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Infinite conjugacy classes in groups acting on trees
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Abstract. We characterize amalgams and HNN extensions with infinite conjugacy classes.
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1. Statement of the results

Throughout the paper, we call free group a non-abelian free group.
We characterize amalgams and HNN extensions with infinite conjugacy classes,

thereby answering a question by P. de la Harpe [Ha], Problems 27 and 28. Some
particular cases are treated in [HP], §V, [St], Théorèmes 0.1 and 2.8, and [NS]. Our
work also provides information about their normal subgroups not containing any free
subgroup, and in particular amenable normal subgroups. Our proofs are essentially
geometric.

We call an amalgam A �H B non-trivial if A ¤ H and B ¤ H , and non-
degenerate if moreover H has index at least three in either A or B . Similarly, if K

is a group, H a subgroup, and � W H ! K an injective morphism, we call the HNN
extension HNN.K; H; �/ non-degenerate if either H or �.H/ is a proper subgroup
of K, non-ascending if both are proper subgroups, and strictly ascending if exactly
one of the two is a proper subgroup.

Let G be a group. If g 2 G, then the conjugacy class of G is finite if and only
if the centralizer CG.g/ has finite index in G. With this in mind, it is easy to show
that the union of all finite conjugacy classes is a subgroup FC.G/ of G, of course
characteristic, in which every finitely generated subgroup has finite index centralizer
and in particular has centre of finite index.

A group G is called icc (infinite conjugacy classes) if FC.G/ D f1g.
If G is a group and N a subgroup of G, we say that N is f-normalized by G if N

is normal in G and the action by conjugation of G on N has no infinite orbit.
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Given an amalgam A �H B , define FCA;B.H/ as the largest subgroup N of H

which is normalized by both A and B , and such that the subgroup of Aut.N / generated
by A and B f-normalizes N .

We begin with the non-degenerate cases.

Proposition 1. For a non-degenerate amalgam � D A �H B , we have FC.�/ D
FCA;B.H/.

For instance, set A D B D Z=4Z Ë˙ Z=3Z and H D Z=3Z. Then
FC.A �H B/ D Z=3Z. This contradicts [NS], Example 3.4, where it is claimed
that in a non-degenerate amalgam the FC-centre should coincide with the centre,
while here the centre is trivial.

Corollary 2. A non-degenerate amalgam A �H B is not icc if and only if there exists
a nontrivial subgroup M � H , normalized by both A and B , such that either M is
finite, or M ' Zn and the images of A and B in Aut.M/ ' GLn.Z/ generate a
finite subgroup.

Given an HNN extension HNN.K; H; �/, define FCK;� .H/ as the largest normal
subgroup N of K contained in H that is invariant under � and such that the subgroup
of Aut.N / generated by K and � f-normalizes N .

Proposition 3. For a non-degenerate HNN extension � D HNN.K; H; �/, we have
FC.�/ D FCK;� .H/.

Corollary 4. A non-degenerate HNN extension HNN.K; H; �/ is not icc if and only if
there exists a nontrivial subgroup M � H , normal in K and invariant under � , such
that either M is finite, or M ' Zn and the images of K and � in Aut.M/ ' GLn.Z/

generate a finite subgroup.

In the degenerate cases, the FC-centre does not have such a simple description.
However we can characterize when the group is icc.

Degenerate non-trivial amalgams are amalgams � D A�H B , where H has index
two (and is thus normal) in both A and B . In this case, the quotient of A �H B by H

is isomorphic to the free product of two cyclic groups of order two, and is denoted
D1 (infinite dihedral group). We denote by Z its unique cyclic subgroup of index 2,
and we define �C as the preimage of Z by the map � ! D1.

Proposition 5. A non-trivial, degenerate amalgam A �H B is icc if and only if
FCA;B.H/ D f1g and the natural morphism D1 ! Out.H/ is injective.

Degenerate HNN extensions are merely semidirect products ZË� K. The follow-
ing result is very likely to be known, but having no reference we give the (elementary)
proof.
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Proposition 6. A degenerate HNN extension Z Ë� K is icc if and only if
FCK;� .K/ D f1g and the natural morphism Z ! Out.K/ is injective.

