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Abstract. We study the subgroup structure of discrete groups that share cohomological proper-
ties which resemble non-negative curvature. Examples include all Gromov hyperbolic groups.

We provide strong restrictions on the possible s-normal subgroups of a ‘negatively curved’
group. Another result says that the image of a group, which is boundedly generated by a finite
set of amenable subgroups, in a group, which admits a proper quasi-1-cocycle into the regular
representation, has to be amenable. These results extend to a certain class of randomorphisms
in the sense of Monod.
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1. Introduction

This note is a companion to a paper by J. Peterson and the author [PT07], to which
we refer for background and notation. Cohomology and bounded cohomology of an
infinite group with coefficients in the left regular representation have proved to be
useful tools to understand properties of the group. For the study of `2-homology and
cohomology we refer to the book by W. Lück [Lüc02], for information about bounded
cohomology the standard reference is the book by N. Monod [Mon01].

Non-vanishing of the second bounded cohomology with coefficients in the left
regular representation is the key condition in the work of Burger–Monod [BM02],
Monod–Shalom [MS04], [MS06] and Mineyev–Monod–Shalom [MMS04] on rigid-
ity theory. In [PT07], Peterson and the author studied non-vanishing of the first
cohomology with coefficients in the left regular representation and derived results
about the subgroup structure. Now we link first `2-cohomology and second bounded
cohomology via an exact sequence ofLG-modules, whereLG denotes the group von
Neumann algebra. Moreover, we extend the methods of [PT07] to apply to a wider
class of groups including all non-elementary Gromov hyperbolic groups. The key
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notion here is the notion of quasi-1-cocycle, which appeared already in several places
including Monod’s foundational work [Mon01].

The organization of the article is as follows. Section 1 is the introduction. After
studying quasi-1-cocycles and the first quasi-cohomology group in connection with
Lück’s dimension theory in Section 1 and 2, we introduce a class of groups Dreg

closely related to the class Creg, which was studied in [MS04], [MS06]. Examples of
groups in the class Dreg include non-elementary Gromov hyperbolic groups and all
groups with a positive first `2-Betti number. In the sequel we prove two main results.
In Section 3 we prove that an s-normal subgroup of a group in Dreg is again in Dreg

using methods from [PT07]. In Section 4 we show that all group homomorphisms
from a group, which is boundedly generated by a finite set of amenable subgroups, to
a group, which admits a proper quasi-1-cocycle into an infinite sum of the left regular
representation, have amenable image. If one adds property (T) to the assumptions
on the source group, the image has to be finite. Since the combination of bounded
generation and property (T) applies to many lattices in higher rank Lie groups, this
gives a new viewpoint towards some well-known results in the field.

In the last section, we study the class of groups which admit such proper quasi-
1-cocycles and show that it is closed under formation of free products and a notion
of `2-orbit equivalence. The methods imply that the results of Section 4 extend to
certain randomorphisms in the sense of Monod; see [Mon06].

Throughout the article, G will be a discrete countable group, `2G denotes the
Hilbert space with basis G endowed with the left regular representation.

Definition 1.1. Let � W G ! U.H�/ be a unitary representation of G. A map
c W G ! H� is called a quasi-1-cocycle if the map

G �G 3 .g; h/ ! �.g/c.h/ � c.gh/C c.g/ 2 H�

is uniformly bounded onG�G. We denote the vector space of quasi-1-cocycles with
values inH� byQZ1.G;H�/. The subspace of uniformly bounded quasi-1-cocycles
is denoted by QB1.G;H�/.

In analogy to the definition of H 1.G;H�/, we define the following:

Definition 1.2. The first quasi-cohomology of G with coefficients in the unitary
G-representation H� is defined by

QH 1.G;H�/ D QZ1.G;H�/=QB
1.G;H�/:

The relevance ofQH 1.G;H�/ becomes obvious in the next theorem, which links
low degree cohomology and second bounded cohomology with coefficients in H� .
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Theorem 1.3. LetG be a discrete countable group andH� be a unitaryG-represen-
tation. There exists an exact sequence as follows:

0 ! H 1.G;H�/ ! QH 1.G;H�/
ı�! H 2

b .G;H�/ ! H 2.G;H�/:

Here ı denotes the Hochschild coboundary, which maps a 1-chain to a 2-cocycle.

