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Separating quasi-convex subgroups in 7-systolic groups
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Abstract. Let � be a group acting without inversions and simply transitively on the top-
dimensional simplices of some simply-connected simplicial complex X with “simplicial neg-
ative curvature”. Then the quasi-convex subgroups of � are convex-cocompact. Furthermore,
if the action of � on X satisfies some additional condition called “extra-tilability”, the quasi-
convex subgroups of � are separable, i.e. every such subgroup is the intersection of finite index
subgroups. The latter result applies to a large class of “simplicially negatively curved” groups
recently constructed by Januszkiewicz and the second author.
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1. Introduction

Separability properties attracted attention since the emergence of combinatorial group
theory. The simplest such property is residual finiteness. A group is residually finite
if the intersection of all finite index subgroups is the trivial subgroup f1g. More
generally a subgroup H < G is separable if it can be expressed as the intersection
of a certain family of finite index subgroups of G. The residual finiteness of G is
equivalent to the separability of the trivial subgroup f1g < G.

When a group G is residually finite, then the word problem in G is solvable,
and furthermore G is hopfian (that is: every surjective homomorphism of G to itself
is an automorphism). We refer the reader to [14] for a survey of those and other
early developments concerning residual finiteness. Separability of a subgroup H <

G implies that the membership problem for H is decidable [4]. The geometric
interpretation of separability in case of �1-injective immersions of surfaces in 3-
manifolds (with separable image) is that it is possible to remove self-intersections by
passing to finite sheeted covers, see [17].
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Separability properties are difficult to establish or disprove. For example, it is not
known whether there exists a word-hyperbolic group which is not residually finite.
The property that every finitely generated subgroup is separable (so called subgroup
separability) is established for free groups [7], surface groups [17], finitely generated
nilpotent groups [15] and some other classes of groups (see [5], [6], [16], [19] and
the references cited there).

A few years ago D. Wise initiated the study of the property (denoted QCS below)
of separability for all quasi-convex subgroups of a group, rather than for all finitely
generated subgroups. The quasi-convexity of a subgroup, in general, depends on a
choice of a metric space on which the group acts geometrically (e.g. a Cayley graph).
However, in case of word-hyperbolic groups (which we will be interested in) the
property is intrinsic. We recall this notion in Definitions 5.4 and 5.6.

Hsu and Wise indicated in [11] examples of groups that are QCS and not subgroup
separable. Wise showed the importance of the question about QCS for the problem of
residual finiteness of word-hyperbolic groups ([13], [Wi3], 11.8). The question about
QCS seems to be well posed for CAT.0/ groups, since their quasi-convex subgroups
are known to have decidable membership problem (and the same is true for separable
subgroups). QCS is established for graph products of finite groups [9], for certain
class of Artin groups called tree groups [11], for Bianchi groups [1], and for certain
vast class of groups that includes acute angled n-gons of finite groups with n � 4 [20].
On the other hand, QCS does not hold for all CAT.0/ groups since there are compact
CAT.0/ squared 2-complexes whose fundamental groups are not even residually finite
(see [18], [3]). In [10] it is proved that the fundamental group of a negatively curved
cube complex is QCS if and only if it has a virtual embedding as a “convex cocompact”
subgroup into some right-angled Coxeter group.

In this paper we study property QCS for systolic groups. These groups were in-
troduced recently in [12] as groups acting in a geometric way on simply connected
simplicial complexes that are simplicially nonpositively curved. Simplicial nonpos-
itive curvature is a purely combinatorial local condition (introduced in [8] and [12])
that mimics classical nonpositive curvature, and has similar topological and group
theoretic consequences. In fact, there is an integer parameter k � 6 that defines
a sequence of conditions called k-systolicity. Simplicial nonpositive curvature cor-
responds to 6-systolicity (abbreviated to systolicity), and every m-systolic complex
or group is k-systolic when m � k. It turns out that 7-systolic groups are word-
hyperbolic. For every k � 6 there are examples of k-systolic groups of arbitrar-
ily large cohomological dimension. Examples of such groups, constructed in [12],
are the fundamental groups (or direct limits) of simplices of finite groups satisfying
certain conditions that we call local k-largeness (related to k-systolicity) and local
extra-tilability. Our inductive constructions of these groups involve their residual
finiteness, so in particular the following holds.
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Theorem (Proposition 19.1 in [12]). Let G be a locally 6-large and locally extra-
tilable simplex of finite groups. Then G is developable and the direct limit of G is a
residually finite group.

The main result of the present paper, Theorem A below, considerably strengthens
the residual finiteness statement in the above theorem.

TheoremA (Theorem 6.1). Let G be a locally 7-large and locally extra-tilable simplex
of finite groups. Then its direct limit has separable quasi-convex subgroups.

Note that simplices of groups satisfying assumptions of Theorem A exist in ar-
bitrary dimension, and that the resulting groups satisfying QCS occur in arbitrary
cohomological dimension.

Our proof ofTheoremA follows the geometric method of Scott [17]. It is based on a
result of independent interest, Theorem B below, concerning convex cocompactness of
quasi-convex subgroups in arbitrary 7-systolic groups. In this result we use the notion
of a convex subcomplex in a systolic complex, two different aspect of which were
introduced and studied in [8] and [12] respectively. (The two notions of convexity are
in fact equivalent, see Proposition D below.) More precisely, we prove the following.

Theorem B (Corollary 5.8). Let G be a 7-systolic group, i.e., a group acting properly
discontinuously and cocompactly, by simplicial automorphisms, on certain 7-systolic
simplicial complex X . Let H < G by any quasi-convex subgroup. Then there is a
convex subcomplex Y � X which is invariant and cocompact under the action of H .

Apart from application to proving Theorem A, Theorem B (together with the fact
that a convex subcomplex of a k-systolic complex is k-systolic, see Lemma 2.6)
implies the following.

Corollary C. For any k � 7, a quasi-convex subgroup of a k-systolic group is
k-systolic.

This corollary is a special case of the following result announced by D. Wise [21]:
for any k � 6, a finitely presented subgroup of a k-systolic group is k-systolic. Wise’s
proof is different and uses the tower argument.

In Sections 4 and 5 we prove certain results concerning systolic geometry. These
results are useful in proving our main results: Theorems A and B. However, they also
have generally useful nature and complement the set of basic geometric properties of
systolic simplicial complexes.

Two main results of Section 4 concern geodesics. For us a geodesic in a simplicial
complex X between some two vertices is a polygonal curve in the 1-skeleton of X that
connects these vertices and has the smallest possible number of edges. A subcomplex
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Y � X is geodesically convex if it is full and any geodesic in X between any two
vertices of Y is contained in Y (this is the notion of convexity considered in [8]). In
systolic complexes X this “global” convexity property (i.e. geodesical convexity as
above) turns out to coincide with the “local” property of convexity (as considered in
[12] and recalled in Section 2, see Definition 2.5). Namely, we prove the following.