Two other characteristic subgroups come into play: RM.G/, the largest amenable
normal subgroup of G, and NF.G/, the largest normal subgroup of G not containing
any free subgroup. We have the inclusions

FC.G/ � RM.G/ � NF.G/ � G:

To see that NF.G/ is well defined, observe that if N , N 0 are normal subgroups
of G without free subgroups, then so is NN 0 (as it lies in an extension with kernel
N and quotient N 0=.N \ N 0/), and if .Ni / is an increasing net of normal subgroups
without free subgroups, then its union does not have any free subgroup either.

The question by P. de la Harpe mentioned above is related to the operator algebras
of groups. In this context, it is also natural to focus on the condition that the amenable
radical is trivial: indeed, it is known (and easy) to prove that if a group � satisfies
RM.�/ ¤ f1g, then � is not C*-simple (see [Ha]), while the converse is probably
false but unknown (Question 4 in [Ha]) and known to be true for a large class of “nice”
groups (see the survey in [Ha]).

For an amalgam A �H B , define RMA;B.H/ as the largest normal subgroup of H

which is amenable and normalized by both A and B . Similarly define NFA;B.H/,
and, for an HNN extension HNN.K; H; �/, define RMK;� .H/ and NFK;� .H/.

Proposition 7. For a non-degenerate amalgam � D A �H B , we have RM.�/ D
RMA;B.H/ and NF.�/ D NFA;B.H/.

Proposition 8. For a non-ascending HNN extension � D HNN.K; H; �/, we have
RM.�/ D RMK;� .H/ and NF.�/ D NFK;� .H/.

In particular, in both cases, NF.�/ is contained in H . Of course this need not be
true in a degenerate amalgam or in an ascending HNN extension: in these cases, if
H has no free subgroup, then neither does G.

The following is an immediate consequence of Proposition 8.

Proposition 9. For a degenerate amalgam � D A �H B with H of index two in A

and B , we have RM.�/ D f1g (resp. NF.�/ D f1g) if and only if RM.H/ D f1g
(resp. NF.H/ D f1g) and the natural morphism D1 ! Out.H/ is injective.

Proposition 10. For a non-degenerate ascending HNN extension � D Z Ë lim�!�K,

we have RM.�/ D f1g if and only if there exists no nontrivial normal amenable
subgroup N of K such that �.N / � N .

Proposition 11. For a degenerate HNN extension � D Z Ë� K, we have RM.�/ D
f1g if and only RM.K/ D f1g and the natural morphism Z ! Out.K/ is injective.
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2. Proofs

Consider an amalgam � D A�H B; let it act on its Bass–Serre tree: this is a tree with
two given vertices ˛, ˇ with stabilizers A and B respectively, linked by an (oriented)
edge " with stabilizer H . Also, if � D HNN.K; H; �/, its Bass–Serre tree is a tree
with one given vertex ˛ with stabilizer K and one given (oriented) edge " from ˛ to
�.˛/ with stabilizer H .

Lemma 12. Let A �H B be a non-trivial amalgam, or HNN.K; H; �/ be a non-
ascending HNN extension. Let it act on its Bass–Serre tree. Then it does not fix any
point at infinity.

Proof. Suppose that the amalgam � D A�H B fixes a point ! at infinity. Exchanging
the roles of A and B if necessary, we can suppose that there exists a geodesic ray
˛0 D ˛, ˛1 D ˇ, ˛2, … whose limit is !. This implies that the stabilizer of ˛ fixes
the edge ", i.e., A � H , contradicting that the amalgam is non-trivial.

The case of non-ascending HNN extensions is similar.

The following lemma is contained in [PV], Propositions 2 and 3.

Lemma 13. Suppose that a group G acts on a tree. Suppose that it contains a
hyperbolic element and preserves no axis, nor any point at infinity. Then G contains
a free subgroup.