Proof. The proof is contained in [Mon01]. However, since this sequence is relevant
for our work, we give a short argument. Clearly, the first non-trivial map is injective,
since the trivial 1-cocycles are precisely the bounded ones, by the Bruhat–Tits fixed
point lemma. The kernel of ı is given precisely by those 1-chains which are cycles and
define elements inH 1.G;H�/. It remains to prove exactness atH 2

b
.G;H�/. This is

obvious since the elements which are mapped to zero are precisely those which are
coboundaries of 1-chains. Thus, these are precisely those which are in the image of
the coboundary map ı.

It is clear that homological algebra can fit every comparison map between additive
functors, which is defined on a suitable chain level, into a long exact sequence. Hence
the above exact sequence can be extended to the right; see [Mon01]. Since we will
not need this extension we do not dwell on this.

2. Second bounded cohomology and dimension theory

The following theorem was first observed for finitely generated groups by Burger–
Monod in [BM02] as a consequence of the new approach to bounded cohomology
developed by N. Monod in [Mon01]. Later the result was extended to arbitrary
countable groups by V. Kaimanovich [Kai03]. Note that we do not state the most
general form of the result but rather a version which we can readily apply to the
problems we study.

Theorem 2.1. Let G be a discrete countable group and H� be a separable dual
Banach G-module. There exists a standard probability space S with a Borel
G-action, leaving the probability measure quasi-invariant, such that there exists a
natural isometric isomorphism

H 2
b .G;H�/ Š ZL1

alt .S
3;H�/

G :

Here ZL1
alt .S

3;H�/ denotes the space of alternating 3-cocycles with values in H� .

The naturality of the isomorphism immediately implies that, in caseH� carries an
additional module structure over a ring R (which commutes with the G-action), the
isomorphism is an isomorphism of R-modules. One highly non-trivial consequence
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of the preceding theorem (from our point of view) is that H 2
b
.G;H�/ can be viewed

as a subspace of L1.S3;H�/ for some standard probability space S . The following
corollary makes use of this fact.

In the sequel, we are freely using Lück’s dimension function for LG-modules,
which is defined for all modules over the group von Neumann algebraLG. For details
about its definition see [Lüc02]. Note that `2G carries a commuting rightLG-module
structure, which induces LG-module structures on all its (quasi-)cohomological in-
variants.

Definition 2.2. An LG-module M is called rank separated if for every non-zero
element � 2 M

Œ�� ´ 1 � supf�.p/ j p2 D p� D p 2 LG; �p D 0g > 0:

For more information on the notion of rank, we refer to [Tho07]. The only con-
sequence we need is the following lemma.

Lemma 2.3. An LG-module is rank separated if and only if every non-zero LG-
submodule has a positive dimension.

Corollary 2.4. Let G be a discrete countable group and K � G a subgroup. Then
H 2

b
.K; `2G/ is a rank separated LG-module. In particular, every non-zero element

generates a sub-module of positive dimension.

Proof. If we apply Theorem 2.1 to K, it follows that H 2
b
.K; `2G/ � L1.S3; `2G/.

Let � 2 H 2
b
.K; `2G/ and assume that there exists a sequence of projections p 2 LG

such that pn " 1 and �pn D 0 for all n 2 N. If �pn D 0, then for a co-null set
Xn � S3, we have �.x/pn D 0 for all x 2 Xn. Clearly, the intersection

T
n2N Xn is

still co-null and hence �.x/ D 0 for almost all x 2 S3. This implies that � D 0.

Corollary 2.5. Let G be a discrete countable group and K � G a subgroup. The
LG-module

QH 1.K; `2G/

is rank separated if and only if K is non-amenable.

