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Deformation spaces of G -trees and automorphisms of
Baumslag–Solitar groups

Matt Clay

Abstract. We construct an invariant deformation retract of a deformation space of G-trees.
We show that this complex is finite dimensional in certain cases and provide an example
that is not finite dimensional. Using this complex we compute the automorphism group of
the classical non-solvable Baumslag–Solitar groups BS.p; q/. The most interesting case is
when p properly divides q. Collins and Levin computed a presentation for Aut.BS.p; q// in
this case using algebraic methods. Our computation uses Bass–Serre theory to derive these
presentations. Additionally, we provide a geometric argument showing Out.BS.p; q// is not
finitely generated when p properly divides q.
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Introduction

Baumslag–Solitar groups have the following standard presentations:

BS.p; q/ D hx; t j txpt�1 D xqi: (1)

Whenp properly divides q there are infinitely many similar presentations for BS.p; q/
which highlights additional symmetries. These groups were first studied by Baumslag
and Solitar as some examples of non-Hopfian groups [4]. Our interest is in the auto-
morphism and outer automorphism groups, Aut.BS.p; q// and Out.BS.p; q// respec-
tively, of the non-solvable Baumslag–Solitar groups. For non-solvable Baumslag–
Solitar groups neither jpj nor jqj equals 1. By interchanging t $ t�1, we can always
assume that jqj � p > 1.

Presentations for these automorphism groups are known. The first result was by
Collins, who gave a finite presentation for Aut.BS.p; q//when p and q are relatively
prime [12]. This result was extended by Gilbert, Howie, Metaftsis and Raptis to the
cases when p does not divide q or when p D jqj [19]. Collins and Levin had earlier
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studied the most interesting cases, which is when p properly divides q [13]. In this
case Aut.BS.p; q// is not finitely generated. A summary of these results appears in
Section 3. Although we do not consider the solvable case, we note that Collins found
a finite presentation for the automorphism group Aut.BS.1; q// that depends on the
prime factorization of q [12].

One of the purposes of this paper is to a give unified approach to the computation
of these automorphism groups. To this end, we construct a tree Xp;q on which
Out.BS.p; q// acts. In the cases Gilbert et al. considered, the tree Xp;q is a single
point. In the more interesting cases, when p properly divides q, this tree is nontrivial.
The arguments from Gilbert et al. are used to compute the vertex stabilizers of the tree
Xp;q . Using Bass–Serre theory in the case where p properly divides q we recover the
presentations of Aut.BS.p; q// and Out.BS.p; q// (Theorem 4.4) originally found
by Collins and Levin [13]. Prior to finding these presentations, we present a simple
geometric argument showing that Out.BS.p; q// (and hence Aut.BS.p; q// is not
finitely generated if p properly divides q (Theorem 4.3).

The key construction is an invariant deformation retract within a deformation
space of G-trees. This is the second purpose of this paper. The definition of a
deformation space (of G-trees) appears in the next section, but loosely speaking a
deformation space D is a moduli space of certain tree actions for a finitely generated
group. These spaces were introduced by Forester [16]. Culler and Vogtmann’s outer
space is a celebrated example of a deformation space [15]. Following intuition from
outer space, we define a deformation retractW � D of a general deformation space.
When the deformation space is outer space, the deformation retract W coincides
with the spine of reduced outer space. In some cases we can prove that W is finite
dimensional (Theorem 1.18) and we provide an example of a deformation space D

for which the deformation retract W is not finite dimensional (Example 2.2). We
note that Guirardel and Levitt have defined a similar deformation retract within a
non-ascending deformation space [20].

A non-solvable Baumslag–Solitar group BS.p; q/ has a canonical deformation
space Dp;q . This deformation space is invariant under the action of Out.BS.p; q//.
The deformation retract of Dp;q mentioned in the preceding paragraph is denoted
Wp;q . We use this deformation space to construct the tree Xp;q . If p does not divide
q or p D jqj, thenWp;q is a single point and we takeXp;q D Wp;q . If jqj=p is prime,
then the deformation retract Wp;q is a tree and we set Xp;q D Wp;q . In the other
cases the complex Wp;q is not a tree. Using our description of Wp;q when jqj=p is
prime, we define an Out.BS.p; q//-invariant subcomplex ofWp;q and prove that this
subcomplex is a tree (Theorem 3.9). In this case we take Xp;q to be this tree.

We are hopeful that these techniques can extend to computing the finiteness prop-
erties of other outer automorphism groups using deformation spaces.
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of my adviser Mladen Bestvina, whom I thank along with the University of Utah.
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1. Deformation spaces of G -trees

1.1. Definitions. In this section we define the preliminary notions essential to the
following.

For a graph � , we denote by V.�/ the set of vertices of � and by E.�/ the set of
oriented edges of � . For an edge e 2 E.�/, Ne denotes the edge e with the opposite
orientation. The attaching maps are o; t W E.�/ ! V.�/ (originating (initial) and
terminating vertices). For a vertex v 2 V.�/, let Eo.v/ D fe 2 E.�/ j o.e/ D vg.
An edge path � D .e0; : : : ; en/ is a set of oriented edges such that t .es/ D o.esC1/

for s D 0; : : : ; n � 1. A circuit is an edge path that is homeomorphic to a circle and
a loop is a circuit consisting of a single edge.

LetG be a finitely generated group. Later we will specialize to Baumslag–Solitar
groups, but the results and constructions in this first section apply to a general finitely
generated group.

A G-tree T is a simplicial tree that admits an action of G by simplicial automor-
phisms, i.e., by maps f W T ! T that are bijections on the sets of edges and vertices
and such that f .o.e// D o.f .e// for all e 2 E.T /. Actions are always assumed to be
without inversions, i.e., ge ¤ Ne for all g 2 G, e 2 E.T /. TwoG-trees are equivalent
if there is a G-equivariant simplicial isomorphism between them. A metric G-tree is
a G-tree with a metric such that the action of G is by isometries. As such we will
consider two metric G-trees equivalent if there is a G-equivariant isometry between
them. In either case, we will always assume that theG-tree T is minimal (no invariant
subtree), thus T=G is a finite graph.

For a metric G-tree T , the length function, lT W G ! R, is defined as lT .g/ D
infx2T dT .x; gx/. It is well known that this infimum is achieved. When we speak
of a length function for a simplicial G-tree T , we mean the length function when
we consider T as a metric G-tree where all edges are assigned length one. The
characteristic subtree for an element g 2 G is Tg D fx 2 T j dT .x; gx/ D lT .g/g.
If lT .g/ > 0, then Tg is isometric to R and g acts on Tg as a translation by lT .g/.
In this case, g is called hyperbolic and Tg is called the axis of g. Culler and Morgan
proved that irreducibleG-trees are uniquely determined by their length functions [14].
AG-tree is irreducible ifG does not fix an end of T nor a pair of ends. An equivalent
condition is that there are two hyperbolic elements whose axes are either disjoint or
intersect in a compact set [14].

For a givenG-tree T , a subgroupH � G is elliptic ifH fixes a point in T . There
are two ways to modify a G-tree, called collapse and expansion, that do not change
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the set of elliptic subgroups. These two moves correspond to the graph of groups
isomorphism A �C C Š A. A finite sequence of these moves is called an elementary
deformation. Conversely, Forester proved that any two G-trees with the same set of
elliptic subgroups are related by an elementary deformation [16]. The definitions of
collapse and expansion are as follows.

Definition 1.1 (Collapse). Let T be a G-tree and suppose there is a vertex v 2 V.T /
and an edge e 2 Eo.v/ such that Ge D Gv and o.e/ is not G-equivalent to t .e/, i.e.,
the image of e in T=G is not a loop. We define a new G-tree Te by removing the
edges Ge, then for all edges f 2 E.T / such that o.f / D t .ge/ for some g 2 G

redefine o.f / D gv. This is a collapse move. Such edges e are called collapsible.

If a G-tree does not admit a collapse move, it is called reduced.

Definition 1.2 (Expansion). Let T be a G-tree and v 2 V.T /. Given a subgroup
H � Gv and an H -invariant set of edges S � Eo.v/ such that Ge � H for all
e 2 S we can define a new G-tree TH;S by adding a new edge i via o.i/ D v and
redefining o.e/ D t .i/ for e 2 S , then repeating for all cosets gH 2 G=H using
with the subgroup gHg�1 � Ggv and the set of edges gS � Eo.gv/. This is an
expansion move.

