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Most actions on regular trees are almost free

Miklós Abért and Yair Glasner

Abstract. Let T be a d -regular tree (d � 3) and A D Aut.T / its automorphism group. Let
� be the group generated by n independent Haar-random elements of A. We show that almost
surely, every nontrivial element of � has finitely many fixed points on T .
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1. Introduction

Let T be a k-regular tree (k � 3) and let Aut.T / be its automorphism group. The
topology of pointwise convergence turns Aut.T / into a locally compact, totally dis-
connected, unimodular topological group. Let � be a Haar measure on Aut.T /

normalized so that vertex stabilizers have measure 1. Since Aut.T / is not compact,
� is an infinite measure.

Definition. A subgroup � � Aut.T / acts almost freely if every � 2 � (� ¤ 1) has
finitely many fixed points on T .

Free actions on T are completely understood (see Serre’s book [Ser80]). As the
following theorem and its corollary show, almost free actions have a much richer
structure.

Theorem (Main theorem). Let � < Aut.T / be a countable subgroup acting almost
freely. Then for �-almost all elements � 2 Aut.T /; the group h�; �i acts almost
freely and is isomorphic to the free product � � Z.

Corollary. Let a1; : : : ; an be independent Haar-random elements of Aut.T / and let
� D ha1; : : : ; ani. Then almost surely, � is a free group of rank n that acts almost
freely on T .
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In a previous paper [AG07], the authors proved that for n � 2, the closure of �

almost surely satisfies the following trichotomy. It is either:

(1) discrete in Aut.T /;

(2) or fixes a point or a geometric edge of T ;

(3) or has index at most 2 in Aut.T /.

We also showed that all possibilities happen on a set of infinite Haar measure. In
another paper of the first author and Virág [AV05], it is proved that random subgroups
as above acting on a rooted tree act almost freely almost surely. This effectively
proves Theorem 2 when case (2) of the trichotomy holds, but for the general result a
new approach is needed.

Like most random results, the corollary to the main theorem can be used to show
the existence of structures that are hard to construct directly. In particular, the corollary
to the main theorem and part (3) of the trichotomy result together imply that there
exists a finitely generated dense free subgroup of Aut.T / that acts almost freely on T .

Remark. In proving the trichotomy above, an essential tool is to understand how
n-tuples behave under the action of the so-called Nielsen transformations. In a forth-
coming paper [Gla], the second author shows that this action is actually ergodic on
the two components appearing in case (3) of the dichotomy: the component where
� is dense and the one where it is dense in a subgroup of index two. Since acting
almost freely is a measurable property of n-tuples, to obtain the main corollary in
case (3), it would be enough to show that it holds on a set of positive measure on
both components. However, this does not seem to be any easier than proving the full
statement.

The article is organized as follows. After introducing some notation and prelim-
inary results in Section 2, we prove the main Theorem in Section 3. The notation is
such that when we refer to, say, Definition 3.3 we mean the definition in Section 3.3
(in particular there will be only one such).

Acknowledgement. The work on this paper was made possible by the support of
a joint BSF grant 2006222, for which we are thankful. The second author was also
partially supported by ISF grant number 888/07.

2. Notation and preliminaries

2.1. Trees. Let T be a d -regular tree with automorphism group A D Aut.T /. The set
of vertices will also be denoted by T , the set of directed edges by ET . Each edge e 2
ET admits an inverse edge Ne as well as an origin vertex oe 2 T and a terminal vertex
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te 2 T . These maps are required to satisfy the obvious compatibility restrictions;
namely NNe D e, t . Ne/ D oe and o. Ne/ D te. Geometric edges will be represented by
unordered pairs Œe� ´ fe; Neg. The star of a vertex Star.v/ D fe 2 ET j oe D vg is the

set of edges originating at this vertex. Fix a base vertex O 2 T and let A0
defD AO < A

be the compact group fixing O. The standard graph metric on T will be denoted by
d W T � T ! T . We will denote the unique geodesic path connecting two vertices
x; y 2 T by Œx; y�.

