
Groups Geom. Dyn. 3 (2009), 1–37 Groups, Geometry, and Dynamics
© European Mathematical Society

A minimal non-solvable group of homeomorphisms

Collin Bleak

Abstract. Let PLo.I / represent the group of orientation-preserving piecewise-linear homeo-
morphisms of the unit interval which admit finitely many breaks in slope, under the operation of
composition. We find a non-solvable groupW and show thatW embeds in every non-solvable
subgroup of PLo.I /. We find mild conditions under which other non-solvable subgroups B ,
. o Z o /1, .Z o /1, and 1. o Z/) embed in subgroups of PLo.I /. We show that all solvable
subgroups of PLo.I / embed in all non-solvable subgroups of PLo.I /. These results continue
to apply if we replace PLo.I / by any generalized Thompson group Fn.

Mathematics Subject Classification (2000). 20F62,37E05, 20F38, 20E07, 20E22.

Keywords. PL homeomorphisms, group actions, unit interval, non-solvable groups, Thomp-
son’s group F .

1. Introduction

Let the symbol PLo.I / represent the group of orientation-preserving piecewise-linear
homeomorphisms of the unit interval which admit finitely many breaks in slope, under
the operation of composition. We show that there is a non-solvable group W so that
W embeds in every non-solvable subgroup of PLo.I /. We show that every solvable
subgroup of PLo.I / embeds in every non-solvable subgroup of PLo.I / (see [3] and [2]
for a geometric and two algebraic classifications of the solvable subgroups of PLo.I /).
We show that all virtually solvable subgroups of PLo.I / are in fact solvable. Finally,
ifH � PLo.I /, we find various mild conditions on the action ofH on the unit interval
which imply the existence in H of embedded copies of various of the non-solvable
groups B , . o Z o /1, . o Z/1 or .Z o /1 (these last groups are defined in Sections 1.6
and 1.8).

We note that PLo.I / has received attention from various researchers lately, primar-
ily because it is “a source of groups with interesting properties in which calculations
are practical” (quoting Brin and Squier in [8]). For example, PLo.I / contains copies
of each of the generalized Thompson groups Fn, which have themselves been a focus
of current research. (The groups Fn were introduced by Brown in [9], where they
were denoted Fn;1. R. Thompson’s group F corresponds to F2 in this context. The
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family of groups Fn are further studied by Stein in [11], by Brin and Guzmán in [6]
and by Burillo, Cleary, and Stein in [10].)

All of our stated results for subgroups of PLo.I / hold if we replace the group
PLo.I / in each of the statements with any particular group Fn.

This paper is a logical continuation of the investigations began in [3] and continued
in [2], and it indirectly uses some machinery developed in [5]. While we will only need
a small part of the theory developed in [2], we will need almost all of the definitions,
theory, and techniques developed in [3]. Instead of simply restating the whole of [3],
we will assume that the reader is familiar with that paper, although we will restate
relevant definitions here.

Our purely algebraic results are stated in Section 1.1, while our geometric results
are stated in Section 1.2, after we give the required definitions. We note in passing that
the proof of our main algebraic result depends in large part on our geometric results.

The author would like to thank Matt Brin and Binghamton University for their
support during the research leading up to this paper. The author would also like to
thank his referees, who gave many detailed and helpful comments; they significantly
helped the author to improve the exposition of this article.

Some of the results here are contained in the author’s dissertation written at Bing-
hamton University.

1.1. Our main algebraic result. In the context of F , there have been two prime
candidates for minimal non-solvable subgroups; the groups denoted by 1. o Z/ and
.Z o /1 in [5]. In particular, Sapir had asked the question of whether every non-
solvable subgroup of F contained a copy of .Z o /1. Brin in [5] answers this nega-
tively by showing that both .Z o /1 and 1. o Z/ occur as embedded subgroups of F ,
and that neither of these two groups contains the other as an embedded subgroup.
Brin then asks (Question 1 of his text) whether one of these two groups has to occur
as an embedded subgroup in any non-solvable subgroup of PLo.I /.

Our chief result is the following.

Theorem 1.1. Let H be a subgroup of PLo.I /. H is non-solvable if and only if W
embeds in H .

Since both 1. o Z/ and .Z o /1 fails to embed in the other it is an immediate
corollary of our Theorem 1.1 that neither will embed intoW . Thus, we answer Brin’s
question negatively.

There is also a finitely generated group B , denoted G1 in Section 5 of [5] (where
Brin introduces the group), which contains both 1. o Z/ and .Z o /1. We state
the following conjecture, which, in the light of our Theorem 1.4, is really a just a
promotion of Question 1 from [3].

Conjecture. Any finitely generated non-solvable subgroup of PLo.I / contains an
embedded copy of the group B .
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1.2. Key algebraic definitions. We now work to defineW , and then we state some
immediate corollaries of Theorem 1.1.

We must first recall the definition of a standard restricted wreath product of groups.
Let C and T be groups. Let M D

L
t2T C represent the direct sum of copies

of C indexed by the elements of T . We will denote the group M Ì T (where the
action of T onM is by right multiplication on the indices) by the symbol C o T . The
group C oT is the standard restricted wreath product of C and T . Following standard
convention, we will refer to C as the “bottom group” of C o T , we will refer toM as
the “base group” of C o T , and finally we will refer to T as the “top group” of C o T .
As we will not have a need to explicitly discuss other types of wreath products in this
paper, we will use the phrase “wreath product” to mean the “standard restricted wreath
product” in the remainder. Note that we can think of C , M , and T as subgroups of
C oT in fairly obvious manners (a little care is required when choosing the realization
of the group C in C o T , as many candidate copies of C are available).

If C is a subgroup of PLo.I /, then there is a straightforward geometric construc-
tion that realizes the group C o Z in PLo.I /. We will give a concrete demonstration
of this construction below in Section 1.8. The construction is so basic in PLo.I /
that it motivates the definition of the following family of groups (the groups .Wi /1iD0
mentioned above), which will play a central role in all that follows.

Define

W0 D f1g and Wn D Wn�1 o Z for n > 0 with n 2 N:

Note here that we use N D f0; 1; 2; : : : g.
We are now ready to define the group W :

W D
L
n2N

Wn:

1.3. Corollaries of the chief algebraic result. It is a consequence of the main results
of [2] that each solvable subgroup H of PLo.I / admits an n 2 N so that H embeds
in Wn. However, each Wn embeds in W . Therefore, Theorem 1.1 has the following
consequence.

Corollary 1.2. Every solvable subgroup of PLo.I / embeds in every non-solvable
subgroup of PLo.I /.

Note that the above statement is also true if we replace PLo.I / by F in both
locations.

Since W is not virtually solvable, we see that the non-solvable subgroups of
PLo.I / are not virtually solvable; in particular we have the following second corollary.

Corollary 1.3. Suppose that H is a subgroup of PLo.I /. If H is virtually solvable,
then H is solvable.
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As mentioned above, the papers [3] and [2] provide both geometric and algebraic
classifications of the solvable subgroups of PLo.I /. Therefore, the last corollary, to-
gether with the cited research, is sufficient to classify the virtually solvable subgroups
of PLo.I /.

1.4. General geometric definitions. In order to state our more geometric results in
a meaningful fashion, we must give some definitions.

Throughout this section and the next, we fix a model group G � PLo.I /.
Define SuppG, the support ofG, to be the set fx 2 I j xg ¤ x for some g 2 Gg.

The set SuppG is an open subset of .0; 1/, and can therefore be written as a disjoint
union of a countable (possibly finite) collection of open intervals in .0; 1/. If g 2 G
then we will similarly refer to Supp hgi as the support of g. We note in passing that if
g, h 2 G and the support of g and the support of h are disjoint, then h and g commute.
We call any interval component of SuppG an orbital of G. If g 2 G, and A is an
orbital of hgi, then we say A is an orbital of g or an element-orbital of G.

We also note that if g 2 G and A is an orbital of g then either g moves all points
in A to the right or g moves all points in A to the left. If g moves all points in A to
the right and x 2 A then we will refer to the interval Œx; xg/ as a fundamental domain
of g in A. (Note: in this paper, all group actions will be right actions, and also that
we will compose elements from the left to the right). If g moves all points in A to the
left, then we will similarly refer to the interval .x; xg�1� as a fundamental domain of
g in A. We will occasionally not mention the orbital A if the context will allow us to
do this without confusion.

Note that a fundamental domain of an element g 2 G in one of its orbitals A is a
maximal subinterval of A that is entirely mapped off of itself by the action of g.

If A is an element-orbital of G, there will be infinitely many elements in G with
orbital A, so that we often explicitly associate an element with an element-orbital.
We call an ordered pair .A; g/ a signed orbital of G if g is an element of G with
orbital A. In this case, we refer to A as the orbital of .A; g/ and g as the signature
of .A; g/. We will often work with sets of signed orbitals. If X is a set of signed
orbitals, then we will sometimes form sets OX and SX , where OX D fA � I j
.A; g/ 2 X for some g 2 Gg and SX D fg 2 G j .A; g/ 2 X for someA � I g.
We will refer to the set OX as the orbitals of X and to the set SX as the signatures
of X . We may also consider the group GX D hSX i, the group generated by the set of
signatures of X .

1.5. Transition chains. Suppose that C D f.Ap; gp/ j p 2 Ig is a set of signed
orbitals indexed by a set I � I and

AC D
S
p2I

Ap:

We call C a transition chain if C satisfies the following conditions:
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(1) For all x, y 2 AC , with x < y, the interval Œx; y� � AC .

(2) For each p 2 I, we have

(a) p 2 Ap , and

(b) if q 2 I and p 2 Aq , then p D q.

In this case, we refer to the cardinality of I as the length of C .
The index set I plays another role. As any two points in the index set are compa-

rable using the total order � on .0; 1/, we have an induced total order on the set of
signed orbitals of C . For finite transition chains, we will often emphasize this total
order by implicitly passing to a new index set of natural numbers, so that we can refer
to the “first” orbital in the transition chain (or simply, in the chain), or the “second”,
or the “last.” In fact, we generally only explicitly define the initial index set when we
need to use the points of that index set in some specific way, having to do with the
action of GC on Œ0; 1�. These practices should cause no confusion to the reader.

The point of a transition chain is that AC is an open interval in .0; 1/ on which
the signatures of C may act non-trivially. Further, it is immediate that by carefully
choosing which signatures to act with (including using inverses of signatures), and in
some specific order, we can find an element in GC which moves any particular point
in AC as far to the left or right in AC as we wish.

In the case of short transition chains, we will have the second condition fairly easily
from direct considerations. For instance, here is an alternative specific definition of
a transition chain of length two. Suppose that C D f.A; g/; .B; h/g is a set of signed
orbitals of G, where A D .al ; ar/, B D .bl ; br/ and al < bl < ar < br . In this case
we call C a transition chain of length two for G.