The stabilizer of the new edge i and the vertex t .i/ is H .
There are three special elementary deformations that we use frequently: induction,

slide and A ˙1. Pictures for these moves in the general setting appear in [11]. In
Section 2 these moves are shown for the canonical deformation space associated to a
generalized Baumslag–Solitar group.

Definition 1.3 (Induction). Let T be aG-tree and suppose that at the vertex v 2 V.T /
there are two edges e; e0 2 Eo.v/ such that Ge D Gv , Ge0 ¤ Gv and e0 2 G Ne, i.e., e
and e0 project to the same loop in T=G with opposite orientations. The composition
of the expansion using any subgroup Ge0 � H ¨ Gv and the set S D He0 followed
by the collapse of e is called an induction. The inverse of an induction is also called
an induction.

The loop in T=G created by the image of e in the above definition is called
an ascending loop, i.e., a loop in T=G in which one of the attaching maps is an
isomorphism and the other is a proper inclusion. An induction move changes the
stabilizer of the vertex v to H .

Definition 1.4 (Slide). LetT be aG-tree and suppose that at the vertex v 2 V.T / there
are two edges e; f 2 Eo.v/ such that Gf � Ge and f is not G-equivalent to e or Ne.
We can perform an expansion using the subgroup H D Ge and set S D feg [Gef .
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Then in the expanded G-tree, the edge e is collapsible. The composition of this
expansion followed by the collapse of e is called a slide.

A slide can also be thought of as removing the edge f at o.f / and reattaching it
via o.f / D t .e/, then repeating equivariantly throughout T . Topologically, we are
folding the first half of f across e.

Definition 1.5 (A ˙1-move). Let T be a G-tree and suppose that at the vertex
v 2 V.T / there are edges e; e0; f 2 Eo.v/ where e; e0 satisfy the hypotheses of
an induction move and Ge0 � Gf . Further suppose that there are exactly three Gv-
orbits in Eo.v/ and the edges e; e0 and f are in distinct orbits. Then there is an
induction move after which Gv D Gf . The composition of this induction move fol-
lowed by the collapse of the edge f is called an A �1-move. The inverse is called an
A -move.

An A -move creates an ascending loop and an A �1-move removes an ascending
loop.

Deformation spaces of G-trees were introduced by Forester [16]. Given a G-tree
T , let X be the set of all metric G-trees that define the same set of elliptic subgroups
as T . This set of metric G-trees is called an unnormalized deformation space of
G-trees. There is an action of RC on X by scaling the metric on a given metric
G-tree. The quotient D , is called a deformation space of G-trees, or sometimes just
a deformation space. By Forester’s deformation theorem, disregarding the metric
on any two projectivized G-trees T; T 0 2 D , there is an elementary deformation
transforming T to T 0.

The importance of the three special moves described above is given by the fol-
lowing theorem.

Theorem 1.6 ([11]). In a deformation space of G-trees, any two reduced trees are
related by a finite sequence of slides, inductions and A ˙1-moves, with all intermediate
trees reduced.

Deformation spaces can be topologized in several ways: axes topology, equivari-
ant Gromov–Hausdorff topology or weak topology. In the case of irreducibleG-trees,
the axes topology and the equivariant Gromov–Hausdorff topology are the same [26].
In addition for locally finite G-trees, the equivariant Gromov–Hausdorff topology
and the weak topology are the same [20]. This is not true in general however, for an
example see [25]. The topology we work with is the weak topology; for definitions
of the other two see [8]. A projectivized G-tree T 2 D determines an open simplex
by equivariantly changing the lengths of the edges of T while holding the sum of the
lengths of the edges in T=G constant. This open simplex has dimension one less than
the number of edges of T=G. The faces in the closure of this open simplex are found
by collapsing subsets of collapsible edges in T .
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Culler and Vogtmann’s outer space is an example of a deformation space of G-
trees [15]. In this case, G is a finitely generated free group of rank n at least 2, Fn,
and the only elliptic subgroup is the trivial group. In other words, all of the actions
are free. Another example is the complexK0.G/ defined by McCullough and Miller
[25]. Here,G is an arbitrary finitely generated group and the elliptic subgroups are the
free product factors in a Grusko decomposition for G. Guirardel and Levitt describe
a different complex for a free product decomposition of a finitely generated group G
[21]. Their complex is the deformation space where the elliptic subgroups are the
free product factors in a Grusko decomposition for G that are not infinite cyclic.

The deformation space D is acted upon by some subgroup Out.G/D � Out.G/.
This is the subgroup that preserves the set of conjugacy classes of the elliptic subgroups
associated to D . In the case of Culler and Vogtmann’s outer space, this is the entire
group Out.Fn/. Likewise, the complex defined by Guirardel and Levitt is invariant
under Out.G/. For the McCullough–Miller complexK0.G/, OutD.G/ D †Out.G/,
the subgroup of symmetric outer automorphisms. These examples are contractible
and have been used for computing some of the finiteness properties of OutD.G/, see
individual references.

Under some mild hypotheses, we [8] and independently Guirardel and Levitt [20]
have shown that deformation spaces are contractible. Both our proof and the proof of
Guirardel and Levitt use Skora’s method of continuous folding [30].

Theorem 1.7. For a finitely generated group G, any irreducible deformation space
that contains a G-tree with finitely generated vertex stabilizers is contractible.

A deformation space is irreducible if all G-trees (equivalently a single G-tree) in
D are (is) irreducible. In [8], the above theorem is only shown for the equivariant
Gromov–Hausdorff topology (equivalently axes topology). Guirardel and Levitt show
this as well as showing that the contraction is continuous in the weak topology. In
addition, they replace irreducible with a weaker hypothesis.

1.2. A deformation retract of D . Culler and Vogtmann’s outer space deformation
retracts to a subcomplex called reduced outer space. This is the subcomplex of
projectivized free metric Fn-trees T such that the quotient graph T=Fn does not have
any separating edges. This deformation retract is obtained by equivariantly shrinking
the edges that project to separating edges in the quotient graphs T=Fn. There is a
further deformation retraction of reduced outer space to a spine. We will describe
a similar deformation retract of a deformation space D . For general deformation
spaces, it is easier to deformation retract to the spine first, then define an additional
deformation retraction.

Let K be the spine of D . Specifically, let OS.D/ be the poset of open simplices
of D where � � � 0 if � is a face in the closure of � 0. The spine K is defined
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as the geometric realization of the poset OS.D/. The spine K is an Out.G/D -
invariant deformation retraction of the deformation space D (with the weak topology).
Therefore, Out.G/D acts on K, which is a contractible simplicial complex.

The spine K has an alternative combinatorial description in terms of the G-trees
appearing in D . The poset OS.D/ is isomorphic to the poset Col.D/ of G-trees in
D (thought of only as simplicial trees) where T 0 � T if T 0 collapses to T . We say
that T 0 collapses to T if there is aG-equivariant map T 0 ! T that is a composition of
finitely many collapse moves. ThusK can also be viewed as the geometric realization
of the poset Col.D/. Vertices of K are G-trees in D ; higher dimensional simplices
correspond to collapse sequences of such G-trees. To ease notation, we will use K
to denote the set of vertices of K. For future reference, we remark that no G-tree
T 2 K contains a subdivision vertex, i.e., a vertex v 2 V.T / with Eo.v/ D fe; f g
and Ge D Gv D Gf .

For a G-tree T 2 K define the following sets:

col.T / D fT 0 2 K j T � T 0g;
red.T / D fT 0 2 col.T / j T 0 is reducedg; and

W.T / D fT 0 2 col.T / j red.T / D red.T 0/g:
In the setting of Culler and Vogtmann’s outer space, red.T / is the set of Fn-trees
found by collapsing some maximal forest of T=Fn and W.T / is the set of Fn-trees
found by collapsing separating edges in T=Fn. The following lemma shows that the
above sets can be realized as certain subsets of collapsible edges in T=G.

Lemma 1.8. If T is an irreducible G-tree with collapsible edges e and f where
f … Ge [ G Ne, then Te ¤ Tf . Also, if e is collapsible in Tf and f is collapsible in
Te , then .Te/f D .Tf /e .

Proof. If there is a hyperbolic element g 2 G whose axis projects down to a closed
path in T=G that crosses the image of e more than it crosses the image of f then
lTe
.g/ < lTf

.g/. Thus as irreducibleG-trees are determined by their length functions,
Te ¤ Tf . It is easy to find such an element g 2 G by looking at edge paths (in the
graph of groups sense) in T=G; see [1], [29].

