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Abstract. For relatively hyperbolic groups, we investigate conditions guaranteeing that the
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1. Introduction

Relatively hyperbolic groups, originally introduced by M. Gromov [18], have received
a great deal of attention by group theorists after foundational works by B. Farb [16] and
B. H. Bowditch [9] in the late 1990s. This class of groups includes many interesting
subclasses – for instance, limit groups which are an essential part of the theory of
algebraic geometry over free groups [2], [14], and geometrically finite Kleinian groups
which contain fundamental groups of finite-volume hyperbolic manifolds.

If G is a countable group and H is a collection of subgroups of G, the notion of
relative hyperbolicity for the pair .G; H / has been defined by different authors [9],
[15], [16], [18], [19], [20], [25], [30]. All these definitions are equivalent when the
group G and the subgroups in H are finitely generated [15], [18], [25], [29], [30].
A precise definition is provided in the next section. When a pair .G; H / satisfies
the relative hyperbolicity condition we say that the group G is hyperbolic relative
to H , and when the collection H is fixed we just say that the group G is relatively
hyperbolic.

For a group G hyperbolic relative to a collection of subgroups H , the quasiconvex
subgroups are the natural subgroups to study when considering a relatively hyperbolic
group as a geometric object. Different notions of relative quasiconvexity for subgroups
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of G were introduced by F. Dahmani [14] and D. Osin [25], and recently C. Hruska
has proved the equivalence of these definitions [20].

We are interested in the following problem.

Problem 1. Let G be a relatively hyperbolic group, and suppose that Q and R are
quasiconvex subgroups of G. Consider the natural homomorphism

� W Q �Q\R R ! G;

which has image the subgroup hQ [ Ri.
(1) (Algebraic structure) When is � injective?
(2) (Geometric structure) When is the image of � a quasiconvex subgroup?

1.1. Main results. Let G be a group generated by a finite set X and hyperbolic
relative to a collection of subgroups H . A subgroup of G is called parabolic if it can
be conjugated into one of the subgroups in H . For an element g 2 G, jgjX denotes
its distance from the identity element in the word metric induced by X on G.

Theorem 1.1 (Quasiconvex–parabolic amalgamation). For any relatively quasicon-
vex subgroup Q and any maximal parabolic subgroup P of G, there is a constant
C D C.Q; P / � 0 with the following property. If R is a subgroup of P such that

(1) Q \ P � R, and

(2) jgjX � C for any g 2 R n Q,

then the natural homomorphism

Q �Q\R R ! G

is injective with image a relatively quasiconvex subgroup.
Moreover, every parabolic subgroup of hQ [ Ri < G is either conjugate to a

subgroup of Q or a subgroup of R in hQ [ Ri.
Theorem 1.2 (Quasiconvex–quasiconvex amalgamation). For any pair of relatively
quasiconvex subgroups Q1 and Q2, and any maximal parabolic subgroup P such
that R D Q1 \ P D Q2 \ P , there is a constant C D C.Q1; Q2; P / � 0 with the
following property.
If h 2 P is such that

(1) hRh�1 D R, and

(2) jgjX � C for any g 2 RhR,

then the natural homomorphism

Q1 �R hQ2h�1 ! G

is injective and its image is a relatively quasiconvex subgroup.
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Moreover, every parabolic subgroup of hQ1 [ hQ2h�1i < G is either conjugate
to a subgroup of Q1 or hQ2h�1 in hQ1 [ hQ2h�1i.
1.2. History and motivation. This work is motivated by known combination the-
orems for quasiconvex subgroups of word hyperbolic groups. In [18], M. Gromov
stated that in a torsion-free word hyperbolic group any infinite index quasiconvex sub-
group is a free factor of a larger quasiconvex subgroup. Gromov’s ideas were devel-
oped by G. N. Arzhantseva in [4]. More general combination theorems for quasicon-
vex subgroups of word hyperbolic groups were stated and proved by R. Gitik in [17].

For relatively hyperbolic groups, G. Arzhantseva and A. Minasyan use a combina-
tion theorem for cyclic subgroups to prove that relatively hyperbolic groups which do
not have non-trivial finite normal subgroups are C �-simple [5]. In the case of relatively
hyperbolic groups with discrete representations in Isom.Hn/, results by M. Baker and
D. Cooper correspond to the combination of quasiconvex subgroups [6].

The Klein–Maskit Combination Theorems for Kleinian groups [23] are another
motivation for our work; in particular, the following example whose details can be
found in [21]: if G1 and G2 are two lattices of PSL.2; C/ and R is a maximal parabolic
subgroup of both, then for a “sufficiently complicated” parabolic h centralizing R,
the natural homomorphism from Q1 �R hQ2h�1 into PSL.2; C/ is injective. This
technique has been used by D. Cooper, D. Long, andA. Reid to double quasi-Fuchsian
subgroups along parabolic subgroups in hyperbolic manifold groups, producing es-
sential closed surfaces in cusped hyperbolic manifolds [13], [12]. Corollary 1.7
illustrates this technique in the context of relatively hyperbolic groups.

Another motivating result, with a similar statement to Theorem 1.2, is a combi-
nation theorem for Veech subgroups of the mapping class group by C. Leininger and
A. Reid in [21]. This result was used to construct subgroups of the mapping class
group isomorphic to the fundamental group of a closed surface. The mapping class
group is weakly relatively hyperbolic [24], but is not strongly relatively hyperbolic
[3], [7].

An open question by M. Gromov is whether every one-ended word hyperbolic
group contains a subgroup isomorphic to the fundamental group of a closed surface.
In [13], D. Cooper and D. Long produce surface subgroups in word hyperbolic groups
arising as the fundamental groups of Dehn fillings of finite volume hyperbolic mani-
folds, starting with the construction of quasiconvex subgroups with particular struc-
tures in the finite volume hyperbolic manifold group. We aim to explore Gromov’s
question on particular classes of word hyperbolic groups which arise as algebraic
Dehn fillings of relatively hyperbolic groups. The notion of algebraic Dehn filling
has been studied by D. Groves and J. Manning, and independently by D. Osin [19],
[26]. The main results of this paper are part of this program.

1.3. Other results on quasiconvex subgroups. Let G be a hyperbolic group relative
to a collection of subgroups H with finite generating set X .
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Proposition 1.3. Let Q and R be relatively quasiconvex subgroups of G. Then Q\R

is a relatively quasiconvex subgroup of G.

Remark 1.4. In the case of word hyperbolic groups, Proposition 1.3 was originally
proved by H. Short. C. Hruska has independently proved this property without as-
suming that the ambient group is finitely generated [20]. In this generality, D. Osin
stated the same result in [25].

Proposition 1.5. Let Q be a � -quasiconvex subgroup of G. The number of infinite
maximal parabolic subgroups of Q up to conjugacy in Q is finite.

Remark 1.6. Proposition 1.5 is Theorem 9.1 of [20] and is proved using the dynamical
characterization of quasiconvexity. Here we present a conceptually simpler proof
using arguments on Cayley graphs.