We now release the group G. We will use the language developed above freely
with other subgroups of PLo.I /, expecting that this will lead to no confusion.

1.6. A graphical shorthand. In general, we will often work with multiple elements
in PLo.I / at one time. In these cases it is extremely useful to be able to visualize
how the supports of the elements are overlapping, and in what directions points in the
interval move under the action of these elements. In this short section we indicate a
diagram “shorthand” that we will often use in order to demonstrate ideas in this paper.

The essential concept is that we will replace a graph of a functionf W Œ0; 1� ! Œ0; 1�

by a rough version; we essentially sketch a version of the graph of f � id, where id
is the identity function. In our diagram, we will not sketch the horizontal regions of
f � id corresponding to value 0, and we will forget that f is (generally) piecewise
linear. We will, however, be very careful to keep track of the ends of the orbitals of
f , not allowing them to move left or right in our sketch.

Below is a graph of an example pair of functions, and then, allowing ourselves to
further offset results vertically, we will have a labeled diagram of the same pair.
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f

g

a bc d

Below we present an example diagram of the transition chain of length two generated
by the functions graphed above.

f

g

a bc d
0 1

1.7. The group B, and our chief geometric result. With transition chains defined,
we only need a definition of the group B in order to state our first geometric result.
Recall that the groupB was introduced in a general form in [5] under the notationG1
in Section 5 of that paper. Our realization will be much more concrete, but as in [5],
it will still be realized in Thompson’s group F (the subgroup of PLo.I / consisting
of elements whose breaks in slope occur only in the dyadic rationals, and which have
all slope values powers of 2).

Define ˛ 2 PLo.I / to be the element so that given any x 2 I , we have

x˛ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

1
4
x; 0 � x < 1

4
;

x � 3
16
; 1

4
� x < 7

16
;

4x � 3
2
; 7

16
� x < 9

16
;

x C 3
16
; 9

16
� x < 3

4
;

1
4
x C 3

4
; 3

4
� x � 1;
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and define ˇ0 2 PLo.I / to be the element so that given any x 2 I , we have

xˇ0 D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

x; 0 � x < 7
16
;

2x � 7
16
; 7

16
� x < 15

32
;

x C 1
32
; 15

32
� x < 1

2
;

1
2
x C 9

32
; 1

2
� x < 9

16
;

x; 9
16

� x � 1:

The graphs of these elements (superimposed) are given below.

˛

ˇ0

We define
B D h˛; ˇ0i:

We show, via a strengthening of an argument in [3], the following result.

Theorem 1.4. IfH � PLo.I / admits a transition chain of length two, thenB embeds
in H .

It is extremely restrictive to only consider subgroups of PLo.I / which do not
admit transition chains of length two. In particular, B embeds in “most” naturally
occurring subgroups of PLo.I /.

1.8. The structure of the group B. We would like to discuss B further, and extend
our chief geometric result, but we need to establish a few more conventions before
we proceed. Let x 2 I and g, h 2 PLo.I /, and recall that all group actions will be
written as right actions (so that xg is the point x goes to when acted upon by g) and
that compositions will occur from the left to the right. We will represent the conjugate
of g by h by the expression gh, which will mean h�1gh, and the commutator of g
and h by the expression Œg; h�, which will mean g�1h�1gh.
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Let us now discuss the groupB . One perspective on the groupB is that the element
˛ acts as a “Growing conjugator”, conjugating ˇ0 to new elements fˇigi2Z (which,
for positive index i , have larger supporting sets). We demonstrate this behavior, and
explore the structure of the groups generated by sub-collections of the ˇi .

Define ˇk D ˇ˛
k

0 for each integer k. In particular, ˇ1 is given by the rule

xˇ1 D x˛�1ˇ0˛ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

x; 0 � x < 1
4
;

2x � 1
4
; 1

4
� x < 3

8
;

x C 1
8
; 3

8
� x < 1

2
;

1
2
x C 3

8
; 1

2
� x < 3

4
;

x; 3
4

� x � 1:

Observe that the support of ˇ0 is . 7
16
; 9
16
/, and since 7

16
ˇ1 D 9

16
, the support of ˇ0 is

contained in a single fundamental domain ofˇ1. In particular, given any i 2 Z, we see
that the support of ˇi�1 is contained in a single fundamental domain of the support of
ˇi , since these two elements are conjugates of ˇ0 and ˇ1. Therefore, given an i 2 Z,
any two conjugates of ˇi by distinct powers of ˇiC1 will have disjoint support, so that
these two conjugates will commute. In particular, the group hˇi ; ˇiC1i is isomorphic
with Z o Z. More generally, given an n 2 N, we see that any collection of n distinct
ˇi will generate a group isomorphic with Wn.

Let W D fˇigi2Z throughout the paper.

In passing, let us point out that ifG is a subgroup of PLo.I /, then by consideringG
to be a subgroup of Homeo.R/ (extend the elements ofG by using the identity function
outside of the unit interval), we can conjugateG (by a conjugator in Homeo.R/) to yG,
a piecewise linear copy of G whose support is in . 7

16
; 9
16
/. By the discussion above,

we see that the group h yG;ˇ0i is therefore isomorphic to G o Z. This is a concrete
version of the construction mentioned earlier in the introduction.

We can think ofB as an HNN extension of the group generated by the full collection
W of theˇi , where˛ plays the role of the stable letter, with the rule thatˇ˛i D ˇiC1 for
each integer i . This then gives us a criterion for detecting when a two-generator (say

!0 and� ) subgroup of PLo.I / is isomorphic toB . For each integer i , define!i D !
� i

0 .
The group h!0; �i will be isomorphic to B if the set map ‡ W f!igi2Z ! fˇigi2Z,
defined by the rule !i 7! ˇi for all integers i , is well defined (as we are considering
elements of PLo.I /, this last boils down to � and !0 not commuting), and extends
to a group isomorphism hf!igi2Zi Š hWi. Note that the last isomorphism is easy to
detect geometrically via the tools developed in [5]; in our case, if the closure of the
support of the non-trivial !0 is fully contained in a setX0, andX0!1 \X0 D ;, then
hf!igi2Zi Š hWi.
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1.9. Towers, and further results. Our last set of geometric results is mostly relevant
in the situation where a subgroup of PLo.I / fails to admit transition chains of length
two. In this restrictive case, we use other sets of signed orbitals to understand our
group structures.

It is commonly known that PLo.I / is totally ordered, and that the set of open
intervals in I is a poset under inclusion. Therefore we can define a partial ordering
on the set of signed orbitals of PLo.I /. If .A; f / and .B; g/ are signed orbitals of
PLo.I /, then we will say that .A; f / < .B; g/ if either (1) A ¨ B or (2) A D B but
f < g. We will use this partial ordering to help form the following definition.

Given a subgroup G of PLo.I /, we say that a set T of signed orbitals of G is a
tower associated with G if T satisfies two properties.

(1) T is a chain in the poset of signed orbitals of PLo.I /.

(2) If A � I and .A; g/ and .A; h/ are in T , then g D h.

Note in passing that the second condition above assures us that orbitals in a tower
get larger as we move to larger elements in the tower.

We define the height of a tower to be its cardinality. We define the depth of
a subgroup G of PLo.I / to be the supremum of the set of cardinalities of towers
associated with G.

Consider the graph of three functions (superimposed) below.

f

g

h

A

B

C

With these three elements of PLo.I /, we can create the tower

T D f.A; f /; .B; g/; .C; h/g:

In this case, note that the signed orbitals of the tower T are listed in reverse of their
order in the poset of signed orbitals of PLo.I /.
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If G is a subgroup of PLo.I / which does not admit infinite towers, then we also
assign depth to any signed orbital .A; g/ of G, as the maximum cardinality of the
towers which contain .A; g/ as their least element. (We leave it to the reader to check
that this is well defined, that is, if .A; g/ is the smallest element in infinitely many
finite towers for G, with arbitrarily large height, then G admits an infinite tower with
least element .A; g/). The following is a variation of the main result of [3].

Theorem 1.5. Suppose that H is a subgroup of PLo.I /. H is non-solvable if and
only if H admits towers of arbitrary finite height.

This last result assures us that ifH � PLo.I / admits an infinite tower, thenH will
be non-solvable. We now focus on the sorts of subgroups we can find in such a group
H , depending on the types of transition chains and towers we can find associated
with H .

If a tower T admits an order-preserving injection t W N ! T , then we will say that
the tower is tall. If a tower T admits an order reversing injection d W N ! T , then
we will say that a tower is deep. If a tower T admits an order-preserving injection
b W Z ! T then we will say T is bi-infinite.

We are about ready to state our last set of results; we first need concrete realizations
of the groups 1. o Z/ and .Z o /1, as well as another group .oZo/1 (all of which are
defined in [5], in a less concrete fashion).

Define the following groups:

.oZo/1 D hWi;
1. o Z/ D hfˇi j i < 0; i 2 Zgi;
.Z o /1 D hfˇi j i 2 Ngi:

Recalling that, for instance, W3 Š hˇ�3; ˇ�2; ˇ�1i while W2 Š hˇ�2; ˇ�1i, it
is natural to think of the groups 1.oZ/ and .Z o /1 as limit groups built by using
different families of inclusion maps Wi ! WiC1.

We are now ready to state our further results.

Theorem 1.6. Suppose that G is a subgroup of PLo.I /.
(1) If G admits a tall tower then G contains a subgroup isomorphic to .Z o /1.
(2) If G admits a deep tower then G contains a subgroup isomorphic to 1. o Z/.
(3) IfG admits a bi-infinite tower thenG contains a subgroup isomorphic to .oZo/1.

The above theorem may not seem surprising, given the definitions of 1. o Z/,
.Z o /1, and . o Z o /1 above. However, the collections of signatures from the towers
in the theorem might admit other orbitals, away from the specified towers, so that the
groups generated by the collections of the signatures of the towers can exhibit much
more complicated behavior than can be found in . o Z o /1. Removing this “external
complexity” is the main work of this paper.
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For any positive integer k, recall that we can generate Wk using k generators
whose supports are aligned in a tower of k single nested orbitals. If two elements of
PLo.I / have disjoint support, then recall that they must commute. In particular, the
following diagram can be used to represent the group W . Note that it contains no
infinite towers, but this realization of W does admit towers of arbitrary finite height.

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

W1 W2 W3

There has been some work towards further strengthening Theorem 1.1 in the case
of a finitely generated non-solvable subgroup H of PLo.I /. The current status (see
[1]) is that one of 1. o Z/ or .Z o /1 must embed as a subgroup of H . None of that
work will appear in this paper.

2. The essential geometric theory

In this section we will review the necessary known geometric facts about PLo.I /.
We will prove only one of the results in this section, as the remainder can be found
in, or are straightforward consequences of, the results in [7], [4], [3] and [2]. (While
the result we do prove is new, its proof is straightforward using the ideas in [3], so
we include it in this section.) For the more complex known results, we will indicate
references more precisely.