By looking at length functions again, the second part of the lemma is obvious.

The following definition appears in [20].

Definition 1.9. An edge e 2 E.T / is called surviving it there is aG-tree T 0 2 red.T /
such that e is not collapsed in T ! T 0. If an edge is not a surviving edge, it is called
non-surviving.

Lemma 1.10. W.T / has a unique minimal element, TW . ThisG-tree is characterized
as the G-tree obtained from T by collapsing the non-surviving edges. Further, if
T � T 0 then TW � T 0

W
.
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Proof. As W.T / is a finite set, minimal elements exist in W.T /. Let T0 be a minimal
element. Then every non-surviving edge inT must be collapsed inT ! T 0

0 sinceT0 is
minimal. Also, no surviving edge could be collapsed inT ! T0 as red.T / D red.T0/.
Hence any minimal element T0 is found by collapsing the non-surviving edges. By
Lemma 1.8, this completely determines T0.

Finally notice that if T � T 0 then any non-surviving edge in T is either collapsed
in T ! T 0 or it is non-surviving for T 0. This is true since if the edge is surviving for
T 0, then it must also be surviving for T . Thus TW � T 0

W
.

Define h W Col.D/ ! Col.D/ by h.T / D TW . The above lemma shows that h is
a well-defined poset map. Notice that h.T / � T . The following lemma shows that h
defines a deformation retract of K, the geometric realization of Col.D/.

Lemma 1.11 (Quillen’s Poset Lemma [28]). Let X be a poset and f W X ! X be
a poset map (i.e., x � x0 implies that f .x/ � f .x0/ for all x; x0 2 X ) with the
property that f .x/ � x for all x 2 X (or f .x/ � x for all x 2 X ). Then the
geometric realization of f .X/ is a deformation retract of the geometric realization
of X .

Define W as the geometric realization of the poset h.Col.D//. Therefore, by
Quillen’s Poset Lemma, W is a Out.G/D -invariant deformation retract of D . In
particular,W is contractible. For Culler andVogtmann’s outer space,W is the spine of
reduced outer space. We will explicitly show the deformation retraction h W K ! W

in Example 2.1 for a star in a deformation space for the Baumslag–Solitar group
BS.2; 4/. If D is a non-ascending deformation space, then W is the spine of the
deformation retract defined by Guirardel and Levitt [20]. A deformation space D is
called non-ascending if for all T 2 D , the quotient graph of groups T=G does not
contain an ascending loop. As for K, we will use W to denote the set of vertices
of W .

1.3. G -trees in W . In this section we determine when a G-tree in D represents a
vertex in W . The following definition generalizes the definition of shelter in [20].

Definition 1.12. Let T be a G-tree, � D .e0; : : : ; en/ � T an edge path in T and O�
the image of � in T=G. We say � (or O� ) is a shelter if either

(S1) O� is a topological segment, Go.e0/ ¤ Ge0
, Gen

¤ Gt.en/
and Ges

D Gt.es/ D
GesC1

for s D 0; : : : ; n � 1; or

(S2) O� is a circuit and Ges
D Gt.es/ D GesC1

for s D 0; : : : ; n � 1; or else

(S3) O� is a circuit and Go.es/ D Ges
for s D 0; : : : ; n.

We refer to the labels S1, S2 or S3 as the type of the shelter. See Figure 1.
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S1

S2 S3

¤ ¤D DD D

D
D

D

D D
D D

� � �

�� �� ��

Figure 1. Shelters in T=G. The “D” signs denote when an inclusion Ge � Gv is an equality.
The “¤” signs denote when an inclusion is proper. Other inclusions may or may not be proper.

The following proposition generalizes Corollary 7.5 (1) in [20].

Proposition 1.13. An edge is surviving if and only if it is contained in a shelter.

Before we prove this, we prove a simple lemma about how stabilizers can change
after collapse moves.

Lemma 1.14. Let f be a collapsible edge in T . Let o.f / D v, t .f / D w and
denote the image of f in Tf by z. Then for e 2 E.T /, e … Gf [G Nf with o.e/ D v,
Ge ¤ Gz if and only if Ge ¤ Gv or Gf ¤ Gw .

Proof. As f is collapsible, Gv � Gw or Gw � Gv . In either case Gz is the union
of the two subgroups. Therefore if Ge ¨ Gv , then Ge ¤ Gz . If Gf ¨ Gw , then
Gf D Gv since f is collapsible. Therefore Ge � Gv D Gf ¨ Gw D Gz . In
particular, Ge ¤ Gz .

For the converse, suppose that Ge D Gv and Gf D Gw . Then clearly Gz D Gv ,
hence Ge D Gz .

Now we can prove Proposition 1.13.

Proof of Proposition 1.13. It is obvious that every edge in a shelter is surviving. The
converse is straight forward, but there are several cases. Some of these cases are
presented in [20], but we present an entire proof for completeness. Let T be aG-tree
and suppose that e is a surviving edge in T . Let T 0 be a reduced G-tree such that e
is not collapsed in T ! T 0. We denote the image of e in T=G by e.

Case 1: The image of e in T 0=G is an interval.
Let Y be the maximal subtree of T=G that contains e and is collapsed to e in

T=G ! T 0=G. We will show by induction on the number of edges in Y that Y



48 M. Clay

contains a shelter of type S1 that contains e. If the number of edges in Y is one, then
Y D e and as T 0 is reduced, e is a shelter.

Now suppose that the number of edges in Y is greater than one. Let f be an edge
of Y other than e. Then the image of Y in Tf =G is the maximal subtree in Tf =G

that contains e and collapses to e in Tf =G ! T 0=G. Hence, by induction the image
of Y in Tf =G contains a shelter .e0; : : : ; en/ of type S1 containing e. We consider
these edges as edges of T=G.

Suppose that f is adjacent to o.e0/. Orient f such that t .f / D o.e0/. Then
by Lemma 1.14, either .e0; : : : ; en/ or .f; e0; : : : ; en/ is a shelter of type S1 for e as
.e0; : : : ; en/ is a shelter of type S1 inTf =G. Similarly, we can find a shelter containing
e of type S1 if f is adjacent to t .en/.

Next suppose that f is adjacent to t .es/ and o.esC1/ for 0 � s � n � 1. If
t .es/ D o.esC1/ in T=G, then, by Lemma 1.14, .e0; : : : ; en/ is a shelter of type S1
for e. If not, then orient f such that t .es/ D o.f / and o.esC1/ D t .f /. Then again
by Lemma 1.14, .e0; : : : ; es; f; esC1; : : : ; en/ is a shelter of type S1 for e.

Case 2: The image of e in T 0=G is a loop.
Let Y be the circuit in T=G that collapses to e in T=G ! T 0=G. We again use

induction on the number of edges in Y . Our claim in this case is that either Y is a
shelter of type S2 or S3 or else Y contains part of a shelter of type S1 that contains e.
If Y contains only one edge, then Y D e and Y is a shelter of type S2 or S3 as T 0=G
is reduced. Otherwise as before, take any other edge f in Y other than e and look at
the image of the circuit Y in Tf =G. This is the circuit in Tf =G that collapses to e in
T 0=G.

If the image of Y in Tf =G contains part of a shelter of type S1 that contains e,
then proceed as in case 1 to show that Y in T=G contains a shelter of type S1 that
contains e.

Otherwise, we suppose that the image of Y in Tf =G is a shelter of type S2 or S3.
Suppose that o.f / D t .e0/ D o.e1/ for two edges e0; e1 � Y . Then it is a simple
check using Lemma 1.14 that Y is shelter of type S2 or S3.

Finally, suppose that in T=G we have t .e0/ D o.f / and o.e1/ D t .f /. Denote
the image of f in Tf =G by z. First we assume that the image of Y is a shelter of
type S2. If Ge0

D Gz D Ge1
then, by Lemma 1.14, Ge0

D Go.f / D Gf and
Go.e1/ D Gt.f / D Gf , hence Y is a shelter of type S2. If Ge0

¤ Gz D Ge1

then either Ge0
¤ Go.f / in which case Y is a shelter of type S2 or S3 (depending

on whether Gf D Gt.f / or Gf D Go.f /) or Ge0
D Go.f / and Gf ¤ Gt.f /, in

which case Y is shelter of type S2. If Ge0
¤ Gz ¤ Ge1

then if Ge0
¤ Go.f / and

Ge1
¤ Gt.f / then Y � ff g is a shelter of type S1 that contains e. Otherwise suppose

that Ge1
D Gt.f /, then by a similar argument as before, Y is a shelter of type S2.