Proposition D (Proposition 4.9). A subcomplex Y in a systolic simplicial complex X

is geodesically convex iff it is convex.

The next result (see Lemma 3.4 in [8]) concerns geodesics in 7-systolic complexes.
The 2-dimensional case seems to be well known in small cancellation theory.

Proposition E (Proposition 4.7). Let .v0; v1; : : : ; vn�1; vn/ and .v0; v0
1; : : : ; v0

n�1; vn/

be two geodesics in a 7-systolic simplicial complex X between vertices v0; vn. Then
for each 1 � i � n � 1 the vertices vi and v0

i either coincide or are connected with
an edge of X .

The main geometric result of this paper is proved in Section 5 and concerns convex
neighbourhoods of quasi-convex subsets in 7-systolic complexes. For any subcomplex
Y of a simplicial complex X , let B.Y; X/ denote the union of all simplices of X

meeting Y . For any integer n � 1 define inductively the neighbourhoods Bn.Y; X/

by B1.Y; X/ D B.Y; X/ and BnC1.Y; X/ D B.Bn.Y; X/; X/.

Theorem F (Theorem 5.5). Let Y be a quasi-convex subcomplex of a 7-systolic com-
plex X . Then there is a natural number N such that for any n � N the neighbourhood
Bn.Y; X/ is a convex subcomplex of X .

Theorem F answers the last question in [8] and immediately implies Theorem B.

2. Systolic complexes: definitions and basic results

In this section we recall definitions and some results concerning systolic complexes
and groups. All simplicial complexes X in this paper are assumed to be locally finite
dimensional in the following sense: for every vertex v of X there is a bound on the
dimension of simplices in X that contain v. Clearly, this class contains all finite
dimensional and all locally finite simplicial complexes, which are most interesting
for us.

2.1. Local k-largeness, k-systolicity and consequences. Systolicity is a purely
combinatorial condition for simplicial complexes (and their automorphism groups)
that resembles nonpositive curvature. Main references for this subject are [8] and [12].
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A simplicial complex X is flag if every finite set of its vertices pairwise connected
by edges spans a simplex of X . A cycle in a simplicial complex is a subcomplex
homeomorphic to the circle S1. The length j� j of a cycle � is the number of its edges.
We say that a cycle in X has a diagonal if some two nonconsecutive vertices in this
cycle are connected by an edge in X .

Let k � 5 be a natural number. A simplicial complex X is k-large if it is flag
and every cycle in X of length 4 � j� j < k has a diagonal. A simplicial complex
is locally k-large if its links at all (nonempty) simplices are k-large. A simplicial
complex is k-systolic if it is locally k-large, connected and simply connected. Since
the case of k D 6 is particularly important, we abbreviate the term “6-systolic” to an
easier pronounced term systolic.

We view k-largeness as local curvature condition for links of a complex, and
local k-largeness as a kind of curvature bound from above. We sometimes call local
6-largeness simplicial nonpositive curvature since it yields similar consequences as
metric nonpositive curvature. A systolic complex is then the simplicial analogue of
what is called a CAT.0/ or Hadamard space.

A straightforward consequence of the above definitions is the following.

Lemma 2.1. Let X be a simplicial complex.

(1) If k � m and X is k-large then X is also m-large.

(2) If k � m and X is k-systolic then X is also m-systolic.

An example of a local-to-global phenomenon related to simplicial nonpositive
curvature is the following.

Proposition 2.2 (see Proposition 1.4 in [12]). For k � 6 every k-systolic complex is
k-large.

The next result exhibits analogy between systolicity and nonpositive (or even
negative) curvature.

Theorem 2.3. (1) (See Theorem 4.1 (1) in [12].) If X is a finite dimensional systolic
simplicial complex then X is contractible.

(2) (See Theorem 2.1 in [12].) If X is a 7-systolic simplicial complex then the
1-skeleton of X , equipped with the geodesic metric for which every edge has length 1,
is ı-hyperbolic with ı D 5

2
.

Let us mention that there is no obvious relationship between local 6-largeness
(simplicial nonpositive curvature) and nonpositive curvature in metric sense. How-
ever, k-systolicity for k sufficiently large implies metric nonpositive curvature (see
Section 14 in [12]).
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A group is k-systolic if it acts by simplicial automorphisms, properly discon-
tinuously and cocompactly, on a k-systolic simplicial complex. It is systolic, if it
is k-systolic with k D 6. As a consequence of Theorem 2.3 (2) above we get the
following result.

Corollary 2.4. Every 7-systolic group is word-hyperbolic.

As shown in [12] there exist many k-systolic groups, for every k � 6, in arbi-
trary dimension. For example, they arise as fundamental groups of certain simplices
of groups, which is explained also in the next section (Proposition 3.6 and Proposi-
tion 3.7).

2.2. Convexity and saliency. We now describe local convexity phenomena in sys-
tolic complexes. We follow Sections 3 and 7 of [12]. For a simplicial complex X we
denote its link at a face � by X� . The next definition of 3-convexity is a reformulation
of the definition given in Section 3 of [12].

Definition 2.5. A subcomplex Q in a 6-large simplicial complex X is 3-convex if it
is a full subcomplex and for any path .v1; v2; v3/ in the 1-skeleton of X , if v1, v3 are
contained in Q and not connected with an edge in X then v2 2 Q. A subcomplex Y

in a systolic complex X is convex if it is connected and for every vertex v 2 Q the
link Qv is 3-convex in the corresponding link Xv .

In Section 4 we will prove that convexity is equivalent to geodesic convexity, as
defined in the introduction (see Proposition 4.9).

Among various properties of the above combinatorial notion of convexity one of
interest for us is the following (see Lemma 7.2 and Fact 1.2 (2) in [12]).

Lemma 2.6. Any convex subcomplex in a systolic complex is full and contractible.
In particular, for any k � 6, any convex subcomplex in a k-systolic complex is itself
k-systolic.

It turns out that another notion, slightly stronger than convexity, is very useful. In
[12] this notion is called strong convexity, but here we will use the term salient, as
in [8]. Given a subcomplex Y in a simplicial complex X , its neighbourhood in X ,
denoted B.Y; X/, is the union of all simplices of X that intersect Y .

Definition 2.7. A subcomplex Y in a systolic simplicial complex X is salient if it is
connected and for every simplex � in Y either we have equality Y� D X� or there is
a simplex � in X� such that Y� D B.�; X� /.

The next two results indicate important relationships between the notions of salient
and convex subcomplexes.
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Lemma 2.8 (see Corollary 7.11 in [12]). Every salient subcomplex of a systolic
complex X is convex in X .

Theorem 2.9 (see Corollary 7.12 in [12]). Let Y be a convex subcomplex in a systolic
complex X . Then its neighbourhood B.Y; X/ is a salient subcomplex of X .