2.1. The action of elements of PLo.I/ on I . We begin with some often-used facts
about the action of elements of PLo.I / on the unit interval.

Remark 2.1. If g 2 PLo.I /, A is an orbital of g then the following holds.

(1) g has finitely many orbitals.

(2) Either xg > x for all x 2 A or xg < x for all x 2 A.

Because of the second point above, given an orbital A of an element g 2 PLo.I /,
we will say that g moves points right (left) on A if xg > x (xg < x) for some (and
hence all) x 2 A.

In [7] and [3] there are versions of the following lemma and its corollary, but they
can also be taken as exercises for the reader.
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Lemma 2.2. Suppose that g 2 PLo.I / and A D .a; b/ is an orbital of g. Then
given any � > 0 and x 2 .a; b/ there is an integer n 2 Z so that the following two
statements are true:

(1) xgn � a < �, and

(2) b � xg�n < �.

The following consequence of the above lemma can be proved by using a simple
compactness argument.

Corollary 2.3. Suppose that G � PLo.I / and G has an orbital A. If x < y are in
A then there is an element � 2 G so that x� > y.

2.2. The ubiquitous F and balanced groups. Here we mention the chief result of
[4]. In essence, Brin finds that under a weak geometric condition on a subgroup H
of PLo.I /, H will admit an embedded copy of F .

If g 2 PLo.I / and A D .a; b/ is an open interval in I , then we will say that g has
an orbital that shares an end with A if g has an orbital of the form .a; c/ or .c; b/.
We will also say that g realizes an end of A in these situations.

The main result of [4] is given below.

Theorem 2.4 (Ubiquitous F ). If H � PLo.I / and H has an orbital A so that some
element h 2 H realizes one end of A, but not the other, then H contains a subgroup
isomorphic to Thompson’s group F .

We will say a subgroup G of PLo.I / is balanced (following the language in [2])
if it has no subgroup H which satisfies the hypotheses of Theorem 2.4. We will see
some properties of balanced groups shortly.

2.3. Conjugation, orbitals, slopes, and realizations. For the statement of the next
lemma to make sense, we need more definitions. If g 2 PLo.I /, we will establish the
notation:

B.g/ D fx 2 .0; 1/ j g0.x/ does not existg;
that is, B.g/ is the set of points in .0; 1/ where the derivative of g is undefined. We
will call the components of Œ0; 1�nB.g/ the affine components of g (note that these
are simply subsets of the domain of g over which g is affine). If A is a connected
subset of Œ0; 1� and C is an affine component of g, then we will call C \ A an affine
component of g in A. Observe that the affine components of g are finite in number
and come in a natural left-to-right order which we will use naturally in our language.
The following is a restatement of Remark 2.1 in [3].

Lemma 2.5. Suppose that g; h 2 PLo.I / and A is an orbital of g. The following
holds:
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(1) gh has orbital Ah D fah j a 2 Ag.

(2) If g moves points right (resp. left) onA, then gh moves points right (left) onAh.

(3) The slope of g on the leftmost (resp. rightmost) affine component of g inA equals
the slope of gh on the leftmost (rightmost) affine component of gh in Ah.

The following diagram demonstrates this behavior; recall that “up bumps” in
diagrams represent regions where the graph of a function is above the line y D x. In
particular, the function h below throws points to the right in its support.

g

h

gh

Note that it is a straightforward consequence of the previous lemma that the orbitals
of g and gh are in one-to-one ordered (left to right) correspondence. In general, we
will refer to the orbital Ah as the orbital of gh induced from g by the action of h
(or by other similar language). We will use conjugation to find new elements with
better placed supports so often in the remainder that we will generally not explicitly
reference Lemma 2.5 at those times, assuming instead that its content is recalled by
the reader without need of further reference.

Suppose thatG is a subgroup of PLo.I / andA D .a; b/ is an orbital ofG, further
suppose that there is an element g 2 PLo.I / that realizes both ends ofA. Suppose that
the slope of g on the leftmost affine component of g which non-trivially intersects A
is sl , while the slope of g on the rightmost affine component of g which non-trivially
intersects A is sr . We say that g realizes A inconsistently if sl and sr are either
both greater than one or both less than one. Otherwise, we say that g realizes A
consistently. We may on occasion say that “g realizes the ends of A consistently (or
inconsistently)”. If g has A as an orbital, then we say that g realizes A (note that in
this case, g realizes A consistently).

We will now mention some promised properties of balanced subgroups of PLo.I /.
The interested reader is encouraged to examine Section 3.3 of [2]. The following
lemma lists two straightforward consequences of the discussion there.

Lemma 2.6. Suppose thatG is a balanced subgroup of PLo.I / andG has an orbital
A and an element g which realizes both ends of A.

(1) g realizes both ends of A consistently, then g realizes A.
(2) If g realizes A inconsistently, then no element of G realizes A consistently.
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Suppose that S is a balanced subgroup of PLo.I / andA is an orbital ofG. By the
lemma above, either every element of G which realizes the ends of A realizes A, or
no element of G which realizes the ends of A realizes A. In the first case, we call A
a consistent orbital of G, in the second case we call A an inconsistent orbital of G.

2.4. More on towers, transition chains, balanced groups, and solvability. Given
a tower T for a group G � PLo.I /, we may pass to the group hST i generated by
the signatures of the tower. This group can be fairly complicated, depending in part
on how the other orbitals of the signatures of T align with each other. We will say
a tower T is an exemplary tower if whenever .A; g/, .B; h/ 2 T with A ¤ B then
.A; g/ � .B; h/ implies both

(1) the orbitals of g are disjoint from the ends of the orbital B , and

(2) no orbital of g in B shares an end with B .

Note that this definition says something much stronger than the fact that the closure
of A is in B; it says that no orbitals of g have support inside of a small neighborhood
of the ends of B in B .

The following is a conglomeration of results from [3] (Remark 2.9, Lemma 2.12,
Lemma 3.2, and Remark 4.1) with a straightforward extension of Lemma 3.14.1 in
[2]. We will refer to it often in the remainder.

Lemma 2.7. Suppose that G is a subgroup of PLo.I / that fails to admit transition
chains of length two. We have the following consequences:

(1) G is balanced.

(2) If T is a tower for G, then T is exemplary.

(3) If f; g 2 G, A is an orbital of f , B is an orbital of g, and A\B ¤ ;, then one
of the following three statements holds:

(a) A D B , and A is an orbital of hf; gi.
(b) xA � B , A \ Ag D ;, and B is an orbital of fg, gf , and of hf; gi.
(c) xB � A, B \ Bf D ;, and A is an orbital of fg, gf , and of hf; gi.

(4) If G is a subgroup of depth n for some positive integer n, then the derived
subgroup G0 has depth n � 1.

2.5. The manipulation of supports. Given a group G � PLo.I /, we sometimes
need to understand whether an element-orbital survives as an element-orbital in the
derived subgroup G0.

Lemma 2.8. Suppose that G is a subgroup of PLo.I /. If T D f.A1; g1/; .A2; g2/g
is an exemplary tower of height two for G, where .A1; g1/ � .A2; g2/, then there is
M 2 N so that for all n 2 N with n � M we have thatA1 is an orbital of the element
Œg1; g

n
2 �.
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Proof. Suppose that A2 D .a; b/, and let Œx; y� be the smallest interval so that
Suppg1\A2 � Œx; y�. (This interval exists by the definition of an exemplary tower.)
We see immediately that A1 � Œx; y�. Let � D max.x � a; b � y/. By Lemma 2.2
there is S 2 Z so that xgS2 > y. Let M D jS j. Note that for any n > M , we have
Œx; y�gn2 \ Œx; y� D ;. The lemma follows immediately.

The above lemma hints that commutators might be useful in general for find-
ing elements within a group which have supports with nice nesting properties. The
following discussion provides our chief tool for finding such elements.

Suppose that two elements h; k 2 PLo.I / have the property that wheneverA is an
orbital of h and B is an orbital of k so that A \ B ¤ ;, then either A D B , xA � B ,
or xB � A. We say that h, k are mutually efficient, or that they satisfy the mutual
efficiency condition, if both (1) given any orbitalC of h that contains the closure of an
orbital of k, then the support of k inC is contained in a single fundamental domain of
h in C , and (2) wheneverD is an orbital of k that properly contains the closure of an
orbital of h, then the support of h in D is contained in a single fundamental domain
of k in D are satisfied.

Given two mutually efficient elements h and k in PLo.I /, we often will form the
commutator ŒŒh; k�; k� (recall that we use the definition Œa; b� D a�1b�1ab for the
commutator symbol), which we will refer to as the double commutator of h and k.
The following is a restatement of Lemma 4.2 in [3].

Lemma 2.9. Let h; k 2 H , where H is a subgroup of PLo.I / with no transition
chains of length two. Suppose that further that h and k are mutually efficient. If
f D ŒŒh; k�; k�, then f has the following properties:

(1) Every orbital of h whose closure is contained in an orbital of k is an orbital
of f .

(2) Every orbital off has closure contained in an orbital of k that contains (perhaps
not properly) an orbital of h.

From this point forward, all results and discussion will be new.

3. Relationships amongst the key groups

Let us now investigate the relationships between our key groups. In the discussions
below, we will call ˇ�1 the top generator of 1. o Z/ and ˇ0 the bottom generator of
.Z o /1.

Lemma 3.1. W embeds in each group in the set f1. o Z/; .Z o /1; . o Z o /1; Bg.
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Proof. We will show that W embeds in .Z o /1 and 1. o Z/. This will complete the
proof since 1. o Z/ and .Z o /1 each embed in . o Z o /1 and B .

We first embed W in .Z o /1. For each j 2 N, define

�j D f�i;j j �i;j D ˇ ǰ C1

i ; 1 � i � j; i 2 Ng:

Note that each collection �i generates a group isomorphic to Wi , by the argument
given in the introduction after the discussion of W2, or also by the details of Brin in
[5] (re-define �0 to be the set with only the identity element of PLo.I /). Further, the
supports of the generators in �i are all disjoint from the supports of the generators
in �j whenever i; j 2 N with i ¤ j . Thus, for such i and j , the elements of �i
commute with the elements of �j . Hence the set

� D
S
i2N

�i

generates a group
h�i Š

L
i2N

Wi Š W:

(Note: We will use this realization of W throughout the rest of this section when
we refer to our realization of W in PLo.I /. When we refer to “the first n summands
of W ” we will mean the subgroup h

Sn
iD0 �i i Š

Ln
iD0Wi of W . Note that we are

ignoring the trivial W0 summand in our count.)
We now embed W in 1. o Z/ in a similar fashion, finding copies of each Wi in

1. o Z/, all of which occur with mutually disjoint supports in I , the union of their
generators will then generate a group isomorphic to W . Let i 2 N and define

‡i D f�i;j j �i;j D ˇ
ˇ i

�1�iCj�2; 1 � j � i; j 2 Ng;

so that ‡i is the collection of the i -th conjugates of the i generators beneath ˇ�1 of
the generators of 1. o Z/. Each collection‡i therefore generates a group isomorphic
to Wi (re-define ‡0 to be the set containing only the identity element of PLo.I /),
while if i ¤ j , any generator in ‡i has disjoint support from the generators of ‡j ,
so that the union

‡ D
S
i2N

‡i

has the property that
h‡i Š

L
i2N

Wi Š W:

Since W can be realized as a subgroup of PLo.I /, the following lemma demon-
strates that the answer to Brin’s Question 1 in [5] is “No”.