Now assume that the image of Y in Tf =G is a shelter of type S3. IfGe0
D Gz D Ge1

,
then Y is a shelter of type S3 by Lemma 1.14. IfGe0

D Gz ¤ Ge1
, thenGt.f / D Gf

and Y is a shelter of type S3.
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This completes the proof of Proposition 1.13.

As a corollary we get a condition to check whether or not a G-tree is in W .

Corollary 1.15. T D TW and hence T 2 W if and only if T=G is a union of shelters.

Proof. This follows immediately from Lemma 1.10 and Proposition 1.13 as T D TW

if and only if every edge in T is surviving.

1.4. Finite dimensionality of W . We conclude our treatment of deformation spaces
for a general finitely generated group with a discussion of the finite dimensionality of
the deformation retract W .

If T and T 0 are G-trees in W then there is an elementary deformation taking
T ! T 0. Since each of the elementary moves is a homotopy equivalence of the
quotient graph, T=G is homotopy equivalent toT 0=G. Therefore homotopy invariants
of graphs are invariants of deformation spaces.

Lemma 1.16. Let D be a non-ascending deformation space for a finitely generated
group G. Then the number of vertices in T=G for any G-tree T 2 W is bounded.

Proof. By the above remark, the Euler characteristic �.T=G/ is constant for T 2 D .
We can compute the Euler characteristic by �.T=G/ D 1

2
.V1 �V3 �2V4 �3V5 �� � � /,

whereVs denotes the number of vertices with valence s. Therefore, as in [6], it suffices
to show that V1 and V2 are bounded. Let N denote the number of conjugacy classes
of maximal elliptic subgroups of G. This number is finite and depends only on D .

By minimality of T 2 W , every valence one vertex in T=G corresponds to a
unique conjugacy class of a maximal elliptic subgroups.

By Corollary 1.15, T=G is a union of shelters. As D is non-ascending, only
shelters of type S1 and S2 appear. Further, as D is non-ascending, if e0, e1 are
adjacent edges in a shelter of type S2 with t .e0/ D o.e1/ D v and Ge0

¤ Gv , then
Ge1

¤ Gv also.
Let v be a valence two vertex in T=G with adjacent edges e, f . Suppose that v

is contained in a shelter of type S2. Then since there are no subdivision vertices in
G-trees in D , Ge ¤ Gv and Gf ¤ Gv by the above remark, hence v corresponds to
a unique conjugacy class of maximal elliptic subgroups. If v is contained in a shelter
of type S1, then v must be the endpoint of two shelters of type S1 since there are no
subdivision vertices in G-trees in W . Hence again, Ge ¤ Gv and Gf ¤ Gv , and v
corresponds to a unique conjugacy class of maximal elliptic subgroups

This shows that V1 C V2 � N . Therefore, the number of vertices in T=G for any
G-tree T 2 W is bounded.

We will see that this above lemma implies that the deformation retractW � D for
a non-ascending deformation space is finite dimensional. Before doing so, we look at
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a different setting where we can bound the number of vertices in T=G. As remarked
above, the first Betti number b1.T=G/ of a quotient graph of T 2 D defines an
invariant of the deformation space D , which abusing notation, we denote by b1.D/.
If b1.D/ D 0 then D is non-ascending as there are no loops in T=G for any T 2 D .

A deformation space is locally finite if every G-tree T 2 D is locally finite. As
modifying a locally finite G-tree by an elementary deformation results in a locally
finite tree, a deformation space is locally finite if a single G-tree T 2 D is locally
finite. We remark that if D is locally finite (as a deformation space) then D and the
deformation retractW are locally finite as simplicial complexes although the converse
is not true.

Bass and Kulkarni introduced an invariant of a locally finite deformation space
D , called the modular homomorphism qD W G ! Q� [3]. This homomorphism is
defined by

qD.g/ D ŒV W V \ V g �=ŒV g W V \ V g �;

where V is any subgroup of G commensurable to a vertex stabilizer for a G-tree
T 2 D . There is a useful alternative description of this homomorphism. For an
edge e 2 E.T /, define i.e/ D ŒGo.e/ W Ge� and q.e/ D i.e/=i. Ne/ 2 Q�. This
map q descends to edges in T=G and hence also toH1.T=G/ by multiplication. The
homomorphism qD W G ! Q� is the composition G ! H1.T=G/ ! Q� [18].

IfqD.G/\Z D f1g then D is non-ascending as the modulus of any ascending loop
is a non-trivial integer. The converse is not true. Forester showed that if qD.G/\Z D
f1g then the canonical deformation space for a generalized Baumslag–Solitar group
D is finite dimensional [18]. In fact Forester showed that the quotient W=Out.G/D
is compact in this case. We remark that the Z-rank of the subgroup qD.G/ � Q� is
bounded by b1.D/.

Lemma 1.17. Let D be a locally finite irreducible deformation space for a finitely
generated group with b1.D/ D 1. Then the number of vertices in T=G for anyG-tree
T 2 W is bounded.

Proof. The proof is similar to the proof of Lemma 1.16. We must show that there is a
bound on the number of valence one and two vertices. Again let N be the number of
conjugacy classes of maximal elliptic subgroups. As before, each valence one vertex
corresponds to a unique conjugacy class of maximal elliptic subgroups.

If all of the shelters are type S1, then every valence two vertex must be the endpoint
of the two shelters it is in and hence corresponds to a unique conjugacy class of
maximal elliptic subgroups. Therefore, suppose that we have a shelter of type S2 or
S3. As b1.D/ D 1, there is only one such shelter. Any valence two vertex not in
this shelter must by in a shelter of type S1 and as above it corresponds to a unique
conjugacy class of maximal elliptic subgroups. Therefore, we only need to bound the
number of valence two vertices in the shelter.
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If the shelter is type S2, then there can be at most one valence two vertex as there
are no subdivision vertices in G-trees inW . Otherwise, if the shelter is type S3, then
qD.G/ is generated by an integer q and the number of valence two vertices is bounded
by the number of prime factors in q as this bounds the length of a chain of proper
subgroup inclusions that can appear in T=G.

Theorem 1.18. LetG be a finitely generated group and D an irreducible deformation
space for G. If D is either
(1) non-ascending, or
(2) locally finite and has b1.D/ � 1,

then the deformation retract W � D is finite dimensional.

Proof. Recall that a simplex in W is a sequence of collapse moves between G-trees
in W . As a collapse move reduces the number of vertices in the quotient graph by at
least one, finite dimensionality ofW is equivalent to a uniform bound on the number
of vertices in T=G for any T 2 W . This is the content of Lemmas 1.16 and 1.17.

The first part of the previous theorem also appears as Theorem 7.6 in [20]. An
example of a deformation space D for whichW is not finite dimensional is presented
in the next section (Example 2.2).

2. Deformation spaces for GBS groups

A group G that acts on a tree such that the stabilizer of any point is infinite cyclic is
called a generalized Baumslag–Solitar (GBS) group. These groups have also recently
appeared in [18], [24].

This action of a GBS group determines a graph of groups decomposition of G
where all of the edge groups and vertex groups are isomorphic to Z. As such, all of
the attaching maps are given by multiplication by some nonzero integer. This data can
be represented succinctly as a labeled graph. Specifically, a labeled graph is a pair
.�; �/where� is a finite graph and � W E.�/ ! Z�f0g is a function. The labels �.e/
represent, for a chosen set of generators for the vertex and edge groups, the inclusion
maps Ge ! Gv . See Figure 2 for examples of labeled graphs. There is a certain bit
of ambiguity in the function � resulting from different choices of generators for Ge

andGv . The different choices result in changing the signs of �.e/ for all e 2 Eo.v/ at
some vertex v or changing the signs of �.e/ and �. Ne/ for some edge e. Such changes
are called admissible sign changes. We consider two labeled graphs the same if they
differ by admissible signs changes. Our labeled graphs are always equipped with a
marking, i.e., there is G-tree T with T=G D .�; �/ as graphs of groups. We record
in Figure 3 and Figure 4 the effect of the elementary moves and the special moves
listed in Section 1.1 on labeled graphs [11], [18].
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Figure 2. Examples of labeled graphs. The labeled graph on the left represents the classical
Baumslag–Solitar group BS.p; q/.
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Figure 3. The effect of elementary moves on labeled graphs.
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k
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1

11

Figure 4. The effect of the special elementary deformations described in Section 1.1 on labeled
graphs. These three moves suffice to relate any two reduced labeled graphs representing the
same GBS group.

