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Visual decompositions of Coxeter groups

Michael Mihalik and Steven Tschantz

Abstract. A Coxeter system is an ordered pair .W; S/ where S is the generating set in a
particular type of presentation for the Coxeter groupW . A subgroup ofW is called special if it
is generated by a subset of S . Amalgamated product decompositions of a Coxeter group having
special factors and special amalgamated subgroup are easily recognized from the presentation
of the Coxeter group. If a Coxeter group is a subgroup of the fundamental group of a given
graph of groups, then the Coxeter group is also the fundamental group of a graph of special
subgroups, where each vertex and edge group is a subgroup of a conjugate of a vertex or
edge group of the given graph of groups. A vertex group of an arbitrary graph of groups
decomposition of a Coxeter group is shown to split into parts conjugate to special groups and
parts that are subgroups of edge groups of the given decomposition. Several applications of the
main theorem are produced, including the classification of maximal FA subgroups of a finitely
generated Coxeter group as all conjugates of certain special subgroups.
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1. Introduction

We take a Coxeter presentation to be given as

P D hS W .st/m.s;t/ .s; t 2 S; m.s; t/ < 1/i;
where m W S2 ! f1; 2; : : : ;1g is such that m.s; t/ D 1 iff s D t and m.s; t/ D
m.t; s/. In the group with this presentation, the elements of S represent distinct
elements of order 2 and a product st of generators has order m.s; t/. A Coxeter
group W is a group having a Coxeter presentation and a Coxeter system .W; S/ is
a Coxeter group W with generating subset S corresponding to the generators in a
Coxeter presentation of W . When the order of the product of a pair of generators is
infinite there will be no defining relator for that pair of generators and we will say that
the generators are unrelated. A Coxeter group W belongs to some Coxeter system
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.W; S/, and though S need not be uniquely determined up to an automorphism ofW ,
we often take such an S as given. Our basic reference for Coxeter groups is Bourbaki
[3]. A special subgroup of a Coxeter system .W; S/, is a subgroup of W generated
by a subset of S (see [5]). If W 0 is the special subgroup generated by S 0 � S in a
Coxeter system .W; S/, then .W 0; S 0/ is also a Coxeter system.

The information given by a Coxeter presentation may be conveniently expressed
in the form of a labeled graph. We define the presentation diagram of the system
.W; S/ to be the labeled graph �.W; S/ with vertex set S , and an (undirected) edge
labeled m.s; t/ between distinct vertices s and t when m.s; t/ < 1. The connected
components of the presentation diagram �.W; S/ correspond to special subgroups
which are the factors in a free product decomposition of W . (This is in contrast to
a Coxeter graph with vertex set S and labeled edges when m.s; t/ ¤ 2, and having
components corresponding to direct product factors of W . The Coxeter graph is not
used in this paper.) The presentation diagram of the special subgroup ofW generated
by a subset S 0 � S is the induced subgraph of �.W; S/with vertex set S 0 (and in this
sense, special subgroups could as well be termed visual subgroups since we can see
the presentation diagram of such a subgroup in �.W; S/).

Suppose that �.W; S/ D �1 [ �2 is a union of induced subgraphs and let
�0 D �1 \ �2 (so vertices and edges of �.W; S/ are in �1 or �2 or both, and
�0 is the induced subgraph consisting of the vertices and edges in both). Equiva-
lently, suppose �0 is an induced subgraph with �.W; S/ � �0 having at least two
components, �1 is �0 together with some of these components and �2 is �0 together
with the other components. We say in this case that �0 separates �.W; S/ (separates
it into at least two components). Then it is evident from the Coxeter presentation that
W is an amalgamated product of special subgroups corresponding to �1 and �2 over
the special subgroup corresponding to �0. Amalgamated product decompositions
with special factors and special amalgamated subgroup are easily seen in the pre-
sentation diagram and we call such an amalgamated product a visual splitting of W .
Other amalgamated product decompositions may also be possible, and we want to
understand such splittings in terms of visual splittings.

More generally, we are interested in when a Coxeter groupW can be realized as the
fundamental group of a graph of groups (as explained in the next section). We show
that the graph must actually be a tree and so this generalizes amalgamated products.
We say that ‰ is a visual graph of groups decomposition of W (for a given S ), if
each vertex and edge group of ‰ is a special subgroup of W , the injections of each
edge group into its endpoint vertex groups are given simply by inclusion, and the
fundamental group of ‰ is isomorphic to W by the homomorphism induced by the
inclusion map of vertex groups into W . A sequence of compatible visual splittings
of W will result in such a decomposition. Our main result shows that an arbitrary
graph of group decomposition of a Coxeter group can be refined (in a certain sense)
to a visual graph of groups decomposition.
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Theorem 1 (Main theorem). Suppose that .W; S/ is a Coxeter system and W is a
subgroup of the fundamental group of a graph of groups ƒ. Then W has a visual
graph of groups decomposition ‰ where each vertex group of ‰ is a subgroup of
a conjugate of a vertex group of ƒ, and each edge group of ‰ is a subgroup of a
conjugate of an edge group of ƒ. Moreover, ‰ can be taken so that each special
subgroup of W that is a subgroup of a conjugate of a vertex group ofƒ is a subgroup
of a vertex group of ‰.

For .W; S/ and ƒ as in Theorem 1 and ‰ satisfying the full conclusion of Theo-
rem 1 (including the moreover clause), we say that‰ is a .W; S/-visual decomposition
fromƒ. Suppose thatG is a group decomposed as A�C B . IfH is a subgroup of B ,
then hA[H i decomposes as A �C hC [H i (consider the action of hA[H i on the
Bass–Serre tree forA�CB). Furthermore, the decomposition .A�C hC[H i/hC [H iB
reduces toA�C B , soG decomposes as hA[H i �hC [H iB . In this way some visual
decompositions of Coxeter groups can be “artificially” altered to decompositions that
have no visual vertex or edge groups. In Section 3, we exhibit a Coxeter system
.W; S/ and a reduced graph of groups decompositionƒN , for .W; S/withN vertices
for any positive integer N . Even so, the following theorem defines limits on how far
an arbitrary graph of groups decomposition for a finitely generated Coxeter system
can stray from a visual decomposition for that system.

Theorem 2. Suppose that .W; S/ is a finitely generated Coxeter system,ƒ is a graph
of groups decomposition of W and‰ is a reduced graph of groups decomposition of
W such that each vertex group of ‰ is a subgroup of a conjugate of a vertex group
of ƒ. Then for each vertex V of ƒ, the vertex group ƒ.V / has a graph of groups
decomposition ˆV such that each vertex group of ˆV is either

(1) conjugate to a vertex group of ‰, or

(2) a subgroup of vƒ.E/v�1 for some v 2 ƒ.V / and E some edge of ƒ adjacent
to V .

When ‰ is visual, vertex groups of the first type in Theorem 2 are visual. Those
of the second type seem somewhat artificial.

It is easy to recognize whether a finitely generated Coxeter group is 2-ended or
infinite ended, by refining Stallings’ theorem (from [18]) to a visual splitting theorem.
A Dunwoody decomposition of a finitely generated Coxeter group is a graph of groups
with finite or 1-ended vertex groups and finite edge groups. These refine to a visual
Dunwoody decomposition, and we get a simple argument for why finitely generated
Coxeter groups are accessible with respect to splittings over finite groups (as in [10]).
In separate papers [14] and [15], we developed the fundamental ideas of this paper to
prove a strong accessibility result for Coxeter groups with respect to splittings over
“minimal” splitting subgroups, and a JSJ result for splittings of Coxeter groups over
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virtually abelian groups. At the bottom level, the strong accessibility result is a visual
version of Dunwoody’s result in the Coxeter setting.

J.-P. Serre gives an account of FA groups in [17]. In particular, an FA group has
no nontrivial splittings. We apply the main theorem to show that the maximal FA
subgroups of a finitely generated Coxeter group W are those conjugate to a special
subgroup with presentation diagram a maximal complete subgraph of �.W; S/.

Our results identify certain properties of a Coxeter group recognizable directly
from a particular presentation of the group, properties apparent in the presentation
diagram. There can be different Coxeter systems .W; S/ and .W; S 0/ where S 0 is not
simply a conjugate of S (and may not even correspond under any automorphism of
W ), and so conjugates of special subgroups with respect to S need not correspond
to conjugates of special subgroups with respect to S 0. However, these results do
imply that certain special subgroups are, up to conjugation, special for any Coxeter
system. This investigation thus has significant application to rigidity questions and
the determination of when Coxeter groups are isomorphic.