We will use the following simplified definition of saliency:

Lemma 2.10. A connected subcomplex Y in a systolic simplicial complex X is salient
iff for every vertex v 2 Y either Yv D Xv or Yv D B.�; Xv/ for some simplex � � Xv .

Proof. We need to show that, if links of Y at vertices are as above then links at other
simplices also have the desired form. Let � be a simplex of Y which is not a vertex,
and let � D v � �. We then have Y� D .Yv/�. If Yv D Xv , we have also Y� D X� ,
so that Y� is as desired. If Yv D B.�; Xv/, we get Y� D ŒB.�; Xv/��. Since the
neighbourhood of � in Xv has the same links as the corresponding neighbourhood in
the universal cover of Xv , and the latter neighbourhood is salient by Theorem 2.9, we
conclude that the link Y� is as desired.

2.3. Balls and spheres. We now turn to describing balls and spheres in systolic
complexes. Recall that for any integer n � 1 and any subcomplex Y of a simplicial
complex X we define inductively the neighbourhoods Bn.Y; X/ by B1.Y; X/ D
B.Y; X/ and BnC1.Y; X/ D B.Bn.Y; X/; X/.

We state without proof the following easy observations concerning neighbour-
hoods in simplicial complexes.

Lemma 2.11. Let X be a simplicial complex and Y a subcomplex. Denote by Y 0 the
set of vertices of Y .

(1) For any n � 1 we have Bn.Y; X/ D S
y2Y 0 Bn.y; X/.

(2) Let x be a vertex of X with d.x; Y / D n. Denote by ProjY .x/ the set of those
vertices of Y which are at distance n from x. Then

ŒBn.Y; X/�x D
[

y2ProjY .x/

ŒBn.y; X/�x :

Given a vertex v in a simplicial complex X , the balls in X centered at v are
the neighbourhoods Bn.fvg; X/ (we rather denote them by Bn.v; X/ and we set
B0.v; X/ D fvg). We also define the distance between two vertices of X as the
minimal length of a combinatorial path in the 1-skeleton of X joining the two vertices.

The remaining part of this section lists properties of balls and spheres in systolic
complexes.



230 F. Haglund and J. Świa̧tkowski

Lemma 2.12. Let X be a systolic simplicial complex and let B D Bn.v; X/ be any
ball in X , for some n � 1. Then

(1) B is a salient .and hence also convex/ subcomplex in X .

(2) B is a full subcomplex in X and it is spanned by the set of vertices at distance
� n from v.

Part (1) of the lemma follows from Lemma 2.8 and Theorem 2.9, while part (2)
from Lemma 2.6.

Let X denote a simplicial complex and let v be a vertex of X . The sphere Sn.v; X/

is the full subcomplex of X spanned by the set of vertices at distance n from v. Since
balls in systolic complexes are full, we get the following:

Corollary 2.13. Let X be a systolic simplicial complex and v a vertex of X . Then
for any natural n we have Sn.v; X/ � Bn.v; X/.

Given a simplex � in a simplicial complex X , the residue of � in X (called also
the star of � in X ), denoted Res.�; X/, is the subcomplex of X equal to the union of
all simplices of X that contain � .

Lemma 2.14 (see Corollary 7.9 (1) in [12]). Let X be a systolic simplicial complex and
v a vertex of X . Then for any natural number n � 1 and any simplex � � SnC1.v; X/

the intersection Bn.v; X/ \ Res.�; X/ is nonempty and it is a single simplex of X .

We will call the simplex Bn.v; X/ \ Res.�; X/ as above the projection of � �
SnC1.v; X/ onto Sn.v; X/. Projections are useful to describe links of balls, as in the
following.

Lemma 2.15 (see Corollary 7.9 (2) in [12]). Let x; y be two vertices at distance n

in a systolic simplicial complex X , and let � be the projection of x on the sphere
Sn�1.y; X/. Then ŒBn.y; X/�x D B.�; Xx/.

3. Extra-tilability and local extra-tilability for group actions

For any group � acting on a simplicial complex X and for any simplex � of X we
denote by �� the stabilizer of � in � .

Definition 3.1. Let � denote a group acting by simplicial automorphisms on a sim-
plicial complex X . We say that a subcomplex Y � X is a strict fundamental domain
for the action of � on X provided the orbit of any simplex of X contains one and only
one simplex of Y . Furthermore we require that �� D f1g for any simplex � interior
to Y .
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Note that the second condition is usually not needed (see Definition 12.7 in [2]).
But the definition above is more appropriate for our purposes and it simplifies the
statements.

The following is clear:

Lemma 3.2. Let � denote a group acting on a simplicial complex X . Assume that
the subcomplex Y � X is a strict fundamental domain for the action of � on X .
Then for any simplex � of Y the subcomplex Y� � X� is a strict fundamental domain
for the action of �� on X� .

Definition 3.3. (1) Let X be a connected simplicial complex, and let � be a group
acting simplicially on X . For any subcomplex Y � X , we denote by �.Y / < � the
subgroup generated by the stabilizers �� , with � a maximal simplex of @Y . We say
that Y is a tile for .�; X/ if Y is a strict fundamental domain for �.Y /.

(2) We say that the action of � on X is chamber transitive if it admits a strict
fundamental domain consisting in a single simplex 	. We say that the action is
extra-tilable if for any simplex � of X the neighbourhood B.�; X/ is a tile.

(3) We say that the action of � on X is locally extra-tilable if for any simplex �

the action of �� on X� is extra-tilable.

A result analogous to the following is established in Proposition 18.5 from [12].
For the convenience of the reader we give a detailed argument in this generality.

Theorem 3.4. Let X be a systolic simplicial complex and let � be a group acting
simplicially on X . Assume that the action is locally extra-tilable. Then every salient
subcomplex is a tile.

To prove this theorem we use the theory of simple complexes of groups, as devel-
oped in [2], Chapter II.12.

Proof. Let Y � X denote any salient subcomplex. We first define a simple complex
of groups G Y over Y with local groups �Y

� . For any maximal simplex � of @Y we
set �Y

� D �� . For any other simplex � of @Y we let �Y
� denote the subgroup of

�� generated by the �� ’s, for all maximal simplices � of @Y containing � . For any
simplex � in the interior of Y we set �Y

� D f1g. Clearly when �2 � �1 � Y we have
�Y

�1
� �Y

�2
.

Consider the natural (simple) morphism mY W G Y ! �.Y / given by the canonical
inclusions �Y

� � �.Y /, and note that this morphism is injective on local groups (see
the end of Definition 12.11 in [2]). Thus the complex of groups G Y has a development
corresponding to the morphism mY . This means that there exists an action of �.Y /

on a (multi)simplicial complex xX containing Y as a strict fundamental domain, such
that the stabilizer of any simplex � � Y � xX is precisely �Y

� (see Theorem 12.18
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in [2]). Since by definition the groups �Y
� generate �.Y /, the space xX is connected

([2], Proposition 12.20 (2)). To avoid confusions we denote �.Y / by �.Y / when it
acts on xX .