Lemma 14. Suppose that G D A �H B is a non-degenerate amalgam, or G D
HNN.K; H; �/ is a non-ascending HNN extension. Consider a normal subgroup N

of G. Suppose that N contains a hyperbolic element ( for the action on the Bass–Serre
tree). Then N contains a free subgroup.

Proof. By Lemma 12, G fixes no point at infinity. Moreover, by the non-degenerate-
ness assumption, it preserves no axis. Hence we can apply Lemma 13.

The following lemma is equivalent to [PV], Proposition 1.

Lemma 15. Let G act on a tree without global fixed point on the 1-skeleton by elliptic
isometries. Then G fixes a unique point at infinity.

Proof of Proposition 7. It is immediate that NF.�/ \ H D NFA;B.H/ (and the sim-
ilar assertion holds for RM.�/). Thus it suffices to prove that NF.�/ � H . Consider
the action of � D A �H B on its Bass–Serre tree. By Lemma 2, NF.�/ contains no
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hyperbolic element. By Lemmas 15 and 12, it fixes a point p (either a vertex or the
middle of an edge). Since it is normal, it fixes all the points in the orbit of p, hence
fixes its convex hull, that is, all of the tree. In particular, it fixes all oriented edges
and hence NF.�/ � H .

The proof of Proposition 8 is similar and left to the reader.

Proof of Propositions 1 and 3. It is immediate that FC.�/\H is equal to FCA;B.H/

(resp. FCK;� .H/).
If we exclude the case of non-ascending HNN extensions, by Propositions 7 and 8,

FC.�/ is contained in H , and thus the propositions are proved.
Now consider the case of a strictly ascending HNN extension � D Z Ë lim�!�K.

Note that since the extension is strictly ascending, FC.�/ � lim�!�K. Suppose that

x 2 FC.�/ and x 2 �n.K/ � �nC1.K/ for some n 2 Z. Since the conjugacy classes
are finite, there exists k < ` such that �k.x/ D �`.x/. It follows that x D �`�k.x/,
contradicting our assumption. Thus, x 2 T

n2N �n.K/ and in particular FC.�/ � K,
and therefore FC.�/ D FCA;B.H/.

Proof of Corollary 2. Denote by G the group A�H B . Clearly, a subgroup satisfying
the condition of the corollary is contained in the FC-centre.

Conversely, suppose that FC.�/ ¤ f1g. Let M0 be the subgroup of FC.�/

generated by one conjugacy class. This group has a subgroup of finite index d

isomorphic to Zn for some n. If M0 is finite, set M D M0. Otherwise, consider a
characteristic subgroup M of finite index in M0 isomorphic to Zn: for instance, take
the intersection of all subgroups of index d in M0. Then the image of the natural map
G ! GLn.Z/ is finite. (To see that an infinite subgroup of GLn.Z/ has an infinite
orbit on Zn, consider the action on the union of orbits of basis elements.) Finally
M � H by Proposition 1.

The proof of Corollary 4 from Proposition 3 is similar and left to the reader.
It remains to deal with the degenerate cases.
The following elementary well-known lemma is useful. Let f1g ! N ! G !

Q ! f1g be an extension of groups. The action of G on N by conjugation provides
a map G ! Aut.N /, and after composition defines a map G ! Out.N /. This map
is trivial on N and therefore factors through a (unique) map Q ! Out.N /.

Lemma 16. Suppose that the natural map Q ! Out.N / is injective. Then for every
nontrivial normal subgroup M of G, we have M \ N ¤ f1g.

Proof. If M is a normal subgroup of G satisfying M \ N D f1g, then ŒM; N � D f1g
and therefore M is contained in the kernel of the map G ! Out.N /. Thus M � N

and so M D f1g.
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Proof of Proposition 5. Consider an amalgam � D A �H B with H of index two in
both A and B . Note that FC.�/ \ H D FCA;B.H/.

Suppose that FC.�/ ¤ f1g. If FC.�/ \ H ¤ f1g, then FCA;B.H/ ¤ f1g.
Otherwise, FC.�/ \ H D f1g, and in particular ŒFC.�/; H� D f1g because H is
normal in � . So the natural morphism � ! Out.H/ is trivial on both H and FC.�/,
so the factored map D1 ' �=H ! Out.H/ is not injective.

