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Kleinian groups with ubiquitous surface subgroups

Joseph D. Masters

Abstract. We show that every finitely generated free subgroup of a right-angled, co-compact
Kleinian reflection group is contained in a surface subgroup.
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1. Introduction

It is conjectured that every co-compact Kleinian group contains a surface subgroup.
We show that, for some special examples, much more is true.

Theorem 1.1. Let P be a right-angled, compact Coxeter polyhedron in H3, and let
['(P) C Isom(H?) be the group generated by reflections in the faces of P. Then
every finitely generated free subgroup of I'(P) is contained in a surface subgroup of
r'(P).

Remarks. 1. It is well known that every such I'(P) contains a surface subgroup.
Indeed, it was shown in [6] that the number of “inequivalent” surface subgroups of
I'(P) grows factorially with the genus.

2. Lewis Bowen has recently applied Theorem 1.1 to show that every such I'(P)
contains a sequence of surface subgroups for which the Hausdorff dimensions of the
limit sets approach two (see [3]).

2. Outline of the proof

Given a free subgroup G, we look at the convex core Core(G) = Hull(A(G))/G,
which will be homeomorphic to a handlebody. Replacing Hull(A(G)) with a suitable
nighborhood in H?3, we can expand the handlebody to make it polyhedral, so that the



264 J.D. Masters

boundary is a union of copies of the faces of P. By expanding further, we can make
the induced decomposition of the boundary finer and finer. If we expand enough, it
becomes possible to attach mirrors to certain faces along the boundary (see Figure 1),
in such a way that the resulting 3-orbifold is the product of a compact 2-orbifold with
an interval. The desired surface group is a finite-index subgroup of the 2-orbifold

group.

Figure 1. Mirrors are attached to the lightly-shaded faces.

3. Proof

Proof. The first ingredient is the Tameness Theorem. Let G be a free subgroup
of I'(P). Then by [1] and [5], the (infinite-volume) hyperbolic manifold H3/G
is topologically tame, i.e., homeomorphic to the interior of a compact 3-manifold.
Then work of Canary ([4]) implies that G is geometrically finite — i.e., if C is an
e-neighborhood of the convex hull of the limit set of G, then C/G is a compact
3-manifold.

The next step, based on the ideas of [7], is to give a polyhedral structure to C¢/G.
Let 7 be the tesselation of H3 by copies of P, and let C* be the tiling hull of G — this
is the intersection of half-spaces containing C, with the restriction that each half-space
must be a union of faces in 7. Then C T is convex and invariant under G, and C*/G
is compact (see [2], 3.1). It follows that C ¥ /G is a compact irreducible 3-manifold
with free fundamental group, and thus C* /G is homeomorphic to a handlebody W .

The tesselation T induces a tesselation of 0W. Since all dihedral angles of P are
7 /2, then every pair of adjacent faces in W will meet at an angle of either 7z /2 or 7.
However, if two faces meet at an angle of i, then we actually consider them as part of a
single face. Thus, every face in dW can be decomposed as aunion F = X U---U X,
where each X; is congruent to a face of the original polyhedron P.

Lemma 3.1. Each face in OW is an embedded disk.

Proof. Suppose not. Then there is a face F C dW with non-trivial ;. Let y be a
non-trivial loop in F. Since F is a totally geodesic sub-manifold, there is a loop in
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F which is freely homotopic to y, and which represents a geodesic in W. But this is
impossible, since the convex core of G is contained in the interior of W'. O

Along each X;, we may attach to W a copy of P, to obtain a handlebody with
convex boundary containing W, called the expansion of W along F. More generally,
we define an expansion of W to be a handlebody W’ O W, obtained from W by a
finite sequence of such operations.

Let g be the genus of W, and represent W as S x I, for a planar surface S. Let
Qj,....0p=g+1 be the boundary curves of S x {0}. Say that a collection of faces
F of aW forms a face annulus if the faces can be indexed Fi, ..., Fy,, where F; is
adjacent to F; if and only if [i — j| = 1 (mod m) and (), F; = 9. The last condition
excludes the case of three faces meeting at a vertex.

