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1. Introduction

The idea of genericity in geometric group theory was suggested by Gromov and
Ol’shanskii in late 1980s. This theme has become the subject of active study in recent
years.

The first mention of the idea of group-theoretic genericity seems to have been
made in a 1986 paper of Guba [15]. The first definition of genericity in the context
of finitely presented groups is due to Gromov and appeared in his seminal 1987
monograph “Hyperbolic groups” [12]. There Gromov stated that for any fixed k � 2

and m � 1 we have

lim
min ni !1

Nh.k; m; n1; : : : ; nm/

N.k; m; n1; : : : ; nm/
D 1:

Here N.k; m; n1; : : : ; nm/ is the number of all finite presentations of the form

ha1; : : : ; ak j r1; : : : ; rmi; (�)

where ri are cyclically reduced words with jri j D ni for i D 1; : : : ; m and
Nh.k; m; n1; : : : ; nm/ is the number of those among such presentations that define
word-hyperbolic groups. Later Ol’shanskii [30] and Champetier [6], [7] gave rigorous
proofs of this result.

�Both authors were supported by the NSF grant DMS#0404991. The first author was also supported
by the NSF grant DMS#0603921
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The second model of genericity, which we term the Arzhantseva–Ol’shanskii
model, suggested by Ol’shanskii in 1989 in a problem that appeared in the 11th
edition of Kourovka Notebook [22] (problem 11.75 in [22] contains a notion that is
very similar to, but slightly different from, the definition of Arzhantseva–Ol’shanskii
genericity used in [1], [5], [18] and in the present paper).

A property P of finitely presented groups is generic in theArzhantseva–Olshanskii
model (correspondingly, exponentially generic if the convergence to 1 in the limit
below is exponentially fast) if for every k � 2, m � 1 we have

lim
n!1

ˇP .k; m; n/

ˇ.k; m; n/
D 1:

Here ˇ.k; m; n/ is the number of presentations of the form .�/ where maxi jri j � n

and ˇP .k; m; n/ is the number of such presentations that define a group with prop-
erty P . We will give more precise definitions related to this model in Section 3 below.
The Arzhantseva–Ol’shanskii model is somewhat easier to work with than Gromov’s
original model, since one can essentially disregard the situation where some defining
relators are much shorter than others. This second model of genericity was formally
introduced by Arzhantseva and Ol’shanskii [5] where they proved that the property of
a k-generated m-related group to have all .k � 1/-generated subgroups being free is
exponentially generic for every k � 2, m � 1. The Arzhantseva–Ol’shanskii model
was subsequently used byArzhantseva [1], [2], [3], [4] and, later, by the authors of this
paper [18], [19], [21], [20]. For example, Kapovich, Schupp and Shpilrain [21] dis-
covered a phenomenon of Mostow-type isomorphism rigidity for generic one-relator
groups using the Arzhantseva–Ol’shanskii model.

In his book “Asymptotic invariants of infinite groups” [13], Gromov introduced
another model of genericity that we refer to as Gromov’s density model of random
groups. In this model one first fixes a density parameter 0 < d < 1. Then, given
a number of generators k � 2 and an integer n >> 1, from the set of all cyclically
reduced words of length n in F.a1; : : : ; ak/ one chooses uniformly randomly and
independently .2k � 1/dn elements forming a set R. Here F.a1; : : : ; ak/ denotes the
free group with free basis fa1; : : : ; akg. The group

G D ha1; : : : ; ak j Ri
is termed a random group with density parameter d or a d -random group. One then
tries to understand the properties of G as n ! 1. Note that the number of defining
relators .2k �1/dn grows exponentially in the length n of the relators. Also, crucially,
the density parameter d does not depend on the number of generators k of G. Gro-
mov’s density model was further explored by Ollivier [23], [24], [25], [26], Zuk [33]
(who used a “triangulated” variation of this model), Ollivier–Wise [28], [29], and
others. Thus Ollivier [23], [24], [27] gave a precise proof (with some generalizations
to the case of random quotients of word-hyperbolic groups) of a result first outlined
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by Gromov that for d < 1=2 a d -random group is non-elementary torsion-free word-
hyperbolic and for d > 1=2 a d -random group is finite (in fact either trivial or cyclic
of order two).

In [14] Gromov used yet another model of randomness, which one might call a
random graphical quotient model, to prove the existence of a finitely generated group
that does not admit a uniform embedding into a Hilbert space. Ghys [11] gives an
exposition of the results and ideas related to Gromov’s density and graphical models
of genericity. A subsequent survey of Ollivier [27] gives a more updated presentation
of these topics.

Yet another approach to genericity involves considering the space Sk of marked
groups (that is, the space of normal subgroups N in a fixed free group F.a1; : : : ; ak/

or, equivalently, the quotients F.a1; : : : ; ak/=N ) as a topological space. One can
then take the closure of some interesting class of finitely presented groups (e.g. of
word-hyperbolic groups) and try to understand the algebraic properties of typical
groups contained in this closure. This approach was explored, in particular, by Cham-
petier [8].

Our goal in this paper is to clarify the relationship between Gromov’s density
model and the Arzhantseva–Olshanskii model. While there is no direct connection
between them, it turns out that proofs using the Arzhantseva–Ol’shanskii model often
imply that a certain variation of Gromov’s density randomness condition holds.

