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Iterated monodromy groups of quadratic polynomials, I
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Abstract. We describe the iterated monodromy groups associated with post-critically finite
quadratic polynomials, and make explicit their connection to the ‘kneading sequence’ of the
polynomial.

We then give recursive presentations by generators and relations for these groups, and study
some of their properties, like torsion and ‘branchness’.
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1. Introduction

Symbolic dynamics of quadratic complex polynomials are traditionally studied by
their “kneading sequence”, an infinite sequence over the alphabet f0; 1; �g that encodes
symbolically the dynamics of the map (see [9], [16]). This sequence is (pre)periodic
if the polynomial has finite post-critical set, and we shall make that assumption here.

A construction by the second author associates a finitely generated group, defined
by automata, with such a polynomial. This group is the iterated monodromy group
of the polynomial, and acts on a binary rooted tree.

In this paper, we show that the automata defining the group may be chosen in a
particularly simple manner. These automata are “bounded”, i.e., their activity is trivial
away from a ray in the tree. If the tree’s rays are labeled by infinite f0; 1g sequences,
then the rays on which activity is non-trivial are the translates of the periodic part of
the kneading sequence of the polynomial.

Actually, we study a class of groups containing all the iterated monodromy groups
of post-critically finite quadratic polynomials as a proper subset. The first set of
such groups K.v/ corresponds to kneading sequences of the form .v�/! , and the
second set of groups K.w; v/ corresponds to kneading sequences of the form w.v!/.

�The second author acknowledges partial support by NSF grant DMS-0605019.



310 L. Bartholdi and V.V. Nekrashevych

Since not every sequence of this form is realizable as a kneading sequence, not all
groups K.v/ and K.w; v/ are iterated monodromy groups of quadratic polynomials.
In particular, if v is periodic (is a proper power of a word), then K.w; v/ is not an
iterated monodromy group of any polynomial (they are iterated monodromy groups
of obstructed topological polynomials). In all the other cases the corresponding
groups are the iterated monodromy groups of some post-critically finite polynomials
of degree 2n. For more details see a general description of the iterated monodromy
groups of post-critically finite polynomials in [17].

We describe elementary properties of the groups K.v/ and K.w; v/. Unsur-
prisingly, the groups are of a very different nature depending on whether the kneading
sequence is periodic (for K.v/) or pre-periodic (for K.w; v/):

� if the sequence is periodic, these groups are weakly branch, but not branch; they
are torsion-free;

� if the sequence is pre-periodic, these groups are branch, and contain elements of
arbitrarily high 2-power order, as well as elements of infinite order.

We give in all cases recursive presentations for these groups.
The paper is organised as follows: Section 2 contains necessary recollections on

iterated monodromy groups; Section 3 describes the groups K.v/ associated with
periodic kneading sequences; Section 4 describes the groups K.w; v/ associated with
pre-periodic kneading sequences; and Section 5 proves that these groups are indeed
the iterated monodromy groups of polynomials with prescribed kneading sequence.

Our aim in this paper was to show that kneading sequences and bounded automata
are really equivalent descriptions for post-critically finite quadratic polynomials and
to describe the basic algebraic properties of the iterated monodromy groups.

Some of the groups we consider already appeared in the literature, and the present
paper extends or unifies algebraic results concerning them. The groups K.v/ and
K.w; v/ that coincide with previously known ones are

� K. / D Z;

� K.0; 1/ D K.1; 0/ D the infinite dihedral group;

� K.0/, an “amenable non-subexponentially-amenable” group considered in [7],
where it is called the “Basilica group”;

� K.0; 11/, a group whose growth is studied in [12];

� K.0; 111/, a group whose Lie algebra is studied in [2], and whose presentation
and growth are studied in [3], where it is called the “Grigorchuk overgroup”.
This group contains Grigorchuk’s example of an infinite torsion group [13] as a
subgroup.
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1.1. Notation. The notation we use is quite standard, with groups acting on the
right. We therefore write Œa; b� D a�1b�1ab, and ab D b�1ab. More generally, we
write gk1h1C���Cknhn D .gk1/h1 : : : .gkn/hn for ki 2 Z and g; hi group elements. The
derived subgroup ŒG; G� of G is written G0. The cyclic group of order n is written Z

nZ .
The notation a D hha0; a1ii� describes an automorphism a of the binary tree. It

first acts as a0 on the left subtree and as a1 on the right subtree, and then applies the
permutation � to these two subtrees.

On the other hand, if g is an element of a free group F that acts (in principle
non-faithfully) on a tree, this action will in our cases be described by a map ‰ W F !
.F � F / Ì S2. Then the notation ‰.g/ D hhg0; g1ii� describes the image of g using
the same convention as above.

If v is a finite word over an alphabet X then jvj denotes its length, i.e., such n that
v 2 Xn.

2. Iterated monodromy and self-similar groups

2.1. Iterated monodromy groups. We present in this subsection a review of the
notions and results related to iterated monodromy groups. More details can be found
in [17].

A polynomial f 2 CŒz� is said to be post-critically finite if the orbit of every
critical point is finite. The union Pf D S

n�1 f ın.Cf / of the orbits of critical points
is called the post-critical set of f ; here Cf is the set of critical points of f .

Suppose that f is a post-critically finite polynomial. We consider it as a branched
self-covering of the complex plane. Moreover, it is a covering map f W Cnf �1.Pf / !
C n Pf of the punctured plane C n Pf by its open subset C n f �1.Pf /.

Consider now the general situation of a covering f W M1 ! M of a path connected
and locally path connected topological space M by an open subset M1. We can iterate
the partially defined map f to obtain coverings f n W Mn ! M of M by open subsets.

Take a basepoint t 2 M. Then the fundamental group �1.M; t / acts naturally on
the set of preimages f �n.t/: the image of a point z 2 f �n.t/ under the action of a
loop � 2 �1.M; t / is equal to the endpoint of the f n-preimage of � that starts at z.
Such a preimage exists and is unique, since f n W Mn ! M is a covering.

In this way, we get an action of �1.M; t / on the formal disjoint union
F

n�0 f �n.t/,
the backward orbit of t . The quotient of �1.M; t / by the kernel of its action is called
the iterated monodromy group of f and is denoted IMG.f /.

The backward orbit T has a natural structure of a rooted tree. The root is the
unique element t of the set f �0.t/ and the vertex z 2 f �n.t/ of the nth level of the
tree is connected to the vertex f .z/ 2 f �.n�1/.t/ of the .n � 1/-st level.

It is easy to see that the actions of the fundamental group and of the iterated
monodromy group preserve the structure of the rooted tree.
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Suppose that the degree of the covering f (i.e., the number of preimages of a
point) is finite and is equal to d . Choose an alphabet X of d letters and consider the
tree of words X� over this alphabet, i.e., the free monoid generated by X , in which
a word v is connected to all words of the form vx for x 2 X . The root of X� is the
empty word. Since both the tree of words X� and the tree of preimages T are regular
d -trees, they are isomorphic.

A particularly nice class of isomorphisms ƒ W X� ! T are constructed in the
following way. Choose an arbitrary bijection ƒ W X ! f �1.t/ of the first level of
the tree X� with the first level of the tree T . Choose also a collection of connecting
paths `x from t to ƒ.x/ in M.

We define now the isomorphism ƒ inductively level by level. It is already defined
on the zeroth and first levels. Suppose that it is defined on the nth level. Let v 2 Xn

be an arbitrary vertex of the nth level and let x 2 X be an arbitrary letter. Then
the path `x has a unique f n-preimage starting at ƒ.v/. We declare ƒ.xv/ to be the
endpoint of this preimage.

The map ƒ W X� ! T that we just constructed is an isomorphism of rooted trees,
and the following proposition makes it possible to compute the action of elements of
the fundamental group on the tree T .

Proposition 2.1. Let us conjugate the action of �1.M; t / on the tree T by the iso-
morphism ƒ W X� ! T constructed above. Then the resulting action of �1.M; t / on
X� is computed by the following recursive formula:

.xv/� D y.v/`x�x`�1
y ;

where x 2 X , v 2 X� and � 2 �1.M; t / are arbitrary, �x is the f -preimage of �

starting at ƒ.x/ and y is such that ƒ.y/ is the end of �x .