2.2. The boundary of the tree. A geodesic ray is an embedding of the half line
� W RC ! T into the tree. We say that two such rays �; �0 are equivalent if there
exists a number b such that �.n/ D �0.n C b/ for all n > N for some N 2 N.
We define the boundary of the tree @T to be the set of all equivalence classes of
geodesic rays. There is a natural topology on xT ´ T [ @T making it into a compact
space and the action of Aut.T / on T extends in a continuous way to an action on
this compactification. For every two points x; y 2 xT there is a unique geodesic path
connecting these two points, which can be finite, half infinite, or bi-infinite depending
on whether none, one or both are boundary points.

2.3. Dynamics of tree automorphisms. We recall here briefly the classification of
automorphisms of T according to their dynamical properties, referring the readers
to Serre’s book [Ser80] for the complete details. For every � 2 Aut.T / we define
ı.�/ D minx2T fd.x; �x/g and X.�/ D fx 2 T j d.x; �x/ D ı.�/g. There are
three possibilities that arise:

(1) � fixes a vertex of the tree. In this case ı.�/ D 0 and X.�/ is the tree of fixed
points for �. Such a � is called elliptic.

(2) � does not fix a vertex, but it inverts a geometric edge. In this case ı.�/ D 0 and
X.�/ is one point – the midpoint of the edge inverted by �. Such a � is called
an inversion.

(3) � does not fix any point in the geometric realization of the tree. Such an element
is called hyperbolic. In this case � fixes exactly two points on the boundary and
X.�/ is the bi-infinite geodesic line connecting these two points, referred to as
the axis of �. A hyperbolic element acts as a translation of length ı.�/ on its
axis. For any other point y 2 T we have d.y; �y/ D ı.�/ C 2d.y; X.�//.

Using this classification, it is easy to see that a group � < Aut.T / acts almost
freely on T if and only if all elliptic elements of � do not fix any point on the boundary
of T . Indeed hyperbolic elements and inversions do not fix any vertex, and an elliptic
element fixes infinitely many vertices if and only if it fixes a point on the boundary,
by Köning’s lemma. Note that � acts freely if and only if it contains only hyperbolic
elements.
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2.4. Orientation. An orientation on T is a choice of one directed edge e from every
pair of opposite directed edges fe; Neg. We will fix one orientation, namely that of all
edges facing away from the base vertex, throughout this paper:

ECT
defD fe 2 ET j d.O; te/ > d.O; oe/g � ET :

2.5. Legal coloring. Let † D f0; 1; : : : ; d � 1g. We will refer to this set as our set
of colors. A legal coloring is a map c W ET ! † such that for every vertex v 2 T , the
restricted map

cjStar.v/ W Star.v/ ! †

is a bijection. Note that we do not specify any requirement concerning the color of
opposite edges. We will fix a legal coloring c throughout this paper and require that it
be compatible with the orientation in the sense that all the negative edges are colored
zero

ce D 0 for all e 2 ET n ECT:

2.6. The first congruence map. Let Sym.†/ be the symmetric group on the set of
colors and Sym.†/0 the stabilizer of the first color “0”. The legal coloring gives rise
to a first congruence map associating to each automorphism a 2 A0 the permutation
that it induces on Star.O/, namely

x� W A0 ! Sym.†/;

a 7! Na defD c B a B .cjStar.O//
�1:

2.7. Color preserving automorphisms. Given any vertex v 2 T , denote by .T; v/

a copy of the tree T , but considered as a rooted tree with a base vertex at v. In
particular S D .T; O/ is a specific model copy of this rooted tree. This tree has
d.d � 1/l vertices in the l-th level and its automorphism group is isomorphic to the
compact group A0 D Aut.T; O/.