1.4. Sample applications. Special attention has been given to relatively hyperbolic
groups with peripheral structure consisting of abelian or virtually abelian subgroups.
In this setting Theorems 1.1 and 1.2 can be used to construct quasiconvex subgroups
with particular structures.

Let G be hyperbolic relative to a collection of free abelian subgroups H .
Given a subgroup R of a group Q, the amalgamated free product of k copies of Q

along R is denoted by �m.Q; R/. When m D 2, �2.Q; R/ is called the double of Q

along K. Doubling a group along a subgroup has been used in different contexts in
group theory and geometric topology; for example to produce groups with interesting
finiteness properties [28], or to produce surface subgroups in finite volume hyperbolic
3-manifold groups [12].

Corollary 1.7 (Doubling quasiconvex along parabolics). Let Q be a relatively qua-
siconvex subgroup and let P be a maximal parabolic subgroup of G. If

rankZ.Q \ P / < rankZ.P /;

then there exists a quasiconvex subgroup isomorphic to �k.Q; Q\H/ for any positive
integer k.

A quasiconvex subgroup R of G is called fully quasiconvex if for any parabolic
subgroup P < G, the subgroup Q \ P is finite or of finite index in P . Fully qua-
siconvex subgroups appear in the work of F. Dahmani [14] where it is shown that,
under some hypothesis, the combination of relatively hyperbolic groups along fully
quasiconvex subgroups is a relatively hyperbolic group.This class of subgroups also
appeared in the the work by J. Manning and the author [22] to prove a consequence
of the hypothetical absence of non-residually finite hyperbolic groups that was con-
jectured by I. Agol, D. Groves and J. Manning [1].
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Corollary 1.8 (Fully quasiconvex amalgams). Let Q be a relatively quasiconvex
subgroup. Then there exists a fully quasiconvex subgroup R which splits over Q.

1.5. Outline of the article. The article is organized as follows. Section 2 introduces
background and notation. Section 3 states and proves a proposition about quasi-
geodesics which complements a result by C. Druţu and M. Sapir in [15]. Section 4
recalls the notion of relatively quasiconvex subgroup, and the proofs of Proposi-
tions 1.3 and 1.5 are explained. Section 5 consists of the proofs of the main results
and the applications. The last section indicates directions of future research.

Acknowledgements. The results of this project are part of the author’s PhD disser-
tation at the University of Oklahoma. He thanks his academic advisor Noel Brady
for his guidance and encouragement, as well as Boris Apanasov, Ara Basmajian, Max
Forester, Christopher Leininger, Pallavi Dani, Darryl McCullough, Krishnan Shankar,
and Stephen Weldon for helpful comments during this work. The author is also grate-
ful to the referee for several useful comments. This project was partially supported by
NSF grant no. DMS-0505707 and the Department of Mathematics at the University
of Oklahoma through a Foundation Fellowship.

2. Relatively hyperbolic groups

The aim of this section is to introduce notation and to define relatively hyperbolicity
for finitely generated groups. The definition presented below is equivalent to the one
given by D. Osin in [25]; the equivalence follows directly from [25], Theorems 3.23
and 7.10.

2.1. Preliminaries. We follow closely the notation and conventions of the paper
[25]. Let G be a group and A � G a generating set closed under inverses. The
Cayley graph of the group G with respect to A, which is denoted by Cayley.G; A/, is
the oriented graph with vertex set G and edge set G � A, where an edge e D .g; a/

goes from the vertex g to the vertex ga and has label Label.e/ D a. Let p D
e1e2 : : : ek be a combinatorial path in Cayley.G; A/. The initial and the terminal
vertices of p are denoted by p� and pC respectively, the label Label.p/ of p is the
word Label.e1/ Label.e2/ : : : Label.ek/ in the alphabet A, and the length l.p/ of p is
the number of edges in p. The concatenation of the combinatorial paths p and q such
that pC D q� is denoted by pq. The (word) length jgjA of an element g 2 G is the
length of a shortest combinatorial path in Cayley.G; A/ from 1 to g. This specifies a
left invariant metric on the group G defined by distA.f; g/ D jf �1gjA.

A geodesic metric space .�; d/ is a ı-Gromov hyperbolic for some ı � 0 if for
any geodesic triangle �, every side is contained in the open ı-neighborhood of the
other two sides. A rectifiable path p in .�; d/ is a .�; c/-quasi-geodesic for some
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� � 1 and c � 0 if for any subpath q of p,

l.q/ � �d.q�; qC/ C c:

2.2. Definition of relative hyperbolicity. Let G be a group, H D fHigm
iD1 be a

collection of subgroups of G, and X be a symmetric finite generating set for G.
Denote by zH the disjoint union

zH D
mF

iD1

. zHi n f1g/;

where zHi is a copy of Hi .

Definition 2.1. The pair .G; fHigm
iD1/ satisfies the weakly relative hyperbolicity con-

dition if there is an integer ı � 0 such that the Cayley graph Cayley.G; X [ zH / is a
ı-hyperbolic metric space.

Definition 2.2 (D. Osin [25]). Let q be a combinatorial path in the Cayley graph
Cayley.G; X [ zH /. Subpaths of q with at least one edge are called non-trivial. An
Hi -component of q is a maximal non-trivial subpath s of q with Label.s/ a word in
the alphabet zHi n f1g. When we do not need to specify the index i , we will refer
Hi -components as H -components.

Two H -components s1, s2 of q are connected if the vertices of s1 and s2 belong
to the same left coset of Hi for some i . Equivalently, the H -components s1 and s2

are connected if Label.s1/ and Label.s2/ are words in the alphabet zHi for some i ,
there exists a path c which connects a vertex of s1 and a vertex of s2, and Label.c/ is
a word in the alphabet zHi . An H -component s of q is isolated if it is not connected
to a different H -component of q.

The path q is without backtracking if every H -component of q is isolated. A
vertex v of q is called phase if it is not an inner vertex of an H -component s of q.
Two paths p and q in Cayley.G; X [ zH / are k-similar if

maxfdX .p�; q�/; dX .pC; qC/g � k:

Remark 2.3. Every geodesic path in Cayley.G; X [ zH / is without backtracking and
all its vertices are phase.

Definition 2.4. The pair .G; fHigm
iD1/ satisfies the Bounded Coset Penetration (BCP)

property if for any � � 1, c � 0, k � 0, there exists an integer �.�; c; k/ > 0

such that for any two k-similar .�; c/-quasi-geodesics in Cayley.G; X [ zH / without
backtracking p and q the following holds:

(i) The sets of phase vertices of p and q are contained in the closed �.�; c; k/-
neighborhoods (with respect to the metric distX ) of each other.
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(ii) Suppose that s is an H -component of p such that distX .s�; sC/ > �.�; c; k/.
Then there exists an H -component t of q which is connected to s.

(iii) Suppose that s and t are connected H -components of p and q, respectively.
Then maxfdistX .s�; t�/; distX .sC; tC/g � �.�; c; k/.