2.2. Automata. Recursive formulæ as in Proposition 2.1 are conveniently inter-
preted in terms of automata theory. We interpret IMG.f / (or �1.M; t /) as an au-
tomaton which being in a state � and reading as input a letter x produces as output
the letter y and moves to state `x�x`�1

y . Then it is ready to read a new input.
We describe such automata (or their subsets) by their Moore diagram. It is a graph

whose vertices are identified with the states of the automaton, in which we have an
arrow from a state q1 to a state q2 labeled by a letter x 2 X if the automaton, being
in state q1, after reading the letter x goes to the state q2. We also label the vertices of
the automaton by the transformations of the letters that they define.

In particular, if X D f0; 1g and the automaton describes an action of a group G

on the tree X�, then every state g 2 G acts either by the rule .0w/g D 0.w/g0 and
.1w/g D 1.w/g1 or by the rule .0w/g D 1.w/g0 and .1w/g D 0.w/g1 , where g0,
g1 are next states of the automaton and w 2 X� is arbitrary. In the first case we say
that g is inactive and write g D hhg0; g1ii, in the second case we say that g is active
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and write g D hhg0; g1ii� . In both cases we have in the Moore diagram an arrow
from g to gi labeled by i . We will mark the inactive states in a Moore diagram by
white dots, and the active states by black dots.

The notations g D hhg0; g1ii and g D hhg0; g1ii� come from the decomposition
of the automorphism group aut.X�/ of the binary rooted tree into the (permutational)
wreath product aut.X�/ o S2 D aut.X�/X Ì S2. The factor S2 acts on the tree just
by its action on the first letter of words, and the factor aut.X�/X acts separately on
the each of the subtrees xX�:

.0v/hhg0;g1ii D 0.vg0/; .1v/hhg0;g1ii D 1.vg1/:

Then � 2 S2 denotes the transposition and hhg0; g1ii� is equal to the composition of
hhg0; g1ii and � .

2.3. Self-similar groups

Definition 1. A group G acting faithfully on the tree X� is said to be self-similar if
for every g 2 G and every x 2 X there exist h 2 G and y 2 X such that

.xw/g D ywh

for all w 2 X�.

In other terms a self-similar group is an automaton such that the set of transfor-
mations of X� defined by its states is a group with respect to composition.

In particular, Proposition 2.1 shows that iterated monodromy groups act on X�
self-similarly (i.e., they are self-similar groups).

If G is a self-similar group acting on the binary tree then each of its elements g is
decomposed either as g D hhg0; g1ii or as g D hhg0; g1ii� according to its action on
X � X� and, by the definition of self-similarity, we have g0; g1 2 G.

Hence every self-similar group G comes with an associated wreath recursion
G ! G o SX . On the other hand, every such homomorphism defines recursively an
action of G on X� (which is also called self-similar, though it may be non-faithful).

If ‰ W G ! G o SX is a homomorphism, then for g 2 G and v 2 X� we define
the restriction gjv recursively by the rule

g D hhgj0; gj1ii�; � 2 SX

and
gjvx D gjvjx

for all v 2 X� and x 2 X . We also assume that gj; D g, where ; denotes the empty
word.
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If the action of G on X� is faithful, then the restrictions are uniquely defined by
the condition

.vu/g D vgugjv

for v; u 2 X�.

Proposition 2.2. Let G be a self-similar group and let N be a normal subgroup of G

which belongs to the stabilizer of the first level. If G=N is torsion free, then so is G.

Proof. Suppose that g 2 G has finite order. Since G=N is torsion free, we have
g 2 N . This implies that g belongs to the stabilizer of the first level, so .gn/jx D
.gjx/n for all x 2 X . The elements gjx therefore also have finite order. Repeating
the same argument, we obtain inductively that g fixes X�, so g D 1.

Definition 2. A self-similar group G is called recurrent (or self-replicating) if its
action is transitive on the first level of the tree X� and if for some (and thus for all)
x 2 X the homomorphism g 7! gjx W Gx ! G is onto, where Gx is the stabilizer of
x in G.

It is easy to prove that if a self-similar group is recurrent, then it is transitive on
every level of the tree X� (the group is then called level-transitive).

Definition 3. A homomorphism ‰ W G ! G o SX is contracting if there exits a finite
set N � G such that for every g 2 G there exists n 2 N such that gjv 2 N for all
words v of length � n. The smallest such set N is called the nucleus of ‰.

We say that a self-similar group is contracting if the associated wreath recursion
is contracting. The nucleus of the recursion is called then the nucleus of the group.

It follows directly from the definitions that the nucleus is an automaton, i.e., that
for every element g of the nucleus and for every x 2 X the restriction gjx is in the
nucleus.

2.4. Bounded automata

Definition 4. An automorphism g 2 aut.X�/ is finite state if it is defined by a finite
automaton, or, equivalently, if the set fgjv j v 2 X�g is finite.

An automorphism g 2 aut.X�/ is called bounded if it is finite-state and the
sequence

qn D jfv 2 Xn j gjv ¤ 1gj
is bounded. Here 1 is the identity tree automorphism.
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It is not hard to see that the set of all bounded automorphisms of the tree X� is a
group.

Bounded automata and tree automorphisms were defined and studied for the first
time by S. Sidki in [18]. The following description of bounded automata follows from
his results.

Definition 5. An automorphism g 2 aut.X�/ is called finitary if there exists n 2 N
such that gjv D 1 for all v 2 X� of length more than n.

An automorphism g 2 aut.X�/ is called directed if there exists v 2 X� such that
gjv D g and gju is finitary for every u 2 X� such that u ¤ v and juj D jvj. Then
the infinite word v! D vvv : : : is called the kneading sequence of g.

If g is finitary, then it acts only on the first n letters of every word for some fixed
n. If it is directed, then all of its non-trivial action on the tree is concentrated around
the path described by the kneading sequence.

It is easy to see that every finitary and every directed automorphism is bounded.

Proposition 2.3. If g 2 aut.X�/ is bounded, then there exists n such that gjv for
every v 2 Xn is either finitary or directed.

We have the following properties of groups of bounded automata.

Theorem 2.4 ([8]). If G acts on X� by bounded automata, is finitely generated and
self-similar, then it is contracting.

Theorem 2.5 ([5]). The group of all bounded automorphisms of the tree X� is
amenable.

2.5. Branch groups. We say that a group G acting on a regular tree X� is regular
weakly branch on H � G if H is non-trivial and contains the geometric direct product
H � � � � � H with jX j factors. Here by geometric direct product we mean the group
generated by copies of H acting disjointly on all subtrees xX� with x ranging over X .
The group G is regular branch on H if it is weakly branch on some subgroup H that
has finite index in G.

Proposition 2.6 ([4], Theorem 6.9). Let G be a regular weakly branch group on its
subgroup L, and suppose that a subgroup K of L has a regular orbit on Xn for
some n. Then G contains lim onK D S

n�0 K o � � � o K.

In particular, if there exists such a K Š Z
pZ , then G contains every finite p-group.

Proof. Since G is weakly branch, it contains the subgroup K0 D K, and for all i � 1

the subgroup Ki D 1 � � � � � Ki�1 � � � � � 1 with jX jn factors, where the Ki�1 is at
any position on a regular orbit of K.
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The group generated by K0 [ K1 [ � � � is isomorphic to lim onK.
It is known [15] that every extension embeds in a wreath product; since finite

p-groups are iterated extensions of Z
pZ , the second claim follows.

3. The groups K.v/

Let v D x1x2 : : : xn�1 be a word over the alphabet X D f0; 1g. We denote by K.v/

the subgroup of aut.X�/ generated by the elements a1; : : : ; an defined by

a1 D hh1; anii�; aiC1 D
(

hhai ; 1ii if xi D 0;

hh1; ai ii if xi D 1;

when 1 � i < n.
In other words, the group K.v/ is generated by the automaton whose Moore

diagram is shown on Figure 1. In this diagram, only the edges leading to non-trivial
states are drawn, and the active state a1 is labelled by � .

Figure 1. Automaton generating K.v/.

Note that, in the group K.v/, if we replace the generators ai by their inverses a0
i ,

we obtain the description

a0
1 D hha0

n; 1ii�; a0
iC1 D

(
hha0

i ; 1ii if xi D 0;

hh1; a0
i ii if xi D 1;

when 1 � i < n. Therefore, if we modify the definition of K.v/ by setting a1 D
hhan; 1ii� , we do not change the group.