Given any two vertices v; u 2 T there is a unique automorphism a.u;v/ 2 A

satisfying the following conditions:

� ua.u;v/ D v,

� a.u;v/ preserves the colors of “outgoing edges”, namely

cea.u;v/ D ce for all e 2 ET such that d.u; te/ > d.u; oe/:

The elements a.u;v/ do not form a group, but they satisfy the condition

a.u;v/a.v;w/ D a.u;w/ (1)

and in particular a.v;u/ D a�1
.u;v/

.
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2.8. Shadows. For every edge e 2 ECT set ShadowŒe�
defD fv 2 T j te 2 Œoe; v�g.

We will think of ShadowŒe� as a .d � 1/-ary rooted tree, with its base vertex at te. If
e; f 2 ECT are any two positively oriented edges, then

ShadowŒe�a.te;tf / D ShadowŒf �:

This useful property is due to the fact the edge coloring is compatible with the orien-
tation.

2.9. The local permutation cocycle

Definition. The permutation cocycle is defined to be the map

� W A � T ! A0;

.a; v/ 7! a.O;v/ B a B a.va;O/:

The local permutation cocycle is defined as the composition of the permutation cocycle
with the first congruence map. Explicitly this map assumes the form

N� W A � T ! Sym.†/;

.a; v/ 7! .cjStar v/�1 B ajStar v B c:

Remark (The cocycle identity). It is follows directly from eqn. (1) that both � and N�
satisfy the cocycle identity:

�.ab; v/ D �.a; v/�.b; va/;

N�.ab; v/ D N�.a; v/ N�.b; va/:

2.10. The cocycle and Haar measure. Since the collection of elements fa.O;v/gv2T

form a complete set of coset representatives for the group A0 D AO ; there is a bijection

ˆ W A ! T � A0;

a 7! .Oa; �.a; O//:
(2)

The inverse of ˆ is given by ˆ�1.v; b/ D b B a.O;v/. A useful feature of this map is
its compatibility with Haar measure,

ˆ�.HaarA/ D .Counting measure on T / � HaarA0
:

We can decompose further, encoding the information about an element of A0

according to its local permutation cocycle:

‰ W A0 ! Sym.†/ � Q
O¤v2T

Sym.†/0;

b 7! Q
v2T

N�.b; v/:



204 M. Abért and Y. Glasner

In the above equation, the requirement that the orientation ECT be preserved by A0

is encoded by the fact that the local permutation cocycle fixes the color zero at all but
the base vertex. This feature, which will greatly simplify our notation, is again due
to our choice of a legal coloring that is compatible with the orientation.

This map too is compatible with Haar measure in the sense that

‰�.HaarA0
/ D HaarSym.†/ � Q

O¤v2T

HaarSym.†/0
: (3)

Combining the Equations (2) and (3) above we obtain

Proposition. The map

A ! T � Sym.†/ � Q
O¤v2T

Sym.†/0;

b 7! �
Ob;

Q
v2T

N�.b; v/
�
;

is a measure-preserving continuous bijection, where the measure on the right is the
product of the counting measure on T and the product measure on the compact group.

The fact that all the above maps are measure-preserving can be directly verified,
using the cocycle identity, by checking that the measures on the right are invariant.

2.11. Subtrees. An analysis similar to the one carried out in the last section holds
also for subtrees. We will demonstrate this in a specific case that would be of interest
for us, namely the shadow of a positively oriented edge.

Let e 2 ECT be a positive edge, Y D ShadowŒe� its shadow considered as a
rooted tree. The automorphism group Aut.Y / is naturally a subquotient of A, namely
there is a short exact sequence:

1 ! AY ! AfY g ! Aut.Y / ! 1;

where AfY g stands for the setwise stabilizer and AY stands for the pointwise stabilizer
of the tree Y . This short exact sequence splits 	 W Aut.Y / ,! A, so that Aut.Y / can
also be realized as a subgroup of A.

