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Weak amenability of hyperbolic groups

Narutaka Ozawa�

Abstract. We prove that hyperbolic groups are weakly amenable. This partially extends the
result of Cowling and Haagerup showing that lattices in simple Lie groups of real rank one are
weakly amenable. We take a combinatorial approach in the spirit of Haagerup and prove that
for the word length distance d of a hyperbolic group, the Schur multipliers associated with
the kernel rd have uniformly bounded norms for 0 < r < 1. We then combine this with a
Bożejko–Picardello type inequality to obtain weak amenability.
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1. Introduction

The notion of weak amenability for groups was introduced by Cowling and Haage-
rup [CH]. (It has almost nothing to do with the notion of weak amenability for Banach
algebras.) We use the following equivalent form of the definition. See Section 2 and
[BO], [CH], [Pi] for more information.

Definition. A countable discrete group � is said to be weakly amenable with constant
C if there exists a sequence of finitely supported functions 'n on � such that 'n ! 1

pointwise and supn k'nkcb � C , where k'kcb denotes the (completely bounded) norm
of the Schur multiplier on B.`2�/ associated with .x; y/ 7! '.x�1y/.

In the pioneering paper [Ha], Haagerup proved that the group C�-algebra of a
free group has a very interesting approximation property. Among other things, he
proved that the graph distance d on a tree � is conditionally negatively definite; in
particular, the Schur multiplier on B.`2�/ associated with the kernel rd has (com-
pletely bounded) norm 1 for every 0 < r < 1. For information of Schur multipliers
and completely bounded maps, see Section 2 and [BO], [CH], [Pi]. Bożejko and
Picardello [BP] proved that the Schur multiplier associated with the characteristic
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function of the subset f.x; y/ W d.x; y/ D ng has (completely bounded) norm at most
2.n C 1/. These two results together imply that a group acting properly on a tree
is weakly amenable with constant 1. Recently, this result was extended to the case
of finite-dimensional CAT.0/ cube complexes by Guentner and Higson [GH]. See
also [Mi]. Cowling and Haagerup [dCH], [Co], [CH] proved that lattices in simple
Lie groups of real rank one are weakly amenable and computed explicitly the as-
sociated constants. It is then natural to explore this property for hyperbolic groups
in the sense of Gromov [GdH], [Gr]. We prove that hyperbolic groups are weakly
amenable, without giving estimates of the associated constants. The results and proofs
are inspired by and partially generalize those of Haagerup [Ha], Pytlik–Szwarc [PS]
and Bożejko–Picardello [BP]. We denote by N0 the set of non-negative integers, and
by D the unit disk fz 2 C W jzj < 1g.

Theorem 1. Let � be a hyperbolic graph with bounded degree and d be the graph
distance on � . Then, there exists a constant C such that the following are true.

(1) For every z 2 D, the Schur multiplier �z on B.`2�/ associated with the kernel

� � � 3 .x; y/ 7! zd.x;y/ 2 C

has (completely bounded) norm at most C j1 � zj=.1 � jzj/. Moreover, z 7! �z

is a holomorphic map from D into the space V2.�/ of Schur multipliers.

(2) For every n 2 N0, the Schur multiplier on B.`2�/ associated with the charac-
teristic function of the subset

f.x; y/ 2 � � � W d.x; y/ D ng
has (completely bounded) norm at most C.n C 1/.

(3) There exists a sequence of finitely supported functions fn W N0 ! Œ0; 1� such
that fn ! 1 pointwise and that the Schur multiplier on B.`2�/ associated with
the kernel

� � � 3 .x; y/ 7! fn.d.x; y// 2 Œ0; 1�

has (completely bounded) norm at most C for every n.

Let � be a hyperbolic group and d be the word length distance associated with a
fixed finite generating subset of � . Then, for the sequence fn as above, the sequence of
functions 'n.x/ D fn.d.e; x// satisfy the properties required for weak amenability.
Thus we obtain the following as a corollary.

Theorem 2. Every hyperbolic group is weakly amenable.

This solves affirmatively a problem raised by Roe at the end of [Ro]. We close
the introduction with a few problems and remarks. Is it possible to construct a
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family of uniformly bounded representations as it is done in [Do], [PS]? Is it
true that a group which is hyperbolic relative to weakly amenable groups is again
weakly amenable? There is no serious difficulty in extending Theorem 1 to (uni-
formly) fine hyperbolic graphs in the sense of Bowditch [Bo]. Ricard and Xu [RX]
proved that weak amenability with constant 1 is closed under free products with finite
amalgamation. The author is grateful to Professor Masaki Izumi for conversations
and encouragement.