A GBS group G is non-elementary if it is not isomorphic to Z, Z2 or the Klein
bottle group. For a non-elementary GBS group, the elliptic subgroups arising from
a labeled graph are determined algebraically and do not depend on the particular
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tree [17]. This implies that any two (marked) labeled graphs for a GBS group are
related by a sequence of elementary moves. Further, the set of conjugacy classes of
elliptic subgroups is fixed by any outer automorphism. Thus if D is the deformation
space containing one of these trees, then Out.G/D D Out.G/. When we speak of a
deformation space for a GBS group, we will always mean this particular canonical
deformation space. For another class of groups that have Out.G/D D Out.G/ for a
particular deformation space D see [10].

In the following example we build a star in K and in W and describe the defor-
mation retract K ! W on these stars for the group G D BS.2; 4/. Given a set S
of vertices in a simplicial complex, the subcomplex spanned by S is the subcomplex
consisting of all simplices whose vertices belong to the set S .

Example 2.1. Let G D BS.2; 4/ and D be the canonical deformation space for
BS.2; 4/. Fix T 2 W that has associated labeled graph as pictured on the left in
Figure 2. Pick a vertex v 2 V.T / and choose a generator g of Gv . Label the edges
emanating from v as Eo.v/ D fe0; e1; f0; f1; f2; f3g where ges D esC1 mod 2 and
gfs D fsC1 mod 4.

Two expansions of T are defined by using pairs J0 D .hg2i; fe0; f0; f2g/ and
J1 D .hg2i; fe0; f1; f3g/. Expansion by either of these pairs results in the labeled
graph in the bottom left of Figure 5. However, the marking is different. See Figure 6
for a local picture of the expansion at v to see the difference. A third expansion of
T is defined by the pair I D .hg2i; ff0; f2g/. A final expansion is given by the pair
I 0 D .hgi; ff0; f1; f3; f4g/. This is the same as the expansion using .hgi; fe0; e1g/.
Each of the trees T J0 , T J1 and T I 0

can be further expanded using I . These resulting
labeled graphs are pictured in Figure 5.

T J0;I ; T J1;I T I T I;I 0

T J0 ; T J1 T T I 0

1

1

1

1

1

1

1

11 1

1

1

22

2

2

2

2

2

2

2
22

2

4

4

Figure 5. The labeled graphs for BS.2; 4/ representing the vertices in the star of T in K.

By examining these labeled graphs is it apparent that there are no other expansions
that do not create a subdivision vertex. Therefore the star of T in K is the complex
pictured in Figure 7.

Of these labeled graphs, only those for T , T J0;I and T J1;I are covered by shelters.
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e0 e0

e0

e1e1

e1

J0 J1

f0

f0f0

f1

f1f1 f2

f2

f2

f3

f3f3

Figure 6. The expansions defined by J0 and J1.

T T J1

T J0;I

T J0

T I;I 0

T I 0

T I T J1;I

Figure 7. The star of T in K. The star of T in W is the “V” subcomplex spanned by T J0;I ,
T , T J1;I .

Therefore by Corollary 1.15, the star of T in the complex W is the two edge “V”
subcomplex pictured Figure 7 spanned by the vertices labeled by T J0;I , T , T J1;I .
The deformation retract h sends the vertices T J0 , T I , T J1 , T I 0

and T I;I 0
to the

vertex T , fixing the other vertices.

By Theorem 1.18 (2) the deformation retract W in Example 2.1 is finite dimen-
sional. We remark that both D and the spineK in this case are not finite dimensional.
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We now present an example of a deformation space D for which the deformation
retract W is not finite dimensional.

Example 2.2. Let G D hx; t0; t1 j t0xt�1
0 D t1xt

�1
1 D x2i. This presentation is

represented by the labeled graph on the left in Figure 8. Clearly the canonical defor-
mation space D containing this G-tree is neither non-ascending nor has b1.D/ � 1.
Let T1 be a G-tree in W with associated labeled graph pictured in the left in Fig-
ure 8. Pick a vertex v 2 V.T / and choose a generator g of Gv . Label the edges
emanating from v are labeled Eo.v/ D fe; e0; e1; f; f0; f1g where ge D e, gf D e,
ges D esC1 mod 2, gfs D fsC1 mod 2. Inductively, let Tk be the result of sliding e0

across f in Tk�1. The labeled graph for Tk=G is the labeled graph in the center in
Figure 8.

There is a collapse sequence T k
k

! � � � ! T `
k

! � � � ! T 0
k

D Tk where the
G-trees T `

k
have associated labeled graphs as in the right in Figure 8 for 0 � ` � k.

Each of these G-trees is covered by shelters of type S3, and hence they represent
vertices in W that span a k–simplex. Therefore W contains simplices of arbitrarily
high dimension and is therefore not finite dimensional.

T0 Tk T `
k

1

1

111 11

1

2

2222

2

2k 2k�`

��
�

Figure 8. Labeled graphs representing the GBS group in Example 2.2. The deformation retract
W for the canonical deformation space for this group is not finite dimensional.

In the next section we will construct the deformation retract W of the canonical
deformation space for BS.p; q/. For another example see [9], where, for any n � 2,
the deformation retract W of the canonical deformation space for the GBS group
G D hx; y; z j xn D yn D zni is constructed.

3. The canonical deformation space for BS.p; q/

For the remainder we use Gp;q to denote the non-solvable Baumslag–Solitar group
BS.p; q/ where jqj � p > 1 (see (1) in the Introduction). Our aim is to compute the
automorphism groups Aut.Gp;q/ using the action on the canonical deformation space
associated toGp;q . We will denote this deformation space by Dp;q . The deformation
retract for Dp;q described in the Section 1.2 is denoted Wp;q . To begin we separate
the non-solvable Baumslag–Solitar groups into three types:
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(1) p does not divide q;

(2) p D jqj;
(3) q D pn where jnj > 1.

The first type was originally studied by Collins [12] in the special case that p
and q do not share any factors. This case was analyzed fully by Gilbert, Howie,
Metaftsis and Raptis [19]. Gilbert et al. show that if p does not divide q then the
group Aut.Gp;q/ acts on the same Gp;q-tree that appears in Figure 2 [19]. This
observation was independently discovered by Pettet [27]. Gilbert et al. analyze this
action to show that Out.Gp;q/ is isomorphic to the dihedral group of order 2jq � pj.
A presentation for the automorphism group follows from this.

In the language of deformation spaces, the theorem of Gilbert et al. and indepen-
dently Pettet translates to showing that the deformation space Dp;q is rigid when p
does not divide q. A deformation space D is rigid if there is a unique reducedG-tree
in D , up to equivariant homeomorphism. Therefore, as Out.G/D acts on the defor-
mation space, preserving the set of reduced G-trees, this unique reduced G-tree is
fixed by Out.G/D . Therefore Out.G/D acts on the unique reducedG-tree, extending
the action of G [2]. In the case of a rigid deformation space, the complex W is a
single point representing the unique reduced G-tree. The computation of Gilbert et
al. is translated as the computation of the stabilizer of this point. Although we do
not need it in what follows, we remark that Levitt has given a complete classification
rigid deformation spaces [23] (see also [11]).

Gilbert et al. computed the automorphism group of the second type with a similar
computation as for the first type [19]. Once again, the deformation space Wp;q is
rigid [23]. Thus the stabilizer of this unique reduced Gp;q-tree, is the entire group
Out.Gp;q/. The computation of this stabilizer is similar to the computation for the
other stabilizers of otherGp;q-trees that we show later on. Ifp D q then Out.Gp;p/ D
Z Ì .Z2 	 Z2/, if p D �q then Out.Gp;�p/ D Z2p Ì Z2. The appearance of the
Z factor in Out.Gp;p/ is due to the fact that Gp;p has a nontrivial center. Computing
the full automorphism groups from here is trivial.

The third type was studied by Collins and Levin [13] and a presentation for the
group Aut.Gp;q/ was given by algebraic means. We will approach this using defor-
mation spaces. By passing to an invariant tree Xp;q � Wp;q (Xp;q D Wp;q if jqj=p
is prime) we will compute Out.Gp;q/ via Bass–Serre theory. The presentations of
Out.Gp;q/ and Aut.Gp;q/ in this case are given in Theorem 4.4. For the remainder
we suppose that q D pn where p; jnj > 1.