Remark 2.5. Our definition of the BCP property corresponds to the conclusion of
Theorem 3.23 in [25].

Definition 2.6. The pair .G; fHigm
iD1/ satisfies the relative hyperbolicity condition

if the group G is weakly hyperbolic relative to fHigm
iD1 and the pair .G; fHigm

iD1/

satisfies the Bounded Coset Penetration property. If .G; fHigm
iD1/ satisfies the relative

hyperbolicity condition then we said that group G is hyperbolic relative to fHigm
iD1;

if there is no ambiguity, we just said that the group G is relatively hyperbolic.

Remark 2.7. The stated definition of relative hyperbolicity is equivalent to Defi-
nition 2.35 in [25] for finitely generated groups. This follows directly from [25],
Theorems 3.23 and 7.10.

For the rest of this section, let G be a group hyperbolic relative to a collection of
subgroups H and let X be a symmetric finite generating set of G.

p

q

p� pC

q� qC

g1Hi g2Hj

Figure 1. Two geodesics connecting different left cosets g1Hi and g2Hj are �.1; 4; 0/-similar,
and their lengths differ by at most two (Corollary 2.8).

The following corollary is a direct consequence of Definition 2.6.

Corollary 2.8. Let g1Hi and g2Hj be different left cosets. For any pair of geodesics
p and q in Cayley.G; X [ zH / such that p�; q� 2 g1Hi , pC; qC 2 g2Hj , and neither
p nor q have more than one vertex in g1Hi or g2Hj , the following holds.

(1) l.q/ � l.p/ C 2, and

(2) q and p are �.1; 4; 0/-similar.

Proof. Consider the path r D c1pc2 in Cayley.G; X [ zH / where c1 is an edge
connecting q� and p�, and c2 is an edge connecting pC and qC. Notice that r is a
.1; 4/-quasi-geodesic in Cayley.G; X [ zH / and that q and r are 0-similar. The BCP
property implies

maxfdistX ..c1/�; .c1/C/; distX ..c2/�; .c2/C/g � �.1; 4; 0/:
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3. Quasi-geodesics

Let G be a group generated by a finite set X , let fHigm
iD1 be a collection of subgroups

of G, and suppose that G is hyperbolic relative to fHigm
iD1. Any geodesic p in

Cayley.G; X [ zH / can be decomposed as

p D r1s1 : : : rksk;

where each ri is a geodesic and each si is an isolated H -component.
In this section, we investigate paths with the above type of decomposition and

estimate quasi-geodesic constants.
The main result of the section is the following.

Proposition 3.1. There are constants � and �0 with the following properties. If p is
a path in Cayley.G; X [ zH / such that

(1) p D r1s1 : : : rksk , where each ri and si are geodesic paths in Cayley.G; X[ zH /,

(2) the subpath si of p is an H -component of p for each i ,

(3) distX ..si /�; .si /C/ � � for each i , and

(4) the H -components si and siC1 of p are not connected for each i .

Then p is a .�0; 0/-quasi-geodesic without backtracking and with different endpoints.

r1
s1

r2
s2

r3
s3

r4
s4

Figure 2. Polygonal path p in Proposition 3.1.

Remark 3.2. The strength of this result is that the constant �0 is independent of the
number of segments of the path. This complements a similar result by C. Druţu and
M. Sapir [15], Lemma 8.12. Assuming that the lengths of the segments ri are larger
than a fixed constant l , their result estimates quasi-geodesic constants depending on l

and the number of segments 2k.

The rest of the section consists of two parts. First, a result by D. Osin about
polygons in Cayley.G; X [ zH / is recalled and a corollary is stated. The second part
consists of a series of lemmas and the proof of Proposition 3.1.

3.1. Osin’s result about polygons. The following proposition is a stronger version
of the Bounded Coset Penetration property. It is a central part of D. Osin’s work
in [26].
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Proposition 3.3 (D. Osin [26]). There exists a constant D > 0 satisfying the fol-
lowing condition. If P D p1p2 : : : pn is an n-gon in Cayley.G; X [ zH / and
S � fp1; : : : ; png such that

(1) each side pi 2 S is an isolated H -component of P , and

(2) each side pi 62 S is a geodesic path.

Then P

p2S

distX .p�; pC/ � Dn:

The next corollary is used in the proof of the main result of the section.

Corollary 3.4. There exists a constant 	 � 0 with the following property. Let � D
pqr be a triangle whose sides p, q, r are geodesics in Cayley.G; X [ zH /. If s is an
H -component of p, then either

(1) s is an isolated H -component of the cycle � and distX .s�; sC/ � 	 ;
(2) s is connected to only one H -component t of the concatenated path qr and

maxfdistX .s�; tC/; distX .sC; t�/g � 	 I
(3) s is connected to H -components t and u of q and r respectively, and

maxfdistX .sC; t�/; distX .tC; u�/; distX .uC; s�/g � 	:

s� sC

s�

sC t�

tC
s�

sC t�

tC
u�uC

Figure 3. The three cases of Corollary 3.4.

Proof. In the first case, consider � as a 5-gon with s as one of its sides. Then
Proposition 3.3 implies that distX .s�; sC/ � 5D:

In the second case, we consider the case t is an H -component of q. Decompose
the paths p and q as p D p1sp2 and q D q1tq2. Since s and t are connected H -
components, there are edges c1 connecting t� and sC, and c2 connecting s� and tC.
Considering the 3-gon p2q1c1 and the 4-gon p1c2q2r , Proposition 3.3 implies that

maxfdistX .s�; tC/; distX .sC; t�/g � 4D:



326 E. Martínez-Pedroza

For the third case, an analogous argument shows that

maxfdistX .sC; t�/; distX .tC; u�/; distX .uC; s�/g � 3D:

To finish the proof define 	 D 5D:

Remark 3.5. An equivalent result to Corollary 3.4 appears as [15], Proposition 8.16.

3.2. Proof of Proposition 3.1. We will see that �0 D 3 works and define a lower
bound for � during the course of the proof. The argument consists of three lemmas.

Lemma 3.6. Let p be a path satisfying the hypothesis of Proposition 3.1, and let q

be a geodesic in Cayley.G; X [ zH / connecting the endpoints of p. The q contains,
for each i , an H -component ti satisfying

(1) si and ti are connected H -components, and

(2) si and ti are �.1; 4; 0/-similar.

In particular, the endpoints of p are different (see Figure 4).

p

q

r1
s1

t1

r2
s2

t2

r3
s3

t3

r4
s4

t4

Figure 4. The path p and a geodesic q connecting the endpoints of p.

Proof. We argue by induction on k. Suppose that k D 1. Since l.s1/ D 1 it follows
that r1s1 is a .1; 2/-quasi-geodesic in Cayley.G; X [ zH /. By our choice of �,

distX ..s1/�; .s1/C/ � � > �.1; 2; 0/:

The BCP property implies that any geodesic in Cayley.G; X [ zH / connecting the
endpoints of r1s1 has an H -component which is connected to s1 and is �.1; 2; 0/-
similar to s1.