As a final applications of these ideas we give a visual classification of finitely
generated virtually free Coxeter groups in Section 8.

2. Graphs of groups

Our main tool in this investigation is the connection between group actions on trees
and fundamental groups of graphs of groups. As reference the reader is referred to
[9] and [17]. We review some of the pertinent definitions and results.

A graph of groups ƒ consists of a set V.ƒ/ of vertices, a set E.ƒ/ of edges, and
maps �; � W E.ƒ/ ! V.ƒ/ giving the initial and terminal vertices of each edge in
a connected graph, together with vertex groups ƒ.V / for V 2 V.ƒ/, edge groups
ƒ.E/ for E 2 E.ƒ/, with ƒ.E/ � ƒ.�.E// and an injective group homomorphism
tE W ƒ.E/ ! ƒ.�.E//, called the edge map ofE and denoted by tE W g 7! gtE . The
fundamental group�1.ƒ/ of a graph of groupsƒ is the group with presentation having
generators the disjoint union of ƒ.V / for V 2 V.ƒ/, together with a symbol tE for
each edge E 2 E.ƒ/, and having as defining relations the relations for each ƒ.V /,
the relations gtE D tEg

tE for E 2 E.ƒ/ and g 2 ƒ.�.E//, and relations tE D 1

for E in a given spanning tree of ƒ (the result, up to isomorphism, is independent of
the spanning tree taken).

An amalgamated productA�C B is realized as the fundamental group of the graph
of groups with 2 vertices having vertex groups A and B , a single edge between, with
edge group (the image in A of) C , and edge map tE determined by the injection of
the edge group into B . Similarly, an HNN-extension of A by tE W C ! A is realized
as the fundamental group of a graph of groups with a single vertex and single edge.
In general, the fundamental group of a graph of groups can be understood as taking
amalgamated products of the vertex groups along the edge groups in the spanning tree,
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followed by HNN-extensions over the remaining edge groups. The tE for edges not
in the spanning tree correspond to a stable letter of an HNN extension. For edges in
the spanning tree the relations amount to identifyingƒ.E/ inƒ.�.E//with its image
ƒ.E/tE in ƒ.�.E// as in an amalgamated product. Each vertex and edge group of
a graph of groups ƒ injects into the fundamental group of ƒ (Britton’s lemma) and
we usually identify these with the corresponding subgroups of the fundamental group
of ƒ.

A graph of groups on a graph which is not simply connected will have Z as a
homomorphic image (take a tE not in the spanning tree to 1 and all other generators
to 0). Since the generators of a Coxeter group are of order 2, a homomorphism into Z
must have trivial image. Thus if a Coxeter group is the fundamental group of a graph
of groups the graph must be a tree and the group arises as successive amalgamated
products. In working with such trees of groups we will often simply assume suitable
identifications have been made and the edge maps are simply inclusion maps.

Given a graph of groups ƒ, the Bass–Serre tree for ƒ is defined with vertices the
disjoint union over V 2 V.ƒ/ of the different cosets gƒ.V / of ƒ.V / in �1.ƒ/, and
edges the disjoint union over E 2 E.ƒ/ of the different cosets gƒ.E/ of ƒ.E/ in
�1.ƒ/, taken with �.gƒ.E// D gƒ.�.E// and �.gƒ.E// D gƒ.�.E//. The Bass–
Serre tree is in fact a tree and the fundamental group of ƒ acts on this tree by taking
for h 2 �1.ƒ/, h.gƒ.V // D .hg/ƒ.V / and h.gƒ.E// D .hg/ƒ.E/.

If a group G acts on a tree T (as a directed graph, the action preserving the
orientation of edges), then a transversal for this action consists of a vertex and edge
from each orbit of the action of G on vertices and edges. There must always exist
a transversal having a spanning subtree such that each other edge of the transversal
originates in the subtree. (For instance, ifƒ has a single vertex and single edge, giving
G D �1.ƒ/ as an HNN extension, then G acts on the Bass–Serre tree T for ƒ with
transversal consisting of a single vertex and an edge originating at that vertex, that
does not include the terminal vertex and has spanning subtree just the single vertex.)
From such a transversal, a graph of groups is defined by taking as graph the quotient of
T under the action ofG, and taking vertex and edge groups to be the stabilizers of the
corresponding vertices and edges in the transversal. For edges in the spanning subtree
of the transversal the edge maps are given by inclusion. An edge of the transversal not
in the spanning subtree connects a vertex in the transversal to a translate by an element
g 2 G of a vertex in the transversal and the edge map is given by conjugation by g.
Then the fundamental group of this graph of groups is naturally isomorphic to G by
the homomorphism extending the inclusion map of vertex groups into G. Choosing
a different transversal in T gives rise to a different graph of groups decomposition of
G with vertex groups each conjugate to vertex groups of the first graph of groups, i.e.,
having isomorphic vertex groups but corresponding with different subgroups of G.

Suppose thatƒ is a graph of groups andX is a subset of the edges inƒ. Contracting
the graph of ƒ along the edges in X gives rise to a graph whose vertices are the
equivalence classes of vertices modulo the equivalence relation defined by identifying
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endpoints of edges inX , taking edgesE 2 E.ƒ/�X with endpoints the equivalence
classes of endpoints ofE. Define a graph of groupsƒ0 on this graph, having the same
fundamental group as ƒ, by taking as vertex groups ƒ0.V / the fundamental group
of the graph of groups with vertices of ƒ identified to V and edges in X between
these vertices, with edge groups ƒ0.E/ corresponding to the remaining edge groups
in ƒ with corresponding edge maps. We call ƒ0 the graph of groups resulting from
collapsing the edges X in ƒ. If ƒ is a tree of groups, then collapsing edges in ƒ
results in another tree of groups.

A graph of groups will be called reduced if no edge group is equal to its originating
vertex group nor has image equal to its terminating vertex group, except for an edge
which is a loop at a vertex. If a graph of groups is not reduced, then we may collapse a
vertex across an edge, where the edge group is (or has image) the same as the endpoint
vertex group, giving a smaller graph of groups with vertex and edge groups among the
original vertex and edge groups and having the same fundamental group. Repeated
reductions of this sort in a finite graph of groups must eventually end with a reduced
graph of groups all of whose vertex and edge groups were present in the original graph
of groups and having the same fundamental group.

The following is well known. We include a proof as this result is frequently
referenced throughout the article.

Lemma 3. Suppose thatƒ is a reduced graph of groups decomposition of a groupG,
the underlying graph for ƒ is a tree, V and U are vertices of ƒ, and gƒ.V /g�1 �
ƒ.U / for some g 2 G, then V D U and g 2 ƒ.V /.

Proof. IfU ¤ V or ifU D V and g 62 ƒ.V /, then in the Bass–Serre tree forƒ,ƒ.V /
stabilizes the distinct vertices ƒ.V / and g�1ƒ.U /. But then ƒ.V / also stabilizes a
geodesic path between these vertices and hence stabilizes the first edge hƒ.E/ for
an edge E of ƒ at V . This would mean that ƒ.V / is equal to ƒ.E/ (or its image in
ƒ.V /), and we could collapse V across E, contradicting that ƒ was reduced.

In the other direction, given a graph of groupsƒ and a graph of groups decompo-
sition of a vertex group ƒ.V / as �1.ˆ/, we would like to see when ƒ results from
collapsing outˆ in a larger graph of groupsƒ0. Say thatˆ is a compatible decomposi-
tion ofƒ.V / if each edge group ofƒ incident at V is a subgroup of aƒ.V / conjugate
of a vertex group of ˆ. In general then, given ƒ and ˆ a compatible decomposition
ofƒ.V /, constructƒ0 by replacing V inƒ byˆ and attaching edges ofƒ incident at
V instead to vertices inˆwith edge groups and edge maps appropriately adjusted. So
each such edge group has image in a vertex group of ˆ (for edges ending in ˆ in ƒ0
or V inƒ) or is an isomorphic subgroup of a vertex group ofˆ (for edges originating
inˆ inƒ0 or V inƒ). This adjustment of edge maps means that the image in �1.ƒ

0/
of a vertex group ofƒ0 not inˆ is conjugate to the image of the corresponding vertex
group of ƒ in �1.ƒ/ D �1.ƒ

0/.
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Alternatively, the Bass–Serre tree T 0 for ƒ0 can be constructed from the Bass–
Serre tree for ƒ with each coset of ƒ.V / replaced by the Bass–Serre tree for ˆ with
a �1.ƒ/ group action. Contracting the edges in the orbit of ˆ in T 0 gives T , and a
transversal ofT 0 with a spanning subtree contracts to a transversal ofT with a spanning
subtree. Starting with a transversal with spanning subtree of T and a transversal with
spanning subtree of the Bass–Serre tree forˆwe may need to translate the parts of the
T transversal in different components of T �fV g so that they attach to the transversal
of the Bass–Serre tree for ˆ in T 0. The result is still a transversal of T with the same
quotient graph as ƒ but with vertex groups identified with conjugates of the vertex
groups of �1.ƒ/.