For the purposes of comparison we need to introduce a variant of Gromov’s density
model of randomness where the density parameter d D d.k/ depends on the number
of generators k and where it is possible that d.k/ ! 0 as k ! 1. We call this
notion low-density randomness (see Section 2 for precise definitions, including the
definition of a monotone low-density random property). We show in Theorem 5.4 that
many algebraic genericity results obtained in the Arzhantseva–Ol’shanskii model do
yield low-density random properties:

Theorem 1.1. The following properties are monotone low-density random (where k

varies over k D 2; 3; : : : ):

(1) the property that a finite group presentation defines a group G that is one-ended,
torsion-free and word-hyperbolic [5], [1] (in fact, this property is monotone
random in Gromov’s density model [14], [24]).

(2) the property that a finite presentation on generators a1; : : : ; ak defines a group
G such that all .k � 1/-generated subgroups are free and quasiconvex in G;

(3) the property that a finite presentation on generators a1; : : : ; ak defines a group
G with rk.G/ D k.

(4) the property that a finite presentation on generators a1; : : : ; ak defines a group
G such that all Lk-generated subgroups of infinite index in G are free and
quasiconvex in G (here Lk is any sequence of positive integers).
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(5) the property that for a k-generated finitely presented group G there is exactly
one Nielsen-equivalence class of k-tuples of elements generating non-free sub-
groups.

Recall that for a finitely generated group G the rank of G, denoted rk.G/, is the
smallest cardinality of a generating set for G.

It turns out that in many cases various properties that are generic in the Arzhan-
tseva–Ol’shanskii model are not d -random in the sense of Gromov with d independent
of k. Some key information for estimating the density parameter d in Gromov’s
model is contained in the genericity entropy of exponentially generic sets of cyclically
reduced words in F.a1; : : : ; ak/. The definition of exponential genericity for subsets
of F.a1; : : : ; ak/ requires that certain fractions converge to 1 exponentially fast as
n ! 1. Genericity entropy quantifies this convergence rate.

We observe here that, unlike the standard small cancellation conditions, for the
Arzhantseva–Ol’shanskii “non-readability condition” the genericity entropy depends
on the number of generators k and in fact converges to 1 as k ! 1. This implies that,
when translated into the language of Gromov’s density model, various results using
the Arzhantseva–Ol’shanskii model yield properties that are low-density random but
which are not d -random for any fixed d > 0 which is independent of k. We prove
this fact in detail (see Corollary 6.2 below) for the Arzhantseva–Ol’shanskii non-�-
readability condition. We also show (see Proposition 6.4 below) that the property for a
finite presentation on k generators to define a group G with rk.G/ D k is low-density
random but not d -random for any d > 0 independent of k. The same is true (see
Corollary 6.3 below) for the analog of Magnus’ Freiheitssatz, that is, for the property
that for a group G defined by a finite presentation on the generators a1; : : : ; ak , any
proper subset of a1; : : : ; ak freely generates a free subgroup of G.

We show, however, that certain results obtained in the Arzhantseva–Ol’shanskii
genericity model do yield d -random properties in Gromov’s sense. Thus we prove
(see Theorem 7.5 below):

Theorem 1.2. For any fixed integer L � 2 there is some dL > 0 such that the
property that all L-generated subgroups of infinite index in a finitely presented group
G are free is monotone dL-random.

We also apply our results to a question of estimating from below the number of
isomorphism types of quotients of F.a1; a2; : : : ; ak/ where the number of relators is
arbitrary and their length is bounded above by n. To be more precise, let k � 2 be fixed
and let Ik.n/ be the number of isomorphism types of groups given by presentations
of the form

ha1; : : : ; ak j Ri
where R is a subset of the n-ball in F.a1; : : : ; ak/. Note that the size of the n-
ball in F.a1; : : : ; ak/ is � .2k � 1/n. Hence the number of all subsets of this ball
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is � 2.2k�1/n
yielding a double-exponential upper bound on Ik.n/ as n ! 1. It is

natural to ask if there is also a double-exponential lower bound for Ik.n/. This question
was suggested to the authors by Gromov, who informed us that several years ago
Anna Erschler obtained an unpublished proof giving such a double-exponential lower
bound. In this paper, relying on the isomorphism rigidity results for generic quotients
of the modular group that we obtained in [20], we achieve a double-exponential lower
bound for Ik.n/. Our proof is quite different from that of Erschler who used central
extensions of word-hyperbolic groups to estimate Ik.n/ from below.

Let M D ha; b j a2 D b3 D 1i, so that M is isomorphic to the modular group
PSL.2; Z/. We consider finitely presented quotients of M where the defining relations
are words in the alphabet A D fa; b; b�1g. There are natural notions of a reduced
and a cyclically reduced word in A� in this setting (see Section 8 below for details).
Note that in this context every cyclically reduced word is either a single letter or has
even length (again, see Section 8 below). Let � > 0 be fixed. For an integer t � 1

let J�.t/ be the number of isomorphism types of groups given by presentations of the
form

G D M=hhr1; : : : ; rmii
where m D 2t� and where each ri is a cyclically reduced word of length 2t in A�.

Theorem 1.3. There exists �0 > 0 such that for any 0 < � � �0 there is some � > 1

such that
J�.t/ � ��t

for t ! 1;

that is, the number J�.t/ is bounded below by a double-exponential function of t as
t ! 1.

Since M is generated by two elements a and b, Theorem 1.3 immediately yields
a double-exponential Erschler lower bound:

Corollary 1.4. The function I2.n/ has a double-exponential lower bound (and hence
the same is true for Ik.n/ for any fixed k � 2).

We are grateful to Lior Silberman for helpful comments regarding the behavior
of Kazhdan’s property (T) with respect to Gromov’s density model. We also thank
Goulnara Arzhantseva for many helpful remarks and suggestions.