2. Preliminary on Schur multipliers

Let � be a set and denote by B.`2�/ the Banach space of bounded linear operators
on `2� . We view an element A 2 B.`2�/ as a � � �-matrix: A D ŒAx;y �x;y2�

with Ax;y D hAıy ; ıxi. For a kernel k W � � � ! C, the Schur multiplier associated
with k is the map mk on B.`2�/ defined by mk.A/ D Œk.x; y/Ax;y �. We recall the
necessary and sufficient condition for mk to be bounded (and everywhere-defined).
See [BO], [Pi] for more information of completely bounded maps and the proof of
the following theorem.

Theorem 3. Let a kernel k W � � � ! C and a constant C � 0 be given. Then the
following are equivalent.

(1) The Schur multiplier mk is bounded and kmkk � C .

(2) The Schur multiplier mk is completely bounded and kmkkcb � C .

(3) There exist a Hilbert space H and vectors �C.x/, ��.y/ in H with norms at
most

p
C such that h��.y/; �C.x/i D k.x; y/ for every x; y 2 � .

We denote by V2.�/ D fmk W kmkk < 1g the Banach space of Schur multipliers.
The above theorem says that the sesquilinear form

`1.�; H / � `1.�; H / 3 .��; �C/ 7! mk 2 V2.�/;

where k.x; y/ D h��.y/; �C.x/i, is contractive for any Hilbert space H .
Let Pf .�/ be the set of finite subsets of � . We note that the empty set ; belongs

to Pf .�/. For S 2 Pf .�/, we define Q�C
S and Q��

S 2 `2.Pf .�// by

Q�C
S .!/ D

(
1 if ! � S;

0 otherwise;

and

Q��
S .!/ D

(
.�1/j!j if ! � S;

0 otherwise:
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We also set �C
S D Q�C

S � ı; and ��
S D �. Q��

S � ı;/. Note that �Ṡ ? �Ṫ if S \ T D ;.
The following lemma is a trivial consequence of the binomial theorem.

Lemma 4. One has k�Ṡ k2 C 1 D kQ�Ṡ k2 D 2jS j and

h��
T ; �C

S i D 1 � hQ��
T ; Q�C

S i D
(

1 if S \ T ¤ ;;

0 otherwise,

for every S; T 2 Pf .�/.

3. Preliminary on hyperbolic graphs

We recall and prove some facts of hyperbolic graphs. We identify a graph � with its
vertex set and equip it with the graph distance:

d.x; y/ D minfn W 9x D x0; x1; : : : ; xn D y such that xi and xiC1 are adjacentg:
We assume the graph � to be connected so that d is well-defined. For a subset E � �

and R > 0, we define the R-neighborhood of E by

NR.E/ D fx 2 � W d.x; E/ < Rg;
where d.x; E/ D inffd.x; y/ W y 2 Eg. We write BR.x/ D NR.fxg/ for the ball
with center x and radius R. A geodesic path p is a finite or infinite sequence of points
in � such that d.p.m/; p.n// D jm � nj for every m; n. Most of the time, we view
a geodesic path p as a subset of � . We note the following fact (see e.g., Lemma E.8
in [BO]).

Lemma 5. Let � be a connected graph. Then, for any infinite geodesic path p W N0 !
� and any x 2 � , there exists an infinite geodesic path px which starts at x and
eventually flows into p (i.e., the symmetric difference p 4 px is finite).

Definition. We say a graph � is hyperbolic if there exists a constant ı > 0 such that
for every geodesic triangle each edge is contained in the ı-neighborhood of the union
of the other two. We say a finitely generated group � is hyperbolic if its Cayley graph
is hyperbolic. Hyperbolicity is a property of � which is independent of the choice of
the finite generating subset [GdH], [Gr].

From now on, we consider a hyperbolic graph � which has bounded degree:
supx jBR.x/j < 1 for every R > 0. We fix ı > 1 satisfying the above definition.
We fix once for all an infinite geodesic path p W N0 ! � and, for every x 2 � ,
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choose an infinite geodesic path px which starts at x and eventually flows into p. For
x; y; w 2 � , the Gromov product is defined by

hx; yiw D 1

2
.d.x; w/ C d.y; w/ � d.x; y// � 0:

See [BO], [GdH], [Gr] for more information on hyperbolic spaces and the proof
of the following lemma which says every geodesic triangle is “thin”.

Lemma 6 (Proposition 2.21 in [GdH]). Let x; y; w 2 � be arbitrary. Then, for any
geodesic path Œx; y� connecting x to y, one has d.w; Œx; y�/ � hx; yiw C 10ı.