Suppose that .W; S/ is a Coxeter system. A visual graph of groups decomposition
‰ ofW has special vertex and edge groups, edge maps given by inclusion, and is such
that the inclusion of vertex groups in W extends to an isomorphism of �1.‰/ with
W . As noted above, ‰ is a tree. In terms of presentation diagrams, �.W; S/ must
be the union of the subdiagrams corresponding to the vertex groups of ‰, with the
edge groups corresponding to the intersections of adjacent vertex subdiagrams. To
understand in visual terms exactly when a graph of special subgroups has fundamental
group isomorphic to W we have the following essential lemma.

Lemma 4. Suppose that .W; S/ is a Coxeter system. A graph of groups‰ with graph
a tree, where each vertex group and edge group is a special subgroup and each edge
map is given by inclusion, is a visual graph of groups decomposition of W iff each
edge in the presentation diagram of W is an edge in the presentation diagram of a
vertex group and, for each generator s 2 S , the set of vertices and edges with groups
containing s is a nonempty subtree in ‰.

Proof. Suppose that ‰ is a visual graph of groups decomposition of W so that the
homomorphism extending the inclusion map on vertex groups is an isomorphism of
�1.‰/ andW . Since each vertex group is generated by the elements of S it contains,
the image of  is generated by the set of all s 2 S that belong to some vertex group.
Since a proper subset of S generates a proper subgroup ofW , each element of S must
be an element of a vertex group of‰. Let T be the Bass–Serre tree for‰. Then since
the edge maps are inclusions, the subgraph of T consisting of the identity cosets of
vertex and edge groups of ‰ is a transversal of T , a subtree of T , and the stabilizers
of the vertices and edges of the transversal are simply the corresponding vertex and
edge groups of ‰. If s 2 S belongs to two vertex groups, then  �1.s/ stabilizes the
corresponding vertices of the transversal, hence stabilizes all the edges and vertices
in a geodesic path in T between these vertices, and so s belongs to all the vertex and
edge groups in the path in ‰ between these vertices. Hence the vertices and edges
with groups containing s form a subtree in‰. If there is an edge in �.W; S/ between
s; t 2 S , then the subgroupU ofW generated by s and t is finite. But then �1.U / is
a finite subgroup of �1.‰/ acting on T and so must stabilize a vertex V of T . Let V 0
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be the vertex of the transversal closest to V in T . Then V 0 lies between V and a vertex
of the transversal stabilized by s and so is also stabilized by s, and similarly for t .
Thus V 0 corresponds to a vertex of ‰ having vertex group containing both s and t
and this special subgroup has an edge between s and t in its presentation diagram as
well.

Conversely, suppose ‰ is a graph of groups with each edge of the presentation
diagram of W in the presentation diagram of some vertex group, and such that, for
each generator s 2 S , the vertices and edges of ‰ with groups containing s form
a subtree in ‰. All of the occurrences of an s 2 S in different vertex groups of
‰ are identified by the relators of �1.‰/ along edges in the subtree of vertex and
edge groups containing s. Take  W �1.‰/ ! W extending the inclusion map of the
generators S in �1.‰/ into W . We get that  is an isomorphism by checking that
each of the defining relators of W is already a relator of �1.‰/. But each generator
of W belongs to some vertex group of ‰ where it has order 2, and the other relators
ofW correspond to edges of the presentation diagram and these relators also already
hold in some vertex group of ‰.

If‰ is a visual graph of groups decomposition for the Coxeter system .W; S/, it is
convenient to label a vertex of ‰ by the subset of S that generates the corresponding
vertex group. So ifQ � S is a vertex label of‰, then‰.Q/ D hQi. If‰ is reduced,
its vertex labels are distinct and we identify vertices with their labels. Even if ‰ is
reduced, two distinct edges may have the same edge group, so we do not extend this
labeling to edges.

The following two technical results are useful tools.

Corollary 5. Suppose that .W; S/ is a finitely generated Coxeter system,‰ is a visual
graph of groups decomposition ofW , andE � S is such that hEi D ‰.E 0/ forE 0 an
edge of ‰. If fx; yg � S �E, and x 2 X and y 2 Y for X and Y labels of vertices
of ‰ on opposite sides of E 0, then as a subset of �.W; S/, E separates x and y in � .

Proof. Otherwise, among all such x; y that fail the conclusion, let ˛ be a shortest path
in� fromx toy avoidingE. Note that by Lemma 4, x ¤ y. Ifx � x0; x1; : : : xn � y

are the consecutive vertices of ˛, then, by Lemma 4, fx0; x1g � V for some vertex
label V of ‰. Since x0 62 E, Lemma 4 implies that V and X label vertices on the
same side of E 0 in ‰. But then x1 and y satisfy the hypothesis of the corollary,
contradicting the minimality of ˛.

Corollary 6. Suppose that .W; S/ is a finitely generated Coxeter system, and ‰
is a visual graph of groups decomposition of W . If C is a complete subset of the
presentation diagram �.W; S/, then there is a vertex labeled V.� S/ of ‰ such that
C � V .
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Proof. We may assume that ‰ is reduced. If C is not a subset of a vertex of ‰, then
there is a vertex U � S of ‰ containing a maximal number of elements of C and
V � S a vertex of ‰ closest to U such that V contains an element c of C �U . If E 0
is the last edge of the ‰-geodesic from U to V and ‰.E 0/ D hEi for E � S , then
.U \ C/ 6� E and c 62 E. By Corollary 5, E separates .U \ C/ � E from c in � .
This is impossible since C is complete.

3. Proof of main results

We begin this section with a proof of Theorem 1 and conclude with a proof of Theo-
rem 2. Several examples are presented to introduce the reader to visual decomposi-
tions.

Proof of Theorem 1. Suppose that .W; S/ is a Coxeter system and suppose ƒ is a
graph of groups with W a subgroup of �1.ƒ/. We may identify the vertex and edge
groups of ƒ with subgroups of �1.ƒ/. Then �1.ƒ/ acts on the Bass–Serre tree T
such that the stabilizers of vertices of the tree are conjugates of the vertex groups of
ƒ and stabilizers of edges of the tree are conjugates of the edge groups of ƒ.

We build a visual graph of groups decomposition ‰ of W with this tree as its
graph. For each vertex V (resp. edge E) of ‰ take vertex group ‰.V / (resp. edge
group‰.E/) to be the subgroup ofW generated by the s 2 S stabilizing V (resp.E).
The edge groups inject into the vertex groups by inclusion maps. Clearly, each vertex
group (resp. edge group) of‰ is a special subgroup ofW and a subgroup of a conjugate
of a vertex group (resp. edge group) of ƒ. Each generator s 2 S is of order 2 and so
stabilizes some vertex of T . If two vertices of T are stabilized by s, then s stabilizes
the geodesic path between the vertices, thus the subgraph of T of vertices and edges
stabilized by s is a subtree. Suppose that there is an edge in the presentation diagram
for .W; S/ between s and t inS . The subgroup generated by s and t has finite order, so
stabilizes some vertex of T , with s and t belonging to that vertex group. By Lemma 4
then, �1.‰/ is isomorphic to W and ‰ is a visual graph of groups decomposition
of W .

Finally, if U is a special subgroup and a subgroup of a conjugate of one of the
vertex groups of ƒ, then U stabilizes a vertex in T and so U is a subgroup of the
vertex group of that vertex.

Generally,‰will be an infinite tree. IfW is finitely generated, by taking the subtree
spanning a finite set of vertices whose vertex groups between them include all of the
elements of S , we get a finite visual graph of groups decomposition ofW . Reducing
this graph of groups results in a reduced visual graph of groups decomposition forW .
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Remark 1. If W , ƒ and ‰ are as in Theorem 1, then each edge E of ƒ defines a
splitting ofW asA�ƒ.E/B whereA is generated by the vertex groups of the vertices
on one side of E inƒ and B is generated by those on the other side of E inƒ. There
is a quotient map from the Bass–Serre tree forƒ to that of A�ƒ.E/B which respects
the action of W . If A 6D ƒ.E/ 6D B then W is not a subgroup of a conjugate of A
or B and the proof above shows that there is an edge of ‰ such that the edge divides
‰ into two components, neither alone having all of the generators of W in its vertex
groups, and such that the corresponding edge group lies in a conjugate ofƒ.E/ (and
so also after applying possible reductions to ‰).