2. Gromov’s density model and low-density random groups

In this section we want to give some precise definitions and notation related to Gro-
mov’s density model.
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Notation 2.1. For k � 2 let Ck � F.a1; : : : ; ak/ be the set of all cyclically reduced
words in F.a1; : : : ; ak/. If Pk � Ck , we denote Pk ´ Ck � Pk . For a subset
Qk � F.a1; : : : ; ak/ denote by �.n; Qk/ the number of elements of length n in Qk .

Definition 2.2 (Random groups in the density model). Let G be a property of finite
presentations of groups. Let 0 < d < 1.

We say that the property G is random with density parameter d (or d -random) if
for every k � 2

lim
n!1

Rk.n; d; G /

�.n; Ck/mn
D 1;

where mn D .2k �1/dn and Rk.n; d; G / is the number of all mn-tuples .r1; : : : ; rmn
/

of cyclically reduced words of length n such that the group with presentation

ha1; : : : ; ak j r1; : : : ; rmn
i

has property G .
We say that G is monotone d -random if for every 0 < d 0 � d the property G is

d 0-random. A property is monotone random of it is monotone d -random for some
d > 0.

Note that �.n; Ck/mn is exactly the number of all presentations

ha1; : : : ; ak j r1; : : : ; rmn
i

where the ri are cyclically reduced words of length n.

Definition 2.3 (Low-density random groups). We consider a property G of finite
presentations as G D .Gk/k�2 where, for every k � 2, Gk is a property of finite group
presentations on k generators a1; : : : ; ak .

For every integer k � 2 let 0 < d.k/ < 1. We say that G is low-density random
with density sequence .d.k//k�2 if for every integer k � 2 we have

lim
n!1

Rk.n; d.k/; Gk/

�.n; Ck/mn
D 1;

were mn D .2k � 1/nd.k/ and Rk.n; d.k/; Gk/ is the number of all mn-tuples
.r1; : : : ; rmn

/ of cyclically reduced words of length n such that the group

ha1; : : : ; ak j r1; : : : ; rmn
i

has property Gk .
We say that G is monotone low-density random with density sequence .d.k//k�2

if for any sequence .d 0.k//k�2 satisfying 0 < d 0.k/ � d.k/ the property G is low-
density random with density sequence .d 0.k//k�2.
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Remark 2.4. In the above definition let d ´ infk d.k/ and let G be monotone
low-density random with density sequence .d.k//k�2. If d > 0 then G is monotone
d -random in the sense of Definition 2.2.

The situation where d D 0 does not, however, correspond to a special case of
Definition 2.2.

Note that if G is a monotone low-density random property and G 0 is a monotone
random property with a density parameter d > 0 independent of k, then G \ G 0 is
again monotone low-density random. Moreover, the intersection of two monotone
low-density random properties is also monotone low-density random.

In this paper we concentrate on monotone random and monotone low-density
random properties. There are, however, important examples of non-monotone random
properties. Thus it follows from the result of Zuk [33] that Kazhdan’s property (T) is
d -random for every 1=3 < d < 1=2 (Zuk uses a somewhat different density model
in his paper, but his results imply the above statement in Gromov’s density model).
On the other hand, Ollivier and Wise [28] proved that if 0 < d < 1=5 and G is a
d -random group, then G does not have property (T).

3. The Arzhantseva–Ol’shanskii genericity model

We recall the basic notion of genericity in the Arzhantseva–Ol’shanskii approach.

Definition 3.1 (Generic subsets). Let k � 2 be an integer. A subset Pk � Ck is
generic if

lim
n!1

�.n; Pk/

�.n; Ck/
D 1:

We say that Pk � Ck is exponentially generic if it is generic and, in addition, the
convergence to 1 in the above limit is exponentially fast, that is, there exist a > 0 and
0 < � < 1 such that

�.n; Pk/

�.n; Ck/
� a�n

for all n � 1. This condition is equivalent to the fact that for some 0 < t < 1 and
some c > 0 we have

�.n; Pk/ � c.2k � 1/tn for all n � 1: (�)

It is not hard to show [17] that a subset Pk � Ck is exponentially generic if and
only if

lim
n!1

#fw 2 Pk W jwj � ng
#fw 2 Ck W jwj � ng D 1;

with exponentially fast convergence.
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Definition 3.2. Let k � 2 and m � 1 be integers. We say that a subset Uk;m � Cm
k

is generic if

lim
n!1

#f.r1; : : : ; rm/ 2 Uk;m W jri j � n; i D 1; : : : ; mg
#f.r1; : : : ; rm/ 2 Cm

k
W jri j � n; i D 1; : : : ; mg D 1:

If, in addition, this convergence is exponentially fast, we say that Uk;m � Cm
k

is
exponentially generic.

It is easy to see that if Pk � Ck is exponentially generic in Ck , then for every
m � 1 the subset P m

k
� Cm

k
is exponentially generic in Cm

k
. Moreover, it is also not

hard to show that in this case for every m � 1,

lim
n!1

#f.r1; : : : ; rm/ 2 P m
k

W jri j D n; i D 1; : : : ; mg
#f.r1; : : : ; rm/ 2 Cm

k
W jri j D n; i D 1; : : : ; mg D 1;

with exponentially fast convergence.

Definition 3.3 (Arzhantseva–Ol’shanskii genericity). Let P be a property of groups.
For integers k � 2, m � 1 we say that a property of groups P is (exponentially)

.k; m/-generic if the set Uk;m of all m-tuples .r1; : : : ; rm/ 2 Cm
k

such that the group
ha1; : : : ; ak j r1; : : : ; rmi has property P is an (exponentially) generic subset of Cm

k
.

We say that P is (exponentially) generic if it is (exponentially) .k; m/-generic for
every k � 2, m � 1.