Proof. In view of the exact sequence

0 ! H 1.K; `2G/ ! QH 1.K; `2G/ ! H 2
b .K; `

2G/;

theLG-moduleQH 1.K; `2G/ is rank separated if bothH 1.K; `2G/ andH 2
b
.K; `2G/

are rank separated. Hence, the proof is finished by Corollary 2.4 and Hulanicki’s The-
orem; see also the proof of Corollary 2:4 in [PT07].
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Following [MS06], we denote by Creg the class of groups for which

H 2
b .G; `

2G/ ¤ 0:

This class was studied extensively in [MS06], and strong results about rigidity and
superrigidity were obtained. An a priori slightly different class is of importance in
the results we obtain.

Definition 2.6. We denote by Dreg the class of groups with

dimLG QH
1.G; `2G/ ¤ 0:

Remark 2.7. Neither of the possible inclusions between Creg and Dreg is known to
hold. Any positive result in this direction would be very interesting. Both of the
inclusions seem to be likely. Indeed, it is very likely that dimLG QH

1.G; `2G/ and
dimLG H

2
b
.G; `2G/ can only take the values 0 or 1. At least if G is of type FP2,

this would imply G 2 Creg () G 2 Dreg. Moreover, it would give the implication

ˇ
.2/
1 .G/ 2 .0;1/ H) G 2 Creg;

which seems natural. However, we did not succeed in proving the required restriction
on the values of the dimension.

Both Creg and Dreg consist of groups which all remember some features of nega-
tively curved metric spaces. It is therefore permissible to call these groups ‘negatively
curved’. We will see this more directly in the examples below.

Lemma 2.8. Let G be a countable discrete group. If the group G is in Dreg, then
either the first `2-Betti number of G or the second bounded cohomology of G with
coefficients in `2G does not vanish. The converse holds if ˇ.2/

2 .G/ D 0.

Proof. This is immediate from Theorem 1.3 and Corollary 2.4.

A large class of groups in Dreg is provided by a result from [MMS04], Theorem 3.

Theorem 2.9. All non-elementary hyperbolic groups are in Dreg.

Proof. In [MMS04], it was shown that all hyperbolic groups have non-vanishing
QH 1.G; `2G/. In fact, it was shown that there exists some element inQH 1.G; `2G/

which even maps non-trivially to H 2
b
.G; `2G/. It follows from Corollary 2.5 that all

non-elementary (i.e. non-amenable) hyperbolic groups are in Dreg.

In [MS04], the class Creg is studied more extensively. One result we want to
mention is the following:
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Theorem 2.10 (Corollary 7:6 in [MS04]). Let G be a discrete group acting non-
elementarily and properly by isometries on some proper CAT.�1/ space. Then

H 2
b .G; `

2G/ ¤ 0:

Note that in view of Lemma 2.8, the preceding theorem provides examples of
groups in Dreg as soon as the second `2-Betti number of the corresponding group
vanishes.

3. Non-existence of infinite s-normal subgroups

The following notion of normality was studied by Peterson and the author [PT07] in
connection with a non-vanishing first `2-Betti number. The definition of s-normality
goes back to the seminal work of S. Popa, who studied similar definitions in [Pop06].

Definition 3.1. Let G be a discrete countable group. An infinite subgroupK � G is
said to be s-normal if gKg�1 \K is infinite for all g 2 G.

Example 3.2. The inclusions

GLn.Z/ � GLn.Q/ and Z D hai � ha; b j bapb�1 D aqi D BSp;q

are inclusions of s-normal subgroups.

Given Banach space valued functions f; g W X ! B , defined on a setX , we write
f � g if the function

X 3 x 7! kf .x/ � g.x/k 2 R

is uniformly bounded on X .
A unitaryG-representation is said to be strongly mixing if hg�; �i ! 0 forg ! 1.

The following lemma is the key observation which leads to our first main results.