Since �Y
� � �� , there is a natural map sending a point N�y 2 xX to �y 2 X , where

N� D � 2 �.Y / D �.Y / and y 2 Y . In order to get the conclusion it is sufficient to
show that this map xX ! X is an isomorphism. In fact, since X is simply-connected,
it is enough to show that xX ! X is a covering. By homogeneity, this reduces to
checking that xX ! X is a local isomorphism at simplices � of @Y .

Let � be any simplex of @Y . By Lemma 3.2, the action of the group �.Y /� D �Y
�

on the link xX� admits Y� as a strict fundamental domain. Furthermore, for any
simplex � of Y� we see that the stabilizer of � in �.Y /� is �Y

��� , where � � � is the
join of � with � , i.e. the simplex spanned by the union of � and � . On the other
hand, since Y is salient in X , there exists a simplex � in Y such that Y� D B.�; X� /.
By assumption the action of � is locally extra-tilable, so B.�; X� / is a tile for the
action of �� on X� . This means that the subgroup �� .B.�; X� // < �� admits
B.�; X� / D Y� as a strict fundamental domain. By definition �� .B.�; X� // is
generated by all stabilizers .�� /� , for all maximal simplices � of the boundary of Y� .
But .�� /� D ���� , and the join � � � varies all over the set of maximal simplices of
@Y containing � . Thus in fact �� .B.�; X� // D �Y

� .
We observe that the same group �Y

� acts on two simplicial complexes ( xX� and
X� ) with the same strict fundamental domain (namely Y� ). Thus the natural map
xX� ! X� is an equivariant isomorphism, provided we prove that stabilizers of

simplices in the fundamental domain are the same for the two actions (see for example
Proposition 12.20 (1) in [2]). Let � be a simplex of Y� . We have noticed that the
stabilizer of � in �.Y /� is �Y

��� . Moreover, we clearly have �Y
��� � ���� \ �Y

� D
.�Y

� /� . It remains to check the reverse inclusion. There is nothing to prove if �

is in the interior of Y� , for in this case .�Y
� /� D f1g. Assume that � � @Y� . By

saliency there exists a simplex �0 in the interior of Y such that Y��� D B.�0; X��� /.
As we have seen, Y��� is a strict fundamental domain for the action of �Y

��� on X��� .
Thus for any � 2 �Y

� such that �� D � , there exists a (unique) � 0 2 �Y
��� such that

� 0�1��0 � Y��� . Since � 0�1� 2 �Y
� and Y� is a strict fundamental domain for the

action of �Y
� , we have � 0�1��0 D �0 and thus in fact � D � 0, since �0 is interior to Y�

too.

An effective source of groups acting in an extra-tilable (and locally extra-tilable)
way is a construction of appropriate simplices of groups given in [12]. We recall
briefly the outcome of this construction. For the general theory of simple complexes
of groups we refer the reader to [2], Chapter II.12. In particular, the notion of a local
development is explained there in Construction 12.24, p. 387.

Definition 3.5. Let G be a simplex of groups, let 	 denote the underlying simplex,
and for any face � of 	 let G� denote the local group of G at � . A simplex of groups
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is locally k-large if all of its local developments are k-large simplicial complexes. A
simplex of groups is locally extra-tilable if the action of every local group G� on the
local development at � is extra-tilable. When the local group G� is trivial, we say
that the simplex of groups is @-supported.

Proposition 3.6. Given an integer k � 6, let G be a @-supported, locally k-large
simplex of finite groups, and let � denote its fundamental group. Then G is devel-
opable, its universal cover is k-systolic and the action of � on the universal cover
is chamber-transitive and properly discontinuous. In particular, if k � 7 then � is
word-hyperbolic. If furthermore G is locally extra-tilable, then the action of � on
the universal cover is locally extra-tilable.

Proof. The developability of G follows by Corollary 17.4 in [12]. The fact that any
maximal simplex 	 in the universal cover is then a strict fundamental domain for �

is clear (	 has trivial stabilizer since G is @-supported). Proper discontinuity follows
from finiteness of local groups. Local k-largeness and local extra-tilability follow
from the corresponding assumptions for local developments. Consequently, under
the local 7-largeness assumption, the universal cover is 7-systolic and � is then word-
hyperbolic by Corollary 2.4. Finally, the last assertion of the statement is clear by
comparing the corresponding notions of extra-tilability.

Locally 7-large and locally extra-tilable simplices of finite groups are the main
objectives of our study in this paper. The next proposition shows the existence of
great many of such simplices of groups.

Proposition 3.7 (Proposition 19.1 in [12]). Let 	 be a simplex .of arbitrary dimension/

and suppose that for any codimension 1 face s of 	 we are given a finite group As .
Then for any k � 6 there exists a @-supported simplex of finite groups G over 	, with
local groups G� , which is locally k-large, locally extra-tilable and such that Gs D As

for each codimension 1 face s in 	.

4. Systolic complexes: further results

In this section we derive useful properties of geodesics in systolic complexes.

Definition 4.1. A combinatorial path of X is a sequence � D .v0; : : : ; vn/ of vertices
of X such that for each i D 0; : : : ; n � 1 the vertices vi ; viC1 span an edge of X .
The path � is said to have length n. The endpoints of � are v0 and vn. Given
combinatorial paths � D .v0; : : : ; vn/ and � 0 D .vn; : : : ; vnCm/, we denote by �:� 0
their concatenation .v0; : : : ; vn; vnC1; : : : ; vnCm/.

The combinatorial distance between two vertices v; w is the minimum of the
lengths of paths with endpoints v; w; we will denote it by d.v; w/. A combinatorial
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path with endpoints v; w minimizing the length is called a geodesic of X between v

and w.

4.1. Ladders and bigons

Definition 4.2. A ladder is an ordered pair .� D .v0; : : : ; vn/; � 0 D .v0
0; : : : ; v0

n// of
(combinatorial) geodesics of X (with the same length) such that:

(1) for each i D 0; : : : ; n � 1 the subset fvi ; v0
i ; viC1g spans a simplex,

(2) for each i D 1; : : : ; n the subset fv0
i�1; v0

i ; vig spans a simplex.

Note that when .�; � 0/ is a ladder, in general .� 0; �/ is not a ladder.

Definition 4.3. A bigon is an ordered pair .� D .v0; : : : ; vn/; � 0 D .v0
0; : : : ; v0

n//

of (combinatorial) geodesics of X (with the same length) such that v0 D v0
0 and

d.vn; v0
n/ � 1. We say that a bigon is k-thin whenever we have d.vi ; v0

i / � k for
i D 0; : : : ; n.