Suppose that k > 1. Consider the subpaths of p:

p1 D r1s1 : : : rk�1sk�1 and p2 D rksk :

Let q, q1, and q2 be geodesics in Cayley.G; X [ zH / connecting the endpoints of p,
p1 and p2, respectively.

Claim 1. q1 has no H -component connected to the H -component sk .
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By induction hypothesis q1 has an H -component u which is connected and
�.1; 4; 0/-similar to sk�1. By the triangle inequality and our choice of �,

distX .u�; uC/ � distX ..sk�1/�; .sk�1/C/ � 2�.1; 4; 0/

� � � 2�.1; 4; 0/

> �.1; 4; 0/:

(1)

Suppose that q1 has an H -component v connected to sk (see Figure 5). Consider
the subpath ŒvC; u�
q1

of q1 from vC to u�. Corollary 2.8 implies that ŒvC; u�
q1

and r�1
k

are �.1; 4; 0/-similar paths. In particular distX .u�; uC/ � �.1; 4; 0/ which
contradicts (1).

p

q1

sk�1 sk
rk

u
v

Figure 5. Claim 1 in Lemma 3.6. If q1 has an H -component v connected to sk , then
distX .u�; uC/ � �.1; 4; 0/, which is a contradiction.

Claim 2. q has an H -component tk connected to sk .
Consider the triangle � whose sides are q1, q2, and q. By induction hypothesis,

q2 has an H -component t which is connected and �.1; 4; 0/-similar to sk . By the
triangle inequality and our choice of �,

distX .t�; tC/ � � � 2�.1; 4; 0/ > 	; (2)

where 	 is the constant of Corollary 3.4. Since q1 has no H -component connected
to sk , Corollary 3.4 implies that q has an H -component tk .

Claim 3. q has an H -component tk�1 connected to sk�1.
Since p2 and q2 are 0-similar, if q2 has an H -component t connected to sk�1, then

the BCP property shows that distX .t�; tC/ � �.1; 2; 0/. By the induction hypothesis,
the H -component u of q1 connected to sk�1 satisfies distX .u�; uC/ � ��2�.1; 4; 0/.
Consider the triangle � whose sides are q1, q2, and q. Corollary 3.4 implies that q

has an H -component tk�1 connected to sk�1 such that

distX ..tk�1/�; .tk�1/C/ � � � 2�.1; 4; 0/ � �.1; 2; 0/ � 3	 > 0: (3)

The last inequality follows by our choice of �.
Claim 4. q contains, for each 1 � i < k � 1, an H -component ti which is

connected to si .
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Let q0 be the subpath of q from q� to .tk�1/C. Notice that q0 and q1 are �.1; 4; 0/-
similar (apply Corollary 2.8 to rk and the subpath of q from .tk�1/C to .tk/�). By
induction hypothesis q1 has an H -component ui connected to si such that

distX ..ui /�; .ui /C/ � � � 2�.1; 2; 0/ > �.1; 0; �.1; 4; 0//; (4)

where the last inequality follows by our choice of �. Applying the BCP property to
q0 and q1, one sees that q0 has an H -component ti connected to si such that

distX ..ti /�; .ti /C/ � � � 2�.1; 2; 0/ � 2�.1; 0; �.1; 4; 0// > 0; (5)

where the last inequality follows by our choice of �. The claim follows.
Claim 5. The H -components si and ti of p and q, respectively, are �.1; 4; 0/-

similar.
Let wi be the subpath of q between ti and tiC1. Corollary 2.8 implies that ri and

wi are �.1; 4; 0/-similar for each i . This completes the proof of the lemma.

Lemma 3.7. Let p be a path satisfying the hypothesis of Proposition 3.1. Then p is
a .3; 0/-quasi-geodesic.

Proof. Let p0 be a subpath of p and let q0 a geodesic in Cayley.G; X [ zH / connecting
the endpoints of p0. The Lemma above implies that q0 has an H -component ti
connected to the H -component si of p0. Therefore we have decompositions of the
two paths of the form:

p0 D r 0
{s{r{C1 : : : r{C| s{C| r 0

{C|C1;

q0 D u{ t{u{C1 : : : u{C| t{C| u{C|C1:

Corollary 2.8 implies that l.ri / � l.ui / C 2 for i D { C 1 : : : { C | , l.r 0
{/ � l.u{/ C 2,

and l.r 0
{C|C1/ � l.u{C|C1/. It follows that

l.p0/ � l.u{/ C 2 C
|C|P

iD{C1

.l.si / C l.uiC1/ C 2/ C l.u{C|C1/ C 2 � 3l.q0/

It follows that p is a .3; 0/-quasi-geodesic in Cayley.G; X [ zH / since p0 was arbitrary.

Lemma 3.8. Let p be a path satisfying the hypothesis of Proposition 3.1. Then p is
without backtracking.

Proof. Suppose that p backtracks. Let u and v be different connected H -components
of p such that the subpath r in between is without backtracking. Observe that r
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contains one of the H -components si of p. Since r is a .3; 0/-quasi-geodesic, the
BCP property implies that

distX ..si /�; .si /C/ � �.3; 0; 0/:

But this is a contradiction since

distX ..si /�; .si /C/ � � > �.3; 0; 0/; (6)

by our choice of �.

A lower bound for � is given by (1), (2), (3), (4), (5), and (6).

4. Quasiconvex subgroups

This section consists of three parts. First (relatively) quasiconvex subgroups are de-
fined following D. Osin’s work in [25]. The second part consists of the proof of
Proposition 1.3, which states that the collection of quasiconvex subgroups of a rela-
tively hyperbolic group is closed under finite intersections. The third part is devoted
to the proof of Proposition 1.5 on maximal parabolic subgroups of quasiconvex sub-
groups.

In this section, G is a group generated by a finite set X , fHigm
iD1 a collection of

subgroups of G, and G is hyperbolic relative to fHigm
iD1.

4.1. Definition of relatively quasiconvex subgroups. Relatively quasiconvex sub-
groups of relatively hyperbolic groups were introduced by D. Osin in [25] as a gen-
eralization of quasiconvex subgroups of word hyperbolic groups. F. Dahmani in [14]
introduced a dynamical definition of quasiconvex subgroups in relatively hyperbolic
groups. C. Hruska showed that both notions are equivalent [20].

Definition 4.1 (D. Osin [25]). A subgroup Q of G is called quasiconvex relative to
fHigm

iD1 (or simply quasiconvex when the collection fHigm
iD1 is fixed) if there exists

a constant � � 0 such that the following condition holds:
Let f , g be two elements of Q, and let p be an arbitrary geodesic path from f

to g in Cayley.G; X [ zH /. Then for any vertex v 2 p, there exists a vertex w 2 Q

such that distX .u; w/ � � .