Conversely, if FCA;B.H/ ¤ f1g, then � is clearly not icc. It remains to prove that
if � W D1 ! Out.H/ is not injective, then � is not icc.

Let W be the kernel of � and M its preimage in � . As M is not contained in
H , W is a nontrivial normal subgroup of D1 and hence contains a normal infinite
cyclic subgroup hyi. Lift y to an element y0 of � . Since y0 acts on H by H -inner
automorphisms, there exists h 2 H such that z D yh�1 centralizes H .

We distinguish two cases.

� H has nontrivial centre. If u is central element of H , then u is centralized by
H and z, hence by a finite index subgroup of � . Accordingly Z.H/ � FC.�/,
so � is not icc.

� H has trivial centre. Indeed, let C denote the centralizer of H in �; this is an
infinite normal subgroup of � . Then H \ C D f1g, so that C is isomorphic to
a subgroup of D1. The action of � on C by conjugation factors through D1,
so there are non-trivial finite �-conjugacy classes in C , so � is not icc.

Proof of Proposition 6. Consider a degenerate HNN extension Z Ë� H .
Suppose that Z ! Out.H/ is injective. Then by Lemma 16 every nontriv-

ial normal subgroup of � intersects H non-trivially. In particular, if FCK;� .K/ D
FC.�/ \ H D f1g, then FC.�/ D f1g.

For the converse, of course if FCK;� .K/ ¤ f1g, then FC.�/, which contains it,
is non-trivial. Suppose that FC.�/ \ H D f1g and Z ! Out.H/ is not injective.
Denote by W its kernel and by M its preimage in � . Then, as in the case of amalgams,
Z.H/ � FC.�/, and hence Z.H/ D f1g. So the centralizer of H is a normal, infinite
cyclic subgroup of � and is contained in FC.�/.

Proof of Proposition 9. Let us deal with the amenable radical, the other case being
similar. Since H is normal in � , RM.H/ � RM.�/. Therefore if RM.H/ ¤ f1g,
then RM.�/ ¤ f1g. If RM.H/ D f1g and the map D1 D �=H ! Out.H/ is not
injective, let N denote the kernel of the map � ! Out.H/. By assumption it is not
reduced to H . Since RM.H/ D f1g, the group H has trivial centre, and therefore
the action by conjugation provides a well-defined map N ! H which is the identity
on H . The kernel of this map is normal in � and isomorphic to a subgroup of D1
and hence is amenable.

Conversely if RM.H/ D f1g and the map D1 ! Out.H/ is injective, then by
Lemma 16 we obtain that RM.�/ D f1g.
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Proof of Proposition 10. Suppose that there exists a nontrivial normal amenable sub-
group N of K such that �.N / � N . Then the sequence .��n.N // is non-decreasing,
so that its union is amenable and clearly normal in � .

Conversely, suppose that RM.�/ ¤ f1g. Set R D RM.�/ \ K. Then, clearly, R

is normal in K, amenable, and �.R/ � R. So, if R ¤ f1g we are done. If R D f1g,
then RM.�/ \ lim�!�K D f1g, but this case is excluded since the HNN extension is
strictly ascending.

Proof of Proposition 11. Suppose that RM.�/ D f1g. Since RM.K/ � RM.�/, this
implies that RM.K/ D f1g. Moreover, it follows that � has infinite conjugacy classes
so that, by Proposition 6, the natural morphism Z ! Out.K/ is injective.

Conversely, suppose that the conditions are satisfied. By Proposition 6, � has
infinite conjugacy classes. Moreover, RM.�/ \ K D f1g, hence RM.�/ is a normal
cyclic subgroup, so that RM.�/ D f1g since � has infinite conjugacy classes.

3. Generalization

Since the results are analogous for amalgams and HNN extensions, it is natural to
expect unified statements. This is indeed possible, using graphs of groups.

Recall that a graph Y is defined by the following data:

� a set of vertices V ,

� a set E of (orientation) edges, with two functions: t W E ! V (target) and an
involutive map E ! E, e ! Ne without fixed point, thought as reverting the
orientation.