Clearly, a ladder with v0 D v0
0 is a 1-thin bigon.

Lemma 4.4. Let X be a systolic complex and let � D .v0; : : : ; vn/ be a geodesic
of X . Let w denote some vertex of X such that d.v0; w/ D n and d.w; vn/ � 1.
Then there exists a geodesic � 0 D .v0

0; : : : ; v0
n/, with v0

0 D v0 and v0
n D w, such that

.�; � 0/ is a ladder.

Proof. The lemma is obviously true for n D 0. We argue by induction on n � 1.
For n D 1 the flagness of X implies the statement. For n > 1, if w D vn, we
may take � 0 D � . If fw; vng spans an edge e in X , let u denote a vertex of the
projection of e � Sn.v0/ onto Sn�1.v0/ (see Lemma 2.14 and the definition after
it). Then fu; w; vng spans a simplex. Since vn�1 and u are in the projection of vn

onto Sn�1.v0/, we see that fvn�1; u; vng spans a simplex too. By induction, there is
a geodesic � 00 from v0 to u such that ..v0; v1; : : : ; vn�1/; � 00/ is a ladder. It follows
that .�; � 00:.u; w// is also a ladder, and the lemma holds for � 0 D � 00:.u; w/.

Corollary 4.5. Let X be a systolic complex and let � D .v0; : : : ; vn/ be a geodesic
in X , with n � 1. Let u denote any vertex of X such that d.v0; u/ D n � 1 and
d.u; vn/ D 1. Then there exists a geodesic � 0 from v0 to vn, such that .�; � 0/ is a
ladder, and the two last vertices of � 0 are u and vn.

Proof. Since u and vn�1 belong to the projection of vn 2 Sn.v0/ onto Sn�1.v0/, we
know that fu; vn�1g spans a simplex. By Lemma 4.4, there exists a geodesic � 0

1 from
v0 to u such that ..v0; v1; : : : ; vn�1/; � 0

1/ is a ladder. Then .�; � 0
1:.u; vn// is a ladder,

and � 0
1:.u; vn/ has the required properties.
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Under assumption of 7-systolicity we will get stronger properties of geodesics.
To do this, we need a preparatory lemma.

Lemma 4.6. Let X be a 7-large complex. Let �; � denote two simplices of X . Assume
that � \ B.�; X/ D ;. Then B.�; X/ \ B.�; X/ is either empty or a simplex.

Proof. Note that the hypothesis � \ B.�; X/ D ; in fact implies � \ B.�; X/ D ;.
Assume that s; t are two distinct vertices of B.�; X/ \ B.�; X/. Then each of them
is disjoint from � and � , but adjacent to some vertices of � , and also to some vertices
of � .

Assume that s; t are adjacent to the same vertex p of � . If they are also adjacent
to the same vertex q of � then .p; s; q; t/ is a cycle in X of length 4. Since p and q

are not adjacent by the assumption, 7-largeness of X implies that s and t are adjacent.
If s, t are adjacent to distinct vertices q, r of � then .p; s; q; r; t/ is a cycle in X of
length 5, and .s; t/ is the only possible diagonal for this cycle. Again, by 7-largeness
of X , s and t are adjacent.

Now consider the case when s; t are adjacent to distinct vertices in both � and � .
An argument similar as above, again referring to 7-largeness of X , shows that s and
t are adjacent in X . The lemma follows then by flagness of X .

Proposition 4.7 (see Lemma 3.4 in [8]). In a 7-systolic complex all bigons are 1-thin.

Proof. Let .�; � 0/ be a bigon in X . Let v denote the common origin of �; � 0, and
let w; w0 denote their endpoints. We prove that .�; � 0/ is 1-thin by induction on
n D d.v; w/ D d.v; w0/.

There is nothing to prove if n � 1, so let us assume that n � 2. Let then s; s0
denote the vertices on �; � 0 just before w; w0. By induction it suffices to prove that
d.s; s0/ � 1.

By Lemma 4.4 there is a geodesic � 00 from v to w0 such that .�; � 00/ is a ladder.
Let t; p denote the vertices of � 00 at distance n�2 and n�1 from v. By Corollary 4.5
there is a geodesic � 0

1 from v to s0 such that .� 00; � 0
1:.s0; w0// is a ladder. Let t 0 denote

the vertex of � 0
1 just before s0. Denote by � the simplex spanned by fw; w0g (of

dimension 1 or 0), and by � the simplex spanned by ft; t 0g (� is well-defined because
.� 00; � 0

1:.s0; w0// is a ladder). Since t; t 0 2 Sn�2.v0/ and w; w0 2 Sn.v0/, we have
� \ B.�; X/ D ;.

By Lemma 4.6 the intersection B.�; X/ \ B.�; X/ is a simplex. Since this inter-
section contains s and s0, it follows that d.s; s0/ � 1. This completes the proof.

4.2. Geodesic convexity. In this section we relate the (global) notion of geodesic
convexity (see Introduction) to the (local) notion of convexity (see Definition 2.5).
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Lemma 4.8. Let X be a systolic complex, and let Y � X denote any convex sub-
complex. Assume that .� D .v0 D v; : : : ; vn D w/; � 0 D .v0

0 D v; : : : ; v0
n D w// is

a bigon of X such that all vertices of � are in Y . Then all vertices of � 0 are in Y .

Proof. We argue by induction on the length n.
Let .� D .v0 D v; : : : ; vn; vnC1 D w/; � 0 D .v0

0 D v; : : : ; v0
n; v0

nC1 D w//

denote a bigon of X such that all vertices of � are in Y . By Corollary 4.5 there is a
geodesic �1 D .u0 D v0; u1; : : : ; un D v0

n/ from v0 to v0
n such that .�; �1:.v0

n; vnC1//

is a ladder. We claim that all vertices of �1 are in Y . To see this, we look first at u1. If
u1 D v1 then u1 2 Y . Otherwise .v0; u1; v2/ is a path of Xv1

with endpoints in Yv1
.

Since v0; v2 are at distance 2 in X , and hence also in Xv1
, by 3-convexity of Yv1

in Xv1

we have u1 2 Y . Furthermore, we get two length n geodesics .u1; v2; : : : ; vn; vnC1/

and .u1; : : : ; un; vnC1/, such that all vertices of the first geodesic belong to Y . By
induction, all vertices u1; : : : ; un belong to Y and thus all vertices of �1 are in Y .

Now, we get another pair of length n geodesics �1 and .v0
0; : : : ; v0

n/, with common
endpoints, such that all vertices of the first geodesic belong to Y . By induction, all
vertices v0

1; : : : ; v0
n belong to Y , which finishes the proof.

Proposition 4.9. Let X be a systolic complex, and let Y � X be a .non empty/

subcomplex. Then Y is convex iff it is geodesically convex.