4.2. Proof of Proposition 1.3. The following lemma is used several times in the
paper, in particular in the proof of Proposition 1.3. In the context of countable groups,
we say that a left invariant metric is proper if balls of finite radius contain a finite
number of elements.
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Lemma 4.2. Let A be a countable group with a proper left invariant metric d . Then
for any subgroups B and C of A, and any constant K � 0, there exists M D
M.B; C; K/ � 0 so that

B \ NK.C / � NM .B \ C /;

where NK.C / and NM .B \ C / denote the closed K-neighborhood and the closed
M -neighborhood of C and B \ C in .A; d/ respectively.

Proof. Suppose that the statement is false for the constant K. Then there are sequences
fqng1

nD1 and fhng1
nD1 such that qn 2 B , qnhn 2 C , d.1; hn/ � K, and

d.qn; B \ C / � n:

Since balls are finite in the metric space .A; d/, without lost of generality assume
fhng1

nD1 is a constant sequence fhg1
nD1. For any m and n, observe that qnq�1

m D
.qnh/.qmh/�1 2 B \ C , and hence qmh and qnh are in the same right coset of
B \ C , say .B \ C /f . It follows that

d.qn; B \ C / � d.qn; qnh/ C d.qnh; B \ C / � K C d.1; f /

for any n, a contradiction.

Remark 4.3. A more general result than Lemma 4.2 appears in [20], Proposition 9.4.

Proof of Proposition 1.3. Let � > 0 so that Q and R are � -quasiconvex relative to
fHigm

iD1. Since the generating set X is finite, the metric distX on G is proper. Let
M D M.Q; R; 2�/ be the constant given by Lemma 4.2 satisfying

Q \ N2� .R/ � NM .Q \ R/;

where the neighborhoods are taken in the metric space .G; distX /.
We claim that Q\R is a .�CM/-quasiconvex relative to fHigm

iD1. Let g 2 Q\R,
let p be a geodesic from 1 to g in Cayley.G; X [ zH /, and let u be a vertex of p.
Since Q and R are � -quasiconvex, there exists s 2 Q and t 2 R so that

maxfdistX .s; u/; distX .t; u/g � �:

It follows that s 2 Q\N2� .R/, and hence there is v 2 Q\R so that distX .s; v/ � M:

Therefore v 2 Q \ R and distX .u; v/ � � C M:
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4.3. Proof of Proposition 1.5

Proposition 1.5. Let Q be a � -quasiconvex subgroup of G. Then any infinite maximal
parabolic subgroup of Q is conjugate by an element of Q to a subgroup in the set

fQ \ H z j H 2 H and z 2 G with jzjX � �g:
In particular, the number of infinite maximal parabolic subgroups up to conjugacy in
Q is finite.

Proof. Let g 2 G and H 2 H . Suppose that Q \ H g is an infinite subgroup.
Since the generating set X of G is finite, there is an element h 2 H such that
jhjX > �.1; 0; jgjX / and hg 2 Q \ H g . Let p be a geodesic from 1 to hg . Then the
BCP property 2.4 implies that p has an H -component s contained in the left coset gH .
Since Q is � -quasiconvex, there is an element y 2 Q such that distX .y; s�/ � � .
The group element z D y�1s� satisfies jzjX � � and

.Q \ H z/y D Q \ H s� D Q \ H g :

5. Proofs of the combination theorems and applications

The proofs of Theorems 1.1 and 1.2 adapt some of Gromov’s ideas in [18], Sec-
tion 5.3.C, on combination theorems for quasiconvex subgroups in word hyperbolic
groups. We sketch the general argument. Suppose that Q �Q\R R is an amalgamated
product of quasiconvex subgroups of G satisfying the conditions of one of main theo-
rems. Given a non-trivial element f of Q�Q\R R, we use its normal form to produce
a path o in the relative Cayley graph of G from 1 to the image of f . Then the path o

is shortened by replacing each H -component with more than one edge by a single
edge; the new path is denoted by p. (See Figure 7 below.) Proposition 3.1 implies
that p is a .�0; 0/-quasi-geodesic with different endpoints, proving that the map from
Q �Q\S S into G is injective. Since �0 is independent of the element f , the image
of Q �Q\S S in G will be a quasiconvex subgroup.

The section consists of four parts. In the first part a proof of Theorem 1.1 is
explained in detail. Then the proof of Theorem 1.2 is discussed. The last two parts
correspond to the proof of Corollaries 1.7 and 1.8.

5.1. Proof of Theorem 1.1. Conjugate the subgroup Q if necessary and assume that
P D H for some H 2 H . A lower bound for the constant C is defined during the
course of the proof, in particular, the constant C is chosen large enough to satisfy
(8) below. The proof consists of four lemmas. Let � be the quasiconvexity constant
for Q.
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Lemma 5.1. The natural homomorphism Q �Q\R R ! G is injective.

Proof. Let f be a non-trivial element of Q �Q\R R. If f is conjugate to an element
of Q or an element of R, then it is clear that its image is not trivial. Otherwise,

f D g1h1 : : : gkhk; (7)

where gi 2 Q n Q \ R for 1 < i � k, hi 2 R n Q \ R for 1 � i < k, either
g1 D 1 or g1 2 Q n Q \ R, and either hk D 1 or hk 2 R n Q \ R. Since f is
not conjugate to an element of Q or R, after conjugating if necessary, assume that
g1 6D 1 and hk 6D 1. Consider the path o in Cayley.G; X [ zH / given by

o D u1v1 : : : ukvk;

where each ui and vi are geodesic paths in Cayley.G; X [ zH /, Label.ui / represents
gi , and Label.vi / represents hi .

Claim 1. Let ti be the H -component of the path o containing the subpath vi . Then
the H -components ti and tiC1 are not connected.

If ti and tiC1 are connected, then Label.ui / represents an element of R. But this
contradicts the assumptions on the normal form (7) of the element f .

Claim 2. For each i , distX ..ti /�; .ti /C/ > �, where � is the constant from Propo-
sition 3.1.

Fix i and let x1 D .ui /�, x2 D .ti /�, x3 D .ui /C, x4 D .uiC1/�, x5 D .ti /C,
and x6 D .uiC1/C. (See Figure 6.)

x1

x2

x3 x4

x5

x6

ui uiC1z1 z2

Figure 6. The endpoints of vi are x3 and x4. The H -component ti of o containing vi consists
of the path Œx2; x3
vi Œx4; x5
.

First we show that there are elements z1 and z2 in the left coset x3.H \ Q/ D
x4.H \ Q/ such that

maxfdistX .x2; z1/; distX .x5; z2/g � M.H; Q; �/;

where M.H; Q; �/ is the constant provided by Lemma 4.2 for the subgroups H and Q,
the constant � , and the proper metric distX . Since Q is � -quasiconvex and Label.ui /
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represents an element of Q, we have that x�1
3 x2 2 H and dX .x�1

3 x2; Q/ � � ; then
Lemma 4.2 implies that

dX .x�1
3 x2; H \ Q/ � M.H; Q; �/I

hence there is an element z1 2 x3.H \ Q/ such that dX .x2; z1/ � M.H; Q; �/. A
similar argument guarantees the existence of an element z2 with the desire properties.