Example 1. As an example of the main theorem consider the Coxeter groupW with
presentation

P D hs1; s2; s3; s4; s5 W s2
i ; .s1s2/

2 D .s2s3/
2 D .s3s4/

2 D .s4s5/
2 D 1i:

Note that .s3s5s3/2 D .s4s3s5s3/
2 D 1 so the map� W W ! W defined on generators

by �.si / D si for i < 5, and �.s5/ D s3s5s3, extends to a homomorphism, is
surjective, is its own inverse, and so is an automorphism of W . Consider subgroups
A D hs1; s2; s4; s3s5s3i, B D hs2; s3; s4i, and C D hs2; s4i. Then W D A �C B is
the image under � of a visual amalgamated product decomposition of W , but A is
not a visual subgroup ofW . We refine this decomposition to a visual graph of groups
decomposition following the proof of Theorem 1.

The Bass–Serre tree on which W acts has vertices corresponding to the different
cosets of A and B and edges corresponding to the different cosets of C with hC
connecting hA and hB for each h 2 W . The vertex A (respectively B) of this tree
has one edge for each coset aC (resp. bC ) of C in A (resp. B). An element g 2 W
acts on this tree by mapping hA to ghA and similarly for cosets of B and C . The
stabilizer of gA is the conjugate gAg�1. The graph of groups‰ is defined on this tree
by taking the vertex and edge groups generated by the si which stabilize that vertex or
edge. Thus s1, s2, and s4 stabilize theA vertex in the tree, s2 and s4 stabilize both the
C edge and the s3C edge, s2, s3, and s4 stabilize the B D s3B vertex, s2, s4, and s5
stabilize the s3A vertex (etc.). Since the vertex groups of these three vertices include
all of the generators ofW , the vertex and edge groups for the rest of the tree collapse
back to this three vertex subgraph with the same fundamental group as the graph of
groups. The visual decomposition reduces to a three factor amalgamated product

W D hs1; s2; s4i �C B �C hs2; s4; s5i;
where the first and third factors are generated by those generators ofW stabilizing A
and s3A, respectively, are subgroups of conjugates of A, and are special subgroups
of W .

This simple example illustrates that an amalgamated product decomposition of a
Coxeter group need not refine to a visual amalgamated product decomposition of only
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two factors. Instead the visual graph of groups decomposition we have produced is
sometimes necessary.

Proof of Theorem 2. Let ˆV be the decomposition of ƒ.V / given by selecting a
fundamental transversal for its action on T‰, the Bass–Serre tree for ‰. That is, take
the graph of ˆV to be a subtree of T‰ containing a single vertex and edge from each
orbit of the action of ƒ.V / on T‰ and take the group of a vertex or edge to be the
subgroup ofƒ.V / stabilizing that vertex or edge. IfU is a vertex ofˆV , thenU 2 T‰

corresponds to a coset g‰.X/ of a vertex group ‰.X/ of ‰. The stabilizer in W
of U is simply the conjugate g‰.X/g�1, and so ˆV .U / D ƒ.V / \ .g‰.X/g�1/.
The group ‰.X/ is a subgroup of a conjugate hƒ.Y /h�1 of a vertex group ƒ.Y /
of ƒ. Hence ˆV .U / is a subgroup of ƒ.V / and of a conjugate ghƒ.Y /h�1g�1 of
ƒ.Y /, and so stabilizes the vertices of Tƒ corresponding to ƒ.V / and ghƒ.Y /. If
V D Y and gh 2 ƒ.V /, then these are the same vertex of Tƒ, and g‰.X/g�1 �
ghƒ.Y /h�1g�1 D ƒ.V /. Thus ˆV .U / D ƒ.V / \ .g‰.X/g�1/ D g‰.X/g�1

is equal to a conjugate of a vertex group of ‰. Otherwise, ƒ.V / and ghƒ.Y / are
different vertices of Tƒ. The groupˆV .U / stabilizes both vertices and so a geodesic
path between the two. In particular,ˆV .U / stabilizes the first edgekƒ.E/ in this path,
whereE is an edge ofƒ incident with V and k 2 ƒ.V /. ThusˆV .U / � kƒ.E/k�1.
Reducing ˆV gives the desired graph of groups decomposition.

The next corollary and example examine technical aspects of the decompositions
of Theorem 2.

Corollary 7. Suppose that .W; S/ is a finitely generated Coxeter system,ƒ is a graph
of groups decomposition of W , ‰ is a reduced .W; S/-visual decomposition from ƒ

and ˆV is a reduced graph of groups decomposition for the vertex group ƒ.V / as
given in the proof of Theorem 2. If X is a vertex of ‰, V is a vertex of ƒ, and
g‰.X/g�1 is a subgroup ofƒ.V / for some g 2 W , then vg‰.X/g�1v�1 is a vertex
group of ˆV for some v 2 ƒ.V /.
Proof. Let ˆ0

V be the decomposition of ƒ.V / given by selecting a fundamental
transversal for its action on T‰, the Bass–Serre tree for ‰, and let ˆV be reduced
from ˆ0

V . By the definition of transversal, there is v 2 ƒ.V / such that the coset
vg‰.X/ corresponds to a vertex B of the transversal. Then ˆ0

V .B/ D ƒ.V / \
vg‰.X/g�1v�1 D vg‰.X/g�1v�1. It remains to show that this vertex group sur-
vives reduction. Otherwise, there is a vertex Q of ˆ0

V such that vg‰.X/g�1v�1 is
a proper subgroup of ˆ0

V .Q/ � ƒ.V / \ h‰.Z/h�1 (where Q 2 T‰ corresponds
to the coset h‰.Z/). But then ‰.X/ is a proper subgroup of g�1v�1h‰.Z/h�1vg

which is impossible by Lemma 3.

The next example shows that the previous corollary cannot be extended to show
that a vertex group of ‰ is conjugate to a vertex group of ˆV for a unique vertex V



184 M. Mihalik and S. Tschantz

of ƒ. In fact, all vertex groups of a particular ˆV may be equal to vertex groups of
other ˆQ for Q a vertex of ƒ.

Example 2. Consider the group W with Coxeter presentation hw; x; y; z W w2 D
x2 D y2 D z2 D 1i (and free product decomposition hwi � hxi � hyi � hzi).
There is an automorphism of W that fixes w and y, and maps x to wyxyw and z
to y.wyxyw/z.wyxyw/y. W has the decomposition hw; xi �hxi hx; zi �hzi hy; zi.
Hence the automorphism induces a decomposition ƒ, with vertices V1 and V2 and
V3, where V1 and V2 are connected by an edge E1, and V2 and V3 are connected by
an edge E2. The decomposition ƒ � ƒ.V1/ �ƒ.E1/ ƒ.V2/ �ƒ.E2/ ƒ.V3/ of W is
such that

ƒ.V1/ D hw;wyxywi;
ƒ.E1/ D hwyxywi;
ƒ.V2/ D hwyxyw; y.wyxyw/z.wyxyw/yi;
ƒ.E2/ D hy.wyxyw/z.wyxyw/yi;
ƒ.V3/ D hy; y.wyxyw/z.wyxyw/yi:

A visual decomposition ‰, from ƒ, is hwi � hxi � hyi � hzi. The decomposition
ˆV1

of Theorem 2 is hwi� hwyxywi,ˆV2
is hwyxywi� hy.wyxyw/z.wyxyw/yi,

andˆV3
is hyi�hy.wyxyw/z.wyxyw/yi. Hence the vertex groups hxi and hzi of‰

are conjugate to vertex groups ofˆV for more than one vertex V ofƒ. Furthermore,
both vertex groups of ˆV2

are equal to vertex groups of other ˆVi
.

Example 3. Consider the Coxeter presentation ha; b; c W a2 D b2 D c2 D 1i. This
group splits asƒ � ha; bci �hbci hb; ci. The visual decomposition from this splitting
is ‰ � hai � hb; ci. If ƒ.V / is the vertex group ha; bci, then its graph of groups
decompositionˆV , induced by its action on T‰, the Bass–Serre tree for‰, is Z2 �Z.
This group also has a decomposition with underlying graph not a tree, but it is not
induced by its action on T‰. We wonder if every decomposition of a finitely generated
Coxeter group and corresponding visual decomposition can only induce ˆV having
as underlying graph a tree.