Lemma 3.3. Let G be a discrete countable group and let K � G be an infinite s-
normal subgroup. LetH� be a strongly mixing unitary representation of the groupG.
The restriction map

resG
K W QH 1.G;H�/ ! QH 1.K;H�/

is injective.
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Proof. Let c W G ! H� be a quasi-1-cocycle, which is bounded on K. Therefore
c.k/ � 0 as a function of k 2 K. We compute

c.gkg�1/ � .1 � gkg�1/c.g/C gc.k/ � .1 � gkg�1/c.g/;

as a function of .g; k/ 2 G �K. For k 2 g�1Kg \K, we obtain that

k.1 � gkg�1/c.g/k � kc.gkg�1/k C C 0 � C

for some constants C 0; C � 0. Since K � G is s-normal, the subgroup g�1Kg \K
is infinite. Now, since H� is strongly mixing, we conclude that

2kc.g/k2 D lim
k!1

k.1 � gkg�1/c.g/k2 � C 2:

Hence g ! kc.g/k is uniformly bounded by 2�1=2C . This proves the claim.

The following theorem is a non-trivial consequence about the subgroup structure
for groups in the class Dreg. It is our first main result.

Theorem 3.4. LetG be a discrete countable group in Dreg and letK � G be an infinite
s-normal subgroup. The group K satisfies at least one of the following properties:

(i) the first `2-Betti number of K does not vanish, or

(ii) the second bounded cohomology of K with coefficients in `2K does not vanish.

In particular, K can neither be amenable nor a product of infinite groups.

Proof. By Lemma 3.3, the restriction map

QH 1.G; `2G/ ! QH 1.K; `2G/

is injective. One easily sees that QH 1.K; `2K/ � QH 1.K; `2G/ generates a
rank-denseLG-submodule inQH 1.K; `2G/. HenceQH 1.K; `2K/ cannot be zero-
dimensional and we see thatK is in Dreg, and the claim follows from Lemma 2.8. We
conclude that K can neither be amenable or a product of infinite groups, since both
classes of groups have vanishing first `2-Betti number (see [Lüc02]) and vanishing
second bounded cohomology with coefficients in the left regular representation; see
[MS06].

Remark 3.5. The result easily extends to ws-normal subgroups; see [PT07].

4. Bounded generation and finiteness theorems

It has been observed by many people that boundedly generated groups and non-
elementary hyperbolic groups are opposite extremes in geometric group theory. In
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this section we support this view by showing that there are essentially no group ho-
momorphisms from a boundedly generated with property (T) to a Gromov hyperbolic
group. Later, in Section 5.2, we can even extend this result to a suitable class of
randomorphisms in the sense of Monod; see [Mon06].

A group G is said to be boundedly generated by a subset X if there exists k 2 N
such that each element of G is a product of less than k elements from X [X�1. We
say that G is boundedly generated by a finite set of subgroups fGi ; i 2 I g if G is
boundedly generated by the set

S
i2I Gi .

Lemma 4.1. Let G be a non-amenable group which is boundedly generated by a
finite set of amenable subgroups. Then the group QH 1.G; `2G˚1/ is zero.

Proof. We view `2G˚1 Š `2.G � Z/ and consider it as an L.G � Z/-module.
In view of Corollary 2.5, we can assume that QH 1.G; `2G˚1/ is rank separated.
Hence, given an arbitrary element

c 2 QH 1.G; `2.G � Z//;

in order to show that it is zero, we have to provide a sequence of projections
pn 2 L.G � Z/ such that pn " 1 and cpn D 0 for all n 2 N.

Let G be boundedly generated by amenable subgroups G1; : : : ; Gn. The restric-
tion of a quasi-1-cocycle onto Gi is almost bounded, i.e., there exists a projection
qi 2 L.G � Z/ of trace �.qi / � 1 � "=n such that cqi is bounded on Gi . Setting
p D inf1�i�n qi , we obtain a projection p with trace �.p/ � 1 � " such that cp is
bounded onGi for all 1 � i � n. The cocycle identity and bounded generation imply
that cp is bounded on the whole of G. Hence cp D 0 2 QH 1.G; `2.G � Z//. The
sequence pn is constructed by choosing " < 1=n. This proves the claim.

As we have seen, non-elementary Gromov hyperbolic groups are in Dreg, but more
is true:

Lemma 4.2. Let G be a Gromov hyperbolic group. There exists a proper quasi-1-
cocycle on G with values in `2G˚1.