Lemma 3.2. No group in the set f1. o Z/; .Z o /1; . o Z o /1; Bg embeds in W .
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Proof. We show that neither 1. o Z/ nor .Z o /1 embeds in W . This will imply that
. o Z o /1 and B both fail to embed in W .

There is a short proof of this restricted statement using the work of Brin in [5],
and our previous lemma. By our previous lemma, if . o Z/1 embeds in W , then it
must embed in .Z o /1. Likewise, if .Z o /1 embeds in W , then it must embed in
. o Z/1. However, neither of these two things can occur; Theorem 2 in [5] states that
the two groups . o Z/1 and .Z o /1 do not embed in each other.

3.1. Transition chains and the group B. In this section we show that B embeds
in any subgroup of PLo.I / which admits transition chains of length two.

Lemma 3.3. Suppose that H is a balanced subgroup of PLo.I / and H D h˛; ˇi
for some two elements ˛; ˇ 2 PLo.I / and further suppose that A is an inconsistent
orbital of H and ˛ realizes both ends of A while ˇ realizes neither. Then there is a
conjugate � of ˇ in H which has an orbital B � A so that the fixed set of ˛ in A is
contained in B .

Proof. LetF˛ represent the fixed set of ˛ inA, and let x D inf.F˛/ and y D sup.F˛/.
Note thatx andy are both inA, since˛ is non-trivial near the ends ofA, whileF˛ ¤ ;.
Now by Corollary 2.3, since A is an orbital ofH , there is � 2 H so that x� > y. By
the continuity of � , there is x1 < x so that x1� > y as well. Let z D x1�

�1 so we
have

z < z� D x1 < x � y < x1� < x�:

Since A is an orbital of H , we must have that F˛ is contained in the orbitals of ˇ. In
particular, we see that ˇ has an orbital C D .r; s/ so that r < x < s. Note further
that r 2 Supp˛ \ A. By Lemma 2.2 there is a power k 2 Z so that r˛k D q < z.
Now ˇ1 D ˇ˛

k
has orbital D D .q; t/ induced from C by the action of ˛k , and D

satisfies q < z < x < t . Set � D ˇ�1 . Then � has orbital B D .u; v/ induced from
D by the action of � on ˇ1, and u D q� < x < y < t� D v.

The following lemma is more involved and plays a key role in the proof of the
lemma following immediately after. We first establish some language, parallel to
language about affine components, about orbitals. Given an element g 2 PLo.I / and
a set X � I , we will refer to the leftmost orbital of g that is fully contained in X as
the leading orbital of g in X , and the rightmost orbital of g fully contained in X as
the trailing orbital of g in X . We will similarly refer to the second and third such
orbitals, etc., using their natural left-to-right ordering.

Lemma 3.4. Suppose that H is a balanced subgroup of PLo.I / and H D h˛; ˇi
for some two elements ˛; ˇ 2 PLo.I /. If H has an inconsistent orbital A and ˇ
realizes no end of any orbital of H , then there are elements ˛1 and ˇ1 in H so that
if H1 D h˛1; ˇ1i the following will be true:



18 C. Bleak

(1) A is an orbital of H1.

(2) ˇ1 realizes no end of any orbital of H1.

(3) Every inconsistent orbital of H1 can be written as the union of the orbitals of a
transition chain of length three, whose first and last orbitals are orbitals of ˛1,
and whose second orbital is an orbital of ˇ1.

(4) ˛1 moves points to the left on its leading orbital in each of the inconsistent
orbitals of H1.

Proof. We break the proof into stages, so as to make it less cumbersome.

Stage 1: Classify orbital types. Set ˛1 either to ˛ or ˛�1, so that ˛1 moves points
to the left on its leading orbital B contained in A.

Suppose that n 2 N andH has n inconsistent orbitals. Let B D fBi j 1 � i � rg
represent the collection of inconsistent orbitals of H where ˛1 moves points to the
left on its leading orbital in each of these orbitals, indexed from left to right, where r
is the total number of such orbitals. Let C D fCj j 1 � j � sg represent the other
inconsistent orbitals of H , so that n D s C r , where these orbitals are indexed from
the left to the right as before. Note that it is possible for s D 0, although of course
r � 1.

Stage 2: Building an element to span the fixed sets of ˛1 in theBi . By Lemma 3.3,
for each orbital Bi in B there is an element �i in H , which is a conjugate of ˇ, so
that the fixed set of ˛1 in Bi is contained in a single orbital of �i . Likewise, for each
orbital Cj in C there is an element �j in H , which is a conjugate of ˇ, so that the
fixed set of ˛1 in Cj is contained in a single orbital of �j .

Firstly, inductively replace each element �i , for i > 1, by a conjugate of �i by a
high negative power of ˛1 so that for each j with 1 � j < i the closure of the union
of all of the orbitals of �i in Bj is actually fully contained in the single orbital of �j
that contains the fixed set of ˛1 in Bj . We can do this due to the specified directions
in which ˛1 moves points on its first and last orbitals in each of the Bk .

Summing up, for each i 2 f1; 2; : : : ; rg, �i has an orbital Di that contains the
fixed set of ˛1 in Bi , as well as the closure of all of the orbitals of �k in Bi for all
k 2 N where the inequalities i < k � r hold.

We will now inductively define a sequence of elements .�i /riD1 so that the �i will
have the following properties (modulo the fact that some of the �i below will actually
be conjugates of the existing �i by further negative powers of ˛1):

(1) �1 D �1.

(2) For all indices i > 1, �i will be either a conjugate of �i�1 by some power of �i ,
or �i D �i�1�i .

(3) For all indices i , �i will have an orbital Ei in Bi that fully contains the fixed set
of ˛1 in Bi .
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(4) If i < r , the orbital Ei of �i will contain the closures of the orbitals of �j in Bi
for all integers j with i < j � r .

(5) If i > 1, for each integer j with 1 � j < i , �i will haveEj as one of its orbitals.

Firstly, set �1 D �1, andE1 D D1. By construction, �1 satisfies the five inductive
properties. If r D 1, we are done. If not, suppose that k is an integer so that 1 < k � r

and for all i 2 f1; 2; : : : ; k�1g we have that �i is defined and satisfies the five defining
properties of the induction. Our analysis now breaks into two cases.

If �k�1 has an orbital Fk containing either end of Dk , then there is some integer

j so that �k D �
�

j

k

k�1 will have orbitalEk induced from Fk by the action of �j
k

so that
Ek will contain the fixed set of ˛1 in Bk , as well as the closure of all of the orbitals
of �j in Bk for integers j where the inequalities k < j � r hold.

If �k�1 does not have an orbital Fk containing either end of Dk , then we have
to handle the case where �k�1 has orbitals in Dk that share ends with Dk separately
before continuing.

If �k�1 has orbitals in Dk that share ends with Dk , then replace �k and all later
�j with conjugates of these elements by a high negative power of ˛1 so thatDk either
has an end contained in an orbital of �k�1, or shares no end with an orbital of �k�1,
and repeat the whole inductive definition of �k .

If �k is still undefined, then set �k D �k�1�k . Note that since �k�1 has no orbitals
in Dk that share ends with Dk , the product �k D �k�1�k realizes both ends of Dk
consistently, and therefore realizes Dk consistently since H is balanced. Therefore
define Ek D Dk and note that �k actually has Ek as an orbital.

At this point �k and Ek are both defined, and we can continue with our main
argument. Note that Ek contains the closure of all of the orbitals of all of the �i for
i > k, and that for each integer j in 1 � j � k � 1, the closure of the orbitals of
�k in Bj are fully contained in the orbital Ej , so that by Lemma 2.6, �k will have Ej
as an orbital as well. Now by construction, �k satisfies the five defining properties of
the induction.

We now examine the element �r . Observe that �r contains an orbital Ek in each
Bk where the fixed set of ˛1 in Bk is fully contained in Ek . Now �r is constructed
as a sequence of products using various �i ’s and conjugates of �i ’s, so �r realizes no
end of any orbital of H but is an element of H .

Stage 3: Building an element to span the fixed sets of ˛1 in the Cj . In an entirely
analogous fashion, if s > 0, then we can find one element  s in H which realizes
no end of any orbital of H and which contains an orbital Fi in each Ci 2 C which
contains the fixed set of ˛1 in that Ci .

Stage 4: Modifying our first element so that it creates no transition chains with

˛1 over the Ci . There is a positive integer p so that � D �
˛

p
1
r has the following two

properties:
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(1) For each integer i 2 f1; 2; : : : ; rg, the closure of the orbitals of  s in Bi is
actually contained in the orbital Gi of � induced from Ei by the action of ˛p1 .

(2) For each integer i 2 f1; 2; : : : ; sg, the closure of the orbitals of � inCi is actually
contained in the orbital Fi of  s .

This follows since for each orbital Bi of B, the lead orbital of ˛1 in Bi has the
property that ˛1 is moves points to the left there (and therefore moves points to the
right on the trailing orbital of ˛1 in Bi ), and for each orbital Ci in C , the lead orbital
of ˛1 in Ci has the property that ˛1 is moving points to the right there (and therefore
˛1 moves points to the left on its trailing orbital in Ci ).

We note in passing that the orbitals Gi of � contain the orbitals Ei of �r and
therefore the fixed set of ˛1 in the Bi .

Now there is a power q of s so that the elementˇ1 D � 
q
s will have the following

nice properties:

(1) For each integer i 2 f1; 2; : : : ; sg, the orbitals ofˇ1 inCi have trivial intersection
with the fixed set of ˛1 in Ci .

(2) For each integer i 2 f1; 2 : : : ; rg, ˇ1 will have the orbitalGi which contains the
fixed set of ˛1 in Bi .

The first property follows since the orbitals of � in the Ci are contained in the
orbitals Fi of  s , and so the conjugation of � by a high power of  s will throw these
orbitals off of the fixed set of ˛1 in the Ci . The second property follows since the
orbitals of  s are fully contained in the orbitalsGi of � in the Bi , so that conjugation
of � by  s to any power will not change these orbitals.