Since x�1
3 x4 2 R n Q, x�1

3 z1 2 .H \ Q/ � R, and x�1
4 z2 2 .H \ Q/ � R, we

have that
z�1

1 z2 D .z�1
1 x3/.x�1

3 x4/.x�1
4 z2/ 2 R n Q;

and hence distX .z1; z2/ � C by hypothesis (2) on the length of the elements of RnQ.
Finally, by our choice of the constant C ,

distX .x2; x5/ � distX .z1; z2/ � distX .x2; z1/ � distX .x5; z2/

� C � 2M.H; Q; �/

� �;

(8)

which proves the claim.
Claim 3. Let p be the path obtained by replacing each H -component ti of o for

a single edge si . (See Figure 7.) Then p is .�0; 0/-quasi-geodesic with different

o

ui�1

vi�1

ui

vi

uiC1

giH
0 giC1H 00

p

ri�1

si�1

ri

si

riC1

giH
0 giC1H 00

Figure 7. The path o and the resulting quasi-geodesic p.

endpoints. In particular the image of f by the map Q �Q\R R ! G is not trivial.
The path p has a decomposition of the form

p D r1s1 : : : rksk;
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where r1 or sk may be trivial. The definition of the path p (and the path o) shows
that ri and si are geodesic segments in Cayley.G; X [ zH /; Claim 1 shows that the
H -components si and siC1 of p are not connected; and Claim 2 implies that

distX ..si /�; .si /C/ � �:

Proposition 3.1 implies that p is a .�0; 0/-quasi-geodesic with different endpoints,
proving the claim.

Lemma 5.2. The subgroup hQ [ Ri is relatively quasiconvex and its quasiconvexity
constant is independent of the choice of R.

Proof. Let f 2 hQ [ Ri, and let q be a geodesic in Cayley.G; X [ zH / from 1 to f .
If f 2 Q[R then it is trivial that any vertex of q is at most � apart from an element of
hQ [ Ri with respect to the metric distX . Otherwise, let p be the .�0; 0/-quasi-geo-
desic constructed during the proof of Lemma 5.1 from 1 to f . Notice that any vertex
of p is at most � apart from an element of hQ [ Ri with respect to the metric distX .
The BCP property implies that every vertex of q is at most �.�0; 0; 0/ apart from the set
of vertices of p. It follows that any vertex of q is at most .� C �.�0; 0; 0// apart from
hQ [ Ri. This shows that hQ [ Ri is relatively .� C �.�0; 0; 0//-quasiconvex.

Lemma 5.3. Any parabolic element of the subgroup hQ [ Ri is either conjugate to
an element of Q or to an element of R by an element of hQ [ Ri.

Proof. If f is a parabolic element of G, then its action on Cayley.G; X [ zH / fixes
setwise a subset of diameter one. Indeed, if f is a parabolic element, then there is an
element g 2 G such that gfg�1 2 Hi for some i . It follows that f fixes setwise the
left coset g�1Hi which has diameter one.

Let f be an element of Q �Q\R R, and suppose that f is not conjugate to
an element of Q or R. We claim that f acts on a bi-infinite quasi-geodesic Qp in
Cayley.G; X [ zH / as a non-trivial translation, and hence the observation of the
previous paragraph implies that f is not a parabolic element.

Conjugate f , if necessary, and assume that its normal form,

f D g1h1 : : : gkhk;

satisfies g1 6D 1 and hk 6D 1. Consider the path o in Cayley.G; X [ zH /

o D u1v1 : : : ukvk

from 1 to f , where each ui and vi are non-trivial geodesics in Cayley.G; X [ zH /,
Label.ui / represents gi , and Label.vi / represents hi . Let Qo the bi-infinite path

Qo D : : : f �3.o/f �2.o/f �1.o/of .o/f 2.o/f 3.o/ : : : ;



Combination of quasiconvex subgroups of relatively hyperbolic groups 335

and let Qp the path obtained by replacing each H -component of Qo by a single edge.
The argument of Lemma 5.1 shows that the subpath of Qp induced by the subpath

f �k.o/f �kC1.o/ : : : f �1.o/of .o/ : : : f k�1.o/f k.o/

of Qo is a .�0; 0/-quasi-geodesic for any integer k > 0. It follows that Qp is a bi-infinite
.�0; 0/-quasi-geodesic, and that the (image in G of the) element f acts as a nontrivial
translation on this bi-infinite quasi-geodesic.

Lemma 5.4. Any parabolic subgroup of hQ [ Ri is conjugate either to a subgroup
of Q or to a subgroup of R by an element of hQ [ Ri.

In particular, if fK1; : : : ; Klg is the collection of maximal parabolic subgroups
of Q up to conjugacy in Q. Then the collection of maximal parabolic subgroups of
hQ [ Ri up to conjugacy in hQ [ Ri is

(1) fR; K1; : : : ; Klg if Q \ P is trivial;

(2) fR; K2; : : : ; Klg if Q \ P and K1 are conjugate in Q.

Proof. Assume that Q \ R is a proper subgroup of R and Q; otherwise there is
nothing to prove.

An argument using normal forms shows that if J is a subgroup of Q �Q\R R

that cannot be conjugated into Q or R, then J contains an element that cannot be
conjugated into Q or R. By Lemma 5.3, any parabolic subgroup of Q �Q\R R is
conjugate to a parabolic subgroup of Q or R.

The second statement of the lemma follows from the following observations. Since
parabolic subgroups of Q �Q\R R can be conjugated into subgroups of Q or R, any
maximal parabolic subgroup of Q�Q\R R is conjugate to a subgroup in the collection
fR; K1; K2; : : : ; Klg. Since Ki and Kj are not conjugate in Q for i 6D j , they are not
conjugate in Q �Q\R R. Since Q \ R is a proper subgroup of R, no Ki is conjugate
to R by an element Q �Q\R R.

5.2. Proof of Theorem 1.2. Conjugate the subgroups Q1 and Q2 if necessary and
assume that P D H for some H 2 H . A lower bound for the constant C is given
by (10) below. The proof is completely analogous to the proof of Theorem 1.1. Let
� be a common quasiconvexity constant for Q1 and Q2.

Lemma 5.5. The natural homomorphism Q1 �R hQ2h�1 ! G is injective.