Proof. This is an immediate consequence of the proof of Theorem 7:13 in [MS04],
which builds on Mineyev’s work on equivariant bicombings; see Theorem 10

in [Min01].

The following theorem is the second main result of this article. A cocycle version
of it will be presented in the last section as Corollary 5.12.

Theorem 4.3. LetG be a group which admits a proper quasi-1-cocycle into `2G˚1,
and let H be a group which is boundedly generated by a finite set of amenable
subgroups. Then every group homomorphism � W H ! G has amenable image.
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Proof. We may assume that � is injective, since any quotient of a group which is
boundedly generated by amenable groups is of the same kind. If the quotient is non-
amenable, then the restriction of the proper quasi-1-cocycle coming from Lemma 4.2
has to be bounded on H by Lemma 4.1. Indeed, `2H˚1 Š `2G˚1 as unitary H -
representations using a coset decomposition and hence Lemma 4.1 applies. However,
the quasi-1-cocycle is unbounded on any infinite subset. This is a contradiction since
H follows to be finite and hence amenable.

Remark 4.4. The result applies in particular to the case whenG is Gromov hyperbolic.
In this case we can even conclude that the image is finite or virtually cyclic, since all
amenable subgroups of a Gromov hyperbolic group are finite or virtually cyclic.

From the above theorem we can derive the following corollary.

Corollary 4.5. LetG be a group which admits a proper quasi-1-cocycle into `2G˚1,
and let H be a group which

(i) is boundedly generated by a finite set of amenable subgroups, and

(ii) has property (T) of Kazhdan–Margulis.

Then every group homomorphism � W H ! G has finite image.

Proof. Any quotient of a property (T) group has also property (T). However, the image
of � is amenable by Theorem 4.3 and the only amenable groups with property (T) are
finite. This finishes the proof.

Remark 4.6. Note that results like the preceding corollary are well known if one
assumes the target to be a-T-menable, whereas here: many Gromov hyperbolic groups
have property (T). Examples of groups H which satisfy assumptions (i) and (ii) of
Corollary 4.5 include SLn.Z/ for n � 3 and many other lattices in higher rank semi-
simple Lie groups; see [Tav90]. Conjecturally, all irreducible, non-cocompact lattices
in higher rank Lie groups share these properties. In [BM02], it was shown that higher
rank lattices in certain algebraic groups over local fields have property (TT) of Monod;
see Theorem 13:4:1 in [Mon01] and the definitions therein. A similar proof can be
carried out in this situation.

Note that the groups which satisfy the conditions (i) and (ii) do not always satisfy
property (TT) of Monod. Indeed, in an appendix of [Man06] Monod–Rémy construct
boundedly generated groups (in fact lattices in higher rank semi-simple Lie groups)
with property (T) which fail to have property (QFA) of Manning (see [Man06]) and
property (TT) of Monod. Hence, the plain quasification of property (T), which would
yield some version of property (TT) of Monod (and should of course also imply
property (QFA) by an extension of Watatani’s proof, see [Wat82]) is too strong to
hold for all lattices in higher rank semi-simple Lie group. Hence, the combination
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of conditions (i) and (ii) is perhaps the appropriate set of conditions that encodes the
way in which higher rank lattices satisfy a strong form of property (T).

Remark 4.7. The mechanism of properness vs. boundedness works in the con-
text of ordinary first cohomology with coefficients in `p-spaces as well. In fact,
G. Yu [Yu05] provided proper `p-cocycles for hyperbolic groups, whereas Bader–
Furman–Gelander–Monod [BFGM07] studied the necessary strengthening of prop-
erty (T) for higher rank lattices. A combination of Theorem B in [BFGM07] andYu’s
result allows to conclude Corollary 4.5 for lattices in certain algebraic groups (see the
assumption of Theorem B in [BFGM07]). However, even for this special case, our
approach seems more elementary, just using the notion of quasi-1-cocycle.