It is now straightforward to check that the groupH1 D h˛1; ˇ1i satisfies all of the
properties promised in the statement of the lemma.

We are now ready to prove our chief geometric result.

Theorem 1.4. If G admits a transition chain of length two, then B embeds in G.

Proof. We can assume that G is balanced; otherwise by Theorem 2.4 the group G
will contain a copy of Thompson’s groupF , which contains copies of Brin’s groupB .

Let T D f.O1; ˛/; .O2; ˇ/g be a transition chain of length two for G and let
K D h˛; ˇi.

The orbitals ofK are the components of the union of the orbitals of ˛ and ˇ. Note
that the consistent orbitals of K (if they exist) will be realized by at least one of ˛
and ˇ. The inconsistent orbitals of K are formed by the union of a sub-collection of
orbitals of ˛ and orbitals of ˇ. A chief feature of the inconsistent orbitals ofK is that
while neither ˛ nor ˇ realize any of them, at least one of ˛ or ˇ must realize both ends
of any particular such orbital, since K is balanced. Note in passing that the orbital
of K which contains O1 is inconsistent, as neither ˛ nor ˇ realize that whole orbital,
although one of ˛ or ˇ realizes both ends of it.
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We will proceed through the remainder of the proof in stages.

Stage 1: Classifying the orbitals of K. We are going to analyze the orbitals of
K still further. Any particular orbital of K has one of six types, the first three are
consistent, and the last three are inconsistent:

(1) (Type AB) Both ˛ and ˇ consistently realize this orbital.

(2) (Type Ab) ˛ consistently realizes this orbital, but not ˇ.

(3) (Type aB) ˇ consistently realizes this orbital, but not ˛.

(4) (Type ab) Both ˛ and ˇ inconsistently realize both ends of this orbital.

(5) (Type ab) ˛ inconsistently realizes both ends of this orbital, butˇ realizes neither
end of this orbital.

(6) (Type ab)ˇ inconsistently realizes both ends of this orbital, but ˛ realizes neither
end of this orbital.

The diagram below demonstrates a representative ˛ and ˇ pair, and orbitals of
the group h˛; ˇi of all six types. The group orbitals are given as heavy horizontal
line segments, and they are labeled with their type. The orbitals of different types
themselves come in different flavors, as will become apparent below.

˛

ˇ

AB Ab aB ab ab ab

We know that K has at least one orbital, let us call it A, of type ab, ab, or ab, and
we will assume without meaningful loss of generality that A has one of the first two
types.

We will carry out operations on our generators which will change the orbitals and
their types below. The orbitals of type ab will need particular attention; they evolve
in myriad ways, depending on their individual flavors.

Let Fa represent the union of the fixed sets of ˛ that are contained in the orbitals
of K of type ab, type ab, and ab. Then Fa is non-empty and is entirely contained in
the orbitals of ˇ.

Stage 2: A mechanism for modifying elements and orbitals. By Remark 2.2 there
is an N1 2 N so that for all k 2 N with k � N1 we have Faˇk \ Fa D ; in orbitals
of type ab and ab (also assume that N1 is large enough so that if C is an orbital of
type ab, the union of the components of Fa \ C which do not share an end with C
is moved off of itself under the action of ˇk). Similarly, let S represent the support
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of ˛ in the orbitals of K of type aB, then there is N2 2 N so that for all k � N2, we
have Sˇk \ S D ;. Let N D max.N1; N2/.

Considering the other direction, letFb represent the fixed set of ˇ in the orbitals of
K of type ab. Since Fb is contained in the support of ˛ by definition, there isM 2 N
so that for all j � M we have that Fb˛j \ Fb D ;.

Now let j � M , let k � N and define ˇ1 D Œ˛j ; ˇk�.

Stage 3: Analyzing how ˇ1 differs from ˇ. Observe that the fixed set of ˛ in the
orbitals of K of type ab and ab is contained in the orbitals of ˇ1. Also if C is an
orbital ofK of type ab, then the components of Fa \C which are in the orbitals of ˇ
that do not share an end with C are all contained in the support of ˇ1. The fixed set
of ˇ contained in the orbitals of K of type ab is also contained in the support of ˇ1,
since any such point is moved off of Fb by ˛�j , then moved by ˇ�k , then moved to
someplace different (from its start) by ˛j , and finally, ˇk cannot move the resultant
point to its original location in the fixed set of ˇ. Now observe that the orbitals of
ˇ1 are either disjoint from S , or else are components of S where ˛j behaves as the
inverse of ˇ1.

The diagram below gives a rough model of four orbitals of type ab, which type will
feature heavily in the following discussion. It gives a rough estimate of the elements

˛�j , ˛j
ˇk

, and ˇ1 D Œ˛j ; ˇk� D ˛�j � ˛j ˇ
k

for these elements.

˛

ˇ

˛�j

˛j ˇk

ˇ1

Stage 4: Analyzing the orbitals ofK1. We now consider the groupK1 D h˛; ˇ1i,
and we consider the orbitals of K1 under the same classification as the orbitals of K,
where we replace ˇ by ˇ1 in that classification.

It is immediate to see that K1 still has all the orbitals of K of type ab, and that
the type of these orbitals is unchanged. It is also immediate by construction that the
orbitals ofK of type ab are also orbitals ofK1, although they are now of type ab. The
orbitals of K of type Ab are also orbitals of K1 of type Ab, but the orbitals of K of
type aB are now replaced by a collection of interior orbitals (all lying properly in the
union of the orbitals of K of type aB), each of which is an orbital of type aB that is
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actually disjoint from the support of ˛, or else of type AB, where ˛j and ˇ1 behave
as inverses on these orbitals. The orbitals of K of type AB are now of type Ab, and
may have trivial intersection with the support of ˇ1 (if, in fact, ˛ and ˇ commuted on
these orbitals).

If B1 is an orbital of K of type ab, then B1 is not an orbital of K1. In this case
K1 admits a new collection of orbitals properly contained in B1.

We first consider the case where ˇ is moving points to the right on its leading
orbital in B1 (and therefore is moving points to the left on its trailing such orbital).
We will suppose that k was chosen large enough so that the closure of the union of the
orbitals of ˇ�k˛jˇk that are contained in orbitals of ˇ in B1 is actually contained in
the orbitals of ˛ (and therefore of ˛j ) which contain components of the fixed set of ˇ.
Note that any orbital of ˇ whose closure is contained in B1 is contained in the union
of the orbitals of ˛j and ˇ�k˛jˇk . Therefore, there are three possible varieties of
resulting orbitals of K1 in B1: firstly, of type AB, where ˇ1 actually behaves as ˛�j
on these orbitals (there may be several of these), secondly, of type AB, where there
is only one such orbital and it contains the fixed set of ˇ, or thirdly, of type ab, where
there is one of these if the previous variety did not occur, and it contains the fixed set
of ˇ in this case. We will assume k was chosen large enough so that these properties
of transformation are preserved over all orbitals of K of type ab where ˇ is moving
points to the right on its leading relevant orbitals.

Detour: An illustrative detour. Suppose for a moment that B1 is the third orbital
of the group h˛; ˇi, where our generators are pictured in the previous diagram. If we
invert the trailing (rightmost) orbital of ˛ in B1, so that ˛ throws points right in that
trailing orbital, then some calculations should convince the reader that the resulting
ˇ1 will have only one orbital inB1 (over which ˇ1 would throw points to the left). Let
us call this resulting orbital C . In this case, C would be of type aB. This contradicts
our description in the previous paragraph. What has happened? Well, in this case ˛
realizes both ends of C consistently, but has interior fixed set, thus showing that the
initial group was not balanced (by Lemma 2.6).

Let us return to our main argument.
In the case of the orbitals of K of type ab where ˇ moves points to the left on

its leading relevant orbitals. The results depend heavily on the nature of ˛ in these
individual orbitals. To clarify the discussion, let us suppose that B is such an orbital,
and discuss the possibilities that arise from the behavior of ˛ and ˇ on B .

Firstly, let us suppose that ˛ has an orbital that contains the fixed set of ˇ in B .
In this case, let us suppose that k and j were chosen large enough so that the entire
support of ˛ is contained inside a single fundamental domain of the single orbital of
ˇ�k˛jˇk that contains the fixed set of ˇ inB . In this case, the groupK1 possibly has
several orbitals in B , all of type aB. One of these orbitals contains all of the support
of ˛ in B , and all of the rest are orbitals of ˇ1 which contain no orbitals of ˛ and are
therefore of type aB with trivial intersection with orbitals of ˛.
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Now let us suppose that˛ has more than one orbital inB that contains a component
of the fixed set of ˇ. The first and last such orbitals of ˛ inB must have that ˛ behaves
inconsistently on these orbitals, otherwise it is easy to create an imbalanced subgroup
of K1. So now there are two further cases.

Let us suppose that ˛ moves points to the right on its first orbital in B which
contains a component of the fixed set of ˇ, and therefore moves points to the left on
the last such. In this caseK1 has only one orbital in the domain B , call it C , which is
again of type ab. The closure of C is contained inB , and ˇ1 moves points to the right
on its leading orbital in C and moves points to the left on its trailing orbital there.

Now let us suppose that ˛ moves points to the left on its leading orbital in B that
contains a component of the fixed set of ˇ, and therefore moves points to the right on
its trailing orbital in B which contains a component of the fixed set of ˇ, the group
K1 again has some pure orbitals (type aB) plus precisely one orbital C in B , which
is again of type ab, and this time, ˇ1 will move points to the left on its leading orbital
in C and will move points to the right on its trailing orbital in C .

The result of all of this analysis is the following, we can choose j and k so that
the group K1 has orbitals of the following types:

(1) AB

Note that in this case ˛ and ˇ1 commute on this orbital, except in the case
possibly generated from orbitals of type ab where b moves points right on its
leading orbital.

(2) Ab

(3) aB

Note here that the behavior of ˛ on this orbital is as the identity, unless this
orbital is contained in an orbital of K of type ab, in which case ˛ may have
non-trivial support in this orbital.

(4) ab

Note that orbitals of this type are always contained in orbitals of K of type ab
where ˇ moves points to the right on its first relevant orbital.

(5) ab

Since these are the certain result of an orbital of type ab or of an orbital of type
ab of K, we see that K1 will have at least one of these.

(6) ab

These orbitals all have the property that whenever ˇ1 moves points to the left on
its leading orbital in these orbitals, then ˛ moves points to the left on its leading
orbital of the orbitals that contain a component of the fixed set of ˇ1.
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Stage 5: Evolving the group K and its orbitals by repeatedly applying the mech-
anism.