In their accessibility paper [2], Bestvina and Feighn limit the number of vertex
groups that can occur in a reduced graph of groups decomposition with “small” edge
groups, for a given finitely presented group. Strong accessibility results for Coxeter
groups over “minimal” splittings are the focus of [14]. While Theorem 2 limits how
far a vertex group of an arbitrary decomposition of a Coxeter group can stray from
visual, the following example shows that one cannot expect an accessibility result for
Coxeter groups over arbitrary splittings.

Example 4. For a virtually free (non-virtually cyclic) group, the following technique
is standard for creating non-trivial reduced graph of groups decompositions with n
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vertex groups for any n 2 f1; 2; : : : g. Let W be the Coxeter group with presentation
hs1; s2; s3; s4; s5 W s2

i D 1i. Then W has free product decomposition A � B where
A D hs1; s2; s3i and B D hs4; s5i. The element b � s4s5 generates an infinite cyclic
subgroup of finite index in B and A contains a non-abelian free subgroup of finite
index. Let fa1; a2; : : : g be a free generating set for an infinite rank free subgroup
of A. Then W has the decomposition

ƒ1 D hA [ fbgi �ha1;bi hB [ fa1gi:
The group hA [ fbgi has the following non-trivial reduced graph of groups decom-
position, which is compatible with ƒ1:

hA [ fb2gi �ha1;a2;b2i ha1; a2; bi:
Hence W has the reduced decomposition

ƒ2 D hA [ fb2gi �ha1;a2;b2i ha1; a2; bi �ha1;bi hB [ fa1gi:
Let En D ha1; : : : ; an; b

.2n�2/i, let Cn D ha1; : : : ; an; b
.2n�1/i, and let

An D hA [ fb.2n�1/gi. Then we have a reduced decomposition for W with n C 1

vertex groups:

ƒn D An �Cn
En �Cn�1

En�1 �Cn�2
� � � � �E2 �C1

hB [ fa1gi:
For each n, A � B is a visual decomposition from ƒn.

4. Technical results

As mentioned in the introduction, our basic reference for Coxeter groups is [3]. The
technical results of this section are well known and can be derived from two funda-
mental facts: the first concerning special subgroups of Coxeter groups and the second
called the “deletion condition”.

Proposition 8. Suppose that .W; S/ is a Coxeter system and P D hS W .st/m.s;t/ for
m.s; t/ < 1i (where m W S2 ! f1; 2; : : : ;1g) is a Coxeter presentation for W . If
A � S , then .hAi; A/ is a Coxeter system with Coxeter presentation hA W .st/m0.s;t/

for m0.s; t/ < 1i (where m0 D mjA2).

Given a group G and a generating set S , an S -geodesic for g 2 G is a shortest
word in S [S�1 such that the product of the letters of this word is g. The number of
letters in an S -geodesic for g is the S -length of g. We include an elementary proof
of the deletion condition pointed out to us by A. Yu. Ol’shanskii and based on the
theory of van Kampen diagrams (see Chapter 5 of Lyndon and Schupp’s book [13]
for a basic introduction to van Kampen diagrams).
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Proposition 9 (The deletion condition). Suppose that .W; S/ is a Coxeter system and
w D a1 : : : an for ai 2 S . If a1 : : : an is not geodesic then there are indices i < j in
f1; 2; : : : ; ng such that w D a1 : : : ai�1aiC1 : : : aj �1aj C1 : : : an, i.e., ai and aj can
be deleted.

Proof. Let b1 : : : bm be an S -geodesic forw, so thatm < n. Let D be a van Kampen
diagram for the word a1 : : : anbm : : : b1. The relation 2-cell r1 containing a1 is of
even length and so there is an edge e1 of r1 “opposite” a1. The two subpaths of the
boundary of r1 separated by a1 and e1 have the exact same labeling. Let r2 be the
relation 2-cell of D that shares e1 with r1, and let e2 be the edge of r2 opposite e1.
Again the labeling of the two subpaths of the boundary of r2 separated by e1 and e2

are the same. Continue until ek is on the boundary of D . The “strip” determined by
Sk

iD1 ri is such that the two subpaths of the boundary of this strip separated by a1

and ek have the same labeling. This creates a unique paring of edges on the boundary
of D . Since m < n there are indices i < j in f1; 2; : : : ; ng such that ai is paired
with aj . If the two subpaths of the boundary of the strip for ai separated by ai and aj

are labeled ˇ, then (as the product of edge path labels of loops in D is trivial in W )
aiC1 : : : aj �1 D ˇ D ai : : : aj , i.e., ai and aj are deleted.

Lemma 10. Suppose that .W; S/ is a Coxeter system, A � S , and a 2 hAi. If
a D a1 : : : an D b1 : : : bn are S -geodesics then fa1; : : : ; ang D fb1; : : : ; bng.

Proof. Assume n is minimal among all counterexamples to the lemma. By Propo-
sition 8, we have n ¤ 1. Note that a1 : : : anbn D b1 : : : bn�1. By the deletion
condition, bn is deleted together with some ai in the first expression. Inductively it
follows that fb1; : : : ; bn�1g � fa1; : : : ; ang. Similarly, b1a1 : : : an D b2 : : : bn so
that fb2; : : : ; bng � fa1; : : : ; ang.

IfG is a group with generating set S , then the Cayley graph K.G; S/ is a labeled
graph with vertex setG and a directed edge (labeled s) from the vertex g to the vertex
gs for each s 2 S . Given a vertex x of K.G; S/, there is a bijective correspondence
between edge paths at x and words in S [ S�1, where traversing an edge labeled s
opposite its orientation is read as s�1. Hence S -geodesics and K.G; S/-geodesics at
a given vertex are the same.

The next result is a straightforward application of the deletion condition.

Lemma 11. Suppose that .W; S/ is a Coxeter system, fx; yg � W andA � S . Then
in the Cayley graph K.W; S/ there is a unique closest point z of the coset yhAi to x.
Furthermore, if ˛ is the S -geodesic from x to z, and ˇ is any A-geodesic at z, then
˛ˇ is an S -geodesic.

The next lemma follows by a result of Kilmoyer (see Theorem 2.7.4 of [6]), but
we include a direct proof for completeness.
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Lemma 12. Suppose that .W; S/ is a Coxeter system, I; J � S , and d is a minimal
length double coset representative in hI id hJ i. Then hI i \ d hJ id�1 D hKi where
K D I \ .dJd�1/. Hence ghI ig�1 \ hhJ ih�1 D f hKif �1 for K � I .

Proof. With K D I \ .dJd�1/, clearly, hKi � hI i \ d hJ id�1. Suppose that
a is a shortest element in hI i \ d hJ id�1 but not in hKi. Write a D a1a2 : : : am

geodesically with ai 2 I and d�1ad D b1b2 : : : bn geodesically for bi 2 J . Write
d D d1d2 : : : dk geodesically for di 2 S . Then since d is a minimal length dou-
ble coset representative, ad D a1a2 : : : amd1d2 : : : dk D d1d2 : : : dkb1b2 : : : bn are
each geodesic. Hencem D n. Clearlya ¤ 1, anda … S elsea D a1 D db1d

�1 2 K
by definition. Instead, m > 1. Now b1b2 : : : bmd

�1 and d�1am are geodesic, but
d�1a1 : : : am�1 D b1b2 : : : bmd

�1am, so this last is not geodesic and, by the dele-
tion condition, am is deleted together with some bi to give b1b2 : : : bmd

�1am D
b1 : : : bi�1biC1 : : : bmd

�1 (if 1 < i < m and similarly if i D 1 or i D m).
But then a1a2 : : : am�1 D db1 : : : bi�1biC1 : : : bmd

�1 2 hI i \ d hJ id�1 and, by
the minimality of a and Lemma 10, we have fa1; a2; : : : ; am�1g � K. Likewise
fam; : : : ; a2g � hI i \ d hJ id�1, so am 2 K. But then a 2 hKi, contradicting the
choice of a. Instead, every a 2 hI i \ d hJ id�1 is in hKi.

Given conjugates ghI ig�1 and hhJ ih�1 of special subgroups, take d of minimal
length in hI ig�1hhJ i, so g�1h D adb�1 for a 2 hI i and b 2 hJ i, hI ig�1hhJ i D
hI id hJ i, and hI i \ d hJ id�1 D hKi as above. Then

ghI ig�1 \ hhJ ih�1 D gahI ia�1g�1 \ hbhJ ib�1h�1

D ga.hI i \ d hJ id�1/a�1g�1

D gahKia�1g�1: �

We will use the following corollary in Section 6 in our analysis of FA subgroups.