3.1. Gp;q-trees in Wp;q . Using the results of Section 1.3 we will give a classification
of the Gp;q-trees representing vertices inWp;q . Denote by….n/ � Z the multiplica-
tive monoid generated by the factors of n, and let …C.n/ D fm 2 ….n/ j m � 1g.
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Lemma 3.1. If T 2 Wp;q is reduced, then after some admissible sign changes the
associated labeled graph for T=Gp;q is either

(1) a single edge e with o.e/ D t .e/ and labels �.e/ D p; �. Ne/ D q; or

(2) two edges e, f with o.e/ D t .e/ D o.f / and labels �.e/ D 1, �. Ne/ D n,
�.f / D m ¤ 1, where m 2 …C.n/ and �. Nf / D p.

See Figure 9.

1

p

p

q n m

Figure 9. Labeled graphs representing reduced Gp;q-trees in Wp;q , m 2 …C.n/, m ¤ 1.

Proof. We will show that the collection of such labeled graphs is closed under slides,
inductions and A ˙1-moves. By Theorem 1.6, this implies the conclusion of the
lemma.

If T is as in case 1, the only possible move is an A -move. This results in a labeled
graph as described in case 2, except possibly �.f / could be negative. If this factor is
negative, changing the signs of the labels on the edge f and then changing the sign
of �. Nf / results in a labeled graph as in case 2.

If T is as in case 2 then a slide move possibly followed by admissible sign changes
as above either results in a labeled graph as in case 2 with�.f / D jnmj or jm=nj. The
latter case is only possible when n properly divides �.f / as otherwise the resulting
labeled graph is not reduced. An induction move only changes the label �.f /, which
is either multiplied or divided by a factor of n. The latter case is only possible when
this factor is not equal to �.f / as otherwise the resulting labeled graph is not reduced.
Thus again after possible admissible sign changes the resulting labeled graph is also
as in case 2. An A �1-move is only possible when �.f / � jnj. The resulting labeled
graph is as in case 1. An A -move is not possible in this case.

Given such labeled graphs as in case 2 of Lemma 3.1, we say an induction move
is increasing if the label j�.f /j is larger after the induction move and decreasing
otherwise. Similarly define increasing slides and decreasing slides.

Lemma 3.2. If T 2 Wp;q , then after some admissible sign changes the associated
labeled graph for T=Gp;q is either as in case 1 of Lemma 3.1 or it consists of a shelter
� of type S3 with a single edge f attached at o.f /. The labels on f are �.f / D m

where m 2 …C.n/ and �. Nf / D p.
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n1
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n` p

1

1

1

m

Figure 10. Labeled graphs representingGp;q-trees inWp;q . The labels on the circuit � satisfy
n1 : : : n` D n and jnsj ¤ 1 with the possible exception of n`.

Proof. First, suppose the labeled graph representing T is a cycle � . If � is covered by
shelters of type S1, then � collapses to a cycle with at least two edges, contradicting
Lemma 3.1. If � is a shelter of type S3 then after collapsing every edge except one,
we get a reduced labeled graph that is an ascending loop, contradicting Lemma 3.1.
If � is a shelter of type S2, then as there are no subdivision vertices in Gp;q-trees in
Wp;q , � is a single edge and hence must be as in case 1 of Lemma 3.1.

Otherwise, the labeled graph consists of a circuit � with some finite trees attached.
Since there is a unique conjugacy class of maximal elliptic subgroups for Gp;q , there
is at most one valence one vertex in a labeled graph representing a Gp;q-tree inWp;q .
Therefore, there is at most one finite tree, F , attached to � and it is linear. As there
is a unique maximal conjugacy class of elliptic subgroups and as Gp;q-trees in Wp;q

do not contain subdivision vertices, F cannot have any valence two vertices and is
hence a single edge f .

First we suppose � contains a shelter of type S1. Then � is covered by disjoint
shelters of type S1, further there are at least two shelters of type S1 needed to cover � .
Therefore, we can reduce the labeled graph for T to a get a reduced labeled graph with
a circuit with at least two edges. By Lemma 3.1, this is a contradiction. Therefore, �
is either a type S2 or type S3 shelter.

Now suppose that � is a type S2 shelter. Since there are no subdivision vertices
and there is a single edge attached, � is either one or two edges. If � is a single edge,
then as f must be in a shelter and using Lemma 3.1 we see that the labels on � are 1
and n. Hence � can also be thought of as a shelter of type S3. If � is two edges then a
similar argument shows � can be thought of as a type S3 shelter. Therefore we have
shown that the labeled graph is shelter of type S3 with a single edge attached.

To see which labels can appear on f we collapse the cycle � to a single edge.
The labels appearing on � are all factors of n, therefore collapsing � cannot change
whether or not �.f / 2 ….n/. Since by Lemma 3.1, �.f / 2 …C.n/ after collapsing
� , we must have that f 2 …C.n/ initially. Also collapsing � does not change �. Nf /.
Again �. Nf / D p initially by Lemma 3.1.
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3.2. The complex Xp;q . To see the motivation behind the definition ofXp;q we will
first describe the complexWp;q when jnj is prime. As jnj is prime, by Lemma 3.2, any
Gp;q-tree inWp;q has associated labeled graph as pictured in Figure 11. We continue
to use the notation from Lemma 3.1 to denote the edges in the reduced labeled graphs.

n n jnk jjnk�1j
1 1

1

1

pp

p

q

Figure 11. Labeled graphs representing Gp;q-trees in Wp;q when jnj is prime (k � 1).

As the longest collapse sequence between the labeled graphs in Figure 11 is one,
the complex Wp;q is one dimensional, hence a tree. To each of the reduced labeled
graphs in Figure 11 we assign a non-negative integer called the level. For the one edge
reduced labeled graph, the level is 0. For the two edge reduced labeled graphs, the
level is the non-negative integer k appearing in the exponent of n. We will also use
the term level when talking about a reducedGp;q-tree T as the level of the associated
labeled graph T=Gp;q .

As in Example 2.1, the star of a reduced Gp;q-tree with level 0 is a p-pod. This
is not the case when jnj is composite, although we will see in Lemma 3.8 that in
this case the star is very close to being a p-pod. The terminal vertices of the p-pods
are represented by labeled graphs pictured in the center of Figure 11 with k D 1.
In addition to collapsing to a Gp;q-tree with level 0, these trees also collapse to a
Gp;q-tree with level 1.

The star of a reducedGp;q-tree with level k � 1 is a .jnjC1/-pod. This follows as
there are jnj decreasing slides of the edge f counterclockwise around the loop Ne to a
reduced tree with level k � 1 (further collapsing resulting in an A �1-move is needed
if k D 1) and a unique increasing slide of the edge f clockwise around the loop e to
a reduced tree with level k C 1. Figure 12 shows a piece of the complex W2;4. The
entire complex W2;4 is comprised of similar pieces, glued 2 at a time along a level 0
vertex, such that the resulting complex is contractible.

We define Xp;q to mimic Wp;q in the case that jnj is prime.

Definition 3.3. Suppose that q D pn where p; jnj > 1. Let Xp;q be the subcomplex
of Wp;q spanned by T 2 Wp;q whose associated labeled graph is one of the three
pictured in Figure 11, k � 1.

It is clear that Xp;q D Wp;q when jqj=p is prime. In any case, the longest
collapse sequence between such labeled graphs is one. Hence the subcomplex Xp;q

is a (possibly disconnected) graph. The notion of level defined for reduced labeled
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* �1 �2 �1�2 �3 �1�3 �2�3 �1�2�3

level 0

level 1

level 2

level 3

T0

T1

T2

T3

���

Figure 12. A piece of the complex W2;4. The labels on the bottom show the action of the
automorphisms �k listed in (4).

graphs inWp;q when jnj is prime extends to reduced labeled graphs in Xp;q . We will
show that Xp;q is a tree. First we show that Xp;q is connected.

Lemma 3.4. If a, b divide n and the product ab also divides n, then the composition
of the increasing inductions using the subgroups of index a and b is the increasing
induction using the subgroup of index ab. Further, if ab D n, then the composition
of the increasing inductions is an increasing slide.

Proof. Write n D ab`. The expansion appearing in an increasing induction depends
only on the subgroup of the vertex group. As there is a unique subgroup of any given
index in Z, the expansion is uniquely defined by the expansion in the labeled graph.
The 2-cell in Wp;q pictured in Figure 13 shows that the result of the composition of
increasing inductions using the individual subgroups of index a and b is the same as
the result of the increasing induction using the subgroup of index ab. If ` D 1, then
the sequence of moves displayed along the bottom is increasing slide.