	.a/.x/ D
´

a.x/; x 2 ShadowŒe�;

x; x 62 ShadowŒe�:
(4)

The tree Y inherits a legal coloring from the ambient tree T . Since Y is the
shadow of a positive edge, the orientation inherited from T coincides with the natural
orientation on Y . We may therefore ignore all negative edges, and consider the
coloring as a map c W ECY ! f1; 2; : : : ; d � 1g. The local permutation cocycle is
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defined in exactly the same way as it is defined for the ambient tree N� W Aut.Y / �
Y ! Sym.†/0, where we have identified here Sym.† n f0g/ Š Sym.†/0. Just
like in the ambient tree, the local permutation cocycle completely characterizes the
automorphism and is compatible with Haar measure

Aut.Y / ��!� Q
x2Y

Sym.†/0;

a 7�! Q
x2Y

N�.a; x/;

HaarY 7�! Q
x2Y

HaarSym.†/0
:

The use the same notation for the cocycle on both trees is justified by the following
claim whose verification is trivial.

Claim. Let a; b 2 AfY g be two elements such that ajY D bjY . Then

N�T .a; x/ D N�T .b; x/ D N�Y .ajY ; x/ for all x 2 Y;

where N�T , N�Y represent the local permutation cocycle with respect to the trees T and
Y , respectively.

The following lemma, that follows directly from the above observations, will be
very useful for us in the proof of the main theorem.

Lemma. Let Y � T be the shadow of a positive edge as above, a 2 AfY g a (not
necessarily Haar) random group element. Then ajY admits the distribution of a
HaarY -random element, if and only if

f N�.a; x/ j x 2 Y g
are mutually independent, HaarSym.†/0

-random elements of Sym.†/0.

3. Proof of the main theorem

We suggest that the readers refer to Figure 1 for an illustration of some of the geometric
ideas.

3.1. Fixing a word w 2 � � Z. Assume that � < A is a countable group that acts
almost freely on the tree. Consider the free product � � Z, denoting the generator
of the cyclic group by t . For a 2 A there is a canonical evaluation homomorphism
which is the identity on � and sends t to a:

ˆa W � � Z ! h�; ai;
w 7! w.a/:
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As � � Z is countable our main theorem will follow by showing that for every fixed

1 ¤ w 2 � � Z and for almost every a 2 A; the element w.a/
defD ˆa.w/ fixes but

finitely many vertices. We will henceforth fix such an element id ¤ w 2 � � Z.

3.2. Conditioning that w.a/O D O. If w.a/ is hyperbolic or an inversion, then it
fixes no vertex on the tree, therefore we may assume that w.a/ is elliptic. Since Haar
measure is invariant under conjugation, we may assume, without loss of generality,
that the fixed vertex is O. Therefore, setting 
 D fa 2 A j w.a/ 2 A0g, it would
suffice to prove that

HaarA.fa 2 
 j w.a/ has infinitely many fixed pointsg/ D 0: (5)

3.3. A canonical form for w. Elements of � � Z admit a unique canonical normal
form. For our fixed element w this takes the form

w D w0w1w2w3 : : : wn;

where
� each wi is either t or t�1 or an element of � ,
� wi , wiC1 are never both elements of � ,
� wiwiC1 are never of the form t t�1 or t�1t .

Definition. A word w is called cyclicly reduced if it is not a conjugate of another
word whose canonical form is shorter.

Since the number of fixed vertices in the tree is a conjugacy invariant, it will be
enough to prove eqn. 5 for cyclicly reduced words. We will therefore assume, without
loss of generality, that our fixed word w is cyclicly reduced.

3.4. Traces. Given a vertex y 2 T , define functions1 of the variable a 2 
 as
follows: y0.a/ D y, y1.a/ D y0.a/w0.a/, y2.a/ D y1.a/w1.a/, : : : , ynC1.a/ D
yn.a/wn.a/ D yw.a/ 2 T . Similarly if e 2 ET is an edge, define functions
e0.a/ D e, e1.a/ D e0.a/w0.a/, : : : , enC1.a/ D ew.a/. All of these are func-
tions of a, but we will usually suppress a from the notation. The sequence of vertices
.y0; y1; y2; : : : ; ynC1/ is called the trace of y under w. A trace of a vertex or of an
edge T D fl0; l1; : : : ; ln; lnC1g is called simple if all its elements are distinct, except
for a possible equality l0 D lnC1.