Corollary 13. Suppose that .W; S/ is a finitely generated Coxeter system, I; J � S ,
the induced subgraph on I is a maximal complete subgraph of �.W; S/, and I �
whJ iw�1 for some w 2 W . Then I � J and w 2 hJ i.
Proof. Take d a minimal length double coset representative in hI iwhJ i so w D
adb�1 for a 2 hI i and b 2 hJ i. Then since

hI i \ d hJ id�1 D a�1.ahI ia�1 \ adb�1hJ ibd�1a�1/a

D a�1.hI i \ whJ iw�1/a

D hI i;
we have I � dJd�1 and so d�1Id � J . If d ¤ 1 and d D d1d2 : : : dk geodesically,
then by the minimality of d , d1 … I . There is some s 2 I unrelated to d1, since
I induces a maximal complete subgraph of the Coxeter diagram. But if a1 : : : ak is
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any geodesic and s is unrelated to ak then a1 : : : aks is geodesic (apply Lemma 11
with x D 1, y D a1 : : : ak�1, A D fak; sg and ˇ D ˇ1aks, where ˇ1 is the fak; sg
geodesic from z to y). Hence d�1sd cannot have length 1 and cannot be in J . Instead
then, d D 1, I � J and w D adb�1 2 hJ i.

The following corollaries find application in the analysis of rigidity of Coxeter
groups.

Corollary 14. If .W; S/ is a finitely generated Coxeter system, I � S , and
w�1hI iw � hI i for some w 2 W , then w�1hI iw D hI i.

Proof. Let d be a minimal length double coset representative in hI iwhI i, so w D
adb�1 for a; b 2 hI i. Then

hI i D hI i \ whI iw�1 D a.hI i \ d hI id�1/a�1:

Hence hI i D hI i\d hI id�1 D hI\dId�1i, by Lemma 12. By Propositions 8 and 9,
a proper subset of I cannot generate the same Coxeter group as I , so I D dId�1.
Hence d�1Id D I and w�1hI iw D bd�1hI idb�1 D bhI ib�1 D hI i.

Corollary 15. Suppose that .W; S/and .W; S 0/are finitely generated Coxeter systems
for the same Coxeter groupW . Suppose that I � S is such that the induced subgraph
of I separates �.W; S/ (its complement has at least two components). Then there
are sets J � S and J 0 � S 0 such that the induced subgraphs of J and J 0 separate
�.W; S/ and�.W; S 0/, respectively, hJ i and hJ 0i are conjugate, and hJ i is conjugate
to a subgroup of hI i.

Proof. As noted in the introduction, since I separates �.W; S/,W D A�hI iB , forA
the (S ) special subgroup generated by I and the generators in some components of the
complement of I , and B the (S ) special subgroup generated by I and the generators
in the other components of the complement of I in �.W; S/, A ¤ hI i ¤ B . Taking
this amalgamated product decomposition ofW to beƒ, we consider a corresponding
visual decomposition ‰ with respect to the alternate generating set S 0. As noted in
Remark 1, there must be an edge of ‰, with not all of the generators S 0 appearing on
one side, having edge group hI 0

1i, for an I 0
1 � S 0, which is a subgroup of a conjugate

of hI i. That is, there is an I 0
1 � S 0 which separates �.W; S 0/ and for which hI 0

1i is a
subset of a conjugate of hI i.

But then I 0
1 gives a proper splitting of W and by the same reasoning there is

an I2 � S which separates �.W; S/ and which is a subset of a conjugate of hI 0
1i.

Continuing in this fashion, we can find I 0
2kC1

� S 0 separating �.W; S 0/, generating
a subgroup of a conjugate of hI2ki, and an I2kC2 � S separating �.W; S/ and
generating a subgroup of a conjugate of hI 0

2kC1
i.
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Since there are only finitely many subsets of S or S 0, for some k1 < k2 < k3,
I 0

k1
D I 0

k3
. Take J 0 D I 0

k1
D I 0

k3
and J D Ik2

. Since hIj i and hI 0
j C1i are subgroups

of conjugates of hIi i and hI 0
iC1i for i < j , take a1; a2 2 W such that

hI 0
k3

i � a2hIk2
ia�1

2 � a2a1hI 0
k1

ia�1
1 a�1

2 :

Then a�1
2 a�1

1 hJ 0ia1a2 � hJ 0i, so by Corollary 14 these are equal, and we get

hJ 0i � a2hJ ia�1
2 � a2a1hJ 0ia�1

1 a�1
2 D hJ 0i:

Thus hJ 0i D a2hJ ia�1
2 , and J and J 0 generate subgroups of conjugates of hI i that

separate �.W; S/ and �.W; S 0/ respectively.

5. Ends

Stalling’s theorem [18] states that if a finitely generated group has more than one end
then it splits nontrivially as an amalgamated product or HNN-extension over a finite
group. The following result is then an easy consequence of our main theorem. It can
also be obtained from work of M. Davis [8].

Corollary 16. For any finitely generated Coxeter group W with presentation dia-
gram � , the following assertions are equivalent:

(1) W has more than one end.

(2) W decomposes as a nontrivial amalgamated product A �C B where C is finite
and A, B , and C are special subgroups.

(3) � contains a complete separating subgraph, the vertices of which generate a
finite subgroup of W .

Proof. IfW is not 1-ended or finite, then by Stallings’splitting theorem,W D A�CB

withC finite (and not as an HNN-extension since an HNN-extension maps onto Z but
a homomorphism of a Coxeter group into Z must take generators to the identity). Then
by Theorem 1,W has a reduced visual graph of groups decomposition in which each
edge group is a subgroup of a conjugate of C and so is finite. This decomposition
cannot be trivial since each vertex group is a subgroup of a conjugate of A or B
neither of which is W in the given nontrivial splitting, and so no vertex group can
beW . Hence there is at least one edge after reducing‰ and collapsing the other edges
gives W as a visual amalgamated product of special subgroups over a finite special
subgroup. The remaining implications are easy.

By Stallings’ theorem and Theorem 1, a 2-ended Coxeter group splits as a visual
amalgamated product over a finite group which is of index two in each factor. The
following result then characterizes 2-ended Coxeter groups.
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Corollary 17. A Coxeter group with system .W; S/ and diagram � is 2-ended iff �
contains a separating subdiagram �0 which is the presentation diagram of a finite
group, and � � �0 consists of two vertices each of which is connected to each
vertex of �0 by edges labeled 2 (but not connected to each other). Equivalently,
W D hx; yi � hH i where fx; yg [H D S , x and y are unrelated and hH i is finite.

Thus the number of ends of a Coxeter group can be easily determined from an
analysis of separating subdiagrams of a presentation diagram, and checking which
subdiagrams correspond to finite subgroups. A Coxeter group whose presentation
diagram is complete is either finite or 1-ended. The finite Coxeter groups have been
enumerated [3].

A Dunwoody decomposition of a finitely presented group is a graph of groups de-
composition of the group with finite edge groups and 1-ended and finite vertex groups.
In [10], Dunwoody shows that any finitely presented group has such a decomposition.

Corollary 18. Suppose that .W; S/ is a finitely generated Coxeter system and W is
the fundamental group of a graph of groups ƒ where each edge group is finite. Then
W has a visual decomposition ‰ where each vertex group is 1-ended or finite and a
subgroup of a conjugate of a vertex group of ƒ, and where each edge group is finite.

Proof. Take ‰ the reduced visual graph of groups from ƒ as given by Theorem 1.
Then each edge group of ‰ is a subgroup of a conjugate of an edge group of ƒ and
so is finite. Suppose that some vertex V.� S/ of ‰ is such that hV i is not 1-ended
or finite. Then hV i visually splits nontrivially over a finite subgroup. If E (� S )
is an edge of ‰ with endpoint V , then E � V and hEi is finite. In particular, E
induces a complete subgraph in �.W; S/. By Corollary 6, E must be contained in a
vertex group of the visual decomposition of hV i, i.e., the splitting of hV i is visually
compatible with‰. Replacing hV i in‰ by this splitting gives a visual graph of groups
decomposition with finite edge groups. Since a special vertex group is replaced by
special vertex groups with fewer generators, repeating this process eventually must
end with a visual graph of groups decomposition having finite edge groups and finite
or 1-ended vertex groups.

One might wonder how “visual” a Dunwoody decomposition must be.