Let us denote by v0 the word obtained from the word v by changing 0 to 1 and 1 to
0. It is easy to see then that the groups K.v/ and K.v0/ are conjugate; more precisely,
K.v0/ D K.v/˛ , where ˛ 2 aut.X�/ is defined by the recursion ˛ D hh˛; ˛ii� . Note
that ˛ also interchanges 0 and 1, i.e., v˛ D v0.
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Lemma 3.1. The group K.v/ is recurrent and level-transitive.

Proof. The projections of the elements aiC1, a
a1

iC1 and a2
1, all fixing the first level of

X�, give all generators; the action is therefore recurrent.
To check that the action of a recurrent group is level-transitive, it suffices to check

that it is transitive on the first level; this is achieved by a1.

3.1. Wreath recursion. Let us denote by Fn the free group on fa1; : : : ; ang, and by
S2 D f1; �g the symmetric group on X D f0; 1g. Let ‰ W Fn ! Fn o S2 be given
by the recursive definition of the group K.v/, i.e.,

‰.a1/ D hh1; anii�; ‰.aiC1/ D
(

hhai ; 1ii if xi D 0;

hh1; ai ii if xi D 1;
(1)

when 1 � i < n.
We can iterate the map ‰ to obtain a homomorphism ‰k W Fn ! Fn oS2 o � � � oS2,

where S2 appears k times in the iterated permutational wreath product.

Lemma 3.2. The wreath recursion ‰ is contracting: if ‰n.g/ D hhg0; : : : ; g2n�1ii�
and kgk > 2, then kgik < kgk for all i .

The nucleus of K.v/ (and of the wreath recursion ‰) may be expressed as follows:
let d be maximal such that vx D ud for some x 2 f0; 1g. Then the nucleus of K.v/

contains 1 C n.d C 1/ elements. Taking indices modulo n, they are 1, a˙1
i , and

a�
i a��

iC.n=d/j
for any j 2 f1; : : : ; d � 1g, with the sign � D 1 if xn=d D x D 0 and

� D �1 if xn=d D x D 1.

Proof. Let us prove that the described set of elements of Fn is the nucleus of the
recursion ‰.

It follows directly from the wreath recursion that if ‰.g/ D hhg0; g1ii� t , then
kg0k C kg1k � kgk. Let us call an element g stable if kgik D kgk for some
i 2 f0; 1g and the element gi is also stable. In other words, an element g 2 Fk is
stable if for every k there exists a word vk 2 Xk (which is necessarily unique) such
that kgjvk

k D kgk. Note then that for every u 2 Xk different from vk we have
gju D 1, and vk is the prefix of vkC1. Hence there exists an infinite sequence wg

such that vk is the beginning of length k of wg . We call the sequence wg the kneading
sequence of g.

If we prove that the set of stable elements is finite, we will prove that the recursion
is contracting and the nucleus is the set of stable elements, since the length of elements
is non-increasing under taking restrictions.

It is easy to see that if g is stable, then g�1 is also stable and wg�1 D .wg/g .
If g is stable and g D a

�1

i1
a

�2

i2
: : : a

�k

ik
for �i 2 f˙1g and k D jgj, then wg is also

the kneading sequence of a
�1

i1
, .wg/

a
�1
i1 is the kneading sequence of a

�2

i2
, .wg/

a
�1
i1

a
�2
i2
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is the kneading sequence of a
�3

i3
, etc. Otherwise the length of g would decrease

along wg . Hence the set of kneading sequences of the stable elements coincides with
the set K of kneading sequences of the generators and their inverses. Let � be the
graph with set of vertices K in which for every ai there is an edge from the kneading
sequence wai

to the kneading sequence wa�1
i

D .wai
/ai labeled by ai (if we go in

the opposite direction then the edge is labeled by a�1
i ). Then for every stable element

g D a
�1

i1
a

�2

i2
: : : a

�k

ik
there exists a path (without back-tracking) in the graph � labeled

by a
�1

i1
; a

�2

i2
; : : : ; a

�k

ik
.

It follows from the definitions that the kneading sequence of the element
ai is .xixi�1 : : : x11xn�1 : : : xiC1/! and the kneading sequence of a�1

i is
.xixi�1 : : : x10xn�1 : : : xiC1/! . Let, as above, d be the maximal number such that
vx D ud for some x 2 f0; 1g. We denote by x0 ¤ x the other letter of the alphabet. If
x D 1, then the kneading sequence of ai is of period n=d and the kneading sequence
of a�1

i is of period n. If x D 0, then the period of the kneading sequence of ai is
n and the period of the kneading sequence of a�1

i is n=d . In each case the set K

of kneading sequences of stable elements of K.v/ contains n C n=d elements. The
graph � consists of n=d disjoint “stars”: every sequence of period n is connected
to the sequence of period n=d obtained by changing the respective x0 to x. Every
sequence of period n is hence a vertex of � of valence 1 and every sequence of period
n=d is a vertex of valence d . Consequently, paths without back-tracking have length
at most 2 and the labels read on these paths are the elements described in the lemma.
The rest of the lemma easily follows.

Proposition 3.3. Let e1; : : : en be a free basis of the group Zn. The map � W Fn ! Zn

given by ai 7! ei can be extended to a homomorphism � W K.v/ ! Zn. Consequently,
K.v/=K.v/0 Š Zn.

Proof. Write � W Fn ! K.v/ the natural quotient map. Assume by contradiction
that � does not factor through � ; then there exists g 2 ker � n ker �. Let g D
a˙1

i1
a˙1

i2
: : : a˙1

ik
be a shortest (i.e., one with smallest k) element of Fn in ker � nker �.

Clearly we may assume g is not contained in the nucleus, since every non-trivial word
of length � 2 has an active state, and is therefore non-trivial in aut.X�/=aut.X�/0.

Let us write ‰.g/ D hhg0; g1ii. Then, by considering the formulae, we see that
the sum of the lengths of g0 and g1 is at most equal to k; it could be shorter, if some
cancellation inside g0 or g1 occurs. The formulae (1) also show that �.g0/C�.g1/ D
T .�.g//, where T W Zn ! Zn is the isomorphism ei 7! ei�1 mod n. Consequently,
either �.g0/ or �.g1/ is non-trivial. Since K.v/ is contracting, g0 and g1 are shorter
than g, and we have contradicted the minimality of g.

Lemma 3.4. Define the subgroups Ei � Fn inductively by E0 D 1 and

EiC1 D ‰�1.Ei � Ei /:
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Then E1 D S1
iD1 Ei is the kernel of the natural homomorphism � W Fn ! K.v/.

Proof. By contraction, for every g 2 Fn there exists k such that all coordinates of
‰k.g/ belong to the nucleus. The intersection of the nucleus with ker.�/ is trivial.
Therefore, if g belongs to ker.�/, then there exists k such that all the coordinates of
‰k.g/ are trivial, i.e., g 2 ker ‰k D Ek .

3.2. Endomorphisms. Let us define the following endomorphism ' of the free
group Fn:

'.an/ D a2
1; '.ai / D

(
aiC1 if xi D 0;

a1aiC1a�1
1 if xi D 1;

(2)

when 1 � i < n.
We will also write ' for its image in K.v/. It follows directly from the definition

that
'.ai / D hhai ; 1ii when 1 � i < n; '.an/ D hhan; anii:

Proposition 3.5. The substitution ' induces an endomorphism of the group K.v/

such that
'.g/ D hhg; �n.g/ii;

where �n is the composition of the abelianization ai 7! ei 2 Zn and the projection
en 7! an, ei 7! 1 for i ¤ n.

Lemma 3.6. For every ` � 1 we have

E`C1 � E1 � '.E`/ � a�1
1 '.E`/a1:

Proof. Consider g 2 E`C1. Then ‰.g/ D hhg0; g1ii, with g0; g1 2 E`. We have
‰.'.gi // D hhgi ; �n.gi /ii for all i 2 f0; 1g. Moreover, �n.gi / D 1, since gi D 1 in
K.v/ and the image of � is free. Hence,

‰.g/ D hhg0; g1ii D ‰.'.g0/ � a�1
1 '.g1/a1/;

so g D h � '.g0/ � a�1
1 '.g1/a1 for some h 2 E1.