Lemma 7. For x 2 � and k 2 Z, we set

T .x; k/ D fw 2 N100ı.px/ W d.w; x/ 2 fk � 1; kg g;

where T .x; k/ D ; if k < 0. Then, there exists a constant R0 satisfying the following:
For every x 2 � and k 2 N0, if we denote by v the point on px such that d.v; x/ D k,
then

T .x; k/ � BR0
.v/:

Proof. Let w 2 T .x; k/ and choose a point w0 on px such that d.w; w0/ < 100ı.
Then, one has jd.w0; x/ � d.w; x/j < 100ı and

d.w; v/ � d.w; w0/ C d.w0; v/ � 100ı C jd.w0; x/ � kj < 200ı C 1:

Thus the assertion holds for R0 D 200ı C 1.

Lemma 8. For k; l 2 Z, we set

W.k; l/ D f.x; y/ 2 � � � W T .x; k/ \ T .y; l/ ¤ ;g:

Then, for every n 2 N0, one has

E.n/ WD f.x; y/ 2 � � � W d.x; y/ � ng D
n[

kD0

W.k; n � k/:

Moreover, there exists a constant R1 such that

W.k; l/ \ W.k C j; l � j / D ;

for all j > R1.
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Proof. First, if .x; y/ 2 W.k; n�k/, then one can find w 2 T .x; k/\T .y; n�k/ and
d.x; y/ � d.x; w/ C d.w; y/ � n. This proves that the right hand side is contained
in the left hand side. To prove the other inclusion, let .x; y/ and n � d.x; y/ be
given. Choose a point p on px \ py such that d.p; x/ C d.p; y/ � n, and a geodesic
path Œx; y� connecting x to y. By Lemma 6, there is a point a on Œx; y� such that
d.a; p/ � hx; yip C 10ı. It follows that

hx; pia C hy; pia D d.a; p/ � hx; yip � 10ı:

We choose a geodesic path Œa; p� connecting a to p and denote by w.m/ the point
on Œa; p� such that d.w.m/; a/ D m. Consider the function f .m/ D d.w.m/; x/ C
d.w.m/; y/. Then, one has that f .0/ D d.x; y/ � n � d.p; x/ C d.p; y/ D
f .d.a; p// and that f .m C 1/ � f .m/ C 2 for every m. Therefore, there is m0 2 N0

such that f .m0/ 2 fn � 1; ng. We claim that w WD w.m0/ 2 T .x; k/ \ T .y; n � k/

for k D d.w; x/. First, note that d.w; y/ D f .m0/ � k 2 fn � k � 1; n � kg. Since

hx; piw � 1

2
.d.x; a/ C d.a; w/ C d.p; w/ � d.x; p//

D 1

2
.d.x; a/ C d.p; a/ � d.x; p//

D hx; pia

� 10ı;

one has that d.w; px/ � 20ı by Lemma 6. This proves that w 2 T .x; k/. One
proves likewise that w 2 T .y; n � k/. Therefore, T .x; k/ \ T .y; n � k/ ¤ ; and
.x; y/ 2 W.k; n � k/.

Suppose now that .x; y/ 2 W.k; l/ \ W.k C j; l � j / exists. We choose v 2
T .x; k/ \ T .y; l/ and w 2 T .x; k C j / \ T .y; l � j /. Let vx (resp. wx) be the point
on px such that d.vx; x/ D k (resp. d.wx; x/ D k C j ). Then, by Lemma 7, one
has d.v; vx/ � R0 and d.w; wx/ � R0. We choose vy , wy on py likewise for y. It
follows that d.vx; vy/ � 2R0 and d.wx; wy/ � 2R0. Choose a point p on px \ py .
Then, one has jd.vx; p/ � d.vy ; p/j � 2R0 and jd.wx; p/ � d.wy ; p/j � 2R0. On
the other hand, one has d.vx; p/ D d.wx; p/ C j and d.vy ; p/ D d.wy ; p/ � j . It
follows that

2j D d.vx; p/ � d.wx; p/ � d.vy ; p/ C d.wy ; p/ � 4R0:

This proves the second assertion for R1 D 2R0.

Lemma 9. We set

Z.k; l/ D W.k; l/ \
R1T

j D1

W.k C j; l � j /c :
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Then, for every n 2 N0, one has

�E.n/ D
nX

kD0

�Z.k;n�k/:

Proof. We first note that Lemma 8 implies Z.k; l/ D W.k; l/\T1
j D1 W.kCj; l�j /c

and
Sn

kD0 Z.k; n�k/ � Sn
kD0 W.k; n�k/ D E.n/. It is left to show that for every

.x; y/ and n � d.x; y/, there exists one and only one k such that .x; y/ 2 Z.k; n�k/.
For this, we observe that .x; y/ 2 Z.k; n � k/ if and only if k is the largest integer
that satisfies .x; y/ 2 W.k; n � k/.