We can repeat the process above to create a new element ˇ2 using ˛ and ˇ1, and
therefore a new group K2 D h˛; ˇ2i. K2 improves on K1 since all of its orbitals
of type ab have both ˇ2 and ˛ moving points to the left on their important leading
orbitals. In particular,K2 may still have orbitals of type ab, and of type AB (although
here ˛ and ˇ2 will commute on these orbitals). K2 may have orbitals of type Ab,
but its orbitals of type aB will all have the property that ˛ is the identity over these
orbitals, while K2 will certainly have orbitals of type ab. Repeating the process one
more time to create an element ˇ3 and a subgroup K3 D h˛; ˇ3i produces a group
whose orbitals are much easier to describe. K3 will have no orbitals of type AB since
K2 had no orbitals of type aB or ab that could produce these orbitals (the types exist,
but not with the right sub-flavors of ˛ and ˇ2 to generate these offspring). K3 may
have orbitals of type Ab, but it will have no orbitals of type aB, since the orbitals of
type aB inK2 had ˛ behaving as the identity there, andK2 had no orbitals of type ab
with ˇ2 moving points to the left on its first sub-orbitalD while ˛ was moving points
to the right on its orbital containing the right end of D. K3 will have no orbitals of
type ab, since K2 had no orbitals of type ab with ˇ2 moving points to the right on
its first orbital in the orbitals of K2 of this type. K3 will have at least one orbital of
type ab, and may have several orbitals of the type ab, but all of these last will have
ˇ3 moving points to the left on its leftmost orbitals in these orbitals, and ˛ will also
move points to the left on its first orbitals containing the right ends of ˇ3’s leftmost
orbitals in these orbitals of type ab of K3.

Now the orbitals of K3 are well understood, and the behaviors of ˇ3 and ˛ on
these orbitals are also well understood. We now consider the subgroupK4 generated
by ˛ and ˇ4 D Œ˛�j ; ˇk3 �, where j and k are chosen as in the previous process (note
the negative index on ˛). The point of this is that now the orbitals ofK4 will admit no
orbital of type ab with ˇ4 moving points to the left on its first orbital. Now replacing
K4 with K5 D h˛; ˇ5i where ˇ5 D Œ˛j ; ˇk� where j and k are chosen as before
produces a group with no orbitals of type ab, repeating one more time to generate ˇ6
and K6 in the same fashion that we generated K1 from K produces a group whose
orbitals are only of types Ab and ab.

Let us consider the orbital A ofK. A is also an orbital ofK6, and it is of type ab.
We will now replaceK byK6 and ˇ by ˇ6 so thatK has an orbital of type ab and all
of its orbitals are of type ab and Ab.

Stage 6: Improving the inconsistent orbitals of K. Suppose that K has n orbitals
of type ab, and let O D fAi j 1 � i � n; i 2 Ng represent this collection, where the
indices respect the left-to-right order of the orbitals. By construction we know that
n � 1. Apply Lemma 3.4 (above) to replace ˛ and ˇ by new elements, and replaceK
by the new group generated by the new ˛ and ˇ so that ˇ still realizes no end of any
orbital of K, and A1 is still an orbital of type ab, but where every maximal transition
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chain (of length greater than one) which can be formed by using ˛ and ˇ has length
three (naturally ˛ provides the leading and trailing orbitals for any such chain), and
where ˛ moves points to the left on all of its leading orbitals in orbitals of type ab for
K (and therefore moving points to the right on its trailing such intervals).

Stage 7: Improving the consistent orbitals ofK. We now improve ˇ so that it will
not admit support in the orbitals of K of type Ab.

Choose two integers m and n intelligently. Choose n large enough so that the
entire support of ˇ in the inconsistent orbitals of K is contained in the set of orbitals
of ˇ˛

n
which contain the fixed sets of ˛ in these inconsistent orbitals, and so that in

the consistent orbitals of K, the conjugate ˇ˛
n

has support disjoint from the support
of ˇ, being entirely to the left (or entirely to the right) of the support of ˇ in each
of these individual orbitals. Choose m large enough so that the support of ˇ in the
orbitals of ˇ˛

n
(in the inconsistent orbitals of K) is moved entirely to the right of

itself (or entirely to the left of itself, depending on the orbital of ˇ˛
n

involved) by the
action of .ˇm/˛

n
.

Replace ˇ by the commutator Œˇm; .ˇm/˛
n
�. The new beta still has a single orbital

spanning the fixed set of ˛ in each of the inconsistent orbitals of the originalK. Also,
the new K generated by ˛ and the new ˇ has the same orbitals as the previous K,
except now the support ofˇ is contained in the inconsistent orbitals ofK. In particular,
the consistent orbitals of K now only support the action of powers of ˛.

Stage 8: Finding B in K. Define Q�0 D ˇ. There is a natural number k so that
Q�1 D �˛

k

0 has the property that if Z is any particular orbital of K of type ab. Then
the closure of the support of �0 inZ is fully contained in the orbital of Q�1 that contain
the fixed set of ˛ in Z. Note that this k exists, since ˛ moves points to the left on all
of its leading orbitals in the orbitals of K of type ab. Replace ˛ by ˛k .

There is another natural number j so that the closure of the support of Q�0 in any
particular orbital Y of Q�1 is fully contained in a single fundamental domain of Q�j1 in

Y . In particular, if we replace �i by .�j0 /
˛i

for every i 2 Z, then the group generated
by the new set of �i will be isomorphic with . oZ o/1 since the support of each such �i
in any orbital of type ab ofK is wholly contained inside a single fundamental domain
of an orbital of �iC1. Since the orbitals of ˛i which create the consistent orbitals of
K do not effect the isomorphism type of the group h˛; �0i (being disjoint from the
support of �0), we see that h˛; �0i Š B .

3.2. Finding infinite wreath products in groups with infinite towers. Suppose
that D D f.Ak; hk/ j k 2 Ng is an exemplary tower whose indexing respects the
order of the elements. Suppose further thatD has the property that whenever B is an
orbital of hk for some signature hk ofD, thenB is contained in an orbital C of hkC1.

We are going to find a sub-tower ofD that satisfies a convenient further property.
Suppose that k 2 N and Bk is an orbital of hk , but possibly Bk ¤ Ak . By the

definition ofD, each signature hj ofD has an orbital Bj that contains Bk for j > k.



A minimal non-solvable group of homeomorphisms 27

The orbitalsBj are nested as the index j increases, but possibly not properly. If there
is an N 2 N so that for all n � N � k, we have Bn D BnC1, then we will call Bk a
terminal orbital of hk with respect to D, and .Bk; hk/ a terminal signed orbital with
respect toD, and we will say thatBk is stable afterN with respect toD. We will also
call any orbital of a signature of the towerD, where the orbital is not a terminal orbital
for that signature with respect toD, a non-terminal orbital (note that in this language
the tower and signature will then be understood by context). In similar fashion, we
will allow ourselves to drop portions of the phrase “of hi with respect to the tower
D” in any reference to terminal orbitals, if the tower or signature is easily understood
from the context.

Observe that non-terminal signed orbitals make good candidates for being bases
of new exemplary towers.

We will rely heavily on the following result in our proof of Lemma 3.6. Given
an infinite exemplary tower satisfying the orbital-containment property in the first
paragraph of this section, the lemma below allows us to pass to an infinite sub-tower
where all non-terminal signed orbitals form bases of new infinite exemplary towers
(using the same signatures (after a certain index) as in the initial tower).

Whenever we apply the results of the upcoming lemma to improve a tower, we
will state that we are employing a growing tower operation.

Lemma 3.5 (Growing tower). Suppose thatD D f.Ak; hk/ j k 2 Ng is an exemplary
tower so that wheneverB is an orbital of hk for some indexk, thenB is contained in an
orbitalC of hkC1. Then we can pass to an infinite sub-towerE D f.Bk; gk/ j k 2 Ng
of D so that if J is an orbital of any signature gk of E, where J is a non-terminal
orbital with respect to D, there is an orbital K of gkC1 which properly contains J .

Proof. In the discussion below, we will pass repeatedly to infinite sub-towers of D,
at each stage referring to the new tower as D, and re-indexing so that the new tower
will still be described as D D f.Ak; hk/ j k 2 Ng.

Our argument will require a double induction. We will induct across a set of pairs
.i; k/ of indices. The index k will be called the vertical index and will represent the
k-th “level” of the tower D (i.e., with signature hk), and the index i will be called
the horizontal index and will progress from left to right across the nk non-terminal
orbitals of hk with respect to D.

For each vertical index k, starting at k D 0, we progress across the relevant
horizontal index, improving the towerD for each i with 1 � i � nk . Our new tower
D will be similar to the old D, except that we will have removed many of the old
“levels” above the index k (while still leaving and infinite tower). After re-indexing,
the values of the nj ’s may have changed for j > k.

Having improved D at the vertical stage k, we will progress to the k C 1 stage,
and repeat the process there. We now define the process at index k D 0.
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Let P D fCi;0 j 1 � i � n0; i 2 Ng represent the n0 orbitals of h0 that are
non-terminal with respect to D, in left-to-right order. First, we will improve D by
passing to an infinite sub-tower n0 times.

For C1;0, consider the sequence ..E1;0;j ; hj //1jD0 of signed orbitals where for
each index j > 0 we have that E1;0;j�1 � E1;0;j , and where E1;0;0 D C1;0. Define
a function �1;0 W N ! N which takes value 1 at j > 0 if E1;0;j D E1;0;j�1, and
0 otherwise. Note that �1;0 takes on the value 0 infinitely often, since C1;0 is not a
terminal orbital, and also note that �1;0.0/ D 0. Pass to the sub-tower of D which
consists precisely of the signed orbitals that had an index j where �1;0.j / D 0. This
new version of D has the following properties:

(1) The new signature h0 is the same signature as h0 in the previous D,

(2) D is infinite, and

(3) for every index k > 0, the orbital of hk containing C1;0 properly contains the
orbital of hk�1 containing C1;0.

Now repeat the process above for each horizontal index i from 2 to n0, where at
each i , the sequence ..Ei;0;j ; hj //1jD0 of signed orbitals is built using the conditions
that Ei;0;1 D Ci;0 and Ei;0;j � Ei;0;jC1 for each index j . This will result in a new
tower D which satisfies the following properties:

(1) The new signature h0 is the same signature as h0 in the initial D,

(2) the new D is still infinite,

(3) for every vertical index k > 0 and for each i with 1 � i � n1, the orbital of hk
containing Ci;0 properly contains the orbital of hk�1 containing Ci;0.

In particular, each of the signed orbitals .Ci;0; h0/ could be used as the lowest
level of an exemplary tower using the signatures hk .

We will now induct up the vertical indices k, applying the same process at each
new value of k as we did when k was zero.