3.3. L-presentation. We give a recursive presentation of K.v/ by generators and
relations.

For r � 0 define the set of commutators, following [1]

Rr D ˚�
ai ; a

a2k
1

j

� j 2 � i; j � n; 0 � 2k � r; xi�1 ¤ xj �1

�
[ ˚�

ai ; a
a

2kC1
1

j

� j 2 � i; j � n; 0 � 2k C 1 � r; xi�1 D xj �1

�
:

(3)
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Lemma 3.7. The subgroup E1 < Fn is the normal closure of R1 D S
r�0 Rr .

Proof. It is easy to see that Rr � E1 for all r . Let now g 2 E1 be any non-trivial

reduced group word. We can write it in the form ak
1c1c2 : : : cm, where cs D a

˙a
js
1

is
for some is 2 f2; : : : ; ng and some js 2 Z. Since g D 1 in K.v/, we have k D 0 by
Proposition 3.3. Let us write ‰.g/ D hhg0; g1ii. Then each of g0; g1 respectively is

the product of some a
˙a

ks
n

is�1 , where j2ks � jsj � 1 and only those s with js congruent
modulo 2, respectively not congruent, to xis�1, are selected.

Now since g0 D g1 D 1, there must exist s < t such that is D it and ks D kt

and cs; ct have opposing signs, both of them occurring in the same gi , and none
of the csC1; : : : ; ct�1 contributing to that gi . Then the relations in R1 allow the
commutation of cs with csC1; : : : ; ct�1, and its eventual cancellation with ct . One
then proceeds by induction on the length of g.

Theorem 3.8. The group K.v/ has the following presentation:

K.v/ D ha1; : : : an j '`.R2/ for all ` � 0i;
where ' and R2 and given respectively in (2) and (3).

Proof. In view of Lemmata 3.4, 3.6 and 3.7, it suffices to show for all r � 0 that Rr is a

consequence of R� D S
k�0 'k.R2/. Consider therefore a relation wijk D Œai ; a

ak
1

j �

with k � 3. We write g 	 h to mean that they are equivalent under relations in R�.

We first write a
ak

1

j D a
ak�2

1

j Œaj ; a2
1�a

k�2
1 ; then by Œa; bc� D Œa; c�Œa; b�c the relation

wijk follows from the relations wij.k�2/ and Œai ; Œaj ; a2
1�a

k�2
1 �.

We then note that Œap; Œap; a1�� 2 R2 for all p, and more generally Œap; Œap; aq�� 2
R� for all p � q: if xp�1 D xq�1, this relation is obtained as '.Œap�1; Œap�1; aq�1��/,
while if xp�1 ¤ xq�1, it follows from Œap; aq� 2 R2. In particular Œan; Œan; ai�1�� 2
R�, and Œa2

1; Œa2
1; ai �� 2 R�. This allows to reduce Œai ; Œaj ; a2

1�a
k�2
1 � to Œai ; Œaj ; a2

1�e�

for some e 2 f1; a�1
1 g. Now if e D 1 then we have Œai ; aj ; a2

1� 	 wij 2Œai ; aj �, and if

e D a�1
1 then we have Œai ; Œaj ; a2

1�a
�1
1 � D w

�a�1
1

ij1 w
�a

�1C2aj �1

1

ij1 .

Since the endomorphism ' is injective, we can embed the group K.v/ into its
ascending HNN-extension by ', i.e., in the group generated by K.v/ and an element t

whose action by conjugation on K.v/ coincides with '.
Setting a D a�1

1 , we have a new generating system fa; at ; at2
; : : : ; atn�1g of the

group K.v/; the identification is

aiC1 D axi at
i a

�xi D axi axi�1t : : : ax1t i�1

a�t i

a�x1t i�1

: : : a�xi�1ta�xi ;

at i D a�axi Cxi�1tC���Cx1ti�1

iC1 :
(4)
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The last theorem then yields

Theorem 3.9. Write p.t/ D xn�1t C xn�2t2 C � � � C x1tn�1 2 ZŒt �. Then the group
K.v/ is isomorphic to the subgroup ha; at ; at2

; : : : ; atn�1i of the finitely presented
group

ha; t j atn�2ap.t/

; Œat i

; atj a�; Œat i

; atj a3

� for all 1 � i; j < ni:

Proof. The first relation is at
n D a2

1. The others are obtained by rewriting Œai ; a
ak

1

j �

for 0 � k � 2 in terms of a and t . Indeed if xi D xj then the relation ŒaiC1; a
a1

j C1�

yields

Œaxi�1t : : : ax1t i�1

a�t i

a�x1t i�1

: : : a�xi�1t ;

.axj �1t : : : ax1tj �1

a�tj

a�x1tj �1

: : : a�xj �1t /a1 �;

which is equivalent to Œat i
; atj a� for all i; j . If xi ¤ xj , then the relation ŒaiC1; aj C1�

gives the same commutation relation as above, while ŒaiC1; a
a2

1

j C1� gives the equivalent

form Œat i
; atj a3

�.

3.4. Torsion. We show that K.v/ is torsion-free for all v:

Proposition 3.10. Let � W K.v/ ! K.v/=K.v/0 Š Zn be the canonical epimorphism.
An element g 2 K.v/ is level-transitive if and only if all coordinates of �.g/ are odd.

Proof. We write �.ai / D ei , where .ei / is a free basis of Zn. Recall that
aut.X�/=aut.X�/0 is

�
Z

2Z

�!
, the identification being 	 W g 7! .i0; i1; : : : / 2 �

Z
2Z

�!

where im is the parity of the number of active restrictions gjv for all v 2 Xm. A tree
automorphism is active if it acts non-trivially on the first level.

It is well known that g 2 aut.X�/ is level-transitive if and only if 	.g/ D
.1; 1; : : : /. Now if g 2 K.v/, then 	.g/m is the parity of the exponent of emC1 mod n

in �.g/.

Proposition 3.11. The group K.v/ is torsion free.

Proof. Apply Proposition 2.2 with N D G0.

3.5. Weak branchness. We show that the groups K.v/ are weakly branch and resid-
ually poly-Z:

Theorem 3.12. Let v 2 X� be a non-empty sequence. Then the group K.v/ is weakly
branch on K.v/0.
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Note that the group K.;/ is isomorphic to Z and so is not weakly branch.

Proof. As a first step, let us check that K.v/0 � K.v/0 � K.v/. It is easy to check that

ha1; : : : ; an�1; a
an

1 ; : : : ; a
an

n�1i � ha1; : : : ; an�1; a
an

1 ; : : : ; a
an

n�1i � K.v/:

But
K.v/0 � ha1; : : : ; an�1; a

an

1 ; : : : ; a
an

n�1i;
since K.v/0 is contained in the kernel of the homomorphism �n. Hence K.v/0 �
K.v/0 � K.v/.

Let now g D hhg0; g1ii be an arbitrary element of the subgroup K.v/0 � K.v/0.
Then '.g0/ D hhg0; �n.g0/ii 2 K.v/0 and a�1

1 '.g1/a1 D hh�n.g1/; g1ii 2 K.v/0,
where ' and �n are as in Proposition 3.5. But �n.g0/ D �n.g1/ D 1, since g0; g1 2
K.v/0. Therefore, g D '.g0/ � a�1

1 '.g1/a1 2 K.v/0.
It suffices now to check that K.v/0 is not trivial. For that purpose, note that

Œa1; a2� D hha˙an

1 ; a�1
1 ii has non-trivial image in Zn.

Proposition 3.13. We have K.v/0=.K.v/0 � K.v/0/ Š Zn�1.

Proof. Since the elements Œai ; aj � belong to K.v/0 � K.v/0 if i; j � 2, we see that
K.v/0=K.v/0 �K.v/0 is abelian and generated by the Œa1; aiC1� for i 2 f1; : : : ; n�1g.

We then have Œa1; aiC1� D hha�an

i ; a˙1
i ii; by Proposition 3.3, these are indepen-

dent in .K.v/=K.v/0/2.

It follows that the groups K.v/ are not branch; otherwise, they would be branch
on a subgroup K with K.v/0 � K � K.v/, the last inclusion of finite index. Then
K=K.v/0 has rank n, so K=.K.v/0 � K.v/0/ has Hirsch length 2n � 1, but it contains
.K � K/=.K.v/0 � K.v/0/ of Hirsch length 2n, a contradiction.