Denote by C
defD ConvfO0; O1; : : : ; OnC1 D Og the convex hull of the trace of

the base vertex. Note that C is a function assigning to every a 2 
 a finite subtree
C.a/ � T .

1One should think of these functions as “random variables”. We insist on calling them functions just to
emphasize the fact that they are defined on a measure space which possibly has infinite measure; reserving
the term random variable only for functions defined on a probability space.
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3.5. Main induction. The claim will be proved by induction on n – the length of the
expansion of w in canonical form. The point is that, since by induction all subwords
of w have but finitely many fixed points, w itself will admit but finitely many vertices
whose trace is not simple. The origin of this geometric idea comes from the proof of
[AV05], Corollary 4.2; but the geometry here is more complicated due to the existence
of hyperbolic elements.

3.6. Basis of induction. Let n D 0. When id ¤ w D w0 is an element of � , it has
only finitely many fixed points by assumption. Otherwise w 2 ft; t�1g. In this case

 D A0 and a is a HaarA0

-random element. The fact that a almost surely has finitely
many fixed points in this case is proved by Abért and Virág. We quote their theorem
here because we will use it a few times in the proof.

Proposition (Abért–Virág [AV05], Corollary 2.7). Let S be a spherically homoge-
neous locally finite rooted tree. Then a HaarS -random element a 2 Aut.S/ almost
surely has but finitely many fixed points.

Proof. For a complete proof see the above reference. In short, what they show is that
the tree of fixed points assumes the distribution of a critical Galton–Watson tree and
therefore is almost surely finite.

3.7. The sphere of radius M

Lemma. There exists a measurable function M W 
 ! N [ f1g, which is finite
almost everywhere, satisfying the following properties:

(1) For every y 2 T with d.y; O/ � M.a/ the trace .y0; y1; : : : ynC1/ is simple.

(2) For every edge e 2 ECT with d.O; e/ � M all the edges in the trace
.e0; e1; e2 : : : ; enC1/ � ECT are positively oriented.

Proof. The first statement follows directly from the induction hypothesis: choose M

large enough so that the ball BM .O/ contains all the fixed vertices for all the (cyclic)
subwords of w of the form wiwiC1 : : : wiCk mod .nC1/ with 0 � k < n. Note that,
by the assumption that w is cyclicly reduced, all the cyclic subwords of w are still in
canonical form and the induction hypothesis does hold for them.

It is automatically true that ŒOi ; tei �
wi D ŒOiC1; teiC1� and if M is large enough

that M D d.O; te/ D d.Oi ; tei / > diam C C 1, then ei , which is the last edge of
ŒOi ; tei �, will have to face away from the convex set C and hence away from O.

Remark. Let e be an edge such that d.O; e/ > M . It follows directly from
Lemma 3.7 above that for 0 � i ¤ j � n the corresponding shadows satisfy:

� Either ShadowŒei � \ ShadowŒej � D ;,
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� or ShadowŒei � ¤ ShadowŒej �, up to possibly exchanging i and j .

Let S D S.a/ D fe 2 ECT j d.O; oe/ D M g be the sphere of edges of radius
M around O, where M D M.a/ is the number appearing in Lemma 3.7. Since

T n � S
e2S ShadowŒe�

� D BM .O/

is a finite set, the proof will be concluded by establishing that for almost every a 2 


and for every e 2 S the automorphism w D w.a/ has only finitely many fixed points
inside ShadowŒe�.

Let us fix such an edge e 2 S . The easy case is when e ¤ ew . In this case there
are two options, either ShadowŒe� and ShadowŒew � D ShadowŒe�w are completely
disjoint or one of them properly contains the other. In any case there are no fixed
vertices in ShadowŒe�. In what follows it will be assumed that our fixed edge e has a
closed trace, namely that ew D e, as in Figure 1.