The following lemma is the key to proving Theorem 1.1.

Lemma 3.2. There is an expansion W' of W and a collection ¥ of disjoint face
annuli Ay, ..., An C W', so that the core curve of A; is freely homotopic to o;
in W'

Proof. Let A = |J; «;. Our first claim is that there is an expansion W' of W so
that, after an isotopy of the «;’s to dW’, we have F N A being connected for each
F e ow’.

We may assume, after an isotopy, that each face in W meets + in a collection of
disjoint, properly embedded arcs. Let

k = k(A) = Maxpeyw | F N A|.

Suppose k > 1. Let n(-4) be the number of faces in dW which meet #4 in k com-
ponents. Let F € dW such that |[F N #4| = k, and let W’ be the expansion of W
along F. Note that W’ — W is a polyhedron P’ (made up of copies of P) with dihedral
angles /2. Let F' be the face of P’ which is identified to F, and let F, ..., F, be
the faces in P’ which are adjacent to F’, in cyclic order.

Let Ni(F') = F'UF[U---UF,, and let N»(F’) be the union of N (F’) together
with all faces in P’ which meet faces in Nq(F’). Since P’ is a Coxeter polyhedron
in H3, it follows that int N»(F’) is an embedded disk.

Recall that 4 N F consists of k disjoint arcs; let 81, . .., B be the images of these
arcs in F’, and let (p;, ¢;) be the endpoints of j;.

Lemma 3.3. There are disjoint arcs y; in 0P’ — F’ with endpoints (p;, q;) so that:
1. |F* n(Y )/,-)\ < k for all faces F* in 0P’ — N1(F").

2. [Fin(Uwi)| = |F/n (UdBi)| forall j.
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Proof. Case 1: There are four endpoints (say (p1,4¢1), (p2,¢2)) which lie on four
distinct sides of F”.

In this case, we let § be a properly embedded arc in Ny (F"), disjoint from | J; B,
which separates 8; and 8, (See Figure 2). For each i, let ,3i+ (resp. ;") be an arc,
properly embedded in some Fj, so that one endpoint is on dN;(F), the other is the
point p; (resp. ¢;) and so that the arcs BE, B3, ... are all disjoint from each other
and from §. Let B be the component of ON (F') — (,BlJr U B;7) which is disjoint from
5. Lety; = :31+ U B;” U B. After an isotopy (supported in a neighborhood of B in
N>(F') — int N1 (F")) the arcs y; satisfy the hypotheses of the lemma.

Figure 2. a. The polyhedron F’. b. Construction of y;’s (Case 1).

Case 2: Suppose that some edge of F' meets every arc §;.

We repeat the construction from Case 1 (i.e., pick an arc § in Ny (F’) disjoint
from the B;’s, separating B; and f,; then construct ,BZ.i’s, B}’s, and y;’s). The only
difference is that we must arrange that the arcs 1+, ,3; ,... are not all parallel (i.e.,
their union meets at least three distinct sides) and that the arcs 81, B5 . ... are not all
parallel. This can be done, since, P’ being a right-angled Coxeter polyhedron in H?3,
each F/ has at least five edges (see Figure 3). O

Now we return to the proof of Lemma 3.2. We obtain a loop ¢} in W' by replacing
each B; C «a; with y;. Let A" = (Ja;. Since the face F has been removed and
replaced by faces which meet 4’ in fewer than k components, we have n(A') < n(A).

Similarly, we see that, by enlarging W repeatedly, n(#) can be reduced until it
reaches 0. By further enlargements, we may suppose that k(4) = 1. So we may
assume that F' N +4 is connected for each F.

Let A; be the union of the faces which meet ;. For each face F in | J 4;, let us
define the overlap of F by the formula:

o(F) = (Number of faces in | J A; which are adjacent to F) — 2.
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Figure 3. Construction of y;’s (Case 2).