It follows that K.v/ admits arbitrarily large poly-Z quotients: the successive
quotients along the descending series K.v/ > K.v/0 > K.v/0 � K.v/0 > � � � are all
free abelian.

Corollary 3.14. The group K.v/ is left orderable.

4. The groups K.w; v/

Let w D y1 : : : yk 2 X� and v D x1 : : : xn 2 X� be a pair of non-empty words
such that yk ¤ xn. We denote by K.w; v/ the subgroup of aut.X�/ generated by the
elements b1; : : : bk; a1; : : : ; an defined by

b1 D �; bj C1 D
(

hhbj ; 1ii if yj D 0;

hh1; bj ii if yj D 1;
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when 1 � j < k, and

a1 D
(

hhbk; anii if yk D 0 and xn D 1;

hhan; bkii if yk D 1 and xn D 0;
aiC1 D

(
hhai ; 1ii if xi D 0;

hh1; ai ii if xi D 1;

when 1 � i < n.
In other words, the group K.w; v/ is generated by the automaton whose Moore

diagram is shown on Figure 2. In this diagram, only the edges leading to non-trivial
states are drawn, and the active state b1 is labelled by � .

Figure 2. Automaton generating K.w; v/.

Let us denote by v0 the word obtained from the word v by changing 0 to 1 and 1 to 0.
Recall from Section 3 that the automorphism ˛ 2 aut.X�/ defined by the recursion
˛ D hh˛; ˛ii� exchanges v and v0, and conjugates K.v/ into K.v0/. Similarly, the
groups K.w; v/ and K.w0; v0/ are conjugate under ˛.

By convention, let us accept that bkC1 D anC1 D a1.

Lemma 4.1. The group K.w; v/ is recurrent and level-transitive.

Proof. The projections of the aiC1, a
b1

iC1, bj C1 and b
b1

j C1, all fixing the first level of
X�, give all generators; the action is therefore recurrent.

To check that the action of a recurrent group is level-transitive, it suffices to check
that it is transitive on the first level; this is achieved by b1.

4.1. Wreath recursion. We aim to give a recursive presentation of K.w; v/ by
generators and relations. Until the end of this section, we assume that .k; n/ ¤ .1; 1/;
indeed if k D n D 1 then K.w; v/ is infinite dihedral, and has to be taken care of
separately.
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Proposition 4.2. The generators ai ; bj of K.w; v/ have order 2, and the abeliani-

zation K.w; v/=K.w; v/0 is
�

Z
2Z

�kCn
, generated by the images of the ai and bj .

Proof. It is clear that the generators are involutions. The image of K.w; v/ in
aut.X�/=aut.X�/0 is generated by the infinite pre-periodic vectors .0; : : : ; 1; N0/ cor-
responding to the images of bj , and by .0; : : : ; 0; 0; : : : ; 1; : : : ; 0/ corresponding to
the images of ai ; these k C n vectors are linearly independent.

Let d be maximal such that v D ud for some u 2 X�. We have then, considering
indices modulo n,

‰.Œai ; aiCj.n=d/�/ D hh1; Œai�1; ai�1Cj.n=d/�ii or hhŒai�1; ai�1Cj.n=d/�; 1ii;
depending on whether xi�1 D xi�1Cj.n=d/ or not. It follows that ai and aiCj.n=d/

commute for every i 2 f1; : : : ; ng and every j 2 f1; : : : ; d � 1g.
Let F be the group given by the presentation

F D ha1; : : : ;an; b1; : : : ; bk j
a2

i ; b2
j ; Œai ; aiC`.n=d/� for all 1 � i � n; 1 � j � k; 1 � ` < d i:

It is the free product of k copies of Z
2Z and n=d copies of

�
Z

2Z

�d
. Let us denote the

subgroup hai ; aiCn=d ; : : : ; aiC.d�1/n=d i Š �
Z

2Z

�d
by Ai .

Let ‰ W F ! F o S2 be given by the recursive definition of the group K.w; v/,
i.e.,

‰.b1/ D �; ‰.bj C1/ D
(

hhbj ; 1ii if yj D 0;

hh1; bj ii if yj D 1;

when 1 � j < k, and

‰.a1/ D
(

hhbk; anii if xn D 1;

hhan; bkii if xn D 0;
‰.aiC1/ D

(
hhai ; 1ii if xi D 0;

hh1; ai ii if xi D 1;

when 1 � i < n.
We can iterate the map ‰ to obtain a homomorphism ‰k W F ! F o S2 o � � � o S2,

where S2 appears k times in the iterated permutational wreath product.

Lemma 4.3. The wreath recursion ‰ is contracting. Its nucleus is fb1; : : : ; bkg [S
Ai .

Proof. Let us denote by kgk the minimal number of generators ai in a representation
of g as a product of generators.

It follows from the definition of the recursion ‰ that for every g D hhg0; g1ii� s 2
K.w; v/ we have kgk � kg0k C kg1k. As in the proof of Lemma 3.2, we say that
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g 2 K.w; v/ is stable if there exists an infinite sequence wg (the kneading sequence
of g) such that for every l we have kgk D kgjvl

k where vl is the beginning of length l

of wg . It also follows that for any word v 2 X l different from vl the restriction gjv
belongs to hbi iiD1;:::;k , and hence that there exists m 2 N such that gjvw D 1 for all
w 2 Xm.

Consequently, if we prove that the set of stable elements is finite, then we show
that the recursion is contracting and the nucleus is the set of stable elements and their
restrictions.

As in the proof of Lemma 3.2, consider the set K of kneading sequences of the
(stable) generators ai , and the corresponding graph � . Here also the labels along the
paths of the graph � correspond to the stable elements.

The kneading sequence of ai is equal to wai
D .xi�1xi�2 : : : x1xnxn�1 : : : xi /

! .
If d is as above, then the kneading sequence of ai is of period n=d and the graph �

consists of n=d vertices with d loops attached to every vertex. The labels of the loops
attached to vertex wai

are ai ; aiCn=d ; : : : ; aiC.d�1/n=d . Consequently, every stable
element belongs to the finite group Ai for some i 2 f1; : : : ; n=dg. The rest of the
lemma follows.

Lemma 4.4. Define the subgroups E` � F inductively by E0 D 1 and

E`C1 D ‰�1.E` � E`/:

Then E1 D S1
`D1 E` is the kernel of the natural homomorphism F ! K.w; v/.

Proof. Similar to Lemma 3.4.

4.2. Endomorphisms. In this subsection we define, for each K.w; v/, an endomor-
phism ' of F , and elements s; t 2 F and m 2 f1; 2g, with the following meaning:
‰.at

1/ D hhbk; as
nii; in K.w; v/ the subgroup has

n; bki is dihedral of order 2mC1; and
the subgroup hat

1; b1i is dihedral of order 2mC2; and '.s/ 2 ft; b1tg. We use these to
construct an endomorphism of K.w; v/, considering different cases in turn and taking
care of small values of k and n.

Assume first that k; n � 2. Then Œas
n; bk� is trivial in K.w; v/ for at least one value

of s 2 hb1i. Let t 2 hb1; b2i be such that ‰.at
1/ D hhbk; as

nii. Set m D 1.
Assume next that k � 3 and n D 1. Then there exists r 2 hb1i such that

Œbr
k
; bk�1� D 1 in K.w; v/; so there exists s 2 hb1; b2i such that Œas

1; bk� D 1 in
K.w; v/; so there exists t 2 hb1; b2; b3i such that ‰.at

1/ D hhbk; as
1ii. Set also

m D 1.
Assume next that k D 2 and n D 1. Then there exists r; s 2 hb1i such that

br
2 D hhb1; 1ii in K.w; v/ and ars

1 D hhb2; a1ii in K.w; v/; so there exists t 2 hb1; b2i
such that at

1 D hhb2; as
1ii. Set m D 2.

Finally, consider the case k D 1 and n � 2. Set s D 1, and let t 2 hb1i be such
that at

1 D hhb1; anii. Set m D 2.
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Now define the endomorphism ' of F by

'.bj / D
(

bj C1 if yj D 0;

b
b1

j C1 if yj D 1;
when 1 � j < k; '.bk/ D at

1;

'.ai / D
(

aiC1 if xi D 0;

a
b1

iC1 if xi D 1;
when 1 � i < n; '.an/ D

(
a1 if xn D 0;

a
b1

1 if xn D 1:

We then have

‰'.bj / D hhbj ; 1ii when 1 � j < k; ‰'.bk/ D hhbk; as
nii;

‰'.ai / D hhai ; 1ii when 1 � i < n; ‰'.an/ D hhan; bkii:

Proposition 4.5. The endomorphism ' W F ! F induces an endomorphism of the
group K.w; v/ such that

'.g/ D hhg; �.g/ii;
where � is an endomorphism with finite image; more precisely, �.bj / D �.ai / D 1

for j < k and i < n; and �.bk/ D as
n and �.an/ D bk , so that �.F / is dihedral of

order 2mC1.