Proof. First assume that Y is a geodesically convex subcomplex. Then Y is clearly
connected. Let us check now that Y is locally 3-convex. Let v be any vertex of Y ,
and let .v1; v2; v3/ denote any path of the link Xv , such that v1; v3 2 Yv and v1; v3

are not connected by an edge in Xv . Then v1; v3 are distinct vertices of X , and their
combinatorial distance cannot be 1 (for otherwise there would be an edge in X joining
v1; v3 and, by flagness of X , this edge would belong to Xv). Thus .v1; v2; v3/ is a
geodesic of X . By geodesic convexity we then have v2 2 Y , and since Y is full by
assumption, we also get v2 2 Yv . Consequently, Y is convex.

To prove the converse, assume that Y is a convex subcomplex of X , i.e. it is
connected and locally 3-convex. By Lemma 2.6, Y is then full. By Lemma 4.8 we
need to prove that for any two vertices p; q in Y there exists a geodesic of X , from p

to q, all of whose vertices belong to Y .
Let p be a vertex in Y . Put Y0 D fpg, and for each integer k � 1 we define

inductively Yk as the union of all simplices of Y that intersect Yk�1. Since Y is
connected, it is the union of the subcomplexes Yk . Thus it is enough to prove that for
each integer k � 0 and each vertex q 2 Yk , there exists a geodesic of X , from p to
q, all of whose vertices are contained in Y . This fact is straightforward for k D 0 or
k D 1, and we argue by induction on k � 1.

Let q be a vertex of YkC1. There exists a vertex q0 2 Yk such that fq; q0g is a sim-
plex of Y . In particular jd.p; q/ � d.p; q0/j � 1, where d denotes the combinatorial
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distance in X . By induction, there is a geodesic � 0 from p to q0 all of whose vertices
are contained in Y .

If d.p; q/ > d.p; q0/, then the concatenation � 0:.q0; q/ is a geodesic from p to q

all of whose vertices are contained in Y . If d.p; q0/ > d.p; q/, then q is on some
geodesic � from p to q0. Since � and � 0 have the same endpoints, by Lemma 4.8 all
the vertices of � are in Y . In particular, the initial part of � between p and q is a
geodesic with all vertices in Y .

Assume now that d.p; q/ D d.p; q0/. By Lemma 4.4, there exists a geodesic �

from p to q such that .� 0; �/ is a ladder. Let q00 denote the vertex of � just before
q, and let � 00 be the initial part of � between p and q00. Then q00 is linked to q0 and
� 00:.q00; q0/ is a geodesic from p to q0. It follows by Lemma 4.8 that all the vertices
of � 00, and thus also of � , are in Y , which completes the proof.

Corollary 4.10. The balls of a systolic complex are geodesically convex.

Proof. By Lemma 2.12 the balls are salient and hence convex. Thus, by Proposi-
tion 4.9, they are geodesically convex.

5. Quasi-convexity in 7-systolic complexes

In this section we show that each quasi-convex subcomplex in a 7-systolic complex
is at finite Hausdorff distance of a convex subcomplex (Theorem 5.5).

Lemma 5.1 (Y-lemma). Let v denote a vertex in a systolic complex X . Let v1; v2

denote vertices at distance n from v and with d.v1; v2/ D d � n. Then there is
a geodesic of length n � d with origin v that extends to a geodesic to either of the
vertices vi .

Proof. We argue by induction on d . The result is obvious for d D 0.
Let .x0 D v1; x1; : : : ; xd D v2/ denote a geodesic. By Corollary 4.10 this

geodesic is contained in Bn.v; X/. If d.v; x1/ D n we choose a vertex w1 such that
d.v; w1/ D n�1 and w1; x0; x1 span a simplex. If d.v; x1/ D n�1 we set w1 D x1.
We define similarly w2 (where now v2 plays the role of v1).

We claim that d.w1; w2/ � d � 1.
To prove the claim we consider two cases. In the first case we assume that the

geodesic .x0; x1; : : : ; xd / does not enter the ball Bn�1.v; X/. In this case there is
a sequence .y1 D w1; y2; : : : ; yd D w2/ of vertices of the sphere Sn�1.v; X/ such
that yk; xk�1; xk span a simplex. Then the vertices yk; ykC1 span a simplex, since
they both belong to the projection of xk on the sphere Sn�1.v; X/. Consequently, we
have d.w1; w2/ � d � 1.
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In the second case we assume that the geodesic .x0; x1; : : : ; xd / enters the ball
Bn�1.v; X/, so there are integers 1 � i � j � d � 1 such that

d.v; x0/ D d.v; x1/ D � � � D d.v; xi�1/ D n D d.v; xj C1/ D � � � D d.v; xd /

and
d.v; xi / D d.v; xj / D n � 1:

Observe that there is a sequence .y1 D w1; y2; : : : ; yi D xi / of vertices of the sphere
Sn�1.v; X/ such that yk; xk�1; xk span a simplex. Similarly, there is a sequence
.yj D xj ; yj C1; : : : ; yd�1 D w2/ of vertices of the sphere Sn�1.v; X/ such that
yk; xkC1; xk span a simplex. As in the previous case, any two subsequent vertices
yK ; ykC1 in any of the sequences .y1; y2; : : : ; yi / and .yj ; yj C1; : : : ; yd�1/ span a
simplex, hence we have d.w1; w2/ � .i � 1/ C .j � i/ C .d � j � 1/ D d � 2. Thus
the claim follows.

By induction there is a geodesic of length .n�1/�d.w1; w2/ � n�d with origin
v that extends to a geodesic to either of the vertices wi . Both of those geodesics can
be extended to vertices vi , which finishes the proof.

The next two results require the assumption of 7-systolicity.

Lemma 5.2. Let X denote a 7-systolic complex. Let .v0; v1; � � � ; vn/; .v0; v0
1; � � � ; v0

n/

denote two geodesics with the same origin and such that d.v1; v0
1/ D 2. Then n <

2 C d.vn; v0
n/.

Proof. We argue by contradiction. Suppose that d.vn; v0
n/ � n � 2 (in particular

n � 2). By Lemma 5.1, there is a geodesic .v0; x; y/ which extends to geodesics from
v0 to either of the vertices vn and v0

n. Since in 7-systolic complexes geodesic bigons
are 1-thin (see Proposition 4.7), we have d.x; v1/ � 1, d.x; v0

1/ � 1, d.y; v2/ � 1

and d.y; v0
2/ � 1.

By Proposition 2.2 the complex X is 7-large: we now use this property to find a
contradiction. First, note that there is no edge between v0

1 and v2. Indeed, if there is
such an edge then .v0; v1; v2; v0

1; v0/ is a cycle of length 4 in X without diagonals.
Similarly, there is no edge between v1 and v0

2. This also means that v2 ¤ v0
2. Now,

note that there is no edge between v2 and v0
2. Indeed, if there is such an edge then

.v0; v1; v2; v0
2; v0

1; v0/ is a cycle of length 5 in X without diagonals. In particular, we
have y ¤ v2 and y ¤ v0

2. But then .v0; v1; v2; y; v0
2; v0

1; v0/ is a cycle of length 6 in
X without diagonals, contradiction.