Since the core curve of A; is essential in W, no point in dW meets every face in 4;.
Thus, if o(F) = 0 forall F € | J 4;, then the A;’s are the disjoint face annuli we are
looking for.

Let F be aface in A;, let F; and F, be the two faces in A; which are consecutive
to F,and lete; = F N F;. Let y; and y, be the components of 0F — {e; U e5}. We
say that F is good if one of the y;’s is disjoint from the interior of | 4;.

Case 3: Every face in | 4; is good.

Let F be a face in some A;, and let 8 = F N (Ue;). By previous assumption, S is
connected. Let p and ¢ be the endpoints of 8. As before, let W’ be the enlargement
of W along F,let P’ = W’ —int W, and let F’ be the face of W’ which is identified
to F. Let F|, ..., F, be the faces adjacent to F’ in P’, labeled consecutively, so that
p € 0F] and g € dF/. Since F is good, then we may assume that none of the faces
F,,...,F/_;is glued to afacein | J 4;.

As in the proof of Lemma 3.3, we replace 8 with an appropriate arcy C dP'— F’.
In this case, we choose arcs 87 (resp. B7) from p (resp. ¢) to AN (F’), so that BT and
B~ each meet only one face of dP’. We let 8* be the component of N (F') — (B U
B1) contained in Fy, ..., F/; then we perturb f* so that it is a properly embedded
arc in No(F’) — N1(F’). See Figure 4.

A complication is that dN,(F’) may not be an embedded circle in P’, and thus
there may be pairs of adjacent faces in P’ which meet 8* non-consecutively. In this
case, we perform “shortcut” operations on 8*, as indicated in Figure 5.

Lety = B U B~ U B*. Then we have the required arc y and a new loop o’
The number of faces with positive overlap decreases, so eventually we may eliminate
them all.

Case 4: Suppose there is a face F in | J A; which is not good.

Here the construction is similar to the construction of Case 3. In this case, we
choose B* to be either of the two components of dN(F’) — 8] U B ; then we push
B* off of AN (F’); and then, as in Case 3, we perform shortcuts if possible. The result
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Figure 4. Construction of y in Case 3; shaded faces may possibly glue to (] 4;; however F}
and F} do not.

Figure 5. If the edges with arrows are actually the same, then it is possible to shorten the arc §*.

is that the face F is removed and replaced with good faces. Repeating this operation
along all faces which are not good, we may reduce to Case 3.

Thus, we have shown that, after a sequence of enlargements, every face in [ 4;
has zero overlap. Thus we have constructed the required A;’s, completing the proof
of Lemma 3.2. O

Returning to the proof of Theorem 1.1, we let H be the group generated by G,
together with the reflections in the lifts to H3 of the faces of the face annuli A1, . .., 4,.
Then we claim that H is the group of a closed, hyperbolic 2-orbifold.

Indeed, let V' be the orbifold with underlying space W and with mirrors on the
faces of Ay,...,A,. Then V is a hyperbolic 3-orbifold with convex boundary, and
there is alocal isometry i : V' — H?3/T'(P), withinduced map iy : 7{"™ (V) — I'(P),
so that image(ix) = H. Since V has convex boundary, every element in 7™ (V) is
represented by a closed geodesic, and since i takes geodesics to geodesics, it follows
that i is 71 -injective.
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Just as a handlebody is homeomorphic to a planar surface times /, one may check
that the 3-orbifold V' is equivalent to a product orbifold X x I, where X is the 2-orbi-
fold with reflector edges corresponding to one of the components of dW —(_J A;. The
underlying space of X is a planar surface, and there are cycles of reflector edges on
the frontier. Thus H = image(i,) is isomorphic to the orbifold fundamental group
of X.

The orientable double cover of X is a 2-orbifold, X, where the underlying space
is an orientable surface of genus g and the cone points of X all have order 2. If we
identify H with 7{"™ X, then the loops generating G all lift to X,andso G C m X.
The group X has a torsion-free sub group of index two (if the number of cone points
is even) or four (if the number of cone points is odd), containing G. This is the surface
subgroup we were looking for. O
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