4. Genericity entropy and low-density randomness

Definition 4.1. Let Pk � Ck be a set of cyclically reduced words. We define the
genericity entropy t D t .Pk/ of Pk as

t ´ lim sup
n!1

log �.n; Pk/

n log.2k � 1/
:

We also define the lower genericity entropy t 0 D t 0.Pk/ as

t 0 ´ lim inf
n!1

log �.n; Pk/

n log.2k � 1/
:

It is easy to see that we always have 0 � t 0.Pk/ � t .Pk/ � 1 and that Pk � Ck

is exponentially generic if and only if t .Pk/ < 1.
A simple but crucial computation shows that genericity entropy controls the density

parameter in Gromov’s model of random groups:
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Proposition 4.2. Let k � 2 and let Pk � Ck .

(1) Suppose that t ´ t .Pk/ < 1. Let 0 < d < 1 be such that d < 1 � t . Then

lim
n!1

# .2k � 1/dn-tuples of elements of Pk of length n

# .2k � 1/dn-tuples of elements of Ck of length n
D 1:

(2) Suppose that d > 1 � t 0 where t 0 D t 0.Pk/. Then

lim
n!1

# .2k � 1/dn-tuples of elements of Pk of length n

# .2k � 1/dn-tuples of elements of Ck of length n
D 0:

Proof. (1) Recall that there exist 0 < c0 < c1 < 1 such that for every n � 1 we
have

c0.2k � 1/n � �.n; Ck/ � c1.2k � 1/n:

Indeed, a result of Rivin [31] shows that

�.n; Ck/ D .2k � 1/n C 1 C .k � 1/Œ1 C .�1/n�:

Thus for a fixed k � 2 we have �.n; Ck/ � .2k � 1/n where f .n/ � g.n/ means
that limn!1 f .n/

g.n/
D 1.

Let m D .2k � 1/dn. The number N of m-tuples of elements of Ck of length n

where at least one element does not belong to Pk satisfies

N

�.n; Ck/m
� m�.n; Pk/�.n; Ck/m�1

�.n; Ck/m
D m�.n; Pk/

�.n; Ck/

� .2k � 1/dnc.2k � 1/tn

c0.2k � 1/n
D c.2k � 1/.tCd/n

c0.2k � 1/n
����!
n!1 0:

This implies part (1) of the proposition.
(2) Again let m D .2k � 1/nd . Recall that d > 1 � t 0, so that t 0 > 1 � d . Let t 00

be such that t 0 > t 00 > 1 � d . Then for n � 1 we have

�.n; Pk/ � .2k � 1/nt 00

and hence

�.n; Pk/ D �.n; Ck/ � �.n; Pk/ � �.n; Ck/ � .2k � 1/nt 00

:

Thus �.n; Pk/m is the number of m-tuples of elements of Pk of length n and it
satisfies

�.n; Pk/m

�.n; Ck/m
� .�.n; Ck/ � .2k � 1/nt 00

/m

�.n; Ck/m

D
�

�.n; Ck/ � .2k � 1/nt 00

�.n; Ck/

�m

D
�

1 � .2k � 1/nt 00

�.n; Ck/

�m

:
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Denote Yn D log �.n;Pk/m

�.n;Ck/m . Then

Yn � m log

�
1 � .2k � 1/nt 00

�.n; Ck/

�
D .2k � 1/nd log

�
1 � .2k � 1/nt 00

�.n; Ck/

�

� .2k � 1/nd

�
� .2k � 1/nt 00

�.n; Ck/

�
� �.2k � 1/nd .2k � 1/nt 00

.2k � 1/n

D � .2k � 1/n.dCt 00/

.2k � 1/n
D �

�
.2k � 1/dCt 00

2k � 1

�n

����!
n!1 �1;

since d C t 00 > 1. (Recall that f .n/ � g.n/ means that limn!1 f .n/
g.n/

D 1.)

Hence limn!1 log �.n;Pk/m

�.n;Ck/m D �1 and therefore limn!1 �.n;Pk/m

�.n;Ck/m D 0, as
claimed.

Corollary 4.3. For each k � 2 let Pk � Ck . Let G D .Gk/k�2 where Gk is the
property that for a finite presentation on k generators all the defining relations belong
to Pk . Let tk D t .Pk/ and let t 0

k
D t 0.Pk/. Then the following holds:

(1) If 0 � tk < 1 for every k � 2 then the property G is monotone low-density
random.

(2) If supk t 0
k

D 1 then there does not exist d > 0 such that G is d -random.

5. Comparing the two models

The proofs of most existing results related to the Arzhantseva–Ol’shanskii genericity
model rely on proving that certain subsets Pk � Ck are exponentially generic.

We recall the definitions of crucial genericity conditions for many results using
the Arzhantseva–Ol’shanskii genericity model.

Definition 5.1 ([5]). Let 0 < � < 1 and let k � 2 be an integer. A freely reduced
word w in F.a1; : : : ; ak/ is �-readable if there exists a finite connected graph 	 , with
a distinguished base-vertex, with the following properties:

(1) Every edge e of 	 is labelled by some element s.e/ of fa1; : : : ; akg˙1 so that
for every edge e we have s.e�1/ D s.e/�1.

(2) The graph 	 is folded, that is, there is no vertex with two distinct edges originating
at that vertex and having the same label.

(3) 	 has no degree-one vertices except possibly for its base-vertex.

(4) The fundamental group of 	 is free of rank at most k � 1.

(5) There exists an immersed path in 	 labelled w.
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(6) The volume of 	 (that is, the number of non-oriented edges) is at most �jwj.
We denote by Pk.�/ the set of all non-�-readable elements of Ck .