Corollary 5.3. Let v1; v2; x be vertices of a 7-systolic complex X , and suppose that
d.v1; v2/ � d and d.v1; x/ D d.v2; x/ D n � d C 2. Denote by �1; �2 the
projections of the vertex x on the spheres Sn�1.v1; X/ and Sn�1.v2; X/ respectively.
Then �1 [ �2 spans a simplex of X .
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Proof. Since X is flag, it is enough to check that, given any vertices w1 2 �1 and
w2 2 �2, these vertices either coincide or are connected with an edge of X . We argue
by contradiction. Consider vertices w1 2 �1; w2 2 �2 such that d.w1; w2/ D 2.
Then Lemma 5.2 applies to geodesics of length n from v to v1; v2 passing through
w1; w2 respectively. We deduce that d.v1; v2/ > n � 2 � d , which contradicts the
assumption.

Definition 5.4. Given K > 0, we say that a subcomplex Y in a connected simpli-
cial complex X is K-quasi-convex whenever the following holds: for any geodesic
.x0; : : : ; xn/ in X such that x0 2 Y; xn 2 Y we have d.xi ; Y / � K for 0 � i � n. A
subcomplex Y is quasi-convex in X if it is K-quasi-convex for some K.

Theorem 5.5. Let X denote a locally finite dimensional 7-systolic complex. Let
Y � X be a K-quasi-convex subcomplex, for some K > 0. Then there exists an
integer n.K/ such that for every n � n.K/ the neighbourhood Bn.Y; X/ is salient.

Proof. Since X is 7-systolic, it is Gromov-hyperbolic (see Theorem 2.3 (2)). Thus X

admits quasi-projections on quasi-convex subcomplexes (see e.g. Proposition 3.11
on p. 463 in [2]). In particular, there exists an integer d D d.K/ � 0 such that for
any vertex x in X and any vertices v1; v2 in Y , if d.x; v1/ D d.x; Y / D d.x; v2/

then we have d.v1; v2/ � d .
Now, we set n.K/ D max .K; d.K/ C 2/. Since n.K/ � K and Y is K-quasi-

convex, it follows that for any n � n.K/ the neighbourhood Bn.Y; X/ is con-
nected. To prove that Bn.Y; X/ is salient, it remains to check its links at vertices
(see Lemma 2.10).

Let x be a vertex of Bn.Y; X/. If d.x; Y / < n, we have ŒBn.Y; X/�x D Xx . Thus,
it remains to consider the case when d.x; Y / D n. In this case, denote by ProjY .x/

the set of vertices of Y at distance n from x. By the properties of quasi-projections,
the set ProjY .x/ has diameter at most d.K/. For each y 2 ProjY .x/, denote by �y

the projection of x on the sphere Sn�1.y; X/. We claim that the set of simplices
f�y W y 2 ProjY .x/g spans a simplex of X . Indeed, since n � n.K/ � d.K/ C 2, it
follows from Corollary 5.3 that any pair of simplices from this set spans a simplex. The
claim then follows by flagness of X , and by the fact that X is locally finite dimensional
(the latter implies that the set f�y W y 2 ProjY .x/g is finite, even if ProjY .x/ is infinite).
We denote by � the simplex of X spanned by the set f�y W y 2 ProjY .x/g.

Observe that, again due to flagness of X , the simplex � belongs to the link Xx .
Moreover, using Lemma 2.11 and Lemma 2.15 we get

ŒBn.Y; X/�x D S
y2ProjY .x/

ŒBn.y; X/�x D S
y2ProjY .x/

B.�y ; Xx/ D B.�; Xx/:

Thus Bn.Y; X/ is salient.



240 F. Haglund and J. Świa̧tkowski

Definition 5.6. Let � be a word-hyperbolic group. A subgroup H < � is quasi-
convex if H is a quasiconvex subset in the Cayley graph C.�; S/ for some finite
generating set S .

Recall that, since � is word-hyperbolic, quasi-convexity does not depend on the
choice of the generating set S ([2], Corollary 3.6, p. 461).

Remark 5.7. When H is a quasi-convex subgroup of a word-hyperbolic group � ,
and � acts discretely cocompactly on a simplicial complex X , then for any compact
subcomplex D � X the union Y D S

h2H hD is a quasiconvex subcomplex of X .
Indeed, for any vertex v0 2 D, the map � 7! �v0 is a quasi-isometry of � onto X

(admitting a quasi-inverse). It follows that the orbit H fv0g is quasiconvex, because
quasi-geodesics of � are at finite Hausdorff distance of a geodesic ([2], Theorem 1.7,
p. 401). Now the quasi-convexity of Y follows, since by compactness of D and
hyperbolicity of X any geodesic with endpoints in Y is at finite Hausdorff distance
of a geodesic with endpoints in some orbit H fv0g (v0 a vertex of D).

Observe that in the next corollary � is a 7-systolic group, and hence it is word-
hyperbolic (see Corollary 2.4).

Corollary 5.8. Let X be a locally compact 7-systolic complex and let � be a group
acting discretely and cocompactly on X . Then any quasiconvex subgroup H is convex
cocompact in the following sense: there exists a convex .even salient/ subcomplex Y

such that H preserves Y and H acts on Y discretely and cocompactly.

Proof. Since H is quasiconvex for any fixed vertex v0 the subcomplex Z D H:fv0g is
quasiconvex. Thus by Theorem 5.5 for some large n the subcomplex Y D Bn.Z; X/

is salient. Since Z is H -invariant, so is Y . And since H is cocompact on Y and balls
in X are compact, H is also cocompact on Y .

6. QCS for 7-systolic simplices of groups

In this section we prove the main result of the paper, Theorem 6.1. We also give some
explicit examples of groups to which this theorem applies.

Theorem 6.1. Let G be a locally 7-large, locally extra-tilable simplex of finite groups.
Then any quasi-convex subgroup of the fundamental group of G is separable.

Proof. Let X denote the universal cover and � the fundamental group of G . By
Proposition 3.6 the simplicial complex X is then 7-systolic and � acts on it properly
discontinuously, cocompactly, and in a locally extra-tilable way.
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Let H be any quasi-convex subgroup of � . We want to show that H is an in-
tersection of finite index subgroups. That is, we need to show that for any element
g 2 � n H there is a finite index subgroup � 0 < � such that H < � 0 and g … � 0.