Theorem 19. Suppose that .W; S/ is a finitely generated Coxeter system. If ƒ is a
reduced Dunwoody graph of groups decomposition of W and ‰ is a reduced visual
decomposition for .W; S/ such that each edge group of ‰ is finite and each vertex
group of ‰ is a subgroup of a conjugate of a vertex group of ƒ (in particular if ‰ is
a reduced visual graph of groups decomposition from ƒ), then

(1) ‰ is a Dunwoody decomposition;
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(2) there is a (unique) bijection ˛ of the vertices of ƒ to the vertices of ‰ such that
for each vertex V of ƒ, ƒ.V / is conjugate to ‰.˛.V //;

(3) each edge group of ƒ is conjugate to a special subgroup for .W; S/.

Proof. If ˆ is a graph of groups decomposition of W with finite edge groups, then
any finite or 1-ended subgroup of W is a subgroup of a conjugate of a vertex group
ofˆ (otherwise, the action of this group on the Bass–Serre tree forˆ would induce a
non-trivial splitting over a finite group). Hence each vertex group ofƒ is a subgroup
of a conjugate of a vertex group of‰. If a vertex groupA D ƒ.V / ofƒ is a subgroup
of a conjugate of ‰.V 0/ for V 0 a vertex of ‰, then since ‰.V 0/ is a subgroup of a
conjugate of a vertex group ofƒ,A is a subgroup of a conjugate of a vertex group of a
vertex V 00 ofƒ. As noted in Lemma 3, in a reduced graph of groups, the vertex group
A at V is a subgroup of a conjugate of a vertex group at V 00 only if V D V 00 and the
conjugate is by an element of A. But then A is conjugate to ‰.V 0/. Again, since no
vertex group of ‰ is contained in a conjugate of another, V 0 is uniquely determined,
and we set ˛.V / D V 0. Since each vertex group ‰.V 0/ is contained in a conjugate
of someƒ.V / which is in turn conjugate to ‰.˛.V //, we must have V 0 D ˛.V / and
each V 0 is in the image of ˛. In particular, each vertex group of‰ is 1-ended or finite
and so ‰ is a Dunwoody decomposition of W .

Since ƒ is a tree, we can take each edge group of ƒ as contained in its endpoint
vertex groups taken as subgroups of W . Hence each edge group is simply the inter-
section of its adjacent vertex groups (up to conjugation). Since vertex groups of ƒ
correspond to conjugates of vertex groups in ‰, their intersection is conjugate to a
special subgroup by Lemma 12.

In Example 1 we have a visual Dunwoody decomposition

hs1; s2i �hs2i hs2; s3i �hs3i hs3; s4i �hs4i hs4; s5i;

which is carried by the automorphism � to the Dunwoody decomposition where the
last factor is replaced by hs4; s3s5s3i. Thus in this theorem we cannot expect a single
element to conjugate all factors of a Dunwoody decomposition to the corresponding
factors of the corresponding visual decomposition. The connection between an arbi-
trary Dunwoody decomposition and a visual Dunwoody decomposition is however
clearly quite close.

It is worthwhile to see how this analysis of Coxeter groups leads to an understand-
ing of why finitely generated Coxeter groups are accessible. While this argument only
re-proves a special case of Dunwoody’s accessibility theorem, it is the base case of
the main theorems of our papers [14] and [15], where we prove a strong accessibility
result for Coxeter groups and splittings over “minimal” splitting subgroups, and a JSJ
result for Coxeter groups and splittings over virtually abelian subgroups.
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Lemma 20. Suppose that .W; S/ is a finitely generated Coxeter system and ƒ is a
graph of groups decomposition of W with finite edge groups. Suppose that a vertex
group of ƒ splits nontrivially as A �C B over a finite C . Then there is a special
subgroup or a subgroup of a finite special subgroup of W contained in a conjugate
of B which is not also contained in a conjugate of A (and then also with A and B
reversed).

Proof. Letƒ0 be the graph of groups resulting from replacing the vertex whose group
splits by the graph corresponding to A �C B . Let ‰ be the corresponding visual
graph of groups decomposition of W and let T be the Bass–Serre tree for ‰. The
intersection of any conjugates of A and B , or the intersection of distinct conjugates
ofB , is contained in a conjugate of an edge group and so is finite. If an infinite vertex
group of ‰ lies in a conjugate of B , it cannot also lie in a conjugate of A, so suppose
that no infinite vertex group of ‰ lies in a conjugate of B . From the action of B
on T we get a reduced graph of groups decomposition of B with vertex and edge
groups contained in conjugates of vertex and edge groups of ‰, in particular all of
the edge groups are finite. If any vertex group B1 of this decomposition is infinite, it
is contained in a conjugate of an infinite vertex group of‰ which is in turn contained
in a conjugate of a vertex group ofƒ0 other than B . But B1 would then be an infinite
subgroup of B and contained in a conjugate of another vertex group of ƒ0, which
is impossible. Instead, the vertex groups of the decomposition of B are finite and
conjugate to subgroups of finite special subgroups. Replace B in ƒ0 by this graph of
groups decomposition and collapse the edge C if it equals one of the vertex groups
of the decomposition of B to get a new graph of groups decomposition ƒ00 where A
is adjacent to a vertex group B1 of the decomposition of B by an edge labeled C1,
a proper subgroup of B1 (either with C1 D C , if no collapse happens, or with C1

an edge group of the decomposition of B). Now B1 is finite, contained in B , but
B1 cannot also be contained in a conjugate of A, since otherwise B1 would stabilize
a path from a coset of A to B1 in the Bass–Serre tree for ƒ00 and hence stabilize a
coset of C1, i.e., would be contained in a conjugate of C1 which has fewer elements
than B1.

As mentioned earlier, our next theorem follows from Dunwoody’s accessibility
theorem, and the proof of this theorem leads to a general approach to more complex
accessibility and JSJ results.

Theorem 21. Finitely generated Coxeter groups are accessible.

Proof. Suppose that .W; S/ is a finitely generated Coxeter system. There are only
finitely many special subgroups of W and finitely many subgroups of finite special
subgroups. For G a subgroup of W let n.G/ be the number of special subgroups
or subgroups of finite special subgroups which are contained in any conjugate of G
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(which includes the trivial group), so 1 	 n.G/ 	 n.W /. For ƒ a finite graph of
groups decomposition of W let c.ƒ/ D .cn.W /; : : : ; c2; c1/ where ci is the count of
vertex groups G of ƒ with n.G/ D i . Let < order these n.W /-tuples lexicograph-
ically, a well ordering of n.W /-tuples of nonnegative integers. If ƒ reduces to ƒ0
then clearly no ci increases and some ci must decrease. If a vertex group G of ƒ
splits as A �C B to produce a new ƒ0, then every subgroup of a conjugate of A or B
is a subgroup of a conjugate of G, but, by the last lemma, some special subgroup or
subgroup of a finite special subgroup is contained in a conjugate of B , and so of G,
but not in a conjugate of A. Hence n.A/ < n.G/, and similarly n.B/ < n.G/, and
so c.ƒ0/ < c.ƒ/ since cn.G/ decreases by 1 in going fromƒ toƒ0 and the only other
components that change are cn.A/ and cn.B/ which are later in the tuples. Since < is
a well ordering, there can be no infinite sequence of graph of group decompositions
ofW resulting from successive reductions or splittings over finite subgroups, i.e.,W
is accessible.

6. Maximal FA subgroups of Coxeter groups

Let .W; S/ be a finitely generated Coxeter system. A set of vertices of a complete
subgraph of �.W; S/ is called a simplex of .W; S/ and the subgroup ofW generated
by a simplex of .W; S/ is called a simplex group of .W; S/. If V is a vertex of a graph
� , define lk.V /, the link of V , to be the set of all vertices V 0 of � such that V 0 is
connected to V by an edge. Define st.V /, the star of V , to be lk.V / [ fV g.

A group G is called FA if for every tree on which G acts, the set of fixed points
of G in the tree is non-empty. In �6 of [17], we find basic results on FA groups. In
particular we find:

Proposition 22. If G is denumerable then G is FA iff G is finitely generated, no
quotient of G is isomorphic to the infinite cyclic group and G does not split non-
trivially as an amalgamated product.

Proposition 23. If an FA group G is a subgroup of A �C B then G is a subgroup of
a conjugate of A or B .

Proposition 24. Every simplex subgroup of a Coxeter system is FA.

We have then the following result.

Lemma 25. Suppose that .W; S/ is a Coxeter system andG is an FA subgroup of W,
then G is a subgroup of a conjugate of a simplex subgroup of .W; S/.
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Proof. If the presentation diagram �.W; S/ is not complete, choose vertices s and t
that are not related. Then lk.s/ separates s and t in �.W; S/. Hence

W Š hst.s/i �hlk.s/i hS � fsgi
By Proposition 23,G is a subgroup of a conjugate of hst.s/i or hS�fsgi. Continue

splitting until the conclusion is realized.