Proof. Let f be an element of Q1 �R hQ2h�1 with normal form

f D g1gh
2 : : : g2k�1gh

2k; (9)

where g2iC1 2 Q1 n R for 1 � i � k, g2i 2 Q2 n R for 1 � i < k, either g1 D 1

or g1 2 Q1 n R, and either g2k D 1 or g2k 2 Q2 n R. Consider the path o in
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Cayley.G; X [ zH / from 1 to f given by

o D u1v1u2v2 : : : u2k�1v2k�1u2kv2k;

where ui , v2i and v2iC1 are geodesic paths in Cayley.G; X [ zH / such that Label.ui /

represents gi , Label.v2i�1/ represents h, and Label.v2i / represents h�1.
Claim 1. Let ti be the H -component of o that contains the subpath vi . Then the

H -components ti and tiC1 are not connected.
If t2i�1 and t2i are connected H -components, then g2i 2 R, which contradicts

the assumptions on (9). Analogously t2i and t2iC1 are not connected H -components.
Claim 2. distX ..ti /�; .ti /C/ > � for each i , where � is the constant from Propo-

sition 3.1.
Fix an odd value of i , and let x1 D .ui /�, x2 D .ti /�, x3 D .ui /C, x4 D .uiC1/�,

x5 D tC and x6 D .uiC1/C. The argument used to prove Claim 2 of Lemma 5.1
shows that there are elements z1 in the left coset x3R, and z2 in the left coset x4R

such that

distX .x2; z1/ � M.H; Q1; �/;

and

distX .x5; z2/ � M.H; Q2; �/;

where M.H; Qi ; �/ is the constant provided by Lemma 4.2 for the subgroups H and
Qi , the constant � , and the proper metric dX . It follows that

z�1
1 z2 D .z�1

1 x3/.x�1
3 x4/.x�1

4 z2/ 2 RhR;

and hence distX .z1; z2/ � C: Now the triangle inequality and our choice of C implies
that

distX .x2; x5/ � distX .z1; z2/ � distX .x2; z1/ � distX .x5; z2/

� C � M.H; Q1; �/ � M.H; Q2; �/

� �;

(10)

where � is the constant from Proposition 3.1 The case for an even value of i is similar,
the only difference is that z�1

1 z2 2 Rh�1R, which also implies distX .z1; z2/ � C .
Claim 3. Let p be the path obtained by replacing each H -component vi of o

by a single edge si . The above claims and Proposition 3.1 imply that p is .�0; 0/-
quasi-geodesic with different endpoints. In particular the image of f by the map
Q1 �R hQ2h�1 �! G is not trivial.

Remark 5.6. If p is the path from 1 to an element f of hQ1; hQ2h�1i n Q1 [ Q2

constructed in the proof, then p has at least two different H -components s1 and s2 of
X -length at least �, namely the ones induced by an element of hQ2h�1 in the normal



Combination of quasiconvex subgroups of relatively hyperbolic groups 337

form of f . Since � is larger than �.�0; 0; 0/ (see (6)), the BCP property implies that
any geodesic from 1 to f has at least two different H -components. In particular, the
element f does not belong to a subgroup H 2 H .

Therefore, if Q1 \H D Q2 \H is the trivial subgroup, then hQ1 [hQ2h�1i\H

is trivial.

Similar arguments to the proofs of Lemmas 5.3 and 5.2 show the following.

Lemma 5.7. The subgroup hQ1 [ hQ2h�1i is relatively quasiconvex.

Lemma 5.8. Every parabolic subgroup of hQ1[hQ2h�1i is conjugate to a parabolic
subgroup of Q1 or Q2 by an element of hQ1 [ hQ2h�1i.

In particular, if Ki is the collection of maximal parabolic subgroups of Qi up to
conjugacy in Qi for i D 1; 2, then every maximal parabolic subgroup
of hQ1 [ hQ2h�1i is conjugate to a subgroup in K1 [ K2 by an elementof
hQ1 [ hQ2h�1i.
5.3. Proof of Corollary 1.7

Lemma 5.9. Suppose that A is an abelian group with a finite generating set Y , B is
a subgroup of A, and h 2 A such that

rankZ.B/ < rankZ.hB [ fhgi/:
Then there is a constant � D �.B; h; Y / such that jgjY � �jj j for any j 2 Z and
g 2 hj B .

Proof. Since h has infinite order, one can regard A as the direct product A1 ˚ hh1i,
where h 2 hh1i and B � A1. Suppose that Y contains h1 and Y n fh1g generates
A1. Then jgjY � jhj jY � jj j for any g 2 hj B . Since the word metrics associated
to different finite generating sets are Lipschitz equivalent the result follows.

Corollary 1.7 follows from the following proposition.

Proposition 5.10. Let G be hyperbolic relative to a collection of free abelian sub-
groups H , Q a relatively quasiconvex subgroup, and P a maximal parabolic subgroup
of G. If

rankZ.Q \ P / < rankZ.P /;

then there is an element h 2 P with the following property. For any positive integer k,
there exist integers n1; : : : ; nk such that

˝ Sk
iD1 hni Qh�ni

˛ Š �k.Q; Q \ H/:

Moreover, the above subgroup is relatively quasiconvex.
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Proof. Let G be hyperbolic relative to a collection of abelian subgroups H , Q a
relatively quasiconvex subgroup, and H 2 H such that

rankZ.Q \ H/ < rankZ.H/:

Let h 2 H be any element such that

rankZ.Q \ H/ < rankZ.h.Q \ H/ [ fhgi/;

and let Y be a finite generating set of H . By Lemma 5.9 there is a constant � > 0

such that
jgjY � �jj j (11)

for any integer j and any element g in the left coset hj .Q \ H/.
By induction on k, we prove the existence of integers n1; : : : ; nk such that the

subgroup
˝ Sk

iD1 hni Qh�ni
˛

is quasiconvex, isomorphic to �k.Q; Q \ H/, and

Q \ H D ˝ Sk
iD1 hni Qh�ni

˛ \ H:

The case k D 1 is trivial taking n1 D 0. Suppose that Rk�1 D ˝ Sk�1
iD1 f ni Qf �ni

˛

is a quasiconvex subgroup isomorphic to �k�1.Q; Q\H/, and Rk�1\H D Q\H .
Let C D C.Rk�1; Q; H/ be the constant provided by Theorem 1.2, and let nk be
any integer such that

maxfjgjY j g 2 H with jgjX < C g < �nk : (12)

Now we show that the quasiconvex subgroups Rk�1 and Q, the maximal parabolic
subgroup H , and the element hnkC1 2 H satisfy the hypothesis of Theorem 1.2: first,
since H is abelian, hnk .Q \ H/h�nk D Q \ H ; second, if g is an element of the
left coset hnkC1.Q \ H/, then (11) and (12) imply that jgjX � C .

Therefore Theorem 1.2 implies that the subgroup Rk D ˝
Rk�1; hnk Qh�nk

˛
is

isomorphic to Rk�1 �Q\H Q Š �k.Q; Q \ H/ and is quasiconvex. We claim that
Q \ H D Rk \ H .

If Q \ H is not trivial, then Lemma 5.8 applied to Q and Rk�1 implies that
Q\H is a maximal parabolic subgroup of Rk . Since Rk \H is a maximal parabolic
subgroup of Rk containing Q \ H , if follows that Q \ H D Rk \ H . If Q \ H is
trivial, then Remark 5.6 implies that Rk \ H is trivial.