Proof. It is clear that � is an endomorphism if m D 1, since then it factors through
K.w; v/ ! aut.X�/=aut.X�/0.

Consider then the case k D 1. The map � then factors through K.w; v/ !
K.w; v/ o S2 ! .aut.X�/=aut.X�/0/ o S2.

Consider finally the case k D 2; n D 1. The map � can then be seen, by direct
calculation, to factor through K.w; v/ ! aut.X4/.

Define now xF D F=h'`.as
nbk/2m j ` 2 Ni, and denote by E` the image of E`

in xF . Again ' induces an endomorphism of xF . Note that xF ! K.w; v/ maps
isomorphically has

n; bki and hat
1; b1i.

Lemma 4.6. For every ` � 1 we have

E`C1 � E1 � '.E`/ � b1'.Ei /b1:

Proof. The proof is similar to that of Lemma 3.6. Consider g 2 E`C1. Then ‰.g/ D
hhg0; g1ii, with g0; g1 2 E`. We have ‰'.gi / D hhgi ; �.gi /ii for all i 2 f0; 1g,
where � is the endomorphism with finite image given by Proposition 4.5. Moreover,
�.gi / D 1 in xF , since �.gi / is a relation in K.w; v/. Hence,

‰.g/ D hhg0; g1ii D ‰.'.g0/ � b1'.g1/b1/;

and g D h � '.g0/ � b1'.g1/b1 for some h 2 E1.
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4.3. L-presentation. Let O denote the elements of hat
1; b1i < xF that contain an

odd number of b1’s, and let E denote those elements that contain an even number of
b1’s. Both of these sets are finite. Define then

R D fŒbi ; bw
j � j 2 � i; j � k; w 2 O if yi�1 D yj �1; w 2 E if yi�1 ¤ yj �1g

[ fŒai ; bw
j � j 2 � i � n; 2 � j � k; w 2 O if xi�1 D yj �1;

w 2 E if xi�1 ¤ yj �1g
[ fŒai ; aw

j � j 2 � i; j � n; w 2 O if xi�1 D xj �1; w 2 E if xi�1 ¤ xj �1g:

Lemma 4.7. We have E1 � R
xF � E1 � xF .

Proof. It is easy to see that R � E1. Let now g 2 E1 be any non-trivial reduced
group word. We can write it in the form hc1c2 : : : cm, where cs D a

hs

is
or D b

hs

js
for

some is; j2 � 2 and some h; hs 2 hat
1; b1i. Since g D 1 in K.v/, we have h D 1; this

is clear if at
1 and b1 commute, because then hat

1; b1i embeds in K.w; v/=K.w; v/0,
by Proposition 4.2. On the other hand, if h D .at

1b1/2 ¤ 1, then the first projection
of g contains precisely two an’s that do not cancel, and there will exist two vertices
such that each of the an’s projects on one; then these states will be non-trivial, again
using Proposition 4.2, so g ¤ 1, a contradiction.

Let us write ‰.g/ D hhg0; g1ii. Then each of g0; g1 respectively is the product of
some a

ks

is�1 and b
ks

js�1, where ks 2 han; bki and only those s with hs 2 O respectively
in E, are selected.

Now since g0 D g1 D 1, there must exist s < t such that cs; ct are both b�� or both
a�� and hs D ht , both of them occurring in the same gi , and none of the csC1; : : : ; ct�1

contributing to that gi . The relations in R and xF allow the commutation of cs with
csC1; : : : ; ct�1, and its eventual cancellation with ct . One then proceeds by induction
on the length of g.

Theorem 4.8. The group K.w; v/ has the following presentation:

K.w; v/ D ha1; : : : an; b1; : : : ; bk j frelations of xF g [ '`.R/ for all ` � 0i;
where ' and R and given respectively before Proposition (4.5) and in (3).

Proof. This follows from Lemmata 4.4, 4.6 and 4.7.

Since the endomorphism ' is injective, we can embed the group K.w; v/ into
its ascending HNN-extension by ', i.e., in the group generated by K.w; v/ and an
element t whose action by conjugation on K.w; v/ coincides with '.

There is an u 2 hb2; b
b1

2 ; b3; b
b1

3 i such that '.bk/ D a
ub

yk
1

1 ; the group hau
1 ; b1i is

dihedral of order 2mC2, and we have .au
1b1/2mC1 D 1. We set a D au

1 and b D b1
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to obtain a new generating system fb; bt ; : : : ; btk�1
; a; at ; : : : ; atn�1g of the group

K.w; v/; the identification with fai ; bj g is similar to that in (4). The last theorem then
yields

Theorem 4.9. Write p.t/ D xn C xn�1t C � � � C x1tn�1 2 ZŒt � and
q.t/ D yk Cyk�1t C� � �Cy1tk�1 2 ZŒt �. Let m 2 f1; 2g and u 2 hbt ; btb; bt2

; bt2bi
be as above. Then the group K.w; v/ is isomorphic to the subgroup
ha; at ; : : : ; atn�1

; b; bt ; : : : ; btk�1i of the finitely presented group (where the gen-
erator a is redundant)

ha; b; t j a2; b2; .ab/2mC1

; btk

abq.t/

; au�1.tn�bp.t//;

Œa; atjn=d

� for all j 2 f1; : : : ; d � 1g;
Œbt i

; btj b.ab/2`

� for all 1 � i; j < k and 0 � ` � 2m;

Œat i

; btj b.ab/2`

� for all 1 � i < n; 1 � j < k and 0 � ` � 2m;

Œat i

; atj b.ab/2`

� for all 1 � i; j < n and 0 � ` � 2mi:

Proof. The first three relations express hau
1 ; b1i as a dihedral group. The fourth one

is bt
k

D a
ub

yk
1

1 , and the fifth one is at
n D a

b
xn
1

1 . The next ones are relations in F , and
the last three rows are the commutation relations of the form Œai ; aw

j � and Œai ; bw
j � for

w 2 E or 2 O .

4.4. Branchness. We see in this subsection that K.w; v/ is branch as soon as k > 1

or n > 1:

Theorem 4.10. (1) K.w; v/ is branch on K.w; v/0 if k � 2 and n � 2, or if

k � 3 and n D 1; we have K.w; v/=K.w; v/0 Š �
Z

2Z

�kCn
generated by fai ; bj g

and K.w; v/0=.K.w; v/0 � K.w; v/0/ D �
Z

2Z

�kCn�1
generated by fŒb1; bj �2�j �k;

Œb1; ai �1�i�ng.

(2) K.w; v/ is branch on L D hŒb1; b2a1�iK.w;v/ if k D 2 and n D 1; we have
K.w; v/0=L D �

Z
2Z

�2
generated by fŒb1; b2�; Œb2; a1�g. Set x D Œb1; b2a1�; then

L=.L � L/ D Z
4Z � Z

2Z , generated by fx; xa1g with the relations x4 D .xa1/4 D
x2x2a1 D 1.

(3) K.w; v/ is branch on L D hŒai ; aj �1�i<j �n; Œai ; b1�1�i<niK.w;v/ if k D 1

and n � 2; we have K.w; v/0=L D 2, generated by Œan; b1�, and L=.L � L/ D
Z

4Z � �
Z

2Z

�n�2
, generated by fŒai ; b1�g where Œa1; b1� has order 4 and the other

generators have order 2. smallskip
(4) If k D n D 1, then K.w; v/ is infinite dihedral, and is not even weakly branch.
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Proof. We use the endomorphism from Proposition 4.5. In all cases, it is easy to
check that L has finite index as claimed, and that '.L/ D L � 1 � K.w; v/ � 1.