The following theorem is the main result of this section. Our proof is based in
group actions on trees. A more combinatorial approach works equally well.

Theorem 26. The maximal FA subgroups of a Coxeter group W are precisely the
conjugates of the special subgroups whose diagrams are the maximal complete sub-
diagrams of a (and equivalently any) presentation diagram for W .

Proof. We have that simplex subgroups are FA and any FA subgroup is contained in
a conjugate of a simplex subgroup. If A is a maximal simplex subgroup contained in
wBw�1 for B another simplex subgroup, then by Corollary 13, A D B and w 2 B .

By a result of Tits [3], up to conjugacy there are only finitely many elements of
order 2 in a finitely generated Coxeter group. Hence we have:

Proposition 27. Suppose that .W; S/ is a finitely generated Coxeter system. Then the
subgroup of automorphisms a of W such that a.s/ is a conjugate of s for all s 2 S
is of finite index in Aut.W /. In particular, there exists an integer n.W; S/ such that
for any a 2 Aut.W /, an.s/ is conjugate to s for all s 2 S .

Next we prove:

Theorem 28. Suppose that .W; S/ is a finitely generated Coxeter system with maximal
simplices �1; : : : ; �m. If C is the subgroup of all c 2 Aut.W / such that for i 2
f1; : : : ; mg there exists a wi;c 2 W with c.x/ D wi;cxw

�1
i;c when x 2 h�i i (i.e., c

restricted to h�i i is conjugation by a wi;c 2 W depending only on c and �i ), then C
has finite index in Aut.W /.

Proof. If a 2 Aut.W / and �1; : : : ; �m are the maximal simplicies of .W; S/, then
a.h�i i/ D wi;ah�˛.i/iw�1

i;a for some ˛.i/ 2 f1; : : : ; mg, by Theorem 26. Observe
that �˛.j / 6D �˛.k/ for k 6D j , since otherwise

a�1.w�1
k;a/h�kia�1.wk;a/ � a�1.h�˛.k/i/

D a�1.h�˛.j /i/ � a�1.w�1
j;a/h�j ia�1.wj;a/
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implies that �k D �j by Corollary 13. Hence ˛ is a permutation of .1; : : : ; m/. If
b 2 Aut.W / and b.h�j i/ D wj;bh�ˇ.j /iw�1

j;b
then

ba.h�i i/ D b.wi;ah�˛.i/iw�1
i;a / D b.wi;a/w˛.i/;bh�ˇ.˛.i//iw�1

˛.i/;bb.wi;a/
�1:

Hence the map of Aut.W / into the group of permutations of .1; : : : ; m/ defined by
a 7! ˛ is a homomorphism. If K is the kernel of this homomorphism, then K has
finite index in Aut.W / and for all a 2 K, a.h�i i/ D wi;ah�i iw�1

i;a for all i .
For each a 2 K and for each i , we see that a.x/ D wi;a�i .x/w

�1
i;a for all x 2

h�i i, where �i 2 Aut.h�i i/. The map qi W K ! Aut.h�i i/ defined by a 7! �i is a
homomorphism. The main result of [12] shows that I.h�i i/, the inner automorphism
group of h�i i, has finite index in Aut.h�i i/. Hence C � Tm

iD1 q
�1
i .I.h�i i// is a

subgroup of finite index in Aut.W /.

Example 5. The group

ha; b; c; d W a2 D � � � D d2 D 1; .ab/2; .ac/2; .cd/2; .bc/3; .ad/3i:
has a subgroup generated by an edge in the Coxeter diagram that is conjugate to that
of a disjoint edge.

The element bc conjugates ha; bi to ha; ci and the element ad conjugates ha; ci to
hc; d i. Hence the subgroup ha; bi is conjugate to hc; d i. Neither group is a maximal
FA subgroup.

7. Visually stable subgroups

If .W; S/ is a finitely generated Coxeter system and A is a special subgroup for this
system, thenA is W-visually stable (orW -VS ) if for any other Coxeter system .W; S 0/
for W , A is conjugate to a special subgroup for .W; S 0/.

Knowledge of the visually stable subgroups of a Coxeter group is of interest in
several important questions related to the isomorphism problem for Coxeter groups.
In particular, this knowledge is useful for “rigidity” questions (see for example [7]
and [4] and the references therein) and questions about when reflections are preserved
when passing between different Coxeter systems for W (see [1]).

Maximal finite special subgroups are visually stable (see [11]). Clearly W and
the trivial group are W -VS . The following elementary observation is useful.

Lemma 29. If H is W -VS and K is H -VS , then K is W -VS .

The next result is a direct corollary to Theorem 26.

Corollary 30. The maximal FA subgroups of a finitely generated Coxeter group W
are W -VS .
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Suppose that .W; S/ is finitely generated. By Dunwoody’s accessibility theorem,
W decomposes as a graph of groupsƒ, with finite edge groups such that each vertex
group is finite or 1-ended. Suppose that ‰ is a reduced visual decomposition for
.W; S/ derived from ƒ as given in Theorem 1. Any finite or 1-ended subgroup of W
is a subgroup of a conjugate of a vertex group of ‰ and so by Theorem 19 there is a
bijection 	 from the vertices of ƒ to the vertices of ‰ such that ƒ.V / is conjugate
to ‰.	.V //. Note that the vertex groups of ‰ are finite or maximal 1-ended special
subgroups of .W; S/. In particular we have

Proposition 31. The maximal 1-ended special subgroups of .W; S/ are W -VS .

The results of [14] and [15] imply that vertex groups of the JSJ decompositions
and strong accessibility splittings considered there are VS . One example of these
implications is the following

Proposition 32. If ‰ is a visual and irreducible with respect to 2-ended splittings
decomposition for a 1-ended Coxeter system .W; S/ and V is a vertex of ‰, then
‰.V / is W -VS .

An interesting situation occurs during repeated applications of Lemma 29, Propo-
sition 31 and Proposition 32 to an arbitrary finitely generated Coxeter system. Suppose
that H1 is a maximal 1-ended special subgroup for .W; S/, and H2 is a maximal 1-
ended special subgroup of a vertex group of ‰, a visual irreducible with respect to
2-ended splittings decomposition of H1. Then H2 may split over a 2-ended group
(just not in a way compatible with ‰). The vertex groups of an irreducible with re-
spect to 2-ended splittings decomposition of H2 are W -VS . Continuing on this line
we have

Theorem 33. Suppose that .W; S/ is a finitely generated Coxeter system, andA � S

is maximal in the set of all A0 � S such that the induced diagram for A0 is not
separated by a subdiagram for a finite or 2-ended special subgroup for .W; S/. Then
hAi is W -VS .

8. A final application

Theorem 1 and Corollary 16 can be applied to “visually” characterize virtually free
Coxeter groups.

Theorem 34. The following conditions are equivalent for any Coxeter system .W; S/
with presentation diagram �.W; S/:

(1) W is virtually free;
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(2) W has a visual graph of groups decomposition in which each vertex group is
finite;

(3) a) every complete subgraph of �.W; S/ is that of a finite Coxeter group, and

b) no induced subgraph of �.W; S/ is a circuit of more than three vertices.

Proof. Virtually free groups cannot contain 1-ended subgroups. So by Dunwoody’s
accessibility theorem, every finitely generated virtually free group is the fundamental
group of a graph of groups with finite vertex groups. By Theorem 1, (1) implies
(2). Conversely, any graph of groups with finite vertex groups has fundamental group
which is virtually free, and (2) implies (1).

Again, as W contains no 1-ended subgroup, Corollary 16 can be applied to show
(2) implies (3a). A circuit of more than three vertices determines a 1-ended group.

Now suppose condition (3) holds in �.W; S/. If �.W; S/ were a complete graph
then by a) it would be finite. Instead take x and y in �.W; S/ not connected by an
edge. Consider a component K of the complement of st.x/ in �.W; S/. Let S1 be
the vertices in st.x/ adjacent to a vertex in K. We claim that any two vertices a and
b in S1 are connected by an edge in �.W; S/, otherwise a minimal length path from
a to b in S1 [K meeting S1 only at its endpoints, together with the edges from b to x
and x to a would be a circuit in �.W; S/ of more than three vertices contradicting b).
Thus S1 is a complete graph, and so generates a finite subgroupC . Since S1 separates
�.W; S/, W splits as a nontrivial visual amalgamated product A �C B . Inductively,
we obtain that (3) implies (2).
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