At the k-th stage of the vertical induction, the signature hk is preserved in the new
tower, and only higher “levels” are deleted. In particular, at each index k, the new
tower D is stable below index k C 1 for the remainder of the process. Thus, this
process results in a new infinite tower D, and that tower has the properties claimed
in the lemma statement (at any vertical “level” k, all non-terminal orbitals of hk
with respect to D have the property that they are properly contained in non-terminal
orbitals of hkC1).

The diagram below demonstrates the process of deleting different levels of a tower
satisfying the orbital-containment hypothesis of this section. The dashed horizontal
lines indicate a deletion and are labeled with the index pair .k; i/ of the double
induction in the proof above that resulted in the deletion of that level.
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The following lemmas are simply restatements (with proofs) of the different as-
pects of Theorem 1.6.

Lemma 3.6. If G is a subgroup of PLo.I / and G admits a tall tower, then G has a
subgroup of the form .Z o /1.

Proof. We again proceed in stages.

Stage 1: Making observations which enable a simplified treatment of orbitals. We
will assume thatG admits no transition chains of length two, as otherwise Theorem 1.4
will imply thatG contains an embedded copy ofB which contains isomorphic copies
of .Z o /1.

Stage 2: Choosing an initial tower and noting its supporting orbital. Let E0 D
f.Ai ; gi / j i 2 Ng be a tall tower for G, where the indexing respects the order on the
signed orbitals ofE0. By Lemma 2.7, sinceG contains no transition chains of length
two, E0 is exemplary.

Let A D
S
i2N Ai D .a; b/. We observe that if B is an orbital of gi for some i ,

then B is disjoint from fa; bg. In particular, A is an orbital of hSE0
i.

Stage 3: Improving our tower inside of the supporting orbital A. Now given
� > 0 so that � < b�a

2
, we see that there is a least N� 2 N so that for all n 2 N with

n � N� , we have that .a C �; b � �/ � An, as the ends of the Ai must limit to the
ends of A. Let us construct an order-preserving function, 	 W N ! N , so that given
any n 2 N, all of the orbitals of gn in A are actually contained in A�.n/. Since E0 is
exemplary, if 	.n/ ¤ n then no orbital of gn in A actually shares an end with A�.n/.

For any k 2 N, let 	k represent the product (via composition) of the function 	
with itself k times in the monoid of order-preserving functions from N to N (use
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	0 D id, the function which moves nothing). Now define an order-preserving function
� W N ! N, given by the rule n 7! 	n.0/ for each n 2 N. Create E1, the exemplary
tower formed by the collection f.A�.i/; g�.i// j i 2 Ng. To simplify the discussion
below, re-index and relabel the signatures of the tower E1 in the natural, order-
preserving fashion, so that we will again denote these signed orbitals as .Ai ; gi /. We
thus write E1 D f.Ai ; gi / j i 2 Ng.

E1 now has the property that if i; k 2 N with i < k then all the orbitals of gi inA
are actually in Ak , away from the ends of Ak . For each n 2 N, with n > 0, letmn be
an integer large enough so that the collection of orbitals of gn�1 inside of An (which
is all the orbitals of gn�1 in A) is actually fully contained in a single fundamental
domain of gmn

n in An. Define m0 D 1. Improve E1 to create a new tower E2 by
replacing each signature gn with gmn

n (and re-index and relabel its signed orbitals as
above, so that we will again write E2 D f.Ai ; gi / j i 2 Ng). Now by construction,
given any index k, all the orbitals of gk which are contained inside of A are actually
contained inside a single fundamental domain of gkC1 in AkC1.

Stage 4: Improving our tower outside of the orbital A. We cannot immediately
pass to a growing sub-tower; some work needs to be done to E2 in order for it to
satisfy the hypotheses of Lemma 3.5.

Define h0 D g0. Now for each n 2 N with n > 0, inductively define hn via the
following process.

Let fBn;1; Bn;2; : : : ; Bn;j g represent the orbitals of gn that are also orbitals of
hn�1. Let sg;n;k;l and sg;n;k;r represent the leftmost and rightmost slopes of gn on
the orbitalBn;k , while sh;n;k;l and sh;n;k;r represent the leftmost and rightmost slopes
of hn�1 on Bn;k , for each index k. It is immediate that there is a least positive integer
rn so that for each index k we have that sh;n;k;l �srng;n;k;l ¤ 1 and sh;n;k;r �srn

g;n;k;r
¤ 1.

Define h0
n D hn�1grnn . By the discussion in the previous paragraph, we see that

h0
n is not the identity in Bn;k near the ends of Bn;k for each index k. In particular,

for each index k, h0
n has an orbital contained in Bn;k that shares an end with Bn;k , so

that h0
n must have Bn;k as an orbital by points 3 (a)–(c) of Lemma 2.7.

Also observe from Lemma 2.7 that any orbital of hn�1 which properly contains
an orbital of gn will now be an orbital of h0

n, and that any orbital of gn that properly
contains an orbital of hn�1 will also be an orbital of h0

n. If B is an orbital of hn�1,
which has trivial intersection with the orbitals of gn, then B will be an orbital of h0

n

as well. In particular, we have shown that h0
n now has an orbital containing every

orbital of hn�1.
For each index n > 0, choose a positive integer sn large enough so that every

orbital C of h0 sn
n which properly contains orbitals of hn�1 actually contains all such

orbitals in a single fundamental domain of h0 sn
n on C .

Finally, define hn D h
0 sn
n . By construction, we now have that the sequence

.hi /i2N of signatures satisfies the following list of properties:

(1) For each n 2 N, An is an orbital of hn.
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(2) For each n 2 N with n > 0, the orbitals of hn�1 in A are all contained inside a
single fundamental domain of hn in An.

(3) For each n 2 N with n > 0, if B is an orbital of hn which is not disjoint from
the orbitals of hn�1, then there are two possibilities.

(a) B is also an orbital of hn�1.

(b) B properly contains a non-empty collection of orbitals of hn�1 in a single
fundamental domain of hn on B .

In particular, we can form the a new exemplary tower E3 D f.Ai ; hi / j i 2 Ng.
To recap,E3 has the properties that

S
i2N Ai D A andA is an orbital of the group

hSE3
i. Further, the signatures satisfy the three enumerated points above.

Now create towerE4, which is the result of applying the growing tower operation
of Lemma 3.5 toE3. (We will always assume re-indexing when passing to a growing
sub-tower.) The towerE4 now has the property that if .B; hi / is a non-terminal signed
orbital with respect to E4, then B is properly contained in an orbital of the signature
hiC1 of E4.

Stage 5: Removing terminal orbitals. The tower E4 is far superior to the initial
tower E0, but h0 may still have terminal orbitals.

Suppose that h0 does have some terminal orbitals. Then there is N0 2 N so that
all the terminal orbitals of h0 are stable for n � N0 (that is, if B is a terminal orbital
of h0 then there is an orbital C of hN0

with B � C so that for all n � N0, hn also
has orbital C ).

Compute a new element k D ŒŒhN0C1; hN0C2�; hN0C2� (note that condition (3)
above implies that hN0C1 and hN0C2 satisfy the mutual efficiency condition, since all
the orbitals of hj are contained in orbitals of hjC1 for any j 2 N). By Lemma 2.9,
the element k has the following properties:

(1) The orbitals of hN0
which contain the terminal orbitals of h0 are not contained

in the union of the orbitals of k.

(2) No orbital of hN0
which is also an orbital of hN0C1 is an orbital of k. (Note that

these are all terminal orbitals of hN0
since E4 is the result of using a growing

tower operation).

(3) All the non-terminal orbitals of hN0
are still properly contained in the orbitals

of k, since k contains the non-terminal orbitals of hN0C1.

Now replace k and hN0
by sufficiently high powers of themselves so that they

satisfy the mutual efficiency condition. Define h D ŒŒhN0
; k�; k�. By Lemma 2.9, the

element h has the following properties:

(1) h has no orbitals intersecting the terminal orbitals of h0.

(2) h has all the non-terminal orbitals of hN0
.
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Now replace h and h0 by sufficiently high powers of themselves so that the satisfy
the mutual efficiency condition, and then replace h0 by ŒŒh0; h�; h�. By Lemma 2.9,
every orbital of the new h0 is properly contained in a non-terminal orbital of hN0

, and
every non-terminal orbital of the signature h0 from the towerE4 is also a non-terminal
orbital of the new signature h0.

Now replace hN0
by a sufficiently high power of itself so that h0 and the new hN0

satisfy the mutual efficiency condition, and build the tower

E 0
5 D f.A0; h0/g [ f.Ai ; hi / j i � N0; i 2 Ng:

Create E5 by re-indexing E 0
5 in the natural, order-preserving fashion. The tower

E5 satisfies all the properties of the tower E4 (listed near the end of the previous
stage), but its bottom element (h0) has only non-terminal orbitals. (Note that if the
original h0 had some terminal orbitals, then the new h0 will have some new orbitals
contained properly in the non-terminal orbitals of h1.)

If the signature h0 ofE4 had no terminal orbitals, then simply defineE5 to beE4.
We can now repeat this whole process for the sub-tower ofE5 starting from index

one, so that the new h1 will admit all the non-terminal orbitals that it started with,
and possibly other non-terminal orbitals, and also will contain no terminal orbitals.
Further, replace h1 by a high power of itself so that h1 and h0 are mutually efficient.
Now inductively proceed up the tower E5, redefining each of the hi in like fashion
as we did for h1 (using the tower consisting of signed orbitals with indices k � i to
find an hi with only non-terminal orbitals, and which has orbitals containing all of the
orbitals of hi�1, and then replacing the new hi with a high power of itself to guarantee
mutual efficiency with hi�1), to build a new tower E6 D f.Ai ; hi / j i 2 Ng which
satisfies the following properties:

(1) A D
S
n2N An.

(2) For each n 2 N with n > 0, the orbitals of hn�1 in A are all contained inside
the orbital An of hn.

(3) For each n 2 N with n > 0, if B is an orbital of hn which is not disjoint from
the orbitals of hn�1, then B contains the closure of the union of the collection
of orbitals of hn�1 that intersect B .

(4) For every index n, the elements hn and hnC1 are mutually efficient.

Stage 6: Notes on dynamics with algebraic conclusions. For every n 2 N, define
the subgroup Hn D hh0; h1; : : : ; hni of G. Now suppose that n > 0. Given any two
elements f , g 2 Hn�1, since the supports of f and g are contained in the support of
hn�1, and since the support of hn�1 in any one orbital of hn is contained in a single

fundamental domain of hn in that orbital, we see that f h
j
n and gh

k
n have disjoint

supports and therefore commute, whenever j ¤ k. Since Hn�1 Š H
h

j
n

n�1 for any
integer j , we therefore see that the subgroup of Hn consisting of finite products of
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conjugates of elements of Hn�1 by hn is isomorphic to
L
j2ZHn�1. Now, as we

can write any element ofHn as a product of an integer power of hn with a product of
conjugates of elements of Hn�1 by integer powers of hn (which each commute with
each other when different powers of hn are involved in the conjugations), we see that
Hn Š Hn�1 o Z, where the Z factor is the subgroup hhni of Hn.