It then remains to check that '.L/ � L. This is obvious if L D K.w; v/0
is characteristic. If k D 2 and n D 1, we obviously have '.�3.K.w; v/// �
�3.K.w; v//; but we also have '.x/ D Œbr

2; at
1au

1 � 2 �3.K.w; v//, so '.L/ � L

with L D h�3.K.w; v//; xi as claimed.
If k D 1 and n � 2, then 'Œai ; aj � D Œas

iC1; at
j C1� for some s; t 2 hb1i; now

i C 1 < n or j C 1 < n, so ŒaiC1; aj C1� 2 L and either ŒaiC1; b1� 2 L and
Œaj C1; b1� 2 L, so Œas

iC1; at
j C1� 2 L. Similarly 'Œai ; b1� D Œas

iC1; at
1� 2 L.

4.5. Torsion. First, we note that the group K.w; v/ always contains elements of
infinite order:

Proposition 4.11. Every element x which is a product, in any order, of all the gener-
ators ai ; bj of K.w; v/ has infinite order.

Proof. Consider such an x. Its image in aut.X�/=aut.X�/0 is .1; 1; : : : / so this
element acts level-transitively; in particular, it has infinite order.

Proposition 4.12. If k ¤ 1 or n ¤ 1, then K.w; v/ contains every finite 2-group as
a subgroup. In particular, it contains torsion elements of arbitrarily large order.

Proof. This follows directly from Proposition 2.6, since the groups K.w; v/ are reg-
ular branch on a subgroup L containing a torsion element.

If k � 2 and n � 2, this torsion element may be chosen as Œb1; b2�. If k D 2 and
n D 1, we may check that .b1a1/4 belongs to L and has order 2. If k D 1 and n � 2

then Œb1; a1� belongs to L and has order 4.

5. Kneading sequences and quadratic polynomials

5.1. Review of results in holomorphic dynamics. Let f .z/ D z2Cc be a quadratic
polynomial. Suppose that the orbit of the critical point 0 under the iterations of f is
finite. Such polynomials are called post-critically finite. We distinguish two cases:
when 0 belongs to a finite cycle (periodic case) and when it does not, but its orbit is
still finite (pre-periodic case).

Recall that if M � C is a connected and closed set with connected complement,
then there exists a unique biholomorphic isomorphism ˆM of the complement xC nM

with fz 2 xC j jzj > Rg such that ˆM .1/ D 1 and ˆ0
M .1/ D 1. The external ray

R˛ is the image of the ray fr � e2�i �˛ j r 2 .R; 1/g under ˆ�1
M . One says that an

external ray R˛ lands, if the limit limr&R ˆ�1
M .r � e2�i˛/ exists. Here and below the



330 L. Bartholdi and V.V. Nekrashevych

angle ˛ is considered to be an element of the group R=Z, i.e., the angles are counted
in full turns.

We use known facts about the dynamics of iterations of quadratic maps (see [9],
[10], [11]). The filled-in Julia set Kc of z2 Cc is the set of points which do not escape
to infinity under iteration, and the Fatou set is the open set xC n @Kc . We assume that
z2 Cc is post-critically finite, hence Kc is connected. External rays to the Mandelbrot
set are called parameter rays, and external rays to Kc are called dynamical rays.

It is easy to see that the image of the dynamical ray R˛ under the action of z2 C c

is equal to the ray R2˛ .
Suppose first that 0 belongs to a cycle of length n under iteration of z2 C c.

Then c belongs to a hyperbolic component Mc of the interior of the Mandelbrot set.
For any other point c1 of that component, the quadratic polynomial z2 C c1 also has
a unique attracting cycle of length n. If ˆ.c1/ denotes the multiplier of this cycle
(i.e., the product of derivatives in all points of the cycle), then ˆ is a conformal
isomorphism of Mc with the open unit disc D D fz 2 C j jzj < 1g. We obviously
have ˆ.c/ D 0, hence c is called the center of the hyperbolic component Mc . The
isomorphism ˆ W Mc ! D extends to a homeomorphism of the boundary of Mc with
the unit circle. The preimage of 1 under this homeomorphism is called the root of
the component Mc . There exist exactly two angles 
 such that the parameter ray R�

lands on the root of Mc , except for n D 1, when such ray is unique.
In the dynamical plane, the point c belongs to a Fatou component Uc , which is

periodic with period n under f . There is a unique point r on the boundary of Uc ,
fixed under the map f n W Uc ! Uc (since f njUc

is topologically conjugate (via the
Böttcher map) to the restriction of z2 to D). This point and its forward images are
called the roots of their corresponding Fatou components.

A parameter ray R� lands on the root of the hyperbolic component Mc if and only
if the dynamical ray R� lands on the root of the Fatou component Uc . Moreover, the
number 
 2 R=Z belongs to a cycle of length n under the doubling map ˛ 7! 2˛:
R=Z ! R=Z. In particular the angle 
 is equal to p=.2n � 1/ for some integers p; n,
and the ray R2k� lands at the root of the Fatou component to which f k.c/ belongs.

Conversely, for every rational number 
 2 R=Z with odd denominator, the pa-
rameter ray R� lands on the root of a hyperbolic component Mc , and if c is the center
of the component (i.e., the preimage of 0 under the multiplicator map), then 0 has the
same period under z2 C c as 
 has under the doubling map, and the dynamical ray
R� lands on the root of the Fatou component of z2 C c containing c.

Suppose now that 0 is pre-periodic. Then c belongs to the boundary of the Man-
delbrot set (it is a Misiurewicz point) and there exists a finite set of angles 
 such that
the parameter rays R� land on c. For each such 
 the external ray R� in the dynamical
plane of z2 Cc lands on c. The pre-period of 
 under the doubling map is the same as
the pre-period of c under z2 C c, but the period of 
 may be a multiple of the period
of c. Here pre-period and period of a point x under a map f are the minimal positive
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integers k and n such that f kCn.x/ D f k.x/.
For example, the point c 
 �0:1011C0:9563i is the landing point of the parameter

rays R˛ for ˛ D 9
56

, 11
56

and 15
56

. The point c has pre-period of length 3 and period of
length 1 (i.e., it lands on a fixed point). But the angles have period 3, namely

9=56 7! 9=28 7! 9=14 7! 2=7 7! 4=7 7! 1=7 7! 2=7:

The period of c is determined by 
 as the period of the kneading sequence of 
 .
Let S0 be the image in R=Z of the interval Œ
=2; .1C
/=2�, and let S1 be the image in
R=Z of Œ.1 C 
/=2; .2 C 
/=2�. For every ˛ 2 R=Z, denote by I� .˛/ its 
 -itinerary,
defined as the sequence a0a1 : : : , where

ak D

8̂<
:̂

0 if 2k˛ 2 S0;

1 if 2k˛ 2 S1;

� if 2k˛ 2 f
=2; .1 C 
/=2g:
The itinerary I� .
/ is called the kneading sequence of the point 
 2 R=Z and is

denoted O
 .
If 
 is periodic under the doubling map with period of length n, then its kneading

sequence is of the form vv : : : , where

v D 1x2 : : : xn�1�;

for some xi 2 f0; 1g.
If 
 is strictly pre-periodic with a pre-period of length k and period of length n,

then its kneading sequence is of the form wvv : : : , where w D 1x2 : : : xk and v are
some words over f0; 1g of length k and n respectively with different last letters.

It may happen that v is a proper power. Then the period of the kneading sequence
is a factor of the period of 
 under the doubling map. In any case if 
 is pre-periodic
(i.e., if its smallest denominator is even), and the parameter ray R� lands on c, then the
period of c under iteration of z2 Cc is equal to the period of the kneading sequence O
 .

5.2. Iterated monodromy groups of quadratic polynomials. Suppose that w is
either a kneading sequence of the form .x1 : : : xn�1�/! , or a kneading sequence of
the form y1 : : : yk.x1 : : : xn/! , where yk ¤ xn and x1 : : : xn is not periodic, i.e., is
not a proper power (note that every pre-periodic sequence can be uniquely represented
in that form). Then we denote by K.w/ the group K.x1 : : : xn�1/ in the first case and
K.y1 : : : yk; x1 : : : xn/ in the second.

Theorem 5.1. Let f .z/ D z2 C c be a post-critically finite quadratic polynomial.
Let 
 2 R=Z be an angle such that the parameter ray R� lands either on the root of
the hyperbolic component Mc (if c is periodic) or on c (if c is pre-periodic).