5.4. Proof of Corollary 1.8. Corollary 1.8 follows from the following proposition.

Proposition 5.11. Let G be hyperbolic relative to a collection of free abelian sub-
groups H , and let Q be a relatively quasiconvex subgroup. Then there exists a fully
quasiconvex subgroup R which has the tree of groups decomposition described in Fig-
ure 8, where fK1; : : : ; Kng is a collection of representatives of the maximal parabolic
subgroups of Q and each Ai is a finite index subgroup of a maximal parabolic sub-
group of G.
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A1

A2

An
K1

K2

Kn
Q

Figure 8. Tree of groups decomposition of the fully quasiconvex subgroup R of Corollary 1.8.

Proof. By Proposition 1.5, a collection of representatives of the infinite maximal
parabolic subgroups of Q up to conjugacy in Q is finite, say K1; : : : ; Kn. The
desired group is obtained after an n-step process which produces a sequence fQj gn

j D0

of quasiconvex subgroups of G, where Q0 D Q and Qn D R is a fully quasiconvex
subgroup. For 1 � j � n, the group Qj has the graph of groups decomposition
described in Figure 9, where fA1; : : : ; Aj ; Kj C1; : : : ; Kng is the collection of all
maximal parabolic subgroups of Qj up to conjugation in Qj , and Ai is a finite index
subgroup of a maximal parabolic subgroup of G for each i � j .

A1

Aj

K1

Kj

Kj C1

Kj C1

Kn

Kn

Q

Figure 9. The graph of groups decomposition of the subgroup Qj in the proof of Corollary 1.8.

Now we explain how to obtain QiC1 from Qi when i < n. Let P be the maximal
parabolic subgroup of G containing KiC1, and let Y be a finite generating set of P .
Let C D C.Qi ; P / � 0 the constant provided by Theorem 1.1, and define

D D maxfjgjY j g 2 P with jgjX < C g:
Since P is a finitely generated abelian group, there is a finite index subgroup AiC1 of
P containing KiC1 such that jgjY � D for any g 2 A n K. In particular jgjX � C

for any g 2 AiC1 n KiC1, and hence Theorem 1.1 and Lemma 5.4 imply that the
subgroup QiC1 D hQi [ AiC1i of G is isomorphic to Qi �KiC1

AiC1, is relatively
quasiconvex, and fA1; : : : ; Aj C1; Kj C2; : : : ; Kng is the collection of all maximal
parabolic subgroups of QiC1 up to conjugation in QiC1.
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6. Future directions

6.1. Amalgamation along hyperbolic subgroups. The main results of this paper
address Problem 1, stated in the introduction, in the case that K is a maximal parabolic
subgroup of Q1 or Q2. The case that K consists only of hyperbolic elements remains
to be considered.

An analogous version of Problem 1 for HNN-extensions is of interest.

Problem 2. Let R1 and R2 are subgroups of a relatively quasiconvex subgroup Q

of G. Investigate conditions that guarantee the existence of a group homomorphism
' W R1 ! R2 and an injective homomorphism

Q�' ! G

with image a quasiconvex subgroup. Here Q�' represents the HNN-extension

hQ; t j t rt�1 D '.r/; r 2 R1i:

6.2. Surface subgroups in (relatively) hyperbolic groups. Finding subgroups iso-
morphic to fundamental groups of hyperbolic closed surfaces in (relatively) hyper-
bolic groups has been an theme in Geometric Group Theory [8], [27]. In this context,
D. Calegari has shown that if a group G decomposes as a graph of free groups amal-
gamated over cyclic subgroups and the second rational homology is not trivial, then
G contains a surface subgroup [11]. D. Cooper, D. Long and A. Reid have produced
closed surface subgroups in fundamental groups of complete hyperbolic 3-manifolds
with cusps [13], [12]. In [10], N. Brady, M. Forester and the author have shown that
a class of word hyperbolic groups of the form Fk �Z Fl , where Fk and Fl are free
groups of rank k and l respectively, have surfaces subgroups. The techniques used
in [10] resemble Cooper–Long–Reid ideas of doubling surfaces with one boundary
component through a combination theorem.

Problem 3. For which other classes of word hyperbolic groups can these ideas pro-
duce surface subgroups?

D. Cooper and D. Long have produced surface subgroups in Dehn fillings of
hyperbolic manifolds [13]. In the context of hyperbolic Dehn fillings on relatively
hyperbolic groups [19], [26] we set

Problem 4. Explore the existence of surface subgroups in one-ended word hyperbolic
groups arising as hyperbolic Dehn fillings of relatively hyperbolic groups.
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[29] A. Szczepański, Relatively hyperbolic groups. Michigan Math. J. 45 (1998), 611–618.
Zbl 0962.20031 MR 1653287

[30] A.Yaman, A topological characterisation of relatively hyperbolic groups. J. Reine Angew.
Math. 566 (2004), 41–89. Zbl 1043.20020 MR 2039323

Received October 15, 2007; revised August 29, 2008

E. Martínez-Pedroza, Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario L8S 4K1, Canada

E-mail: emartinez@math.mcmaster.ca

http://www.emis.de/MATH-item?05508729
http://www.ams.org/mathscinet-getitem?mr=2448064
http://arxiv.org/abs/0801.4596
http://www.emis.de/MATH-item?1099.57002
http://www.ams.org/mathscinet-getitem?mr=2231468
http://arxiv.org/abs/0811.4001
http://www.emis.de/MATH-item?0627.30039
http://www.ams.org/mathscinet-getitem?mr=0959135
http://www.emis.de/MATH-item?0941.32012
http://www.ams.org/mathscinet-getitem?mr=1714338
http://www.emis.de/MATH-item?1093.20025
http://www.ams.org/mathscinet-getitem?mr=2182268
http://www.emis.de/MATH-item?1116.20031
http://www.ams.org/mathscinet-getitem?mr=2270456
http://www.emis.de/MATH-item?05275105
http://www.ams.org/mathscinet-getitem?mr=2355692
http://www.emis.de/MATH-item?0122.27301
http://www.ams.org/mathscinet-getitem?mr=0158917
http://www.emis.de/MATH-item?0962.20031
http://www.ams.org/mathscinet-getitem?mr=1653287
http://www.emis.de/MATH-item?1043.20020
http://www.ams.org/mathscinet-getitem?mr=2039323

	Introduction
	Main Results
	History and motivation
	Other results on quasiconvex subgroups
	Sample applications
	Outline of the article

	Relatively hyperbolic groups
	Preliminaries
	Definition of relative hyperbolicity

	Quasi-geodesics
	Osin's result about polygons
	Proof of Proposition 3.1

	Quasiconvex subgroups
	Definition of relatively quasiconvex subgroups
	Proof of Proposition 1.3
	Proof of Proposition 1.5

	Proofs of the combination theorems and applications
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Corollary 1.7
	Proof of Corollary 1.8

	Future directions
	Amalgamation along hyperbolic subgroups
	Surface subgroups in (relatively) hyperbolic groups

	References