Now H0 Š Z, so H1 Š Z o Z, H2 Š .Z o Z/ o Z, and etc., so that Hn Š
.� � � ..Z o Z/ o Z/ � � � o Z where the finite wreath product has n C 1 factors of Z. In
particular, the ascending union of the Hn is H D hh0; h1; : : : i Š .Z o /1.

Lemma 3.7. If G is a subgroup of PLo.I / and G admits a deep tower, then G has a
subgroup of the form 1. o Z/.

Proof. We will use a similar technique to the proof of Lemma 3.6, although the
analysis in this case is much simpler.

If G admits a transition chain of length two, then by Theorem 1.4, G admits an
embedded copy of B , and B contains copies of 1. o Z/. So let us assume that G
admits no transition chains of length two.

SinceG is admits no transition chains of length two, any tower forG is exemplary.
In particular, let E D f.A�i ; g�i / j i 2 Nn0g be an exemplary deep tower for G
where the indexing respects the order on the elements of the tower. Improve E by
replacing the signatures ofE with sufficiently high powers of themselves so that given
any negative integer i , then gi�1 and gi satisfy the mutual efficiency condition.

Let A D A�1 D .a; b/. SinceE is exemplary, we see that A is actually an orbital
of the subgroup H � G, where H D hSE i. For all i 2 N with i > 1, inductively
improve E (induct on increasing i 2 N in the following discussion) by replacing the
signatures of E according to the following three step process.

First, let h�i D ŒŒg�i ; g�iC1�; g�iC1�.
Second, define the new g�i to be h�i .
Third, replace the elements g�iC1, g�i and g�i�1 with sufficiently high powers

of themselves, so that given any index j 2 N, the elements g�j and g�j�1 satisfy
the mutual efficiency condition. (Observe that if i > 3, then g�iC1 and g�iC2 will
now still satisfy the mutually efficiency condition, since we are only replacing g�iC1
by higher powers of itself, and these two signatures were already mutually efficient;
a similar argument shows that g�i�1 and g�i�2 will be mutually efficient after this
operation as well.)

Since A�i ¨ A�iC1 for all integers i > 1, we see that the resultant set of signed
orbitals is still a tower (and with the same order), so that this inductive definition will
simply improve our towerE. Observe further that given any k 2 N, then the orbitals
of g�k�1 are all properly contained in the orbitals of g�k .

Define the set �i D fgj j j � i; j 2 Zg for each negative integer i . For each
negative integer i , define Hi D h�i i. For such i , the orbitals of Hi are actually the
orbitals of hi , since all orbitals of the elements gk with k < i are contained in the
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orbitals of gi . Furthermore, for any such i < �1, the orbitals of gi are contained in
the orbitals of giC1 in such a way that in any individual orbitalB of giC1, the support
of gi in B is actually fully contained inside a single fundamental domain of giC1
on B . In particular, Hi Š Hi�1 o Z, where the Z factor comes from the subgroup
hgi i of Hi . But now inductively, since each generator generates a group isomorphic
to Z, we see that H1 Š 1. o Z/.

Lemma 3.8. If G is a subgroup of PLo.I / and G admits a bi-infinite tower, then G
has a subgroup of the form . o Z o /1.

Proof. This follows immediately from the previous two lemmas, where first one
improves the non-negative tower and then improves the negative tower (using the
element with index 0 as the top element).

3.3. W in arbitrary non-solvable subgroups of PLo.I/. We are now ready to
complete the proof of Theorem 1.1, restated below.

Theorem 1.1. Let H be a subgroup of PLo.I /. H is non-solvable if and only if W
embeds in H .

Proof. Since W is non-solvable, any group which contains an embedded copy of W
will be non-solvable as well, therefore we need only show that if H is non-solvable
then H contains a copy of W .

Suppose therefore that H is a non-solvable subgroup of PLo.I /. By Lemma 3.1
we know that W embeds in 1. o Z/ and .Z o /1, and therefore also into . o Z o /1.
Therefore, ifH admits infinite towers then we already have the result, so let us assume
that H does not admit infinite towers. In this case, by Theorem 1.5, we have that H
admits towers of arbitrary finite height. By the proof of Theorem 1.4, if H admits a
transition chain of length two, then it admits a bi-infinite tower (the tower is built in
stage 8, p. 26). In particular, we may assume that H admits no transition chains of
length two. Now Lemma 2.7 guarantees us that H is balanced.

Since H does not admit infinite towers, the depth of any signed orbital of H is
well defined and finite. SinceH is not the trivial group,H has a non-empty collection
of orbitals. The analysis now breaks into two cases.

Case 1. H admits no orbital that supports towers of arbitrary height. In this case
we may define the depth of any orbital B of H as the maximum height of the towers
which are supported by the orbitalB . SinceH admits towers of arbitrary finite height,
but no orbitals supporting towers of arbitrary height, we see that H has must admit
infinitely many orbitals. In particular,H admits orbitals with depth greater than n for
any natural number n.

Now pick an element Og1;1 of H so that yT1 D f.B1;1; Og1;1/g is a tower of height
one for H . The element Og1;1 has finitely many orbitals, and so there is a maximum
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depth j1 of the orbitals of H that are not disjoint from the support of Og1;1. We will
now pick our remaining generators from the groupH .j1/, the j1’st derived subgroup
of H . We note that no element in H .j1/ can have support intersecting Og1;1, since
H .j1/ has trivial support over the orbitals of H of depth less than or equal to j1 as a
consequence of the details of the proof of point (4) of Lemma 2.7. (We state the main
idea of that proof, which is in [3]. If 
 is an element of H and .Z; 
/ is a depth one
signed orbital of H , then there is no element of H with an orbital containing xZ, the
closure ofZ. In particular,Z cannot be the orbital of any commutator of elements of
H , nor of a finite product of commutators. Hence, each time we pass to a commutator
subgroup, we lose all elements which support the depth one orbitals of the original
group.)

We also observe that H .j1/ still admits towers of arbitrary finite height and in-
finitely many orbitals of arbitrary finite depth. For H .j1/ � H we now find a
tower yT2 D f.B2;1; Og2;1/; .B2;2; Og2;2/g of height two. Now the signatures of yT2
admit a finite total number of orbitals, and therefore the union of this collection
of element orbitals is contained in the union of the collection of orbitals of H
of depth less than some integer j2 > j1. We therefore will pick a tower yT3 D
f.B3;1; Og3;1/; .B3;2; Og3;2/; .B3;3; Og3;3/g for H .j2/ which has signatures whose sup-
ports must be disjoint from the supports of the signatures of the first two towers yT1
and yT2 (by using elements fromH .j2/, for example). We can continue in this fashion
to inductively define towers yTk and integers jk�1 for each positive integer k so that
the integers jk are always getting larger, and so that the towers yTk always have height
k and have signatures which are disjoint in support from the signatures of the previous
towers. (We insist that in the construction above the indexing always respects the or-
dering of the signed orbitals in all of the towers we build here, so that Ak;i � Ak;iCi
for any index k and i with 1 � i < k.)

Let g1;1 D Og1;1. For each index k > 1 replace the signature Ogk;k and Ogk;k�1 of the
tower yTk by a sufficiently high powers of themselves so that pairwise, they are mutually
efficient. Now build a new tower Tk D f.Ak;1; gk;1/; .Ak;2; gk;2/; : : : ; .Ak;k; gk;k/g,
where gk;k D Ogk;k and where we inductively define gk;i in the following fashion.
Starting with index i D k � 1, define gk;i D ŒŒ Ogk;i ; gk;iC1�; gk;iC1�. Now replace
gk;i and Ogk;i�1 by sufficiently high powers of themselves so that they are mutually
efficient. Now inductively repeat for each smaller index i the process just carried out
for i D k � 1 until gk;1 is defined (of course, we do not need to raise gk;1 to high
powers, as there is no element Ogk;0).

By construction, and by repeated application of Lemma 2.9, the process in the last
paragraph results in elements gk;j so that if k, i are indices with 1 � i < k then

(1) all orbitals of gk;i are properly contained in orbitals of gk;iC1,

(2) Ak;i is an orbital of gk;i , and

(3) if B is any orbital of gk;j for an index 1 < j � k, and B contains an orbital
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of gk;j�1, then all orbitals of gk;j�1 in B are contained in a single fundamental
domain of gk;j .

The points above together imply that for any index k > 0, if we define Gk D
hgk;1; gk;2; : : : ; gk;ki, then Gk Š Wk .

Now, as the support of every element of Gk is disjoint from the support of each
element ofGj when j ¤ k, we see that for such indices the union of the generators of
the groupsGk andGj will generate a group isomorphic withGk˚Gj Š Wk˚Wj . It
is now immediate that the union of all of the generators of the groupsGj will generate
a group isomorphic with W .

Case 2. H admits an orbital A that supports towers of arbitrary height. If A is
not an orbital of any element of H then A can be written as a union of an infinite
collection of nested element orbitals of H , so that H would then admit an infinite
tower, therefore there is an element d ofH so that .A; d/ is a signed orbital of depth
one for H .

We will now restrict our attention to a special subgroupHd ofH which is directed
by the element d , in a sense that will be made clear. Given any element h 2 H , let kh
and jh represent the smallest positive integers so that hkh and d jh satisfy the mutual
efficiency condition. Let

�d D fŒŒhkh ; d jh �; d jh � j h 2 H g [ fdg:
The elements of �d have all of their orbitals properly contained inside the orbitals
of d , and since the orbital A of H admits towers of arbitrary height and any element
orbital B which is properly contained inside A will be realized as an orbital of some
elementg of�d (note that it does not matter that we passed to high powers to guarantee
the mutual efficiency condition), we see that the group Hd D h�d i admits towers of
arbitrary height.

Observe that given any finite set X of elements of Hd that individually do not
support any signed orbitals of depth one for Hd , and a finite tower T for Hd which
also contains no signed orbital of depth one, we can find a minimal power kX of d so
that the tower T d

kX forHd induced from T via conjugation of the signatures of T by
dkX will have all of its signatures having disjoint support from the signatures of X .
(To do this, we choose kX to be large enough so that the supports of the signatures
of T d

kX are nearer to the ends of the orbitals of d than the supports of the elements
of X ).

Now, for each positive integer n, let zTn be a tower for Hd of height n. Now
inductively define towers yTn which are towers induced from the zTn by conjugation by
powers of d so that given any positive integer k, the tower OTk has signatures whose
supports are all disjoint from the supports of the signatures of the towers yTj for indices
j with 1 � j < k. integer.

By treating the towers yTn as the towers with the same names were treated in the
discussion in Case 1, we can again find an embedded copy of the groupW inH .
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