4. Proof of Theorem 1

Proposition 10. Let � be a hyperbolic graph with bounded degree and define E.n/ D
f.x; y/ W d.x; y/ � ng. Then, there exist a constant C0 > 0, subsets Z.k; l/ � � ,
a Hilbert space H and vectors �C

k
.x/ and ��

l
.y/ in H which satisfy the following

properties:

(1) �ṁ.w/ ? �ṁ0.w/ for every w 2 � and m; m0 2 N0 with jm � m0j � 2.

(2) k�ṁ.w/k � p
C0 for every w 2 � and m 2 N0.

(3) h��
l

.y/; �C
k

.x/i D �Z.k;l/.x; y/ for every x; y 2 � and k; l 2 N0.

(4) �E.n/ D Pn
kD0 �Z.k;n�k/ for every n 2 N0.

Proof. We use the same notations as in the previous sections.
Let H D `2.Pf .�//˝.1CR1/ and define �C

k
.x/ and ��

l
.y/ in H by

�C
k

.x/ D �C
T .x;k/

˝ Q�C
T .x;kC1/

˝ � � � ˝ Q�C
T .x;kCR1/

and
��

l .y/ D ��
T .y;l/ ˝ Q��

T .y;l�1/ ˝ � � � ˝ Q��
T .y;l�R1/:

If jm�m0j � 2, then T .w; m/\T .w; m0/ D ; and �˙
T .w;m/

? �˙
T .w;m0/

. This implies
the first assertion. By Lemma 7 and the assumption that � has bounded degree, one
has C1 WD supw;m jT .w; m/j � supv jBR0

.v/j < 1. Now the second assertion
follows from Lemma 4 with C0 D 2C1.1CR1/. Finally, by Lemma 4, one has

h��
l .y/; �C

k
.x/i D �W.k;l/.x; y/

R1Y
j D1

�W.kCj;l�j /c .x; y/ D �Z.k;l/.x; y/:

This proves the third assertion. The fourth is nothing but Lemma 9.
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Proof of Theorem 1. Take �ṁ 2 `1.�; H / as in Proposition 10 and set C D 2C0.
For every z 2 D, we define �ż 2 `1.�; H / by the absolutely convergent series

�C
z .x/ D p

1 � z

1X
kD0

zk�C
k

.x/ and ��
z .y/ D p

1 � z

1X
lD0

zl��
l .y/;

where
p

1 � z denotes the principal branch of the square root. The construction of
�ż draws upon [PS]. We note that the map D 3 z 7! .�ż .w//w 2 `1.�; H / is
(anti-)holomorphic. By Proposition 10, one has

h��
z .y/; �C

z .x/i D .1 � z/
X
k;l

zkCl�Z.k;l/.x; y/

D .1 � z/

1X
nD0

zn�E.n/.x; y/

D .1 � z/

1X
nDd.x;y/

zn

D zd.x;y/

for all x; y 2 � , and

k�ż .w/k2 � 2j1 � zj
X

j D0;1

k
1X

mD0

.z˙/2mCj �2̇mCj .w/k2

D 2j1 � zj
X

j D0;1

1X
mD0

jzj4mC2j k�2̇mCj .w/k2

� 2j1 � zj 1

1 � jzj2 C0

< C
j1 � zj
1 � jzj

for all w 2 � . Therefore the Schur multiplier �z associated with the kernel zd has
(completely bounded) norm at most C j1 � zj=.1 � jzj/ by Theorem 3. Moreover, the
map D 3 z 7! �z 2 V2.�/ is holomorphic.

For the second assertion, we simply write kZk for the (completely bounded) norm
of the Schur multiplier associated with the characteristic function �Z of a subset
Z � � � � . By Proposition 10 and Theorem 3, one has

kE.n/k �
nX

kD0

kZ.k; n � k/k � C0.n C 1/:
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and kf.x; y/ W d.x; y/ D ngk D kE.n/ n E.n � 1/k � C.n C 1/. This proves the
second assertion. The third assertion follows from the previous two, by choosing
fn.d/ D �E.Kn/.d/rd

n for suitable 0 < rn < 1 and Kn 2 N0 with rn ! 1 and
Kn ! 1. We refer to [BP], [Ha] for the proof of this fact.
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