3.8. Conditioning on the trace. Let us define


T D fa 2 
 j .e0; e1; e2; : : : enC1 D en/ D T g;
where T is some fixed trace. Since there are only countably many possibilities for the
trace of e, we can prove the proposition for each trace T separately. The advantage of
this approach is that 
T has finite Haar measure. Let us fix a trace T and re-normalize
Haar measure so that 
T becomes a probability space. From now on, for simplicity

of notation, denote ShadowŒi �
defD ShadowŒei �. Note that since the trace T is simple

these, shadows will satisfy the conditions of Remark 3.7, namely they will be either
disjoint, or properly contained in each other.

3.9. A special edge in the trace. From all the edges ei 2 T in our trace we will fix
one eI I 0 � I � n that satisfies the following conditions:

� Either wI D t or wI�1 D t�1.

� ShadowŒI � is deeper into the tree than any other edge in the trace satisfying
the above condition. Namely if 0 � i � n, i ¤ I , is another index such that
wi D t or such that wi�1 D t�1 then either ShadowŒi � \ ShadowŒI � D ; or
ShadowŒI � ¤ ShadowŒi �.

In Figure 1 for example, if w2 D t or if w1 D t�1 it is possible to choose I D 2, but
it would be illegal to choose I D 0 because ShadowŒ2� ¦ ShadowŒ0�.

3.10. Looking for a Haar random element in the rooted tree. Since ew D e,

w.a/ fixes the .d � 1/-regular rooted tree Y
defD ShadowŒe�, w.a/jY is a random
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w1

e2

w0

e1

w2

w3

e3

e D e0

0

M

Figure 1. A typical arrangement of the shadow trees of the edges in T .

automorphism of Y . If we can show that w.a/jY admits the distribution of a HaarY -
uniform element, Proposition 3.6 will imply that Y almost surely contains but finitely
many fixed points, and our theorem will follow.

By Lemma 2.11 wjY is HaarY -random if the random variables

f N�.w; x/ 2 Sym.†/0 j x 2 Y g
are mutually independent and uniformly distributed. To check this latter condition,
it is enough to order the vertices in Y and verify that each one is independent of the
joint distribution of all the previous ones

Y D fte D x0; x1; x2; x3; : : : g:
We will require that this ordering be consistent with the distance from the root; i.e.,
that d.te; xj / � d.te; xj C1/ for all j . In particular this implies that x0 D te.

Remark. To summarize all the reductions so far, the main theorem will be proved if
we show that N�.w.a/; xj / is a uniform element of Sym.†/0 and independent of the
joint distribution of f N�.w.a/; xk/ j 0 � k < j g

3.11. Decomposing the cocycle. Let us expand N�.w; xj / using the cocycle condition

N�.w; xj / D N�.w0; x
j
0 / N�.w1; x

j
1 / : : : N�.wn; xj

n/; (6)

where .x
j
0 ; x

j
1 ; : : : ; x

j
n/ is the trace of xj .



210 M. Abért and Y. Glasner

3.12. Singling out certain values of the cocycle. Recall the two possibilities oc-
curring in the definition of the special index I , either wI D t or w�1

I�1 D t . Let
us single out certain special values of the cocycle, the definition of which will vary
slightly according to these two possibilities:

N„j defD
´ N�.wI ; x

j
I / D N�.a; x

j
I / if wI D t;

N�.wI�1; x
j
I�1/ D N�.a�1; x

j
I�1/ if wI�1 D t�1:

We claim that, as a ranges over the probability space 
T ,

(1) N„j are uniform elements of Sym.†/0,

(2) N„j is independent of the mutual distribution of the other random variables in
the expansion (6):

f N�.wi ; xk
i / j 0 � i � n; k � j g n f N„j g:

3.13. The statistical distribution of the cocycle values

Definition. Let „ W 
T ! ‡ be a random variable into a probability space ‡ , H a
group and H Õ� ‡ a measure-preserving action. We say that H acts on the random
variable „ via the given action if there exists a measure-preserving action H Õ� 
T

such that the two actions are intertwined by „ in the sense that „.� � a/ D � � „.a/

for all � 2 H , a 2 
T . Such an action will be denoted by H Õ� „:

Claims (1), (2) of Section 3.12 above concerning the statistics of the random
variables f N�.wi ; xk

i / j 0 � i � n; k � j g will be proved using certain actions

Sym.†/0 Õ�j N�.wi ; xk
i / of the finite group Sym.†/0 on these random variables.