A graph of groups G D .G; Y / is defined by the following data:

� a connected graph Y ,

� a group Gv for every v 2 V ; a group Ge with Ge D G Ne for every e 2 E; an
injective morphism ie W Ge ! Gt.e/ for every e 2 E.

To every graph of groups G is associated its fundamental group �1.G / (more
correctly, �1.G ; T / where T is a maximal tree in the graph).

It is constructed as follows. First define F.G; Y /. This is the group generated by
(the free product of) all Gv (v 2 V ) and all e (e 2 E) subject to the relations Ne D e�1

and eie.y/e�1 D i Ne.y/ for all e 2 E and y 2 Ge . If T is a maximal subtree of Y ,
the fundamental group �1.G; Y; T / is the quotient of F.G; Y; T / by the edges in T .
Up to isomorphism, the group obtained does not depend on the choice of T (see [Se],
Chap. 1, §5).

To every graph of groups .G; Y / is associated its Bass–Serre tree (or universal
covering) zX D zX.G; Y; T /; this a tree on which the fundamental group �1.G; Y; T /

acts with quotient .G; Y / (in a suitable sense). Further, there are sections V ! V. zX/
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and E ! E. zX/, denoted v 7! Qv and e 7! Qe, such that the stabilizer of Qv is Gv (which
is naturally embedded in �1.G; Y; T / and the stabilizer of Qe is Ge (more correctly,
the subgroup ie.Ge/ of Gt.e/).

We call a graph of groups reduced if there is no edge e 2 E satisfying simultane-
ously the following conditions:

� t .e/ ¤ t . Ne/,

� ie is an isomorphism.

If we have a non-reduced graph of groups and e is an edge satisfying the conditions
above, there is a new graph obtained by removing t .e/ (intuitively, we identify t .e/

and t . Ne/), and, for every edge e0 such that t .e/ D t .e0/, define the new target of e0
as t .e/ and replace ie0 with ie

�1 B ie0 . The fundamental group of the new graph is
isomorphic to the old one. Thus, we can replace every finite graph of groups by a
reduced one without altering the fundamental group.

We call a graph of groups a bunch if it has only one vertex.

Lemma 17. 1) Suppose that a reduced graph of groups is not among the following
exceptions:

� a bunch such that all ie are isomorphisms,

� a bunch with exactly one edge e (and Ne), such that ie is an isomorphism (but not
necessarily i Ne).

Let its fundamental group G act on its Bass–Serre tree (universal covering). Then the
stabilizers of vertices have no common fixed point at infinity. In particular, G has no
fixed point at infinity.

2) If the graph of groups is a bunch with n � 2 edges, then G does not fix any
point at infinity.

Proof. 1) We denote by ordinary letters the vertices or edges in the graph of groups,
and by Greek letters the corresponding vertices or edges in the Bass–Serre tree.

Suppose that ! is a point at infinity fixed by all vertex stabilizers, and let �1, …,
�n, … be a geodesic ray with end !, and denote by "i the edge joining �iC1 and �i .

Since the stabilizer of �1 fixes !, it fixes "1. This means that i"1
is an isomorphism.

Since the graph is reduced, this implies that "1 is a loop, i.e., v1 D v2.
Suppose that v1 is connected to no other edge than "1 and its inverse, i.e., we have a

bunch with one (non-oriented) edge. Then, by assumption, i"1
is not an isomorphism,

which is a contradiction.
Hence there exists another edge "0. Let �0 be its target and lift "0 and v0 to points

e0 and v0 in the Bass–Serre tree. Then v0; v1, … is a ray with end !, and therefore
the same argument as before shows that i"0

is an isomorphism. If this is true for
all choices of "0, this means that the graph is a bunch in which all edge morphisms,
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except maybe i x"1
, are isomorphisms. But taking the path "0 and then "�1 D x"1, we

obtain that i x"1
is also an isomorphism, and this is excluded by the assumptions.