Definition 5.2 ([1]). Let L � 2 and k � 2 be integers. Let 0 < � < 1. We say that
a freely reduced word v 2 F.a1; : : : ; ak/ is .�; L/-readable if there exists a finite
connected graph 	 with the following properties:

(1) Every edge e of 	 is labelled by some element s.e/ of fa1; : : : ; akg˙1 so that
for every edge e we have s.e�1/ D s.e/�1.

(2) The graph 	 is folded.

(3) The fundamental group of 	 is free of rank at most L.

(4) The graph 	 has at least one vertex of degree < 2k.

(5) The graph 	 has at most two degree-1 vertices.

(6) There exists an immersed path in 	 labelled v.

(7) The volume of 	 (that is, the number of non-oriented edges) is at most �jvj.
We denote by Qk.�; L/ the set of all non-.�; L/-readable elements of Ck .

A key result of [5] is that for fixed k and a sufficiently small � (namely, when
� < log2k.1 C 1

4k�4
/) the set of non-�-readable elements is exponentially generic

in Ck . Arzhantseva [1] also obtained a similar result regarding non-.�; L/-readable
words:

Proposition 5.3 ([5], [1]). Let k � 2 be an integer and let F D F.a1; : : : ; ak/. Then
the following holds:

(1) Let 0 < � < log2k

�
1 C 1

4k�4

�
< 1. Then the set Pk.�/ of all non-�-readable

elements of Ck is exponentially generic in Ck .

(2) Let L � 2 be and integer and let

0 < � <
1

3L
log2k

�
1 C 1

2.2k � 1/3L � 2

�
< 1:

Then the set Qk.�; L/ of all non-.�; L/-readable words in Ck is exponentially
generic in Ck .

In most results related to the Arzhantseva–Ol’shanskii genericity one works with
intersections of properties that either monotone low-density random (such as con-
ditions involving non-�-readable words and non-.�; L/-readable words) or mono-
tone random with some density parameter d > 0 independent of k (such as the
small cancellation condition C 0.
/ for a fixed 0 < 
 < 1). Therefore the result-
ing conditions are in fact monotone low-density random. We give here a summary
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of some statements that follow from the proofs of various known results related to
Arzhantseva–Ol’shanskii genericity using Corollary 4.3. At the end of each item we
give a reference to the source where the corresponding statement was established in
the Arzhantseva–Olshanskii model of genericity.

Theorem 5.4. The following properties are monotone low-density random (where k

varies over k D 2; : : : ):

(1) the property that a finite group presentation satisfies the C 0.
/-small cancella-
tion condition (where 0 < 
 � 1=6 is any fixed number independent of k) and
defines a group G that is one-ended, torsion-free, and word-hyperbolic [5];

(2) the property that a finite presentation on generators a1; : : : ; ak defines a group
G such that all .k � 1/-generated subgroups are free and quasiconvex in G [5];

(3) the property that a finite presentation on generators a1; : : : ; ak defines a group
G with rk.G/ D k [5];

(4) the property that a finite presentation on generators a1; : : : ; ak defines a group
G such that all Lk-generated subgroups of infinite index in G are free and
quasiconvex in G (here Lk is any sequence of positive integers) [1], [2];

(5) the property that for a k-generated finitely presented group G there is exactly
one Nielsen-equivalence class of k-tuples of elements generating non-free sub-
groups [18].

Regarding condition (1) in Theorem 5.4, it is known that the property of a finitely
presented group to be non-elementary torsion-free word-hyperbolic is in fact mono-
tone random and not just low-density random (see Theorem 2 in [24], Theorem 11
in [27]). It is also known and not hard to prove that if 0 < 
 < 1 and 0 < d < 
=2

then the C 0.
/ small cancellation condition is a monotone d -random property (see,
for example, Proposition 10 of [27]).

Unlike the case of the standard small cancellation condition, the genericity en-
tropy t for exponentially generic sets arising from the Arzhantseva–Ol’shanskii non-
readability conditions usually depends on k and in fact converges to 1 as k ! 1.
This situation is different from the standard small cancellation conditions where the
genericity entropy is easily seen to have a positive upper bound which is separated
from 1 and independent of k. In Section 6 we establish this for the non-�-readability
condition and show that in that case limk!1 t 0.Pk.�// D limk!1 t .Pk.�// D 1.
Hence for 0 < d.k/ < 1 � t 0.Pk/ we have limk!1 d.k/ D 0 and, in view of
Corollary 4.3, the notion of low-density randomness becomes necessary.
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6. Detailed examples of low-density random but not random properties

Proposition 6.1. Let k � 2 and let 0 < �k < 1. Let Pk.�k/ � Ck be the set of all
cyclically reduced words in F.a1; : : : ; ak/ that are not �k-readable. Then

1 � t .Pk/ � t 0.Pk/ � log.2k � 3/

log.2k � 1/

and hence
lim

k!1
t .Pk/ D lim

k!1
t 0.Pk/ D 1:

Proof. Let 	 be the wedge of .k � 1/ loop-edges labelled by a1; : : : ; ak�1. Then any
freely reduced word from F.a1; : : : ; ak�1/ can be read as the label of a path in 	 .
Hence for any w 2 Ck�1 with jwj > .k � 1/=�k the word w is �k-readable, that is,
w 2 Pk . Thus for n � 1 C ��1

k
.k � 1/ we have

�.n; Pk/ � �.n; Ck�1/ � c.2k � 3/n

for some constant c > 0 independent of n.
Therefore

t 0.Pk/ � lim inf
n!1

log c.2k � 3/n

n log.2k � 1/
D log.2k � 3/

log.2k � 1/
;

as claimed.