5. Groups with proper quasi-1-cocycles

5.1. Subgroups and free products. Every quasi-1-cocycle is close to one for which

c.g�1/ D �g�1c.g/

holds on the nose. Indeed, Qc.g/ D 1
2
.c.g/ � gc.g�1// is anti-symmetric and only

bounded distance away from c. Note also that Qc is proper if and only c is proper. We
call the quasi-1-cocycles which satisfy this additional property anti-symmetric.

Lemma 5.1. Let G, H be discrete countable groups and let H� be a unitary repre-
sentation of G�H . Moreover, let c1 W G ! H� and c2 W H ! H� be anti-symmetric
quasi-1-cocycles. Then there is a natural anti-symmetric quasi-1-cocycle

c D .c1 � c2/ W G �H ! H�

which extends c1 and c2.

Proof. Let w D g1h1g2h2 : : : gnhn be a reduced element in G �H (i.e., only g1 or
hn might be trivial). We define

c.w/ D c1.g1/C g1c2.h2/C g1h1c1.g2/C 	 	 	 C g1h1 : : : gnc2.hn/:

Clearly, c is anti-symmetric, i.e., c.w�1/ D �w�1c.w/ just by construction and
using that c1 and c2 were anti-symmetric. Let us now check that it is indeed a quasi-
1-cocycle. Let w1 and w2 be elements of G � H and assume that w1 D w0

1r and
w2 D r�1w0

2, such that the products w0
1w

0
2, w0

1r and r�1w0
2 are reduced in the sense

that the block length drops at most by one.
Then the identities

c.w0
1w

0
2/ D w0

1c.w
0
2/C c.w0

1/;

c.w0
1r/ D w0

1c.r/C c.w0
1/;

c.r�1w0
2/ D r�1c.w0

2/C c.r�1/
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hold up to a uniformly bounded error. Hence, using the three equations above, we
can compute

c.w1w2/ D c.w0
1w

0
2/

D w0
1c.w

0
2/C c.w0

1/

D w0
1rc.r

�1w0
2/ � w0

1rc.r
�1/C c.w0

1/

D w0
1rc.r

�1w0
2/ � w0

1rc.r
�1/C c.w0

1r
0/ � w0

1c.r/

D w1c.w2/C c.w2/;

again up to uniformly bounded error. In the last step we used that c is anti-symmetric.
In fact, the construction seems to fail at this point if one does not assume c1 and c2

to be anti-symmetric, since we cannot assure that c.r�1/ C r�1c.r/ is uniformly
bounded. This finishes the proof.

Remark 5.2. Note that obviously the class of c in the first quasi-cohomology does
depend heavily on c1 and c2 and not only on their classes in the first quasi-cohomology.

Theorem 5.3. The class of groups G which admit proper quasi-1-cocycles c W G !
`2G˚1 is closed under subgroups and free products.

Proof. The assertion concerning subgroups is obvious since we can just restrict the
cocycles and decompose the regular representation according to the cosets.

Let us now turn to the question about free products. Given proper quasi-1-cocycles
c1 W G ! `2G˚1 and c2 W H ! `2H˚1 we can regard both as taking values in
`2.G �H/˚1 and can assume that they are anti-symmetric. Moreover, since the set
of values of c1 and c2 in a bounded region is finite, we can add a bounded 1-cocycle
and assume that the minimum of g 7! kc1.g/k2 and h 7! kc2.h/k is non-zero on
G n feg resp. H n feg.

We claim that the quasi-1-cocycle .c1 �0/˚ .0�c2/ W G �H ! `2.G �H/˚1 is
proper. Here we are using the notation of Lemma 5.1. Let w D g1h1g2h2 : : : gnhn

be a reduced element in G �H . Clearly,

k.c1 � 0/.w/k2 D
nP

iD1

kc.gi /k2:

Hence, using the properness of c1, the set of gi ’s that can appear with a given bound
on k.c1 �0/.w/k is a finite subset ofG. Moreover, we find an upper bound on i since
the minimum of g ! kc.g/k is assumed to be non-zero. The same is true for the set
of hi ’s. Hence, the set of elements w 2 G �H for which k.c1 � 0/˚ .0 � c2/.w/k
is less than a constant is finite. This finishes the proof.
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5.2. Orbit equivalence. In this section we study the stability of the class of groups
which admit proper quasi-1-cocycles in a multiple of the regular representation under
orbit equivalence. For the notion of orbit equivalence, which goes back to work of
Dye (see [Dye59], [Dye63]), we refer to Gaboriau’s nice survey [Gab05] and the
references therein; see also [Gro93]. Although it remains open whether the class is
closed under this relation, we are able to prove that it is closed under a slightly more
restricted relation, which we call `2-orbit equivalence. (To our knowledge, the idea
of `2-orbit equivalence goes back to unpublished work of R. Sauer.) Unfortunately,
we cannot say much more about the class of groups which are `2-orbit equivalent
to Gromov hyperbolic groups. This is subject of future work. Literally everything
extends to the suitable notions of measure equivalence, but for sake of simplicity we
restrict to orbit equivalence.

Let G be a discrete countable group. Let .X;�/ be a standard probability space
and G Õ .X;�/ be a measure preserving (m.p.) action by Borel automorphisms.
We denote byX ÌG the inverse semigroup of partial isomorphisms which are imple-
mented by the action (not just the equivalence relation). Two partial isomorphisms �,
 which are induced by the action are said to be orthogonal if dom.�/\dom. / D ¿
and ran.�/ \ ran. / D ¿. They are said to be disjoint if they are disjoint as sub-
sets of the set of morphisms of the associated discrete measured groupoid. Clearly,
orthogonal partial isomorphisms are disjoint. All equalities which concern subsets of
a probability space or partial maps between probability spaces are supposed to hold
almost everywhere, i.e., up to a set of measure zero, as usual.

Every partial isomorphism can be written as an infinite orthogonal sum

� D
1L

iD1

�Ai
gi

for some Borel subsetsAi and gi 2 G. The sub-inverse-semigroup of those for which
there is a finite sum as above is denoted by X Ìfin G. If G is finitely generated and
l W G ! N is a word length function onG, there is yet another sub-inverse-semigroup,
which is formed by those infinite sums for which

1P
iD1

�.Ai /l.gi /
2 < 1:

We denote it by X Ì2 G. Since l.gh/2 � .l.g/ C l.h//2 � 2.l.g/2 C l.h/2/, it is
obvious that X Ì2 G is closed under composition. Note also that the summability
does not depend on the set of generators we choose to the define the length function.

Definition 5.4. Let .X;�/ be a standard probability space and G;H Õ .X;�/

essentially free m.p. actions by Borel automorphisms. The data is said to induce an
orbit-equivalence if the orbits of the two actions agree up to measure zero. In this
case injective natural homomorphisms of inverse semigroups,

�1 W G ! X ÌH and �2 W H ! X ÌG;
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are defined. We say that an orbit equivalence is an `2-orbit-equivalence if the image
of �1 (resp. �2) is contained in X Ì2 H (resp. X Ì2 G).

Remark 5.5. If the images are contained even inXÌfinG (resp.XÌfinH ), one usually
speaks about a uniform orbit equivalence. Using Gromov’s dynamical criterion, this
also implies that G is quasi-isometric to H . Thus `2-orbit equivalence is somehow
halfway between quasi-isometry and usual orbit equivalence.

Definition 5.6. Let H� be a unitary G-representation which carries a compatible
normal action of L1.X/. A 1-cocycle of X Ì2 G with values in H� is defined to be
a map c W X Ì2 G ! H� such that

(1) c.�/ 2 	ran.�/H� ,
(2) c is compatible with infinite orthogonal decompositions of the domain,
(3) c. �/ D  c.�/C c. / if dom. / D ran.�/.

A 1-cocycle is said to be inner if c.�/ D .� � 	ran.�//� for some vector � 2 H� .
In analogy to the group case we call a map c W X Ì2 G ! H� satisfying (1) and (2)
from above a quasi-1-cocycle if k c.�/� c. �/C c. /k is uniformly bounded for
 , � with dom. / D ran.�/.