Lemma 3.5. Let T 2 Wp;q be reduced and suppose that T 0 2 Wp;q is obtained by the
composition of the increasing inductions using the subgroups of index a and then b,
and that T 00 2 Wp;q is obtained by the composition of the increasing inductions using
the subgroups of index b and then a. Then T 0 D T 00.

Proof. If the product ab divides n, then either composition of the increasing induc-
tions is the increasing induction using the subgroup of index ab by Lemma 3.4. Hence
the lemma follows in this case.
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Figure 13. The 2-cell in Wp;q in Lemma 3.4. The labels 1 and p are omitted from the figure.

For the other case write a D a0`, b D b0` where ` D gcd.a; b/. Then a0b0
divides n. The composition of the increasing inductions using a and then b can be
written as the composition of the four increasing inductions using `, a0, b0 and then `.
Applying the earlier observation to the pair a0, b0 we can write the composition of the
increasing inductions as the composition of the four increasing inductions using `, b0,
a0 and then `. But since these combine to give us the composition of the increasing
inductions using b0` D b and a0` D a the lemma follows.

Define a map on reduced Gp;q-trees in Wp;q to reduced Gp;q-trees in Xp;q by
letting x.T / be the tree obtained by a composition of increasing inductions resulting
in changing �.f / D m to mm0 D nk where n does not divide m0. By Lemma 3.5, x
is well defined. Denote the integer m0 by �.T /.

Lemma 3.6. If T; T 0 2 Wp;q are related by a slide or an induction, then x.T / D
x.T 0/ or x.T / and x.T 0/ are related by a slide.

Proof. As by Lemma 3.4 an increasing slide is a special case of an increasing induction
we only need to show the lemma when T 0 is obtained from T by an increasing
induction.

If ` divides �.T /, then �.T 0/ D �.T /=` and by Lemma 3.5 x.T / D x.T 0/ and
the lemma holds.

If ` does not divide�.T /, then�.T 0/ D n�.T /=`. By Lemma 3.5 the composition
of the increasing inductions T ! T 0 ! x.T 0/ using the factors ` and then �.T 0/
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can be written as the composition of the increasing inductions T ! x.T / ! x.T 0/
using the factors �.T / and then n. Thus by Lemma 3.4, x.T / and x.T 0/ are related
by a slide.

Proposition 3.7. The graph Xp;q is connected.

Proof. Let T and T 0 be reduced Gp;q-trees in Xp;q . Then there is a 1-skeleton path
in Wp;q that connects these two trees. Moreover, by Theorem 1.6 we can assume
that this path is given by a sequence of slides, inductions and A ˙1-moves between
reduced trees.

By inserting an increasing induction move before any A �1-move and after any
A -move, we can assume that any A ˙1-move appearing is between reduced trees
inXp;q . Therefore we only need to show that any two reducedG-trees inXp;q related
by a sequence of slide and inductions between reduced Gp;q-trees in Wp;q are in
related by a sequence of slides between reduced Gp;q-trees in Xp;q . By Lemma 3.6
the map x transforms such a sequence of inductions and slides into a sequence of
slides between reduced Gp;q-trees in Xp;q .

Therefore Xp;q is a connected graph. The Gp;q-trees in Xp;q form pieces in Xp;q

similar to the one pictured in Figure 12. This is true since from any reducedGp;q-tree
with level k � 1 there are jnj decreasing slides resulting in a reduced Gp;q-tree with
level k � 1 (further collapsing resulting in an A �1-move is needed if k D 1) and a
unique increasing slide resulting in a reduced Gp;q-tree with level k C 1. In the next
lemma we look at the link of a Gp;q-tree with level 0.

Lemma 3.8. If T 2 Wp;q is a reduced with level 0, then the link of T in Wp;q is
homotopy equivalent to a set of p points. Moreover, each one of these points is
naturally identified to an adjacent Gp;q-tree in Xp;q .

Proof. By Lemma 3.2, labeled graphs for Gp;q-trees in the link of T all consist of
a shelter of type S3 attached to a single edge f at some vertex o.f / D v. The
labels on f are �.f / D 1 and �. Nf / D p. Starting from v the labels on the shelter
are .1; n1; 1; n2; : : : ; 1; n`/ where n1n2 : : : n` D n and jnsj ¤ 1 with the possible
exception of n`. See Figure 10.

We will now define a deformation retraction of the link using Quillen’s Poset
Lemma (see p. 46). This retraction is the composition of two maps. If jn`j ¤ 1, there
is an elementary move that expands this Gp;q-tree T 0 to a Gp;q-tree h0.T

0/ where
nm D 1. If jn`j D 1, define h0.T

0/ D T 0. Then h0 defines a poset map on the
link that satisfies h0.T

0/ � T 0. Thus Quillen’s Poset Lemma applies and defines a
deformation retraction of the link.

For Gp;q-trees T 0 in the image of h0 define h1.T
0/ as the Gp;q-tree found by

collapsing the edges in the shelter of type S3 that are not adjacent to v. Then h1
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defines a poset map on the image of h0 satisfying h1.T
0/ � T 0. Therefore Quillen’s

Poset Lemma applies again. The image of h1h0 are the p Gp;q-trees with labeled
graph a shown in the middle of Figure 11 where k D 1. This proves the lemma.

Using this lemma, we can prove that Xp;q is a simply-connected, hence a tree.

Theorem 3.9. The subcomplex Xp;q � Wp;q is a tree.

Proof. AsXp;q is a connected graph, we just need to show thatXp;q does not contain
a circuit, i.e. an edge path homeomorphic to a circle. Suppose there is a circuit
� � Xp;q .

Since Wp;q is simply-connected (Theorem 1.7), � bounds a disk D in Wp;q . By
Lemma 3.8 and since � is homeomorphic to a circle, � cannot contain a vertex
corresponding to aGp;q-tree of level 0. Therefore, � crosses someGp;q-treeT 2 Xp;q

with level k � 1 which is minimal among all Gp;q-tree along � . But as there is a
unique edge from aGp;q-tree with level k to aGp;q-tree with level kC1, this implies
that the two edges of � adjacent to this tree are the same and therefore � is not a
circuit. Hence Xp;q does not contains a circuit.

Question 3.10. Is there a poset map that defines a deformation retraction from
Wp;q ! Xp;q? If so, can one define this map for a general deformation space to
get a further deformation retraction of D?

4. Computation of Out.BS.p; q//

In this section we will use the action of Out.Gp;q/ on the tree Xp;q to give a pre-
sentation of this group in the case that p properly divides q. The vertices in Xp;q

corresponding to Gp;q-trees that are not reduced are subdivision points, removing
these from Xp;q does not alter the action of Out.Gp;q/. We begin by describing the
quotient Xp;q=Out.Gp;q/.

4.1. The quotient Xp;q=Out.Gp;q/. The following proposition is a restatement of
a special case of Proposition 5.3 in [31] (cf. [1]).

Proposition 4.1. Suppose that G is a GBS group and T , T 0 are G-trees with infinite
cyclic point stabilizers. If the associated labeled graphs for T=G and T 0=G are
isomorphic, then there is an outer automorphism ˆ 2 Out.G/ such that Tˆ D T 0.

Therefore, the quotient Xp;q=Out.Gp;q/ can be identified with the ray Œ0;1/,
where the integer point k is represented by an (unmarked) labeled graph with level k.
See Figure 14.
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0 1 2 3 4 5 6

Figure 14. The quotient graph Xp;q=Out.BS.p; q//.

4.2. Infinite generation of Out.BS.p; q//. Before we compute the vertex stabiliz-
ers of the tree Xp;q we give a geometric argument showing Out.Gp;q/ is not finitely
generated when p properly divides q. This follows easily from the following lemma.

Lemma 4.2. LetG be a finitely generated group acting by simplicial automorphisms
on a connected simplicial complex X . Then, for any point x 2 X , there is a compact
set C � X containing x such that GC is connected.

Proof. This is Brown’s finiteness criteria for type FP0 [7]. It is easy to prove in this
case. Without loss of generality, we can assume that x 2 X .0/. Let fg0; : : : ; gmg be a
finite generating set forG. Then takeC to be the union of the 1-skeleton paths between
x and gsx for s D 0; : : : ; m. Since the gs generate G, the set GC is connected.