Part (2) of Corollary 4.3 immediately implies

Corollary 6.2. Let 0 < �k < 1 for k � 2. Let G D .Gk/k�2, where Gk is the
property that for a finite presentation on k generators all the defining relations are
non-�k-readable.

Then G is not d -random for any d > 0.

Similarly, one obtains the following result.

Corollary 6.3. Let G D .Gk/k�2, where Gk is the property that a finite group presen-
tation on the generators a1; : : : ak defines a group G such that every proper subset of
a1; : : : ak freely generates a free subgroup of G.

Then G is monotone low-density random but not d -random for any d > 0.

Proof. The fact that G is not d -random for any d > 0 follows from part (2) of
Corollary 4.3 by the same argument as in the proof of Proposition 6.1.

It is well known (see, for example, [27], Proposition 10) that the C 0.
/ small
cancellation condition is a monotone d -random property for any 0 < d < 
=2. It
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is also easy to see that the set of cyclically reduced words r in Ck such that every
subword of r of length jr j=6 involves all the generators a1; : : : ; ak is exponentially
generic in Ck . Let G be given by a C 0.1=6/-presentation on the generators a1; : : : ; ak

where all the defining relations r have the property that every subword of r of length
jr j=6 involves all the generators a1; : : : ; ak . Then every proper subset of a1; : : : ; ak

freely generates a subgroup of G. It now follows from part (1) of Corollary 4.3 that
P is monotone low-density random.

One can regard property G from Corollary 6.3 above as a version of Magnus’
Freiheitssatz for random groups. An asymptotic version of the Freiheitssatz using
another model introduced by Gromov [12] was obtained by Cherix and Schaeffer [10].

Similar arguments to those used above yield

Proposition 6.4. Let G D .Gk/k�2 where Gk is the property that a finite group
presentation on a1; : : : ; ak defines a group of rank k. Then G is monotone low-density
random but not d -random for any d > 0.

Proof. We have already observed in Theorem 5.4 that G is monotone low-density
random. Let G 0 D .G 0

k
/k�2 where G 0

k
is the property that for a finite presentation on

a1; : : : ; ak none of the defining relations are primitive in F.a1; : : : ; ak/. Clearly, if
G D ha1; : : : ; ak j r1; : : : ; rmi and some ri is a primitive element in F.a1; : : : ; ak/

(that is, ri belongs to some free basis of F.a1; : : : ; ak/) then rk.G/ � k � 1. Thus
Gk � G 0

k
and G � G 0. It suffices to show that G 0 is not d -random for any d > 0.

Let Pk � Ck be the set of all non-primitive elements in Ck . Note that, for any
freely reduced word w 2 F.a2; : : : ak/, the element a1w is primitive in F.a1; : : : ; ak/.
Hence

�.n; Pk/ � �.n � 1; Fk�1/ D .2k � 2/.2k � 3/n�2:

Therefore

1 � t .Pk/ � t 0.Pk/ � log.2k � 3/

log.2k � 1/
����!
k!1

1:

Part (2) of Corollary 4.3 implies that G 0 is not d -random for any d > 0.

7. A bounded freeness property

In this section we will show that for every fixed integer L � 2 there is some 0 < d < 1

such that the property of a finitely presented group that all its L-generated subgroups
of infinite index are free is monotone d -random.

First, we need to investigate the genericity entropy of the set of non-.�; L/-read-
able words. Recall that Qk.�; L/ is the set of all words in Ck that are not .�; L/-
readable. The proof of the following proposition is similar to the counting arguments
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used in [1], [5], with a variation whose significance is explained further in Remark 7.6
below.

Proposition 7.1. Let k � 2 be a fixed integer and let 2 � L < k. Then we have

�.n; Qk.�; L// � C.�n/3LC1.6L/n.2k � 1/�n:

where C > 0 is independent of n.

Proof. Recall that an arc in 	 is an immersed edge-path where every intermediate
vertex of the path has degree two in 	 .

Note that if 	 is a finite connected graph with fundamental group free of
rank � L < k, then 	 necessarily has a vertex of degree < 2k. Thus condition (4) of
Definition 5.2 is redundant in this case.

Let L > k and 0 < � < 1 be fixed. Let v 2 F.a1; : : : ; ak/ be a .�; L/-
readable word with jvj D n. First, we estimate the number of labelled graphs 	 as in
Definition 5.2 where v can be read.

There are � C0 D C0.L/ topological types of the graphs 	 arising in the definition
of a .�; L/-readable word. Since �1.	/ has rank at most L and 	 has at most two
degree-1 vertices, it follows that 	 has � 3L non-directed maximal arcs and � 6L

directed maximal arcs. The sum of the length of theses arcs is � �n. The number of
ways to represent a positive integer N as a sum

N D N1 C 	 	 	 C N3L;

where Ni are non-negative integers is

.N C 3L � 1/Š

N Š.3L � 1/Š
� .N C 3L � 1/3L:

Hence the number of ways to write a sum

N1 C 	 	 	 C N3L � �n

is � C1.�n/3LC1, where C1 is independent of n. Now for each decomposition
N1 C 	 	 	 C N3L � �n, the number of ways to assign the maximal arcs of 	 labels
v1; : : : v3L 2 F.a1; : : : ; ak/ with jvi j D Ni is

� C2.2k � 1/�n;

where C2 > 0 does not depend on n.
Thus there are at most C0C1C2.�n/3LC1.2k � 1/�n relevant labelled graphs 	

as in Definition 5.2
For a fixed 	 , if v can be read in 	 then v is the label of a path

p0
1; p2; : : : ; ps�1; p0

s
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where pi are oriented maximal arcs, p0
1, p0

s are oriented arcs and s � jvj D n. By
passing to a subgraph of 	 if necessary we may assume that p0

1 and p0
2 are maximal

arcs as well. Thus v is the label of a path ˛ D p1; p2; : : : ; ps�1; ps where pi are
directed maximal arcs in 	 and where s � n D jvj. Since s � n and 	 has � 6L

oriented maximal arcs, there are � .6L/n combinatorial possibilities to express ˛ as
a word in the alphabet of 6L letters corresponding to the directed maximal arcs.