2) It remains to consider the case of a bunch with n � 2 non-oriented edges,
in which all edge maps are isomorphisms. In this case, the Bass–Serre tree can be
identified with the Cayley graph of the free group Fn, and the fundamental group
contains the left translations, which do not fix any point at infinity (any two of the
free generators have no common fixed point at infinity).

Lemma 18. Consider a reduced graph of groups. The Bass–Serre tree is reduced to
a line only in the following cases:

� a bunch with exactly one edge e (and Ne) such that ie and i Ne are isomorphisms;

� a segment with edge e such that the images of ie and i Ne have images of index
two.

(Note that this corresponds to degenerate HNN extensions and amalgams.)

The proof is straightforward and omitted.

Proposition 19. Consider a graph of groups and exclude the cases of ascending HNN
extensions and degenerate amalgams. Denote by G the fundamental group. Let N

be a normal subgroup of G containing no free subgroup. Then the action of N on the
Bass–Serre tree is trivial.

Proof. First note that G has no fixed point at infinity by Lemma 17 and preserves no
axis by Lemma 18.

Suppose that N contains a hyperbolic element. If it fixes exactly one point at
infinity, then this point is G-invariant, which is a contradiction. If it fixes exactly two
points at infinity, G preserves the axis joining them, which is impossible. Hence, by
Lemma 13, N contains a free subgroup, a contradiction.

Hence N is elliptic. If it has no fixed point, it preserves a unique point at infinity
which must be fixed by G, again a contradiction.

Therefore N fixes a vertex, hence the convex hull of its orbit, that is, all of the
tree.

It remains to describe the kernel of the action of the fundamental group G on the
Bass–Serre tree.

In the case of an amalgam A �H B , this is the biggest subgroup of H which is
normal in both A and B . In the case of an HNN extension HNN.K; H; �/, this is the
biggest subgroup of H which is normal in K and � -invariant.

In general, this kernel can be described in terms of the data in a graph of group.
We need the following elementary definitions: let X , Y be sets. A partial injection
i W X ! Y is a subset of X � Y whose projections into X and Y are both injective;
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their images are called Dom.i/ and Im.i/. We can of course view i as an bijection
of Dom.i/ onto Im.i/. Every partial injection X ! Y has an inverse Y ! X ,
which is a partial injection. We can compose partial injections X ! Y ! Z,
although it can happen that we obtain the empty partial injection. In the following,
all the partial injections will be partial homomorphisms of groups (that is, partial
injections with domain and image subgroups, and defining an isomorphism between
these subgroups).

Now let .G; Y / be a graph of groups. To every edge is associated a partial injection
Gt. Ne/ ! Gt.e/ given by je D ie B i�1Ne , with domain i Ne.Ge/ and image ie.Ge/. Note
that je D j �1Ne . Denote by W the closure of fje j e 2 Eg under composition.

There exists a unique maximal family of subgroups Wv (v 2 V ) normal in Gv such
that, for every w 2 W with w a partial injection Gv ! Gv0 , we have Wv contained
in the domain of w.

It is then clear that all Wv are isomorphic to a single group W : if v; v0 2 V by
connectedness, there exists w 2 W a partial injection Gv ! Gv0 , and by uniqueness
we must have w.Wv/ D Wv0 . Fix a base-vertex v 2 V . Set W D Wv and identify
all Wv0 to Wv through the tree T . It is easy to see that this group W corresponds to
a single subgroup of the fundamental group �1.G; Y; T /, which is the kernel of the
action in the Bass–Serre tree.

Consider elements �i generating �1.Y; v/. Every �i induces an automorphism
˛i 2 W of W . Consider the subgroup ƒ of Aut.W / generated by all ˛i and by
the action by conjugation of all Gv0 (through the identification Wv0 D W described
above).

Proposition 20. Let .G; Y / be a reduced, non-degenerate finite graph of groups and
� D �1.G; Y; T /. Conjugacy classes of � contained in W coincide with the orbits
of the action of ƒ in W . In particular, � is not icc if and only if W has a ƒ-invariant
nontrivial subgroup which is either finite, or is isomorphic to Zn and such that the
natural morphism ƒ ! GLn.Z/ has finite image.
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