The action �j will be transitive on N„j while fixing the other random variables. In
fact the former action will be the left regular action of Sym.†/0 on itself in the case
where wI D t and the right regular action of the same group in case wI�1 D t�1.

The existence of such actions will be established in the following two sections. For
now, assume that such actions have already been constructed and let us demonstrate
how properties (1), (2) above follow. Assume that wI D t , the treatment of the other
case wI�1 D t�1 being almost identical. For the first property write

P f N„j D �g D P f N„j .� 0 �j a/ D � 0�g D P f N„j D � 0 �j �g:
This concludes the proof of (1) because, since the action is transitive, � 0 �j � is
an arbitrary element of Sym.†/0. For the second property, let f .a/ be any random
variable, which depends on a only as a function of the values of the random variables
f N�.wi ; xk

i / j 0 � i � n; 0 � k � j g n f N„j g (excluding N„j ). Then for every
measurable set B and every � 0 2 Sym.†/0,

P f.f 2 B/ and . N„j D �/g D P f.f .� 0 �j a/ 2 B/ and . N„j .� 0 �j a// D �g
D P f.f 2 B/ and . N„j D .� 0/�1 �j �/g;
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which gives the desired independence result, again because .� 0/�1 �j � is an arbitrary
element of Sym.†/0.

3.14. Construction of the actions Sym.†/0 Õ�j N�.wi ; xk
i

/. Given an index
j 2 N consider the embedding �j W Sym.†/0 ! Aut.T /, where the automorphism
�j � 2 Aut.T / is defined via the identification described by Proposition 2.10:

�j �O D O and N�.�j �; x/ D
´

� if x D x
j
I ;

id otherwise:

In particular, setting f j to be the unique positively oriented edge such that tf j D
x

j
I and Z ´ ShadowŒf j �, the automorphism �j � fixes T n Z pointwise. This

embedding, composed with the left regular action of Aut.T / on itself, gives rise to a
measure-preserving action Sym.†/0 Õ�j


T ,

� �j a
defD .�j �/a:

To verify this we only need to show that the subset 
T is invariant. Given a 2 
T ,
� 2 Sym.†/0, let us verify that � �j a D .�j �/a 2 
T . Explicitly this means that
T D T 0 where

T 0 defD Trace.�j a/ D ˚
e D e0

0; e0
1 D .e0

0/w0.��j a/; e0
2 D .e0

1/w1.��j a/; : : :
�
:

By induction on i let us assume that ei D e0
i and show that e0

iC1 D eiC1. If wi 2 �

the induction step is obvious because wi is a constant independent of its argument.
If wi D t then, by choice of the index I , either i D I and e0

i D ei D eI or ei 62 Z.

In both cases e
�j �
i D ei so that e0

iC1 D e
.�j �/a
i D ea

i D eiC1. Finally if wi D t�1

then, by choice of the index I , either i C 1 D I and eiC1 D eI or eiC1 62 Z. In any

case e0
iC1 D e

a�1.�j �/�1

i D e
.�j �/�1

iC1 D eiC1. Hence by induction e0
i D ei for all

0 � i � n. Thus T 0 D T and � �j a 2 
T .

3.15. The effect of the actions on the random variables. Fixing an index j 2 N,
we will now show that the action �j has the following effect on the random variables
N�.wi ; xk

i /:

N�.wi .�
j� a/; xk

i / D

8̂<
:̂

� N�.wi .a/; xk
i / if k D j; i D I and wI D t;

N�.wi .a/; xk
i /��1 if k D j; i D I � 1 and w�1

I�1 D t;

N�.wi .a/; xk
i / otherwise.

Let us denote by D D fxk
i j 0 � k � j; 0 � i � n; wk

i D t or wk
i�1 D t�1g.