Hence the total number of possibilities for v is

�.n; Qk.�; L// � C0C1C2.�n/3LC1.6L/n.2k � 1/�n;

as required.

The following technical definition is motivated by the corresponding notions used
in counting arguments in [1], [5].

Definition 7.2. Let k � 2, L � 2 be integers and let 0 < � < 1. We say that a
cyclically reduced word w 2 F.a1; : : : ; ak/ is .�; L/-good if no cyclic permutation
of w˙1 contains a subword v of length � jwj=2 such that v is .�; L/-readable.

Lemma 7.3. Let k > L � 2 and let 0 < � < 1. Let Yk D Yk.�; L/ � Ck be the
set of all cyclically reduced .�; L/-good words. Then

t .Yk/ � ..� C 1/=2/ log.2k � 1/ C .1=2/ log.6L/

log.2k � 1/
:

Proof. Let w 2 Yk with n D jwj. There are at most 2n cyclic permutations of
w˙1 and at least one of them has an initial segment v of length n=2 such that v is
.�; L/-readable. Hence by Proposition 7.1 the number of possibilities for w is

�.n; Yk/ � A.2n/.�n=2/3LC1.6L/n=2.2k � 1/�n=2.2k � 1/n=2;

where A > 0 is independent of n. Hence

t .Yk/ D lim sup
n!1

log �.n; Yk/

n log.2k � 1/

� lim sup
n!1

.n
2

C �n
2

/ log.2k � 1/ C n
2

log 6L C log.2An/ C .3L C 1/ log �n
2

n log.2k � 1/

D .�C1
2

/ log.2k � 1/ C 1
2

log.6L/

log.2k � 1/
: �

The results of Section 4 of [1] imply
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Proposition 7.4. Let L; k � 2 be integers. Let 0 < � < 1 and 0 < 
 < 1 be such
that

0 < 
 � �

15L C 3�
� 1

6
:

Let G D ha1; : : : ; ak j r1; : : : ; rmi be such that

(1) the above presentation of G satisfies the small cancellation condition C 0.
/,

(2) all r1; : : : ; rm are cyclically reduced words that are not proper powers in
F.a1; : : : ; ak/, and

(3) each ri is .�; L/-good.

Then every L-generated subgroup of infinite index in G is free.

Theorem 7.5. For every integer L � 2 there is some d > 0 such that the property of
finitely presented groups for all L-generated subgroups of infinite index to be free is
monotone d -random.

Proof. Let L � 2 be a fixed integer.
It is well known and easy to see that conditions (1) and (2) from Proposition 7.4

are monotone random (see, e.g., Proposition 10 and Theorem 11 in [27]). Thus it
suffices to deal with condition (3) of Proposition 7.4.

Choose 0 < 
; � < 1 so that

0 < 
 � �

15L C 3�
� 1

6
:

We have

lim
k!1

..� C 1/=2/ log.2k � 1/ C .1=2/ log.6L/

log.2k � 1/
D � C 1

2
< 1:

Choose � so that .� C 1/=2 < � < 1. There exists an integer k0 > L such that

..� C 1/=2/ log.2k � 1/ C .1=2/ log.6L/

log.2k � 1/
� � < 1

for any k � k0. Thus by Lemma 7.3 for k � k0 we have

t .Yk/ � � < 1:

Recall that by Theorem 5.4 the property of having all L-generated subgroups
of infinite index being free is monotone low-density random with density sequence
.d.k//k�2. Put d0 ´ minfd.2/; : : : ; d.k0 � 1/; 1 � �g. Then by Proposition 4.2 the
property of having all L-generated subgroups of infinite index being free is monotone
d -random for any 0 < d < d0.
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Remark 7.6. In [1] Arzhantseva presented a proof of exponential genericity in
F.a1; : : : ; ak/ of non-.�; L/-readable words, assuming that � is small enough. How-
ever, the estimates on the growth of .�; L/-readable words obtained there are insuf-
ficient for our purposes in the proof of Theorem 7.5. Let Pk � Ck be the set of all
non-.�k; L/-readable cyclically reduced words in F.a1; : : : ; ak/, where 0 < �k < 1

satisfies

0 < �k <
1

3L
log2k

�
1 C 1

2.2k � 1/3L � 2

�
:

A crucial estimate in Lemma 3 of [1] shows that

�.n; Pk/ � A

�
.2k � 1/3L � 1

2

�n=3L

: (��)

This yields

t .Pk/ � log
�
.2k � 1/3L � 1

2

�
3L log.2k � 1/

����!
k!1

1;

where convergence to 1 in the last limit is easily seen by applying l’Hôpital’s rule.
Therefore we needed an estimate different from .��/ for the number of .�; L/-
readable words in Proposition 7.1. That estimate allowed us to obtain bounds on
the genericity entropy of the set of .�; L/-good words that are independent of k for
sufficiently large k. On the other hand, we still needed the results of [1] obtained
via the estimate .��/ to deal with the case of “small” k with k < k0 in the proof of
Theorem 7.5.