Now to see that Out.Gp;q/ is not finitely generated, we apply the above lemma
to any T 2 Xp;q with level 0. In any compact set C � Xp;q containing T there is a
k � 0 such that anyGp;q-tree in C has level at most k. There is another T 0 with level
0 such that the geodesic from T to T 0 to passes through a Gp;q-tree with level kC 1.
By Proposition 4.1, T 0 2 Out.Gp;q/C . However, as Xp;q is a tree, any path from T

to T 0 must go through a Gp;q-tree with level kC 1. Such a path cannot lie entirely in
Out.Gp;q/C as the action of Out.Gp;q/ preserves the level of a Gp;q-tree. In terms
of Bestvina–Brady discrete Morse theory [5], the descending links of the Gp;q-trees
with level k � 1 are disconnected. Hence we get the following theorem, also noted
by Collins and Levin [13].

Theorem 4.3. If p > 1 and p properly divides q, then Out.BS.p; q// is not finitely
generated.

4.3. Vertex stabilizers in Xp;q . The quotient Xp;q=Out.Gp;q/ is a ray. Lift this
ray to a ray in Xp;q . Denote the Gp;q-tree on this ray representing the integer point
k by Tk . Without loss of generality, we can assume that T0=Gp;q gives rise to the
presentation in (1). Further, Tk for k � 1 give rise to presentations

Gp;q D ha; bk; t j ap D bnk

k ; tbkt
�1 D bn

ki; (2)

where a 7! x, bk 7! t�kxptk and t 7! t .
Let Hk � Out.Gp;q/ be the stabilizer of Tk . We have two cases depending on

whether k D 0 or k � 1. The important fact we use is that if � 2 Aut.G/ fixes
an irreducible G-tree T (here G can be any finitely generated group), then there is
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a unique �-equivariant simplicial automorphism f� W T ! T [1]. Thus we get an
action of the stabilizer HT � Aut.G/ on the tree T that extends the action of G
(viewing G=Z.G/ D Inn.G/ as a subgroup of HT ).

For an irreducible G-tree T , there are special automorphisms that fix T . These
are called twists as they generalize the familiar notion of Dehn twist when the G-tree
arises from a simple closed curve on a surface. We will only look at one type of
twist, the one that corresponds to a nonseparating curve; for a general discussion of
twists in G-trees, see [22]. Let e be a one edge loop in T=G with vertex v and stable
letter t , when viewing e as giving rise to an HNN-extension. Then, for z 2 Gv such
that zg D gz for all g 2 Ge , the map that sends t 7! zt is a twist in G-tree T . To fix
some notation, for g 2 G we denote the inner automorphism g0 7! gg0g�1 by cg .

Case 1: k D 0. We claim thatH0 is isomorphic to the dihedral group Zpjn�1jÌZ2,
generated by the following automorphisms:

 W x 7! x; t 7! xt;

	 W x 7! x�1; t 7! t:
(3)

Notice that  p.n�1/ D c
�p
x and 	 D  �1	. Using normal forms for HNN-exten-

sions, it is easy to see that the outer automorphism class of  ` is non-trivial for
1 � ` < pjn � 1j. Hence the image of h ; 	i in Out.Gp;q/ is the dihedral group
Zpjn�1j ÌZ2. The automorphism is a twist as described above for T0, hence it fixes
T0. It is clear that the automorphism 	 fixes any Gp;q-tree in Dp;q . Thus the image
of the subgroup h ; 	i is contained in H0. The claim that this is an equality follows
exactly as the computation of Gilbert et al. for the case when p does not properly
divide q [19]. This computation is similar to the computation in the next case, thus
we omit it.

Case 2: k � 1. In this case, we claim thatHk is isomorphic to the dihedral group
Zjnk.n�1/j Ì Z2, generated by the following automorphisms:

�k W x 7! x; t 7! .t�kxptk/t;

	 W x 7! x�1; t 7! t:
(4)

Notice that �n
kC1

D �k for k � 1, �n
1 D  p and 	�k D ��1

k
	. To prove this claim,

it is easier to use the presentations for Gp;q in (2). With this generating set, the
automorphisms in (4) are:

�k W a 7! a; bk 7! bk; t 7! bkt;

	 W a 7! a�1; b 7! b�1
k ; t 7! t:

(5)

Viewing these presentations as HNN-extensions ha; bki�htbk t�1Dbnk

k
i and using

normal forms for HNN-extensions is easy to see that the outer automorphism class of
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�`
k

is non-trivial for 1 � ` < jnk.n� 1/j. Hence the image of h�k; 	i in Out.Gp;q/ is
the dihedral group Zjnk.n�1/j Ì Z2. Also with these presentations, it is apparent that
�k is a twist of the Gp;q-tree Tk . Thus the image of the subgroup h�k; 	i is contained
in Hk . The action of the automorphisms �k for G2;4 on X2;4 is shown in Figure 12.

Now suppose that ˛ 2 Hk . Then lifting ˛ to Aut.Gp;q/, we have an ˛-equivariant
simplicial automorphism f˛ W Tk ! Tk . There are two types of vertices in Tk: those
that are lifts of o.f / D v or those that are lifts of t .f / D w. Lifts of v belong to
an axis of a hyperbolic element of length one and lifts of w do not, thus f˛ sends
lifts of v to lifts of v and similar for w. Therefore, after composing ˛ with an inner
automorphism, we can assume that f˛ fixes some lift of v in T with stabilizer hbki,
which we continue to denote v. Further, we can assume that v is adjacent to the
unique vertex stabilized by hai. This implies that the axis of t contains v.

We label by Eo.v/ D fe; e0; : : : ; ejnj�1; f0; : : : ; fjnjk�1g the edges emanating
from v, where bke D e, bkes D esC1 mod jnj and bkfs D fsC1 mod jnk j. Assume
that t .f0/ is stabilized by hai and tv D t .e0/. Define ˇ D cbk

�n�1
k

. Then ˇ.a/ D
bkab

�1
k

and fixes bk and t . After composing ˛ with ˇm0
for somem0 we can assume

that f˛ fixes the edge f0. Hence, after composing with 	we can assume that ˛.a/ D a

and ˛.bk/ D bk .
Therefore f˛ permutes the edges es for s D 0; : : : ; jnj � 1. Now ˛.t/v D

˛.t/f˛.v/ D f˛.tv/ D t .es/ D bs
k
tv for some s. Thus t�1b�s

k
˛.t/ 2 Gv D hbki.

Therefore t�1b�s
k
˛.t/ D bm

k
. Rewriting, we have ˛.t/ D bs

k
tbm

k
D bsCmn

k
t D

�sCmn
k

.t/. Thus ˛ D �sCmn
k

and Hk is as claimed.
Since TkC1 is the unique Gp;q-tree of level k C 1 adjacent to Tk we have in-

clusions Hk � HkC1 for k > 0. Therefore, as a graph of groups, the infinite ray
Xp;q=Out.Gp;q/ collapses to a segment with one vertex corresponding to T0 and the
other vertex corresponding to the end represented by .T1; T2; : : : /. The stabilizer of
this end is the direct limit:

lim! Zjnk.n�1/j Ì Z2 D ZŒ 1
jnj �=jn.n � 1/j Ì Z2:

In the above, 1 2 ZŒ 1
jnj �=jn.n � 1/j corresponds to the outer automorphism class

of �1.

4.4. Presentations. The computations from Sections 4.1 and 4.3 give the presen-
tation for Out.BS.p; q// appearing in the following theorem. The presentation for
Aut.BS.p; q// follows routinely from this. This presentation was also found with an
algebraic computation by Collins and Levin [13].

Theorem 4.4. Letq D pnwherep; jnj > 1. The automorphism group Aut.BS.p; q//
is generated by the automorphisms cx; ct ;  ; 	; and �k for k � 1 subject to the fol-
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lowing relations:

ctc
p
x c

�1
t D cq

x ; 	�1 D 	;

	cx	 D c�1
x ; 	ct 	 D ct ;

	 	 D  �1; 	�k	 D ��1
k for k � 1;

 p D �n
1 ;  p.n�1/ D c�p

x ;

 cx 
�1 D cx;  ct 

�1 D cxct ;

�kcx�
�1
k D cx; �kct�

�1
k D c�k

t cp
x c

kC1
t for k � 1;

�n
kC1 D �k for k � 1:

The outer automorphism group has presentation

Out.BS.p; q// D .Zjp.n�1/j �Zjn�1j
ZŒ 1

jnj �=jn.n � 1/jZ/ Ì Z2

generated by the images of  , 	 and �k for k � 1.

Remark 4.5. We remark that the relation 	 	 D  �1 was omitted in Theorem 3.1
in [13].
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