Let 	 be a top-dimensional simplex of X . Consider the subcomplex Z of X

being the union of all simplices in the orbit of 	 under H . Z is then a quasi-convex
subcomplex of X by Remark 5.7. Let g be any element of � n H . There exists an
integer n such that the subcomplex Y D Bn.Z; X/ contains the simplex g	. By
Theorem 5.5, choosing n larger if necessary, we may assume that Y is salient. It
is also clear that H preserves Y , and that H is cocompact on Y (by local finiteness
of X ). By Theorem 3.4, Y is a strict fundamental domain for the subgroup �.Y / � �

generated by the stabilizers of maximal simplices inside @Y . Since H preserves Y ,
it acts by conjugation on this family of stabilizers. Thus H acts by conjugation on
�.Y /. Let � 0 � � denote the semi-direct product of �.Y / and H . We claim that � 0
is a finite index subgroup of � and that � 0 does not contain g.

First, since � acts simply-transitively on the set C of top dimensional simplices
in X , the index Œ� W � 0� is equal to the number of orbits of � 0 in C . Since Y is a
(strict) fundamental domain for �.Y /, every such � 0-orbit meets the set C.Y / of top
dimensional simplices contained in Y . Since H is cocompact on Y , it is cofinite on
C.Y /, and thus there are finitely many � 0-orbits in C , so Œ� W � 0� < 1.

We turn to proving that g 62 � 0. If, on the contrary, we have g 2 � 0, then g D �h

for some � 2 �.Y / and h 2 H . We also have g	 D �h	, and thus both h	 and
�.h	/ are contained in Y . Since Y is a strict fundamental domain for �.Y /, and since
� 2 �.Y /, we have �.h	/ D h	. This implies that � D 1, because top-dimensional
simplices of X have trivial stabilizers under � . Consequently, g D h and thus g 2 H ,
which contradicts the assumption.

Remark 6.2. The proof above shows in fact that every quasi-convex subgroup H <

� is an algebraic retract � 0 ! H (with kernel �.Y /), where � 0 < � is a finite
index subgroup. And it is well-known that such a virtual retract is separable (see for
instance [10]).

As we have already mentioned, simplices of groups satisfying the assumptions of
the above theorem exist in abundance in every dimension (Proposition 3.7). As it is
shown in [12] (Corollary 19.3 (1)), the fundamental groups of simplices of groups as
above may have arbitrarily large (virtual) cohomological dimension.

In the remaining part of this section we will show explicit examples in dimension 2.

Example 6.3 (some triangular Coxeter groups). Given positive integers m1; m2; m3

such that 1
m1

C 1
m2

C 1
m3

< 1 consider some hyperbolic triangle T .m1; m2; m3/

with angles �
m1

; �
m2

; �
m3

. Let W.m1; m2; m3/ denote the group of isometries of the
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hyperbolic plane generated by the reflections in the sides of T .m1; m2; m3/, and let

X D S
w2W.m1;m2;m3/

wT .m1; m2; m3/

denote the associated tesselation of H2. It is clear that T .m1; m2; m3/ is a strict
fundamental domain for the action of W.m1; m2; m3/ on X .

The links of vertices in X of corresponding types are 2mi -gons, so X is 7-systolic
iff each mi is � 4. Moreover, the stabilizers of vertices are the dihedral groups
D2mi

of order 2mi , with standard actions on the corresponding links. It is then
easy to observe that and the action of W.m1; m2; m3/ is locally extra-tilable iff each
mi is divisible by 6. By Theorem 6.1, we deduce that the Coxeter group W D
ht1; t2; t3jt2

1 ; t2
2 ; t2

3 ; .t1t2/6k3 ; .t2t3/6k1 ; .t1t3/6k2i is QCS (for any choice of positive
integers k1; k2; k3).

Any surface group is commensurable to a group W as in Example 6.3. Since the
property QCS is commensurability invariant, we have reproved the following result
of Scott [17] (by essentially the same method).

Corollary 6.4. Any surface group is QCS.

Before giving a somewhat thicker two-dimensional example, we describe an extra-
tilable, chamber-transitive action on a graph. We refer to [2] for the vocabulary on
simple complexes of groups.

Example 6.5 (.Z2; Z3/-group). Let E be the 1-simplex with vertices v1; v2. Denote
by F the simplex of groups over E with vertex groups Gv1

D Z2 and Gv2
D Z3, and

with GE D f1g (so that F is @-supported). We will describe a morphism m W F ! T

to certain group T of order 216.
Let … be the euclidean plane tesselated by regular hexagons. Denote by a, b, c,

d , e, f the vertices (in cyclic order) of a chosen hexagon in …. Consider the group
A D Z ˚ Z of automorphisms of … generated by translations through vectors 6 � �!ac

and 6 � �!ae. Then the quotient …=A is a torus tesselated by 36 hexagons.
For every vertex u of … rotations through angles 2�=3 and 4�=3 around u are

clearly automorphisms of …. Since the group A is preserved by conjugation through
these rotations, they are also automorphisms of the quotient …=A. Similarly, for a
center s of any edge 
 of …, reflection with respect to the straight line containing s

and orthogonal to 
 is an automorphism of … that induces an automorphism of the
quotient …=A. Let T be the group of automorphisms of …=A generated by rotations
and reflections as above.

Let P be the barycentric subdivision of the 1-skeleton of …=A. Then T acts by
automorphisms on P . It is not hard to realize that in fact the action of T on P is
without inversions and simply transitive on the edges of P . Consequently, any edge "
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of P is a strict fundamental domain for T . Moreover, the stabilizer of the vertex of ",
say u, which is also a vertex of …=A, is isomorphic to Z3. The stabilizer of the other
vertex, say s, is isomorphic to Z2.

Now define morphism m W F ! T by mapping Gv1
on the stabilizer of s and

Gv2
on the stabilizer of u. Then the development D.F ; m/ corresponding to this

morphism is equivariantly isomorphic to P . It is not hard to see that P is 12-large (in
particular, it is also 7-large). We leave it as an exercise to check that P (identified as
the development D.F ; m/) is extra-tilable. It is the smallest known to us extra-tilable
development of F .

We now use the previous graph as one of the local developments for a 2-simplex
of groups.

Example 6.6 (.Z2; Z2; Z3/-groups). Let 	 be the 2-simplex with vertices v0; v1; v2.
Given an integer k � 1, consider the simplex of groups G over 	 with local groups
G� D f1g, G.v0;vi / D Z2 for i D 1; 2, G.v1;v2/ D Z3, Gv0

D D6k , Gvi
D T for

i D 1; 2 (where T is the group from Example 6.5), and with structure homomorphisms
as in m (see Example 6.5) at vertices v1; v2, and such that hG.v0;v1/; G.v0;v2/i D Gv0

.
The local developments of G at vertices are then isomorphic to a 2k-gon (at v0)

and to D.F ; m/ D P (at v1 and v2). In particular, G is locally 7-large and locally
extra-tilable. Consequently, in view of Theorem 6.1, the fundamental group �1G

is QCS.
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