8. Double-exponential lower bound for J�.t/

In this section we establish Theorem 1.3 from the Introduction (see Theorem 8.2
below). Note that Theorem 1.3 implies Corollary 1.4 giving Erschler’s double-
exponential lower bound for the number I2.n/ of isomorphism types of quotients
of F.a; b/ by collections of defining relations of length � n.

It is well known that the modular group PSL.2; Z/ is isomorphic to the free product
of a cyclic group of order two and a cyclic group of order three. Denote

M ´ ha; b j a2 D b3 D 1i D ha j a2 D 1i � hb j b3 D 1i:
Put A D fa; b; b�1g. We say that a word w 2 A� is reduced if it does not contain
subwords of the form aa, bb, b�1b�1, bb�1, b�1b. it is clear that any element of
M is uniquely represented by a reduced word in A�. We say that a word w 2 A�
is cyclically reduced if w and all cyclic permutations of w are reduced. Thus any
nonempty cyclically reduced word is either a single letter or, up to a cyclic permutation,
has the form

w D ab�1ab�2 : : : ab�t
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where �i D ˙1. It is therefore easy to see that the number of all cyclically reduced
words in A� of length n > 1 is equal to 0 if n is odd, and is equal to 2 	 2n=2 if n is
even. As before, let CA be the set of all cyclically reduced words in A�. For a subset
S � CA denote by �.n; S/ the number of elements of length n in CA. Similarly to
the free group case, we can define the notions of generic and exponentially generic
subsets of CA. Thus S � CA is exponentially generic if

lim
t!1

�.2t; S/

�.2t; CA/
D lim

t!1
�.2t; S/

2tC1
D 1;

with exponentially fast convergence. Similarly, all the other notions of genericity in
the Arzhantseva–Ol’shanskii model can be defined for quotients of M in exactly the
same way as for the quotients of F.a1; : : : ; ak/.

Denote by 
 W M ! M the relabelling automorphism of M defined on the gen-
erators as 
.a/ D a, 
.b/ D b�1.

Notation 8.1. For � > 0 be fixed. For an integer t � 1 let J�.t/ be the number of
isomorphism types of groups given by presentations of the form

G D M=hhr1; : : : ; rmii; (�)

where m D 2t� and where each ri is a cyclically reduced word of length 2t in A�.

Theorem 8.2. There exists �0 > 0 such that for any 0 < � � �0 there is some � > 1

such that
J�.t/ � ��t

for t ! 1;

that is, J�.t/ is bounded below by a double-exponential function of t as t ! 1.

Proof. The results of [20] show that there is some exponentially generic subset S �
A� and some 0 < 
 < 1 with the following property. Suppose m � 1 is fixed. Then
there exists an exponentially generic subset Um � Cm

A such that:
(1) Every presentation (�) with .r1; : : : ; rm/ 2 Um satisfies the C 0.
/ small can-

cellation condition.
(2) We have Um � Sm.
(3) For .r1; : : : ; rm/; .s1; : : : ; sm/ 2 Um with jri j D jsj j D 2t the groups

M=hhr1; : : : ; rmii and M=hhs1; : : : ; smii are isomorphic if and only if there is a re-
ordering .r 0

1; : : : ; r 0
m/ of .r1; : : : ; rm/ and there is ı 2 f0; 1g such that each r 0

i is a
cyclic permutation of 
ı.si / or of 
ı.s�1

i /.
(4) The number Km.t/ of isomorphism types of groups given by presentation (�)

where all ri are cyclically reduced words of length 2t in A� satisfies

Km.t/ � 2m.tC1/

2 mŠ.4t/m
:
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Statement (4) is essentially a corollary of (3): one needs to count the number
of all presentations (�) where .r1; : : : ; rm/ 2 Um has jr1j D 	 	 	 D jrmj D 2t and
divide this number by the multiplicity constant in counting the isomorphism types
of such presentations, where this multiplicity constant comes from (3) and is equal
to 2 mŠ.4t/m. Here the factor mŠ comes from counting reorderings .r 0

1; : : : ; r 0
m/ of

.r1; : : : ; rm/ 2 Um. Every ri of length 2t has 2t cyclic permutations, so there are 4t

cyclic permutations of r˙1
i . Finally, applying 
ı , with ı D 0; 1, to the presentation

gives an additional multiplicity factor of 2.
The results of the present paper, namely an appropriately adapted version of Corol-

lary 4.3, imply that statements (1)–(3) also hold in the low-density model, where the
number of relations m is not fixed but rather has the form m D 2t� with � > 0 suffi-
ciently small and independent of t . Note that since S � CA is exponentially generic,
we have �.2t; S/ � 1

2
�.2t; CA/ for all sufficiently large t . Then the same arguments

as in [20] imply that the number J�.t/ satisfies

J�.t/ � C
2m.tC1/2�m

2 mŠ.4t/m
;

where C > 0 is a constant and where m D 2t� . It is not hard to see that this gives a
double-exponential lower bound for J�.t/. Indeed, note that mŠ � mm and thus

J�.t/ � C
.2.tC1//m

2.8mt/m
� C

.2.tC1//m

.16mt/m
;

hence

log J�.t/ � log C C m log

�
2.tC1/

16mt

�
D log C C 2t� log

�
2.tC1/

16 	 2t�t

�
:

If � > 0 is chosen sufficiently small, then

2.tC1/

16 	 2t�t
� 2 for t ! 1

and hence
log J�.t/ � log C C 2t� log 2 � 2t�=2 for t ! 1;

yielding a double-exponential lower bound for J�.t/, as required.
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