/.1/ D c.1/ and �1 � c, c are asymptotic by our assumptions, it follows
from Lemma 2.3 (2) that .�1 � c/.t/ D c.t/ for t � 1.

Now we refer to Figure 27. The element �1 flips the diamond on the right along
its vertical axis, stabilizing the vertices T1 and T2. Since the geodesic ray travels
through this diamond and .�1 � c/.t/ D c.t/ for t � 1, it must be that the ray c travels
along the straight line connecting T1 to T2, which is vertical in the figure.

Next, we consider the action of �2 2 T (see Figure 20 b)) on c. Note first
that �2 stabilizes the vertex T2. It follows from this, Lemma 2.3 (2), the equality
c.1 C p

2/ D T2, and the assumption that �2 fixes c, that .�2 � c/.t/ D c.t/ for
t � 1C p

2. Lemma 4.5 implies that c.1C p
2C 
/ is in the four dimensional cube

C having T2 as its minimal vertex and T3 as its maximal vertex. If we identify the
cube C with Œ0; 1�4 in such a way that .0; 0; 0; 0/ D T2 and .1; 1; 1; 1/ D T3, then
�2 acts by cyclically permuting the coordinates of C . It follows from this that the
geodesic ray travels along the diagonal of C from T2 to T3. In particular, c passes
through T3.

It now follows from Proposition 7.5 that c ¤ x0 � c, which is a contradiction.

We conclude with an example giving some evidence that there may be fixed points
of F in �1.

Example 7.7. Figure 28 depicts a labelled tree T (i.e., point in Hilbert space) such
that kT � x0 � T k2 D p

7=2. The check is left as an exercise. It is not difficult to see
that x0 acts on (most) of the trees along the bottom by a leftward shift. In particular,
the tree T1:::10 (where there are n ones and a single 0) is mapped to T1:::10 (where
there are n � 1 ones); the tree T0:::01 (n zeros) is mapped to T0:::01 (n C 1 zeros).
This suggests a principle for building larger trees that are moved only a small distance
by x0: Begin with the tree Tm;m and attach new trees T 0 to the leaves, making sure
that the tree attached at a given leaf is within 
 of its neighbor to the immediate left,
where 
 will depend on m. The object is to make sure that kT � x0 � T k2 is less
than or equal to

p
2, and it is not too difficult to see that this can be done for any m.

(A little experimentation also shows that it is useful to label the leftmost and rightmost
carets of Tm;m with 1=2.) Moreover, the trees T 0 that are attached “close” to the root
(in a sense that depends on m) can be made arbitrarily large. Thus, we can make a
sequence of labelled trees xTk , which are each moved less than

p
2 units in the Hilbert

metric, and gradually fill up the complete binary tree T1. One can then hope that
the corresponding points zk in XF are also moved only a small distance by x0 (as
seems likely), so that some subsequence of zk converges to a point � at infinity which
is fixed by the action of x0. With additional care, it should also be possible to do this
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1/2
1/4 1/41/2 1/23/4 3/41

1/4 1/41/2 3/4 3/4 1/2
1

1/2

Figure 28. This labelled tree represents a point in XF which is moved only a small distance
by the generators of F . It should be possible to build a sequence of similar, arbitrarily large
labelled trees which converge to a fixed point at infinity.

so that each point zk is likewise moved only a small distance by x1, and therefore �
would be fixed by all of F .

It seems very likely that all of the above can be done. This is not enough, however,
because the point � may well fail to have the profile�1. Indeed, the tree in Figure 28
has the property that most of its norm is contributed by T7;7. It appears likely that any
tree in the sequence xTk will have most of its norm contributed by Tn;n (for appropriate
n), and this may mean that � 2 �L [�L�R [�R. I conjecture the following:

Conjecture 7.8. A point � 2 @XF is fixed by all of F if and only if � 2 �L [�L�R [
�R. In particular, the only fixed points for the action of F on @XF lie on an arc of
Tits length �=2.
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