Substituting into wi the appropriate values t , t�1 or a letter of � whenever necessary,
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we see that in order to verify the above statement it is enough check that “for every
xk

i 2 D such that N�.� �j a; xk
i / ¤ N�.a; xk

i / we actually have I D i and k D j ”.
Such a vertex xk

i 2 D must be contained in ShadowŒf j � � ShadowŒI �, since �j �

fixes T n ShadowŒf j � pointwise. Since xk
i 2 ShadowŒI � then xk

i D xk0

I for some

k0 2 N. Furthermore k0 � j because xk
i D xk0

I 2 ShadowŒf j � (with tf j D x
j
I )

and the ordering of the vertices is compatible with the distance from the root.
Let us first demonstrate that i D I . If this were not the case then ei ¤ eI because,

by the induction hypothesis, the trace of e is simple. These shadows cannot be disjoint
because xk

i D xk0

I 2 ShadowŒi � \ ShadowŒI � ¤ ;, so it follows from the definition
of the special index I that ShadowŒI � ¤ ShadowŒi � and hence

leveli .x
k
i / > levelI .xk

i / D levelI .xk0

I / D leveli .x
k0

i /:

Here leveli denotes the level with respect to the rooted tree ShadowŒi �. But, because
k < j � k0, this is a contradiction to the fact that the ordering of the vertices x0

i , x1
i ,

x2
i , : : : in the rooted tree ShadowŒi � is compatible with the depth. Therefore i D I

and using this it follows that xk
i D xk0

I D xk0

i , which implies that k D k0. But
k � j � k0 so that j D k, as desired.

Remark. Note that the argument above shows also that the vertex x
j
I appears in D

exactly once.

3.16. The Haar measure trick. Consider the cocycle eqn. 6, and write it in the form

N�.w; xj / D Aj N„j Bj ;

where Aj ; Bj are exactly what they should be in order to make this work:

Aj defD
´ N�.w0; x

j
0 / N�.w1; x

j
1 / : : : N�.wI�1; x

j
I�1/ if wI D t;

N�.w0; x
j
0 / N�.w1; x

j
1 / : : : N�.wI�2; x

j
I�2/ if wI�1 D t�1;

Bj defD
´ N�.wIC1; x

j
IC1/ N�.wIC2; x

j
IC2/ : : : N�.wn; x

j
n/ if wI D t;

N�.wI ; x
j
I / N�.wIC1; x

j
IC1/ : : : N�.wn; x

j
n/ if wI�1 D t�1:

Summarizing the information about the statistical distribution of the random vari-
ables N�.wi ; xk

i / we conclude that

(1) N„j are HaarSym.†/0
-random elements,

(2) N„j is independent of the mutual distribution of all the random variables
fAk; N„k; Bk j 0 � k � j g excluding N„j .

These properties are inherited by the random variables N�.w; xj /:

(1) N�.w; xj / is a HaarSym.†/0
-random element.
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(2) N�.w; xj / is independent of the mutual distribution of all the random variables
f N�.w; xk/ j 0 � k � j g.

For if we condition on the values of the random variables fAk; Bk j 0 � k � j g,
then the two properties above follow directly from the corresponding properties for
the factors. In particular, the uniform distribution for N�.w; xj / follows from the
same property for N„j by the invariance of HaarSym.†/0

-measure under left and right
multiplication. Now, integrating over all possible values of Ak , Bk , the desired
properties of the random variables N�.w; xj / follow unconditionally.

This completes the proof of the theorem, as observed in Remark 3.10. Indeed it
now follows that

wjShadowŒe� 2 Aut.ShadowŒe�/

admits the distribution of a HaarAut.ShadowŒe�/-random element because the random
variables N�.w; xj / form the local permutation data corresponding to this rooted tree
automorphism. Hence, by Abért and Virág’s Proposition 3.6, the element wjShadowŒe�

has but finitely many fixed vertices in ShadowŒe�. But this is true for every w-fixed
edge e 2 S in the sphere of radius M ; so that w admits only finitely many fixed
vertices in the whole tree.
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