Then IMG.z2 C c/ is isomorphic to K. O
/. Moreover, the action of IMG.z2 C c/

on the tree of preimages is conjugate with the action of K. O
/ on the binary tree.
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We consider independently the periodic and pre-periodic cases.

Proof in the periodic case. We use the invariant spiders, described in [14], to make
cuts in xC. A spider is a collection of disjoint closed paths �z , called legs, connecting
every point z 2 Pf to infinity. A spider S is f -invariant if f �1.S/ � S , up to an
isotopy relative to Pf .

The dynamical ray R� has two preimages under f : the ray R�=2 and R.1C�/=2.
These rays land on two points belonging to the boundary of the Fatou component
containing 0. These two points are the preimages of the root of the component of c.
Let us connect zero to these two points by internal rays of the Fatou component, i.e.,
by images of rays under the holomorphic map fixing 0 and mapping the component
to the disc D.

The union of the rays R�=2, R.1C�/=2 and the internal rays just constructed also
divide the plane into two connected components. Let us denote the component to
which c belongs by S1, and the other component (to which the ray R0 belongs) by S0.

For each i 2 f0; 1g, the restriction of z2 C c to the component Si is a homeomor-
phism of Si onto the set C n �c , where �c is a curve connecting c to infinity. The
curve �c is the union of the dynamical ray R� with an internal ray.

Let t … S
n�0 f k.�c/ be a basepoint and let T D F

n�0 f �n.t/ be the corre-
sponding tree of preimages. We will construct an isomorphism between the tree T

and the binary tree f0; 1g� using itineraries.
If z 2 f �n.t/ is a vertex of the tree T , then the corresponding vertex of the binary

tree is given by the word ƒ.z/ D xn�1xn�2 : : : x0, where xk 2 f0; 1g is such that

f k.z/ 2 Sxk
:

It follows directly from the definition that ƒ is a level-preserving bijection and
that if ƒ.z/ D xn�1 : : : x0, then ƒ.f .z// D xn�1 : : : x1. Hence ƒ W T ! f0; 1g� is
an isomorphism of rooted trees. From now on, we identify the trees X� and T by this
isomorphism.

Let Pf D S
i�1 f r.c/ be the post-critical orbit of f , and set M D C n Pf , so

that f is a covering map from f �1.M/ to M. If n is the period of the point c, then n

is also the period of the curve �c under iteration of f . Moreover, the curves f k.�c/

are pairwise disjoint for k D 0; 1; : : : ; n � 1. More precisely, they can have common
points, but they do not intersect transversally, so that they become pairwise disjoint
after small homotopies in M, see [14]. Then the set ff k.�c/ j 0 � k � n � 1g is
an invariant spider. For every z 2 Pf we denote by �z the unique leg f k.�c/ of
the spider which connects the point z to infinity. We have then f .�z/ D �f .z/. The
right-hand side of Figure 3 shows the preimage of a spider.

An example of spider
S

z2Pf
�z is shown on the left hand side of Figure 3, for

c 
 �0:1225 C 0:7448i (the “Douady rabbit”). The corresponding 
 is equal either
to 1=7 or to 2=7 (it is 2=7 in our picture), the critical point belongs to a cycle of
length 3 and the root of all three components is a common fixed point.
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M

M

0
0

c

Figure 3. Invariant spider.

Write M0 D MnS
z2Pf

�z . It follows that M0 is simply connected and f �1.M0/ �
M0, up to isotopy. The set f �1.M0/ has two connected components M0

0 D S0 \ M0
and M0

1 D S1 \ M0.
Define for t; u 2 M0 and z 2 Pf the path gz.t; u/ starting in t , ending in u,

disjoint from all the paths �y of the spider for y ¤ z, and intersecting �z only once in
such a direction that the part of �z containing z is to the left of the path gz.t; u/. The
path gz.t; u/ is obviously defined uniquely up to homotopy in M. We also denote by
g.t; u/ the path starting in t , ending in u and disjoint from the legs of the spider. The
path g.t; u/ is also uniquely defined up to homotopy in M. If y … Pf then gy.t; u/

is, by definition, the path g.t; u/.
It follows from the definitions that, for z ¤ c,

f �1.gz.t; u// D fgz0
.t0; u0/; gz1

.t1; u1/g;
where f �1.z/ D fz0; z1g and f �1.t/ D ft0; t1g and f �1.u/ D fu0; u1g. We may
assume, up to changing our notation, that z0 2 S0 and z1 2 S1. Then t0; u0 2 S0 and
t1; u1 2 S1.

If z D c, then the only preimage of z is 0 and only one of the components of
f �1.gc.t; u// intersects the path �0. Then this component is homotopic to g0.t0; u0/,
and the other component is homotopic to g.t1; u1/. If �0 is the extension of the ray
R�=2, then t0; u1 2 S0 and t1; u0 2 S1. If �0 is the extension of the ray R.1C�/=2,
then t0; u1 2 S1 and t1; u0 2 S0.

We also have that the f -preimages of the path g.t; u/ are the paths g.t0; u0/ and
g.t1; u1/, where t0; u0 2 S0 and t1; u1 2 S1.

It is not hard to see now that if �0 is the extension of the ray R.1C�/=2, then the
generators hk D gf k.0/.t; t/ of �1.M; t / act on the tree X� in the same way as the
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generators ak of the group K. O
/. If �0 is the extension of the ray R�=2, then the
generators hk act in the same way as the generators a�1

k
.

We conclude that the actions of IMG.f / on T and of K. Of / on X� are conjugate.
Note that the proof does not depend on the choice of 
 for a given c (though the curve
�0 does depend on 
 ).

The wreath recursion defining K. O
/ is given by the paths disjoint with the legs
of the spider connecting the basepoint to its preimages. A different choice of the
connecting paths (and hence of the wreath recursion) are convenient in some other
situations (see, for instance [6]).

Proof in the pre-periodic case. As before, we consider dynamical rays R˛ . In the
pre-periodic case, both preimages of R� land on 0, and they divide the plane into
two connected components. The problem here is that there is no invariant spider
with disjoint legs, when the period of the angle is greater than that of the kneading
sequence.

However, we can find a sequence of spiders S0; S1; : : : , such that SkC1 �
f �1.Sk/. Take any spider S0 consisting of dynamical rays landing on Pf and define
inductively Sk to be the set of paths belonging to f �1.Sk�1/ and landing on the
points of Pf . The points of Pf are not critical, therefore for every z 2 Pf there
exists a unique path �z;kC1 2 f �1.Sk�1/ landing on z. Hence the spider Sk is well
defined.

We can then define the paths gz;k.t; u/ for every spider Sk in the same way as
in the periodic case. If �c;k is the element of Sk landing on c, then we denote by
S0;kC1 and S1;kC1 the components of C nf �1.�c;k/, where S1;kC1 is the component
containing c. The isomorphism ƒ W T ! X� is then defined using the itineraries of
points with respect to these partitions of the plane. Namely, if z 2 f �k.t/ is a vertex
of the tree T , then ƒ.z/ D xn�1xn�2 : : : x0, where xk 2 f0; 1g is such that

f k.z/ 2 Sxk ;n�k :

It is also easy to prove that ƒ is an isomorphism of rooted trees.
The same formulae for the preimages of the paths gz;k.t; u/ hold as in the periodic

case. The only differences will be that the index k C 1 appears at the preimages of
paths and at names of the components Si;k , and that the point 0 does not belong to
the post-critical set. Therefore the preimages of gc.t; u/ are the paths g.t0; u0/ and
g.t1; u1/, with t0; u1 2 S0;kC1 and t1; u0 2 S1;kC1. The partitions of the plane into
components S0;kC1 and S1;kC1 agree with the kneading sequence (i.e., every z 2 Pf

belongs either only to the sectors S0;k or only to the sectors S1;k), since the kneading
sequences of all rays landing on c are equal to O
 . These considerations prove that the
generators gz;0.t; t/ of IMG.f / act in the same way as the generators ai ; bi of the
group K. O
/.
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The following result follows from the classical results in symbolic dynamics of
quadratic polynomials (see [9], [16]). It follows also from general results on iterated
monodromy groups of expanding maps (see [17], Theorem 6.4.4).

Theorem 5.2. Under the conditions of Theorem 5.1, the limit dynamical system of
the group K. O
/ is topologically conjugate to the action of the polynomial z2 C c on
its Julia set.
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