Definition 5.7. A quasi-1-cocycle c W X Ì2G ! H� is said to be proper if for every
sequence of disjoint partial isomorphisms�i 2 XÌGwith lim inf i!1 �.dom.�i // >

0, we have that limi!1 kc.�i /k D 1.

Lemma 5.8. LetG be a discrete countable group. Let .X;�/be a standard probability
space and G Õ .X;�/ be an m.p. action by Borel automorphisms. Let c W G ! H�

be a quasi-1-cocycle. There is a natural extension of the (quasi-)1-cocycle c to a
(quasi-)1-cocycle Qc W X Ì2 G ! L2.X;�/˝2 H� where G acts diagonally.

Proof. We define

Qc� 1L
iD1

	Ai
gi

� D
1P

iD1

	Ai
˝ c.gi /:

Since kc.g/k � C 	 l.g/ for some constant C > 0, the right-hand side is well defined
in L2.X;�/˝2 H� . It can be easily checked that all relations are satisfied.

Lemma 5.9. If the quasi-1-cocycle c W G ! H� is proper, then so is the quasi-1-
cocycle Qc W X Ì2 G ! L2.X;�/˝2 H� , which we obtain from the construction in
Lemma 5.8.

Proof. Let�i be a sequence of disjoint partial isomorphisms with lim inf i!1 �.�i / �
" > 0. In order to derive a contradiction, we can assume that k Qc.�i /k < C for some
constant C and all i 2 N.
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Hence, for every i 2 N, at least half of �i is supported at group elements g 2 G
with kc.g/k � 2C=". Indeed, if not, then k Qc.�i /k � 2�1=2" 	 2C=" > C . Since this
holds for all i 2 N and the support of g 2 G has measure 1, the set of g 2 G with
kc.g/k � 2C=" has to be infinite. This is a contradiction since we assume c to be
proper.

Theorem 5.10. The class of groups which admit a proper quasi-1-cocycle with values
in an infinite sum of the regular representation is closed under `2-orbit equivalence.

Proof. LetG andH be `2-orbit equivalent groups. We show that ifG admits a proper
quasi-1-cocycle with values in `2G˚1, thenH admits a proper quasi-1-cocycle with
values in `2H˚1.

Let c W G ! `2G˚1 be a proper quasi-1-cocycle. Lemma 5.8 says that we
can extend c to a quasi-1-cocycle which is defined on X Ì2 G and takes values in
L2.X;�/˝2 `

2G˚1. Note that the homomorphism � W H ! X Ì2G is compatible
in the sense that the obvious actions are intertwined with the natural isomorphism

L2.X;�/˝2 `
2G˚1 Š L2.X;�/˝2 `

2H˚1:

We conclude by noting that the restriction QcjH W H ! L2.X;�/ ˝2 `
2H˚1 is

proper by Lemma 5.9, and that L2.X;�/ ˝2 `
2H˚1 Š `2H˚1 as unitary H -

representations.

Remark 5.11. A similar proof applies to the case whereH merely embeds intoXÌ2G

(i.e., is not necessarily part of an orbit equivalence). This type of sub-object is called
random subgroup in [Mon06]. However, note that an arbitrary random subgroup does
not necessarily satisfy the `2-condition we impose. We could speak of `2-random
subgroups in case it satisfies the `2-condition.

The following strengthening of Theorem 4.3 is also an immediate consequence of
Theorem 5.10.

Corollary 5.12. Let G be a group which is boundedly generated by a finite set of
amenable subgroups and let H be a Gromov hyperbolic group. Let H Õ .X;�/ be
an m.p. action by Borel automorphisms on a standard probability space. Any homo-
morphism of inverse semi-groups � W G ! X Ì2 H has amenable image. Moreover,
if G has property (T) of Kazhdan, then the image of � has finite measure.

Remark 5.13. In terms of randomorphisms, the last corollary says that any `2-
randomorphism fromG toH has finite image; in the sense that the relevantG-invariant
measure � on the polish space ŒG;H�

�
(see [Mon06] for details) is a.e. supported on

maps with finite image such thatZ
ŒG;H��

#�.G/ d�.�/ < 1:
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